Daniel Lidar is the Viterbi Professor of Engineering at USC, and a professor of Electrical Engineering, Chemistry, and Physics. He holds a Ph.D. in physics from the Hebrew University of Jerusalem. He did his postdoctoral work at UC Berkeley. Prior to joining USC in 2005 he was a faculty member at the University of Toronto. His main research interest is quantum information processing, where he works on quantum control, quantum error correction, the theory of open quantum systems, quantum algorithms, and theoretical as well as experimental adiabatic quantum computation. He is the Director of the USC Center for Quantum Information Science and Technology, and is the co-Director (Scientific Director) of the USC-Lockheed Martin Center for Quantum Computing. Lidar is a recipient of a Sloan Research Fellowship, a Guggenheim Fellowship and is a Fellow of the AAAS, APS, and IEEE.
241. “Simulating nonlinear optical processes on a superconducting quantum device”, Journal of Plasma Physics, 90, 805900602 (2024), by Y. Shi, B. Evert, A. F. Brown, V. Tripathi, E. A. Sete, V. Geyko, Y. Cho, J. L DuBois, D. A. Lidar, I. Joseph, M. Reagor. [link]
240. “Dynamically Generated Decoherence-Free Subspaces and Subsystems on Superconducting Qubits”, Reports on Progress in Physics 87, 097601, G. Quiroz, B. Pokharel, J. Boen, L. Tewala, V. Tripathi, D. Williams, L. Wu, P. Titum, K. Schultz, and D. A. Lidar. [link]
239. “Optimizing for periodicity: a model-independent approach to flux crosstalk calibration for superconducting circuits”, Quantum Science and Technology 9 025007 (2024), by X. Dai, R. Trappen, R. Yang, S. M. Disseler, J. I. Basham, J. Gibson, A. J. Melville, B. M. Niedzielski, R. Das, D. K. Kim, J. L. Yoder, S. J. Weber, C. F. Hirjibehedin, D. A. Lidar, A. Lupascu. [link]
238. “Error budget of a parametric resonance entangling gate with a tunable coupler”, Phys. Rev. Applied 22, 014059 (2024), by E. A. Sete, V. Tripathi, J. A. Valery, D. A. Lidar, J. Y. Mutus. [link]
237. “Markovian and non-Markovian master equations versus an exactly solvable model of a qubit in a cavity”, Phys. Rev. Applied 22, 014028, Z. Xia, J. Garcia-Nila, D. A. Lidar. [link]
236. “Better-than-classical Grover search via quantum error detection and suppression”, npj Quantum Information volume 10, 23 (2024), by B. Pokharel and D. A. Lidar. [link]
235. “Modeling low- and high-frequency noise in transmon qubits with resource-efficient measurement”, PRX Quantum 5, 010320 (2024), by V. Tripathi, H. Chen, E. M. Levenson-Falk and D. A. Lidar [link]
234. “Dynamical decoupling for superconducting qubits: A performance survey”, Phys. Rev. Applied 20, 064027, (2023) by N. Ezzell, B. Pokharel, L. Tewala, G. Quiroz and D. A. Lidar [link]
233. “Which differential equations correspond to the Lindblad equation?”, Phys. Rev. Research 5, 043163 (2023), by V. Kasatkin, L. Gu and D. A. Lidar [link]
232. “Demonstration of algorithmic quantum speedup”, Phys. Rev. Lett. 130, 210602 (2023) by B. Pokharel and D. A. Lidar [link]
231. “Boundaries of quantum supremacy via random circuit sampling”, npj Quantum Information, 9, 36 (2023), by A. Zlokapa, S. Boixo, and D. A. Lidar [link]
230. “Demonstration of Error-Suppressed Quantum Annealing Via Boundary Cancellation”, Phys. Rev. Applied 19 , 034095 (2023), by H. Munoz-Bauza, L. Campos Venuti, and D. A. Lidar [link]
229. “No ((n,K,d<127)) Code Can Violate the Quantum Hamming Bound”, IEEE BITS the Information Theory Magazine, vol. 2, no. 3, (2022), by E. Dallas, F. Andreadakis and D. A. Lidar [link]
228. “Quantum adiabatic theorem for unbounded Hamiltonians with a cutoff and its application to superconducting circuits”, Phil. Trans. R. Soc. 381: 20210407 (2023), by E. Mozgunov and D. A. Lidar [link]
227. “Coherent quantum annealing in a programmable 2,000 qubit Ising chain”, Nat. Phys. (2022), by A. D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Altomare, A. J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang, E. Ladizinsky, A. J. R. MacDonald, G. Marsden, T. Oh, G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, J. D. Whittaker, J. Yao, R. Harris, D. A. Lidar, H. Nishimori, M. H. Amin [link]
226. “Suppression of crosstalk in superconducting qubits using dynamical decoupling”, Phys. Rev. Applied 18, 024068 (2022), by V. Tripathi, H. Chen, M. Khezri, Ka-Wa Yip, E. M. Levenson-Falk, D. A. Lidar [link]
225. “Demonstration of long-range correlations via susceptibility measurements in a one-dimensional superconducting Josephson spin chain”, npj Quantum Information 8, 85 (2021), by D. M. Tennant, X. Dai, A. J. Martinez, R. Trappen, D. Melanson, M. A. Yurtalan, Y. Tang, S. Bedkihal, R. Yang, S. Novikov, J. A. Grover, S. M. Disseler, J. I. Basham, R. Das, D. K. Kim, A. J. Melville, B. M. Niedzielski, S. J. Weber, J. L. Yoder, A. J. Kerman, E. Mozgunov, D. A. Lidar & A. Lupascu [link]
224. “Breakdown of the weak coupling limit in quantum annealing”, Phys. Rev. Applied 17, 054033 (2022), by Y. Bando, Ka-Wa Yip, H. Chen, D. A. Lidar, H. Nishimori [link]
223. “Predicting non-Markovian superconducting qubit dynamics from tomographic reconstruction”, Phys. Rev. Applied 17, 054018 (2022), by H. Zhang, B. Pokharel, E. M. Levenson-Falk and D. A. Lidar [link]
222. “HOQST: Hamiltonian Open Quantum System Toolkit”, Communications Physics (2022)5:11, by H. Chen and D. A. Lidar [link]
221. “Customized quantum annealing schedules”, Phys. Rev. Applied 17, 044005 (2022), by M. Khezri, X. Dai, R. Yang, T. Albash, A. Lupascu, D. A. Lidar [link]
220. “Standard quantum annealing outperforms adiabatic reverse annealing with decoherence”, Phys. Rev. A 105, 032431 (2022), by G. Passarelli, K.-W. Yip, D.A. Lidar, P. Lucignano [link]
219. “Optimal Control for Closed and Open System Quantum Optimization”, Phys. Rev. Applied 16, 054023 (2021), by L. Campos Venuti, D. D’Alessandro and D. A. Lidar [link]
218. “Charged particle tracking with quantum annealing-inspired optimization”, Quantum Machine Intelligence 3, 27 (2021), by A. Zlokapa, A. Anand, J-R. Vlimant, J. Duarte, J. Job, D. Lidar and M. Spiropulu [link]
217. “Identification of driver genes for severe forms of COVID-19 in a deeply phenotyped young patient cohort”, Science Translational Medicine (2021), by R. Carapito, R. Li, J. Helms, C. Carapito, S. Gujja, V. Rolli, R. Guimaraes, J. Malagon-Lopez, P. Spinnhirny, R. Mohseninia, A. Hirschler, L. Muller, P. Bastard, A. Gervais, Q. Zhang, F.s Danion, Y. Ruch, M. Schenck-Dhif, O. Collange, T.-N. Chamaraux-Tran, A. Molitor, A. Pichot, A. Bernard, O. Tahar, S. Bibi-Triki, H. Wu, N. Paul, S. Mayeur, A. Larnicol, G. Laumond, J. Frappier, S. Schmidt, A. Hanauer, C. Macquin, T. Stemmelen, M. Simons, X. Mariette, O. Hermine, S. Fafi-Kremer, B. Goichot, B. Drenou, K. Kuteifan, J. Pottecher, P.-M. Mertes, S. Kailasan, J. Aman, E. Pin, P. Nilsson, A. Thomas, A. Viari, D. Sanlaville, F. Schneider, J. Sibilia, P.-L. Tharaux, J.-L. Casanova, Y. Hansmann, D. Lidar, M. Radosavljevic, J.R. Gulcher, F. Meziani, C. Moog, T.W. Chittenden, S. Bahram [link]
216. “Calibration of flux crosstalk in large-scale flux-tunable superconducting quantum circuits”, PRX Quantum 2, 040313 (2021), by X. Dai, D. M. Tennant, R. Trappen, A. J. Martinez, D. Melanson, M. A. Yurtalan, Y. Tang, S. Novikov, J. A. Grover, S. M. Disseler, J. I. Basham, R. Das, D. K. Kim, A. J. Melville, B. M. Niedzielski, S. J. Weber, J. L. Yoder, D. A. Lidar, and A. Lupascu [link]
215. “Phase transitions in the frustrated Ising ladder with stoquastic and non-stoquastic catalysts”, Phys. Rev. Research 3 (2021), by K. Takada, S. Sota, S. Yunoki, B. Pokharel, H. Nishimori, D. A. Lidar [link]
214. “Low overhead universality and quantum supremacy using only Z-control”, Phys. Rev. Research 3, 033207 (2021), by B. Barch, R. Mohseninia and D. A. Lidar [link]
213. “Prospects for quantum enhancement with diabatic quantum annealing”, Nature Reviews Physics (2021), by E. J. Crosson and D. A. Lidar [link]
212. “Quantum processor-inspired machine learning in the biomedical sciences”, Patterns 2, 100246 (2021) by R. Li, S. Gujja, S. Bajaj, O. Gamel, N. Cilfone, J. Gulcher, D. A. Lidar and T. Chittenden [link]
211. “Anneal-path correction in flux qubits”, npj Quantum Information 7, 36 (2021), by M. Khezri, J. Grover, J. Basham, S. Disseler, H. Chen, S. Novikov, K. Zick, D. A. Lidar [link]
210. “Quantum adiabatic machine learning by zooming into a region of the energy surface”, Phys. Rev. A 102, 062405, by A. Zlokapa, A. Mott, J-R. Vlimant, J. Job, D. A. Lidar and M. Spiropulu [link]
209. “Fast, Lifetime-Preserving Readout for High-Coherence Quantum Annealers”, PRX Quantum 1, 020314, by J. A. Grover, J. I. Basham, A. Marakov, S. M. Disseler, R. T. Hinkey, M. Khalil, Z. A. Stegen, T. Chamberlin, W. DeGottardi, D. J. Clarke, J. R. Medford, J. D. Strand, M. Stoutimore, S. Novikov, D. G. Ferguson, D. A. Lidar, K. M. Zick and A. J. Przybysz [link]
208. “Limitations of error corrected quantum annealing in improving the performance of Boltzmann machines”, Quantum Science and Technology 5, 045010 (2020), by R. Li, T. Albash and D. A. Lidar [link]
207. “Reverse quantum annealing of the p-spin model with relaxation”, Phys. Rev. A.101, 022331 (2020), by G. Passarelli, K. Yip, D. A. Lidar, H. Nishimori and P. Lucignano [link]
206. “Completely positive master equation for arbitrary driving and small level spacing”, Quantum 4, 227 (2020), by E. Mozgunov and D. A. Lidar [link]
205. “Analog Errors in Quantum Annealing: Doom and Hope” npj Quantum Information 5, 107 (2019), by A. Pearson, A. Mishra, I. Hen and D. A. Lidar [link]
204. “Dynamics of reverse annealing for the fully-connected p-spin model”, Phys. Rev. A 100, 052321 (2019) by Y. Yamashiro, M. Ohkuwa, H. Nishimori and D. A. Lidar [link]
203. “Arbitrary-Time Error Suppression for Markovian Adiabatic Quantum Computing Using Stabilizer Subspace Codes”, Phys. Rev. A 100, 022326 (2019), by D. A. Lidar [link]
202. “Nested Quantum Annealing Correction at Finite Temperature: p-spin models”, Phys. Rev. A 99, 062307 (2019), by S. Matsuura, H. Nishimori, W. Vinci, D. A. Lidar [link]
201. “A Double-Slit Proposal for Quantum Annealing”, npj Quantum Information 5, 2 (2019), by H. Munoz-Bauza, H. Chen, D. A. Lidar [link]
200. “On the computational complexity of curing non-stoquastic Hamiltonians”, Nature Comm. 10, 1571 (2019), by M. Marvian, D. A. Lidar and I. Hen [link]
199. “Sensitivity of quantum speedup by quantum annealing to a noisy oracle”, Phys. Rev. A 99, 032324 (2019), by S. Muthukrishnan, T. Albash and D. A. Lidar [link]
198. “Demonstration of fidelity improvement using dynamical decoupling with superconducting qubits”, Phys. Rev. Lett. 121, 220502 (2018), by B. Pokharel, N. Anand, B Fortman and D. A. Lidar [link]
197. “Quantum annealing of the p-spin model under inhomogeneous transverse field driving”, Phys. Rev. A 98, 042326 (2018), by Y. Susa, Y. Yamashiro, M. Yamamoto, I. Hen, D. A. Lidar and H. Nishimori [link]
196. “Non-Markovianity of the Post Markovian Master Equation”, Phys. Rev. A 98, 042119 (2018), by C. Sutherland, T. A. Brun and D. A. Lidar [link]
195. “Reverse annealing for the fully connected p-spin model”, Phys. Rev. A 98, 022314 (2018), by M. Ohkuwa, H. Nishimori and D. A. Lidar [link]
194. “Error Reduction in Quantum Annealing using Boundary Cancellation: Only the End Matters”, Phys. Rev. A 98, 022315 (2018) , by L. Campos Venuti and D. A. Lidar [link]
193. “Finite temperature quantum annealing solving exponentially small gap problem with non-monotonic success probability”, Nature Comm. 9, 2917 (2018), by A. Mishra, T. Albash and D. A. Lidar [link]
192. “Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing”, Phys. Rev. X 8, 031016 (2018), by T. Albash and D. A. Lidar [link]
191.“Test-driving 1000 qubits”, Quantum Science & Technology3, 030501 (2018). Special issue on “What would you do with 1000 qubits” , by J. Job and D. A. Lidar [link]
190. “Quantum trajectories for time-dependent adiabatic master equations”, Phys. Rev. A 97, 022116 (2018), by K. W. Yip, T. Albash, D. A. Lidar [link]
189. “Quantum annealing versus classical machine learning applied to a simplified computational biology problem”, npj Quant. Info. 4, 14 (2018), by R. Y. Li, R. Di Felice, R. Rohs and D. A. Lidar [link]
188. “Scalable effective temperature reduction for quantum annealers via nested quantum annealing correction”, Phys. Rev. A 97, 022308 (2018), by W. Vinci and D. A. Lidar [link]
187. “Adiabatic Quantum Computation”, Rev. Mod. Phys. 90, 015002 (2018), by T. Albash and D. A. Lidar [link]
186. “Suppression of effective noise in Hamiltonian simulations”, Phys. Rev. A 96, 052328 (2017) , by M. Marvian, T. Brun and D. A. Lidar [link]
185. “Solving a Higgs optimization problem with quantum annealing for machine learning”, Nature 550, 375 (2017), A. Mott, J. Job, J. R. Vlimant, D. A. Lidar, and M. Spiropulu
184. “Non-stoquastic Hamiltonians in quantum annealing via geometric phases”, Nature Quant. Info. 3, 38(2017), by W. Vinci and D. A. Lidar [link]
183. “Quasi-adiabatic Grover search via the WKB approximation”, Phys. Rev. A 96, 012329 (2017), by S. Muthukrishnan and D. A. Lidar [link]
182. “Relaxation vs. adiabatic quantum steady state preparation: which wins?”, Phys. Rev. A 95, 042302 (2017), by L. Campos Venuti, T. Albash, M. Marvian, D. A. Lidar, and P. Zanardi [link]
181. “Error Suppression for Hamiltonian Quantum Computing in Markovian Environments”,Phys. Rev. A 95, 032302 (2017), by M. Marvian and D. A. Lidar [link]
180. “Quantum annealing correction at finite temperature: ferromagnetic p-spin models”, Phys. Rev. A 95, 022308 (2017), by S. Matsuura, H. Nishimori, W. Vinci, T. Albash, and D. A. Lidar [link]
179. “Evolution Prediction from Tomography”, Q. Info. Proc. 16(3), 1 (2017), by J. Dominy, L. Campos-Venuti, A. Shabani, and D.A. Lidar [link]
178. “Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes”, Phys. Rev. Lett. 118 030504 (2017), by M. Marvian and D. A. Lidar [link]
177. “Optimally Stopped Optimization”, Phys. Rev. Applied 6, 054016, by W. Vinci and D. A. Lidar [link]
176. “Eigenstate Tracking in Open Quantum Systems”, Phys. Rev. A 94, 042131 (2016), by J. Jing, M. S. Sarandy, D. A. Lidar, D. W. Luo, and L. A. Wu [link]
175.“Simulated Quantum Annealing with Two All-to-All Connectivity Schemes”, Phys. Rev. A 94, 022327, by T. Albash, W. Vinci, and D. A. Lidar [link]
174. “Nested Quantum Annealing Correction”, Nature Quant. Info. 2, 16017 (2016), by W. Vinci, T. Albash, and D. A. Lidar [link]
173. “Tunneling and speedup in quantum optimization for permutation-symmetric problems”, Phys. Rev. X, 6, 031010 (2016), by S. Muthukrishnan, T. Albash, and D. A. Lidar [link]
172. “Mean Field Analysis of Quantum Annealing Correction”, Phys. Rev. Lett. 116, 220501 (2016), by S. Matsuura, H. Nishimori, T. Albash, and D.A. Lidar [pdf]
171. “Adiabaticity in open quantum systems”, Phys. Rev. A 93, 032118 (2016), by L.C. Venuti, T. Albash, D. A. Lidar, and P. Zanardi [link]
170.“Beyond Complete Positivity”, Quant. Info. Proc. 15, 1, pp 1349 (2016), by J. Dominy and D.A. Lidar [link]
169.“Performance of two different quantum annealing correction codes”, Quant. Info. Proc. 15, 2, pp. 609 (2016), by A. Mishra, T. Albash, and D.A. Lidar [link]
168. “Reexamination of the evidence for entanglement in the D-Wave processor”, Phys. Rev. A 92, 062328 (2015) , by T. Albash, I. Hen, F. M. Spedalieri, and D. A. Lidar [link]
167. “Quantum speed limits for leakage and decoherence”, Phys. Rev. Lett. 115, 210402 (2015), by I. Marvian and D.A. Lidar [link]
166. “A General Framework for Complete Positivity”, Quant. Info. Proc. 15, 1, pp. 1 (2016), by J. Dominy, A. Shabani, and D.A. Lidar. [link]
165. “Probing for quantum speedup in spin glass problems with planted solutions”, Phys Rev A 92, 042325 (2015), by I. Hen, J. Job, T. Albash, T.F. Ronnow, M. Troyer, and D.A. Lidar [link]
164. “Quantum Annealing Correction with Minor Embedding”,Phys. Rev. A 92, 042310 (2015), by W. Vinci, T. Albash, G. Paz-Silva, I. Hen, and D. A. Lidar [link]
163.“Decoherence in adiabatic quantum computation”, Phys. Rev. A 91, 062320 (2015), by T. Albash and D.A. Lidar [pdf]
162. “Consistency tests of classical and quantum models for a quantum annealer”, Phys. Rev. A 91, 042314 (2015), by T. Albash, W. Vinci, A. Mishra, P.A. Warburton, and D.A. Lidar [link]
161. “Quantum Annealing Correction for Random Ising Problems”, Phys. Rev. A 91, 042302 (2015), by K. Pudenz, T. Albash, and D.A. Lidar. [link]
160 . “Reexamining classical and quantum models for the D-Wave One processor”, The European Physics Journal, Special Topics 224, 111 (special issue on quantum annealing) (2015), by T. Albash, T. Ronnow, M. Troyer, and D.A. Lidar [link]
159. “Review of Decoherence Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling”, Quant. Info. & Comp. for Chem., Vol 154, pp. 295-354 (2014), by D. Lidar [link]
158 . “Quantum error suppression with commuting Hamiltonians: Two-local is too local”, Phys. Rev. Lett. 113, 260504 (2014), by I. Marvian and D.A. Lidar [pdf]
157 . “Defining and Detecting Quantum Speedup”, Science345, 420 (2014), by T.F. Ronnow, Z. Wang, J. Job, S.V. Isakov, D. Wecker, J.M. Martinis, D.A. Lidar, and M. Troyer. [link]
156 . “MAX 2-SAT with up to 108 Qubits”, New J. Phys. 16, 045006 (2014), by S. Santra, G. Quiroz, G. Ver Steeg, and D.A. Lidar. [link]
155 . “Evidence for Quantum Annealing with More Than One Hundred Qubits”, Nature Physics 10, 218 (2014), by. S. Boixo, T. Ronnow, S. Isakov, Z. Wang, D. Wecker, D.A. Lidar, J. Martinis, and M. Troyer. [pdf]
154 . “Error Corrected Quantum Annealing with Hundreds of Qubits”, Nature Communications 5, 3243 (2014), by K.P. Pudenz, T. Albash, and D. Lidar. [pdf]
153 . “Adiabatic Quantum Optimization with the Wrong Hamiltonian”, Phys. Rev A 88, 062314 (2013), by K. C. Young, R. Blume-Kohout, and D. Lidar. [pdf]
152 . “Optimized Dynamical Decoupling via Genetic Algorithms”, Phys. Rev. A 88, 052306 (2013), by G. Quiroz and D. Lidar. [pdf]
151 . “Fluctuation Theorems for Quantum Process”, Phys. Rev. E 88, 032146 (2013), T. Albash, D. Lidar, M. Marvian, and P. Zanardi. [pdf]
150 . “Coarse-Graining Can Beat the Rotating Wave Approximation in Quantum Markovian Master Equations”, Phys. Rev A. 88, 012103 (2013), C. Majenz, T. Albash, H.-P. Breuer, and D. Lidar. [pdf]
149 . “Experimental Signature of Programmable Quantum Annealing”, Nature Comm. 4, 2067 (2013), by S. Boixo, T. Albash, F.M. Spedalieri, N. Chancellor, and D. Lidar. [pdf]
148 . “Optimally Combining Dynamical Decoupling and Quanutm Error Correction”, Scientific Reports 3, 1394 (2013), by G.A. Paz-Silva and D. Lidar. [pdf]
147 . “No-Go Theorem for Passive Single-rail Linear Optical Quantum Computing”, Scientific Reports 3, 1394 (2013), by L. Wu, P. Walther, and D. A. Lidar. [pdf]
146 . “Analysis of the Quantum Zeno Effect for Quantum Control and Computation”, J. Phys. A: Math. Theor. 46, 075306 (2013), by J. Dominy, G. Paz-Silva, A.T. Rezakhani, and D.A. Lidar. [pdf]
145 . “Quantum Adiabatic Machine Learning”, Quantum Info. Process. 12, 2027 (2013), by K. Pudenz and D. Lidar. [pdf]
144 . “Universality Proof and Analysis of Generalized Nested Uhrig Dynamical Decoupling”, J. Math. Phys. 53, 122207 (2012), by W.J. Kuo, G. Quiroz, G. Paz Silva, and D. Lidar. [pdf]
143 . “Optimally Combining Dynamical Decoupling and Quantum Error Correction”, Scientific Reports 3, 1530 (2013), by G.A. Paz Silva and D. A. Lidar. [pdf]
142 . “Quantum Adiabatic Markovian Master Equations”, New J. of Physics 14, 123016 (2012), by T. Albash, S. Boixo, D. Lidar, and P. Zanardi. [pdf]
141 . “High-Fidelity Adiabatic Quantum Computation via Dynamical Decoupling”, Phys. Rev. A 86, 042333 (2012), by G. Quiroz and D. Lidar. [pdf]
140 . “Adiabatic Quantum Algorithm for Search Engine Ranking”, Phys. Rev. Lett. 108, 230506 (2012), by S. Garnerone, P. Zanardi, and D. Lidar [pdf][sup-mat]
139 . “Decoherence-Protected Quantum Gates for a Hybrid Solid-State Spin Register”, Nature 484, 82 (2012), by T. van der Sar, Z.H. Wang, M.S. Blok, H. Bernien, T.H. Taminiau, D.M. Toyli, D.A. Lidar, D.D. Awschalom, R. Hanson, and V.V. Dobrovitski [pdf]
138 . “Zeno Effect for Quantum Computation and Control”, Phys. Rev. Lett. 108, 080501 (2012), G. A. Paz-Silva, A. T. Rezakhani, J. Dominy, and D. A. Lidar [pdf]
137 . “Rigorous Performance Bounds for Quadratic and Nested Dynamical Decoupling”, Phys. Rev. A 84, 062332 (2011), by Y. Xia, G. S. Uhrig, and D. Lidar. [pdf]
136 .”Quadratic Dynamical Decoupling: Universality Proof and Error Analysis”, Phys. Rev. A 84, 042329 (2011), by W. Kuo and D. Lidar. [pdf]
135 .”Quadratic Dynamical Decoupling with Nonuniform Error Suppression”, Phys. Rev. A 84, 042328 (2011), by G. Quiroz and D. Lidar. [pdf]
134 . “High Fidelity Quantum Memory via Dynamical Decoupling: Theory and Experiment”, J. Phys. B 44, 154003 (2011), by Xinhua Peng, Dieter Suter, and Daniel A Lidar. [pdf]
133 . “Combining Dynamical Decoupling with Fault-Tolerant Quantum Computation”, Phys. Rev. A 84, 012305 (2011), by H. K. Ng, D. Lidar, and J. Preskill. [pdf]
132 . “High Fidelity Quantum Gates via Dynamical Decoupling”, Phys. Rev. Lett 105, 230503 (2010), by J. R. West, D. Lidar, B. H. Fong, and M. F. Gyure. [pdf]
131 . “Accuracy Versus Run Time in an Adiabatic Quantum Search”, Phys. Rev. A 82, 052305 (2010), by A. T. Rezakhani, A. K. Pimachev, and D. Lidar. [pdf]
130 . “Optimized Entanglement-Assisted Quantum Error Correction”, Phys. Rev. A 82, 042321 (2010), by S. Taghavi, T. A. Brun, and D. Lidar. [pdf]
129 . “Classical Ising Model Test for Quantum Circuits”, New J. Physics 12, 075026 (2010), by J. Geraci and D. Lidar [pdf]
128 . “Intrinsic Geometry of Quantum Adiabatic Evolution and Quantum Phase Transitions”, Phys. Rev. A 82, 012321 (2010), by A. T. Rezakhani, D. F. Abasto, D. Lidar, and P. Zanardi. [pdf]
127 . “Rigorous Bounds for Optimal Dynamical Decoupling”, Phys. Rev. A 82, 012301 (2010), by G. S. Uhrig and D. Lidar. [pdf]
126 . “Channel Capacities of an Exactly Solvable Spin-Star System”, Phys. Rev. A 81, 062353 (2010), by Nigum Arshed, A. H. Toor, and D. A. Lidar. [pdf]
125 .”Optimal Control Landscape for the Generation of Unitary Transformations with Constrained Dynamics”, Phys. Rev. A 81, 062352 (2010), by M. Hsieh, R. Wu, H. Rabitz, and D. Lidar. [pdf]
124 . “Near-Optimal Dynamical Decoupling of a Qubit”, Phys. Rev. Lett 104, 130501 (2010), by J. R. West, B. H. Fong, and D. A. Lidar. [pdf]
123 . “Channel-Optimized Quantum Error Correction”, IEEE Trans. on Info. Theory 56, 1461 (2010), by S. Taghavi, R. L. Kosut, and D. A. Lidar. [pdf]
122 . “Arbitrarily Accurate Dynamical Control in Open Quantum Systems”, Phys. Rev. Lett 104, 090501 (2010), by K. Khodjasteh, D. Lidar, and L. Viola. [pdf]
121 . “Entanglement and Area Law with a Fractal Boundary in a Topologically Ordered Phase”, Phys. Rev. A 81, 01012 (2010), by A. Hamma, D. Lidar, and S. Severini. [pdf]
120 . “Adiabatic Approximation with Exponential Accuracy for Many-Body Systems and Quantum Computation”, J. Math. Phys. 50, 102106 (2009), by D. Lidar, A. T. Rezakhani, and A. Hamma. [pdf]
119 . “Quantum Adiabatic Brachistochrone”, Phys. Rev. Lett. 103, 080502 (2009), by A.T. Rezakhani, W.-J. Kuo, A. Hamma, D. Lidar, and P. Zanardi. [pdf]
118 . “Scheme for Fault-Tolerant Holonomic Computation on Stabilizer Codes”, Phys. Rev. A 80, 022325 (2009), by O. Oreshkov, T. A. Brun, and D. Lidar [pdf]
117 . “Quantum Error Correction via Convex Optimization”, Quant. Info. Processing 8, 441 (2009), by R. L. Kosut and D. Lidar [pdf]
116 . “Maps for General Open Quantum Systems and a Theory of Linear Quantum Error Correction”, Phys. Rev. A 80, 012309 (2009), by A. Shabani and D. Lidar [pdf]
115 . “Vanishing Quantum Discord is Necessary and Sufficient for Completely Positive Maps”, Phys. Rev. Lett. 102, 100402 (2009), by A. Shabani and D. Lidar. [pdf] ; “Erratum: Vanishing Quantum Discord is Necessary and Sufficient for Completely Positive Maps”, Phys. Rev. Lett. 11, 049901 (2016), by A. Shabani and D. A. Lidar. [pdf]
114 . “Fault-Tolerant Holonomic Quantum Computation”, Phys. Rev. Lett. 102, 070502 (2009), by O. Oreshkov, T. A. Brun, and D. Lidar [pdf]
113 . “Operator Quantum Error Correction for Continuous Dynamics”, Phys. Rev. A 78, 022333 (2008), by O. Oreshkov, D. Lidar, and T. A. Brun [pdf]
112 . “Rigorous Bounds on the Performance of a Hybrid Dynamical Decoupling-Quantum Computing Scheme”, Phys. Rev. A 78, 012355 (2008), by K. Khodjasteh and D. Lidar [pdf]
111 . “Encoding One Logical Qubit Into Six Physical Qubits”, Phys. Rev. A 78, 012337 (2008), by B. Shaw, M. M. Wilde, O. Oreshkov, I. Kremsky, and D. Lidar [pdf]
110 . “Distance Bounds on Quantum Dynamics”, Phys. Rev. A 78, 012308 (2008), by D. Lidar, P. Zanardi, and K. Khodjasteh [pdf]
109 . “Optimal Dynamical Decoherence Control of a Qubit”, Phys. Rev. Lett. 101, 010403 (2008), by G. Gordon, G. Kurizki, and D. Lidar [pdf]
108 . “Bang-Bang Control of a Qubit Coupled to a Quantum Critical Spin Bath”, Phys. Rev. A 77, 052112 (2008), by D. Rossini, P. Facchi, R. Fazio, G. Florio, D. Lidar, S. Pascazio, F. Plastina, and P. Zanardi [pdf]
107 . “Towards Fault Tolerant Adiabatic Quantum Computation”, Phys. Rev. Lett. 100, 160506 (2008), by D. Lidar [pdf]
106 . “Entanglement, Fidelity, and Topological Entropy in a Quantum Phase Transition to Topological Order”, Phys. Rev. B 77, 155111 (2008), by A. Hamma, W. Zhang, S. Haas, and D. Lidar [pdf]
105 . “Quantum Process Tomography: Resource Analysis of Different Strategies”, Phys. Rev. A 77, 032322 (2008), by M. Mohseni, A. T. Rezakhani, and D. Lidar [pdf]
104 . “On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers”, Commun. Math. Phys 279, issue 3, 735-768 (2008), by J. Geraci and D. Lidar [pdf]
103 . “Adiabatic Preparation of Topological Order”, Phys. Rev. Lett. 100, 030502 (2008), by A. Hamma and D. Lidar [pdf]
102 . “The Spin Density Matrix II: Application to a System of Two Quantum Dots”, Phys. Rev. B 77, 045320 (2008), by S. D. Kunikeev and D. Lidar [pdf]
101 . “The Spin Density Matrix I: General Theory and Exact Master Equations”, Phys. Rev. B 77, 045319 (2008), by S. D. Kunikeev and D. Lidar [pdf]
100 . “Robust Quantum Error Correction via Convex Optimization”, Phys. Rev. Lett. 100, 020502 (2008), by R.L. Kosut, A. Shabani, and D. Lidar [pdf]
99 . “Fidelity of Optimally Controlled Quantum Gates with Randomly Coupled Multiparticle Environments”, J. Mod. Optics 54, 2339 (2007), M. Grace, C. Brif, H. Rabitz, I. Walmsley, R. Kosut, and D.A. Lidar. [pdf]
98 . “Non-Markovian Dynamics of a Qubit Coupled to an Ising Spin Bath”, Phys. Rev. A 76, 052117 (2007), by H. Krovi, O. Oreshkov, M. Ryazanov, and D. Lidar [pdf]
97 . “Simple Proof of Equivalence Between Adiabatic Quantum Computation and the Circuit Model”, Phys. Rev. Lett. 99, 070502 (2007), by A. Mizel, D. Lidar, and M. Mitchell [pdf]
96 . “Direct Characterization of Quantum Dynamics: General Theory”, Phys. Rev. A 75, 062331 (2007), by M. Mohseni and D. Lidar [pdf]
95 . “Efficient Multiqubit Entanglement via a Spin-Bus”, Phys. Rev. Lett. 98, 230503 (2007), by M. Friesen, A. Biswas, X. Hu, and D. Lidar [pdf]
94 . “Performance of Deterministic Dynamical Decoupling Schemes: Concatenated and Periodic Pulse Sequences”, Phys. Rev. A 75, 062310 (2007), by K. Khodjasteh and D. Lidar. [pdf] ; “Erratum: Performance of Deterministic Dynamical Decoupling Schemes: Concatenated and Periodic Pulse Sequences”, Phys Rev A 79, 069901(E) (2009). Original journal published in Phys. Rev. A 75, 062310 (2007), by K. Khodjasteh and D.A. Lidar. [pdf]
93 . “Decoherence-Induced Geometric Phase in a Multilevel Atomic System”, J. Phys. B 40, S127 (2007) (special issue on “Dynamical Control of Entanglement and Decoherence by Field-Matter Interactions”), by S. Dasgupta and D. Lidar [pdf]
92 . “Optimal Control of Quantum Gates and Suppression of Decoherence in a System of Interacting Two-Level Particles”, J. Phys. B 40, S103 (2007) (special issue on “Dynamical Control of Entanglement and Decoherence by Field-Matter Interactions”), by M. Grace, C. Brif, H. Rabitz, I.A. Walmsley, and D. A. Lidar [pdf]
91 . “Robust Transmission of Non-Gaussian Entanglement Over Optical Fibers”, Phys. Rev. A 74, 062303 (2006), by A. Biswas and D. Lidar [pdf]
90 . “Linking Entanglement and Quantum Phase Transitions via Density-Functional Theory”, Phys. Rev. A 74, 052335 (2006), by L.-A. Wu, M. S. Sarandy, D. Lidar, and L. J. Sham [pdf]
89 . “Direct Characterization of Quantum Dynamics”, Phys. Rev. Lett. 97,170501 (2006), by M. Mohseni and D. Lidar [pdf]
88 . “Abelian and Non-Abelian Geometric Phases in Adiabatic Open Quantum Systems”, Phys. Rev. A 73, 062101 (2006), by M.S. Sarandy and D. Lidar [pdf]
87 . “Internal Consistency of Fault-Tolerant Quantum Error Correction in Light of Rigorous Derivations of the Quantum Markovian Limit”, Phys. Rev. A 73, 052311 (2006), by R. Alicki, D. Lidar, and P. Zanardi [pdf]
86 . “Quantum Malware”, published online in Quant. Info. Processing 5, 69 (2006), by L.-A. Wu and D. Lidar [pdf]
85 . “Encoding a Qubit into Multilevel Subspaces”, New J. Phys. 8, 35 (2006), by M. Grace, C. Brif, H. Rabitz, I. Walmsley, R. Kosut, and D. Lidar [pdf]
84 . “Few-Body Spin Couplings and Their Implications for Universal Quantum Computation”, J. Phys.: Cond. Mat. 18, S721 (2006), special issue on quantum computing in solid state, by R. Woodworth, A. Mizel, and D. Lidar [pdf]
83 . “Quantum Logic Gates in Iodine Vapor Using Time-Frequency Resolved Coherent Anti-Stokes Raman Scattering: A Theoretical Study”, Molecular Phys. 104, 1249 (2006), special issue in honor of Robert Harris, by D.R. Glenn, D. Lidar, and V.A. Apkarian [pdf]
82 . “Conditions for Strictly Purity-Decreasing Quantum Markovian Dynamics”, Chemical Physics 322, 82 (2006), the special issue “Real-Time Dynamics in Complex Quantum Systems” in honor of Phil Pechukas, by D. Lidar, A. Shabani, and R. Alicki [pdf]
81 . “Adiabatic Quantum Computation in Open Systems”, Phys. Rev. Lett. 95, 250503 (2005), by M.S. Sarandy and D. Lidar [pdf]
80 . “Robustness of Multiqubit Entanglement in the Independent Decoherence Model”, Phys. Rev. A 72, 042339 (2005), by S. Bandyopadhyay and D. Lidar [pdf]
79 . “Fault-Tolerant Quantum Dynamical Decoupling”, Phys. Rev. Lett. 95, 180501 (2005), by K. Khodjasteh and D. Lidar [pdf]
78 . “Holonomic Quantum Computation in Decoherence-Free Subspaces”, Phys. Rev. Lett. 95, 130501 (2005), by L.-A. Wu, P. Zanardi, and D. Lidar [pdf]
77 . “Theory of Initialization-Free Decoherence-Free Subspaces and Subsystems”, Phys. Rev. A 72, 042303 (2005), by A. Shabani and D. Lidar [pdf]
76 . “Entanglement Observables and Witnesses for Interacting Quantum Spin Systems”, Phys. Rev. A 72, 032309 (2005), by L.-A. Wu, S. Bandyopadhyay, M.S. Sarandy, and D. Lidar [pdf]
75 . “Stabilizing Qubit Coherence via Tracking-Control”, Quant. Info. and Computation 5, 350 (2005), by D. Lidar and S. Schneider [pdf]
74 . “Universal Leakage Elimination”, Phys. Rev. A 71, 052301 (2005), by M.S. Byrd, D. Lidar, L.-A. Wu, and P. Zanardi [pdf]
73 . “Completely Positive Post-Markovian Master Equation via a Measurement Approach”, Phys. Rev. A Rapid Comm. 71, 020101 (2005), by A. Shabani and D. Lidar [pdf]
72 . “Control of Decoherence: Analysis and Comparison of Three Different Strategies”, Phys. Rev. A 71, 022302 (2005), by P. Facchi, S. Tasaki, S. Pascazio, H. Nakazato, A. Tokuse, and D. Lidar [pdf]
71 . “Fault-Tolerant Quantum Computation via Exchange Interactions”, Phys. Rev. Lett. 94, 040507 (2005), by M. Mohseni and D. Lidar [pdf]
70 . “Adiabatic Approximation in Open Quantum Systems”, Phys. Rev. A 71, 012331 (2005), by M.S. Sarandy and D. Lidar [pdf]
69 . “Overview of Quantum Error Prevention and Leakage Elimination”, J. Mod. Optics 51, 2449 (2004), by M.S. Byrd, L.-A. Wu, and D. Lidar [pdf]
68 . “Consistency of the Adiabatic Theorem”, Quant. Info. Processing 3, 331 (2004), by M.S. Sarandy, L.-A. Wu, and D. Lidar [pdf]
67 . “Quantum Phase Transitions and Bipartite Entanglement”, Phys. Rev. Lett. 93, 250404 (2004), by L.-A. Wu, M.S. Sarandy, and D. Lidar [pdf]
66 . “Overcoming Quantum Noise in Optical Fibers”, Phys. Rev. A 70, 062310 (2004), by L.-A. Wu and D. Lidar [pdf]
65 . “On the Quantum Computational Complexity of the Ising Spin Glass Partition Function and of Knot Invariants”, New J. Phys. 6, 167 (2004), by D. Lidar [pdf]
64 . “Long-Range Entanglement Generation via Frequent Measurements”, Phys. Rev. A 70, 032322 (2004), by L.-A. Wu, D. Lidar, and S. Schneider [pdf]
63 . “Exchange Interaction Between Three and Four Coupled Quantum Dots: Theory and Applications to Quantum Computing”, Phys. Rev. B 70, 115310 (2004), by A. Mizel and D. Lidar [pdf]
62 . “Purity and State Fidelity of Quantum Channels”, Phys. Rev. A 70, 012315 (2004), by P. Zanardi and D. Lidar [pdf]
61 . “Entangling Capacities of Noisy Two-Qubit Hamiltonians”, Phys. Rev. A Rapid Comm. 70, 010301 (2004), by S. Bandyopadhyay and D. Lidar [pdf]
60 . “One-Spin Quantum Logic Gates from Exchange Interactions and a Global Magnetic Field”, Phys. Rev. Lett. 93, 030501 (2004), by L.-A. Wu, D. Lidar, and M. Friesen [pdf]
59 . “Exponentially Localized Magnetic Fields for Single-Spin Quantum Logic Gates”, J. Appl. Phys. 96, 754 (2004), by D.A. Lidar and J.H. Thywissen [pdf]
58 . “Unification of Dynamical Decoupling and the Quantum Zeno Effect”, Phys. Rev. A 69, 032314 (2004), by P. Facchi, D.A. Lidar, and S. Pascazio [pdf]
57 . “Dynamical Decoupling Using Slow Pulses: Efficient Suppression of 1/f Noise”, Phys. Rev. A Rapid Comm. 69, 030302 (2004), by K. Shiokawa and D.A. Lidar [pdf]
56 . “Three and Four-Body Interactions in Spin-Based Quantum Computers”, Phys. Rev. Lett. 92, 077903 (2004), by A. Mizel and D.A. Lidar [pdf]
55 . “Quantum Tensor Product Structures are Observable Induced”, Phys. Rev. Lett. 92, 060402 (2004), by P. Zanardi, D.A. Lidar, and S. Lloyd [pdf]
54 . “Magnetic Resonance Realization of Decoherence-Free Quantum Computation”, Phys. Rev. Lett. 91, 217904 (2003), by J.E. Ollerenshaw, D.A. Lidar, and L.E. Kay [pdf]
53 . “Dressed Qubits”, Phys. Rev. Lett. 91, 097904 (2003), by L.-A. Wu and D.A. Lidar [pdf]
52 . “Quantum Computing in the Presence of Spontaneous Emission by a Combined Dynamical Decoupling and Quantum-Error-Correction Strategy”, Phys. Rev. A 68, 022322 (2003), by K. Khodjasteh and D.A. Lidar. [pdf] ; “Erratum: Quantum computing in the presence of spontaneous emission by a combined dynamical decoupling and quantum-error-correction strategy”, Phys. Rev. A 72, 029905 (2005) [link]
51 . “Comment on “Conservative Quantum Computing” [Phys. Rev. Lett. 89, 057902 (2002)]”, Phys. Rev. Lett. 91, 089801 (2003), by D.A. Lidar [pdf]
50 . “Reply to: “Comment on `Polynomial-Time Simulation of Pairing Models on a Quantum Computer’””, Phys. Rev. Lett. 90, 249804 (2003), by L.-A. Wu, M.S. Byrd, and D.A. Lidar [pdf]
49 . “Universal Quantum Computation Using Exchange Interactions and Measurements of Single- and Two-Spin Observables”, Phys. Rev. A Rapid Comm. 67, 050303 (2003), by L.-A. Wu and D.A. Lidar [pdf]
48 . “Combined Error Correction Techniques for Quantum Computing Architectures”, J. Mod. Optics 50, 1285 (2003), by M.S. Byrd and D.A. Lidar [pdf]
47 . “Encoded Recoupling and Decoupling: An Alternative to Quantum Error-Correcting Codes Applied to Trapped-Ion Quantum Computation”, Phys. Rev. A 67, 032313 (2003), by D.A. Lidar and L.-A. Wu [pdf]
46 . “Empirical Determination of Dynamical Decoupling Operations”, Phys. Rev. A 67, 012324 (2003), by M.S. Byrd and D.A. Lidar [pdf]
45 . “Universal Quantum Logic from Zeeman and Anisotropic Exchange Interactions”, Phys. Rev. A 66, 062314 (2002), by L.-A. Wu and D.A. Lidar [pdf]
44 . “Universal Fault-Tolerant Quantum Computation in the Presence of Spontaneous Emission and Collective Dephasing”, Phys. Rev. Lett. 89, 197904 (2002), by K. Khodjasteh and D.A. Lidar [pdf] ; “Erratum: Universal Fault-Tolerant Quantum Computation in the Presence of Spontaneous Emission and Collective Dephasing“, Phys. Rev. Lett. 95, 099902 (2005) [link]
43 . “Efficient Universal Leakage Elimination for Physical and Encoded Qubits”, Phys. Rev. Lett. 89, 127901 (2002), by L.-A. Wu, M.S. Byrd, and D.A. Lidar [pdf]
42 . “Quantum Codes for Simplifying Design and Suppressing Decoherence in Superconducting Phase-Qubits”, Quant. Info. Proc. 1, 155 (2002), by D.A. Lidar, L.-A. Wu, and A. Blais [pdf]
41 . “Qubits as Parafermions”, J. Math. Phys. 43, 4506 (2002) (special issue on quantum information), by L.-A. Wu and D.A. Lidar [pdf]
40 . “Polynomial-Time Simulation of Pairing Models on a Quantum Computer”, Phys. Rev. Lett. 89, 057904 (2002), by L.-A. Wu, M.S. Byrd, and D.A. Lidar [pdf]
39 . “An Implementation of the Deutsch-Jozsa Algorithm on Molecular Vibronic Coherences Through Four-Wave Mixing: a Theoretical Study”, Chem. Phys. Lett. 360, 459 (2002), by Z. Bihary, D.R. Glenn, D.A. Lidar, and V.A. Apkarian [pdf]
38 . “Bang-Bang Operations from a Geometric Perspective”, Quant. Info. Proc. 1, 19 (2002), by M.S. Byrd and D.A. Lidar [pdf]
37 . “Comprehensive Encoding and Decoupling Solution to Problems of Decoherence and Design in Solid-State Quantum Computing”, Phys. Rev. Lett. 89, 047901 (2002), by M.S. Byrd and D.A. Lidar [pdf]
36 . “Creating Decoherence-Free Subspaces Using Strong and Fast Pulses”, Phys. Rev. Lett. 88, 207902 (2002), by L.-A. Wu and D.A. Lidar [pdf]
35 . “Power of Anisotropic Exchange Interactions: Universality and Efficient Codes for Quantum Computing”, Phys. Rev. A 65, 042318 (2002), by L.-A. Wu and D.A. Lidar [pdf]
34 . “Comment on “Quantum Waveguide Array Generator for Performing Fourier Transforms: Alternate Route to Quantum Computing’’ [Appl. Phys. Lett. 79, 2823 (2001)]”, Appl. Phys. Lett. 80, 2419 (2002), by D.A. Lidar [pdf]
33 . “Reducing Constraints on Quantum Computer Design by Encoded Selective Recoupling”, Phys. Rev. Lett. 88, 017905 (2002), by D.A. Lidar and L.-A. Wu [pdf]
32 . “Quantum Computing with Quantum Dots on Quantum Linear Supports”, Phys. Rev. A 65, 012307 (2002), by K.R. Brown, D.A. Lidar, and K.B. Whaley [pdf]
31 . “From Completely Positive Maps to the Quantum Markovian Semigroup Master Equation”, Chemical Physics 268, 35 (2001), D.A. Lidar, Z. Bihary, and K.B. Whaley, special issue on Dynamics of Open Quantum Systems [pdf]
30 . “The Manipulation of Massive Ro-vibronic Superpositions Using Time-Frequency-Resolved Coherent Anti-Stokes Raman Scattering (TFRCARS): from Quantum Control to Quantum Computing”, Chemical Physics 266, 323 (2001), R. Zadoyan, D. Kohen, D.A. Lidar, and V.A. Apkarian [pdf]
29 . “Theory of Decoherence-Free Universal Fault-Tolerant Quantum Computation”, Phys. Rev. A 63, 042307 (2001), by J. Kempe, D. Bacon, D.A. Lidar, and K.B. Whaley [pdf]
28 . “Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation”, Phys. Rev. A 63, 022307 (2001), D.A. Lidar, D. Bacon, J. Kempe, and K.B. Whaley [pdf]
27 . “Decoherence-Free Subspaces for Multiple-Qubit Errors: (I) Characterization”, Phys. Rev. A 63, 022306 (2001), by D.A. Lidar, D. Bacon, J. Kempe, and K.B. Whaley [pdf]
26 . “Analysis of Generalized Grover Quantum Search Algorithms Using Recursion Equations”, Phys. Rev. A 63, 012310 (2001), by E. Biham, O. Biham, D. Biron, M. Grassl, D.A. Lidar, and D. Shapira [pdf]
25 . “Universal Fault-Tolerant Quantum Computation on Decoherence-Free Subspaces”, Phys. Rev. Lett. 85, 1758 (2000), by D. Bacon , J. Kempe, D.A. Lidar, and K.B. Whaley [pdf]
24 . “Protecting Quantum Information Encoded in Decoherence-Free States Against Exchange Errors”, Phys. Rev. A 61, 052307 (2000), by D.A. Lidar, D. Bacon, J. Kempe, and K.B. Whaley [pdf]
23 . “Grovers Quantum Search Algorithm for Arbitrary Initial Amplitude Distribution”, Phys. Rev. A 60, 2742 (1999), by E. Biham, O. Biham, D. Biron, M. Grassl, and D.A. Lidar [pdf]
22 . “Robustness of Decoherence-Free Subspaces for Quantum Computation”, Phys. Rev. A 60, 1944 (1999), by D. Bacon, D.A. Lidar, and K.B. Whaley [pdf]
21 . “Concatenating Decoherence-Free Subspaces with Quantum Error Correcting Codes”, Phys. Rev. Lett. 82, 4556 (1999), by D.A. Lidar, D. Bacon, and K.B. Whaley [pdf]
20 . “Calculating the Thermal Rate Constant with Exponential Speedup on a Quantum Computer”, Phys. Rev. E 59, 2429 (1999), by D.A. Lidar and H. Wang [pdf]
19 . “Pattern Formation and a Clustering Transition in Power-Law Sequential Adsorption”, Phys. Rev. E 59, R4713 (1999), O. Biham, O. Malcai, D.A. Lidar (Hamburger), and D. Avnir [pdf]
18 .”Fractal Analysis of Protein Potential Energy Landscapes”, Phys. Rev. E 59, 2231-2243 (1999), D. A. Lidar, D. Thirumalai, R. Elber, and R.B. Gerber. [pdf]
17 . “How to Teleport Superpositions of Chiral Amplitudes”, Phys. Rev. Lett. 81, 5928 (1998), C.S. Maierle, D.A. Lidar, and Robert A. Harris [pdf]
16 . “Decoherence-Free Subspaces for Quantum Computation”, Phys. Rev. Lett. 81, 2594 (1998), by D.A. Lidar, I.L. Chuang, and K.B. Whaley [pdf]
15 . “Fractality in Nature (Reply to a letter)”, Science 279, 1611 (1998), by O. Biham, O. Malcai, D.A. Lidar, and D. Avnir [pdf]
14 . “Is Nature Fractal? (Reply to letters)”, Science 279, 783 (1998), by O. Biham, O. Malcai, D.A. Lidar, and D. Avnir [pdf]
13 . “Is the Geometry of Nature Fractal?”, Science 279, 39 (1998), by D. Avnir, O. Biham, D.A. Lidar, and O. Malcai [pdf]
12 . “Inversion of Randomly Corrugated Surface Structure from Atom Scattering Data”, Inverse Problems 14, 1299 (1998), by D. Lidar [pdf]
11 . “Atom Scattering from Disordered Surfaces in the Sudden Approximation: Double Collisions Effects and Quantum Liquids”, Surf. Sci. 411, 231 (1998), by D.A. Lidar (Hamburger) [pdf]
10 . “Structure Determination of Disordered Metallic Sub-Monolayers by Helium Scattering: A Theoretical and Experimental Study”, Surf. Sci. 410, L721 (1998), by A.T. Yinnon, D.A. Lidar (Hamburger), R.B. Gerber, P. Zeppenfeld, M. Krzyzowski, and G. Comsa [pdf]
9 . “Simulating Ising Spin Glasses on a Quantum Computer”, Phys. Rev. E 56, 3661 (1997), , by D.A. Lidar and O. Biham [pdf]
8 . “Scaling Range and Cutoffs in Empirical Fractals”, Phys. Rev. E 56, 2817 (1997), by O. Malcai, D. A. Lidar, and O. Biham [pdf]
7 . “Limited Range Fractality of Randomly Adsorbed Rods”, J. Chem. Phys. 106, 10359 (1997), by D.A. Lidar (Hamburger), O. Biham, and D. Avnir [pdf]
6 . “Helium Scattering from Random Adsorbates, Disordered Compact Islands and Fractal Submonolayers: Intensity Manifestation of Surface Disorder”, J. Chem. Phys. 106, 4228 (1997), by A.T. Yinnon, D.A. Lidar (Hamburger), R.B. Gerber, P. Zeppenfeld, M. Krzyzowski, and G. Comsa. [pdf]
5 . “Elastic Scattering by Deterministic and Random Fractals: Self-Affinity of the Diffraction Spectrum”, By D. Lidar, Phys. Rev. E 54, 354 (1996) [pdf]
4 . “Apparent Fractality Emerging from Models of Random Distributions”, Phys. Rev. E 53, 3342-3358 (1996), D. A. Hamburger, O. Biham, D. Avnir. [link]
3 . “Fractal Dimension of Disordered Submonolayers: Determination from Helium Scattering Data”, Chem. Phys. Lett. 253, 223 (1996), by D.A. Hamburger, A.T. Yinnon, and R.B. Gerber [pdf]
2 . “Optical Theorem and the Inversion of Cross Section Data for Atom Scattering from Defects on Surfaces”, J. Chem. Phys. 102, 6919 (1995), by D.A. Hamburger and R.B. Gerber [pdf]
1 . “Helium Scattering from Compact Clusters and from Diffusion-Limited Aggregates on Surfaces: Observable Signatures of Structure”, Surf. Sci. 327, 165 (1995), by D.A. Hamburger, A.T. Yinnon, I. Farbman, A. Ben-Shaul, and R.B. Gerber. [pdf]
Book Chapters
7 .”Fault Tolerance for Holonomic Quantum Computaion”, by O. Oreshkov. T.A. Brun, and D. Lidar, in “Quantum Error Correction”, D. Lidar and T.A. Brun, Eds. (Cambridge University Press), pp. 412-431 (2013). link
6. “Introduction to Decoherence-Free Subspaces and Noiseless Subsystems”, by D. Lidar and T.A. Brun, in Quantum Error Correction”, D. Lidar and T.A. Brun, Eds. (Cambridge University Press), pp. 78-104 (2013). [pdf]
5 .”Introduction to Decoherence and Noise in Open Quantum Systems”, by D. Lidar and T.A. Brun, in Quantum Error Correction”, D. Lidar and T.A. Brun, Eds. (Cambridge University Press), pp. 3-45 (2013). [pdf]
4 .”Paring Model Simulation on a Quantum Computer”, by M.S. Byrd, L.-A. Wu, and D. Lidar, in “Condensed Matter Series” Vol 20, J. W. Clark, R. M. Panoff, and H. Li, Eds. (Nova Science Pulishers), pp. 485-496 (2006).
3 .”Decoherence-Free Subspaces and Subsystems”, by D.A. Lidar and K.B. Whaley, in “Irreversible Quantum Dynamics”, F. Benatti and R. Floreanini (Eds.), p. 83-120 (Springer Lecture Notes in Physics,622, Berlin, 2003). Online at quant-ph/0301032 [pdf]
2 .“On the Abundance of Fractals”, by D. Avnir, O. Biham, D.A. Lidar (Hamburger), and O. Malcai, in “Fractal Frontiers”, M.M. Novak and T.G. Dewey, Eds., (World Scientific, Singapore), pp. 199-234 (1997).
1 . “Randomness and Apparent Fractality”, by D. A. Hamburger, O. Malcai, O. Biham, and D. Avnier, in “Fractals and Chaos in Chemical Engineering”, M. Giona and G. Biardis. Eds., (World Scientific Singapore), pp. 103-114 (1996). [pdf]
Preprints
25. “Families of d=2 2D subsystem stabilizer codes for universal Hamiltonian quantum computation with two-body interactions”, [2412.06744] by P. Singkanipa, Z. Xia, D. A. Lidar.
24. “Beating the Ramsey limit on sensing with deterministic qubit control”, [2408.15926] by M. O. Hecht, K. Saurav, E. Vlachos, D. A. Lidar, E. M. Levenson-Falk.
23. “Quantum Property Preservation”, [2408.11262] by K. Saurav, D. A. Lidar.
22. “ClassiFIM: An Unsupervised Method To Detect Phase Transitions”, [2408.03323] by V. Kasatkin, E. Mozgunov, N. Ezzell, U. Mishra, I. Hen, D. A. Lidar.
21. “Detecting Quantum and Classical Phase Transitions via Unsupervised Machine Learning of the Fisher Information Metric”, [2408.03418] by V. Kasatkin, E. Mozgunov, N. Ezzell, D. A. Lidar.
20. “Virtual Z gates and symmetric gate compilation”, [2407.14782] by A. Vezvaee, V. Tripathi, D. Kowsari, E. M. Levenson-Falk, D. A. Lidar.
19. “Deterministic Benchmarking of Quantum Gates”, [2407.09942] by V. Tripathi, D. Kowsari, K. Saurav, H. Zhang, E. M. Levenson-Falk, D. A. Lidar.
18. “Qudit Dynamical Decoupling on a Superconducting Quantum Processor”, [2407.04893] by V. Tripathi, N. Goss, A. Vezvaee, L. B. Nguyen, I. Siddiqi, D. A. Lidar.
17. “Efficient Chromatic-Number-Based Multi-Qubit Decoherence and Crosstalk Suppression”, [2406.13901] by A. F. Brown, D. A. Lidar.
16. “Simulating Chemistry on Bosonic Quantum Devices”, [2404.10214] by R. Dutta, D. G. A. Cabral, N. Lyu, N. P. Vu, Y. Wang, B. Allen, X. Dan, R. G. Cortiñas, P. Khazaei, S. E. Smart, S. Nie, M. H. Devoret, D. A. Mazziotti, P. Narang, C. Wang, J. D. Whitfield, A. K. Wilson, H. P. Hendrickson, D. A. Lidar, F. Pérez-Bernal, L. F. Santos, S. Kais, E. Geva, V. S. Batista.
15. “Quantum Fourier Transform using Dynamic Circuits”, [2403.09514] by E. Bäumer, V. Tripathi, A. Seif, D. A. Lidar, D. S. Wang.
14. “Beyond unital noise in variational quantum algorithms: noise-induced barren plateaus and fixed points”, [2402.08721] by P. Singkanipa, D.A. Lidar.
13. “Demonstration of Algorithmic Quantum Speedup for an Abelian Hidden Subgroup Problem”, [2401.07934] by P. Singkanipa, V. Kasatkin, Z. Zhou, G. Quiroz, D.A. Lidar.
12. “Scaling Advantage in Approximate Optimization with Quantum Annealing”, [2401.07184] by H. M. Bauza, D. A. Lidar.
11. “Demonstration of long-range correlations via susceptibility measurements in a one-dimensional superconducting Josephson spin chain”, [2111.04284] by D. M. Tennant, X. Dai, A. J. Martinez, R. Trappen, D. Melanson, M A. Yurtalan, Y. Tang, S. Bedkihal, R. Yang, S. Novikov, J. A. Grover, S. M. Disseler, J. I. Basham, R. Das, D. K. Kim, A. J. Melville, B. M. Niedzielski, S. J. Weber, J. L. Yoder, A. J. Kerman, E. Mozgunov, D. A. Lidar and A. Lupascu
10. “Suppression of crosstalk in superconducting qubits using dynamical decoupling”, [2108.04530] by V. Tripathi, H. Chen, M. Khezri, Ka-Wa Yip, E. M. Levenson-Falk, D. A. Lidar
9. “Quantum adiabatic theorem for unbounded Hamiltonians, with applications to superconducting circuits”, [2011.08116], by E. Mozgunov and D. A. Lidar
8. “Why and when is pausing beneficial in quantum annealing?”, [2005.01888], by H. Chen, D. A. Lidar
7. “Arbitrary-Time Error Suppression for Markovian Adiabatic Quantum Computing Using Stabilizer Subspace Codes”, [1904.12028], by D. A. Lidar
6. “Lecture Notes on the Theory of Open Quantum Systems”, [1902.00967], by D. A. Lidar
5. “Sensitivity of quantum speedup by quantum annealing to a noisy oracle”, [1901.02981], by S. Muthukrishnan, T. Albash and D. A. Lidar
4. “Exploring More-Coherent Quantum Annealing”, [1809.04485], by S. Novikov, R. Hinkey, S. Disseler, J. I. Basham, T. Albash, A. Risinger, D. Ferguson, D. A. Lidar and K. M. Zick
3. “Nested Quantum Annealing Correction at Finite Temperature: p-spin models”, [1803.01492], by S. Matsuura, H. Nishimori, W. Vinci and D. A. Lidar
2. “On the Computational Complexity of Curing the Sign Problem”, [1802.03408], by M. Marvian, D. A. Lidar and I. Hen
1. “When Diabatic Trumps Adiabatic in Quantum Optimization”, [1505.01249], by S. Muthukrishnan, T. Albash, and D. A. Lidar
Invited Reviews
2 . “Quantum Computing: Against the Odds of Imperfection”, by D.A. Lidar, Nature Physics 1, 145 (2005) [pdf]
1 . “Quantum Computers Made Lucid”, by D.A. Lidar, review of the book “A Shortcut Through Time: The Path to the Quantum Computer” by George Johnson, in Chemical & Engineering News 81, no. 32, pp.36-37 (2003)[pdf]
Editorials
2 . “Editorial: How to Control Decoherence and Entanglement in Quantum Complex Systems?”, J. Phys. B 40, E01 (2007), by V. Akulin, G. Kurizki, and D.A. Lidar [pdf]
1 . “Editorial: Quantum Information and Quantum Control”, Quant. Info. and Computation 5, 273 (2005), by P. Brumer, D. Lidar, H.-K. Lo, and A. Steinberg [pdf]
Conference Proceedings
6 . “Encoded Universality in Physical Implementations of a Quantum Computer”, by D. Bacon, J. Kempe, D. P. DiVincenzo, D. A. Lidar, and K. B. Whaley, Proceedings of the International Conference on Experimental Implementation of Quantum Computation, Sydney, Australia (IQC 01), p. 257-264 (2001), Rinton Press.
5 . “Robust Dynamical Decoupling: Feedback-Free Error Correction”, by D.A. Lidar and K. Khodjasteh, [Proceedings of the 1st Asia-Pacific Conference on Quantum Information Science], in the International Journal of Quantum Information, Vol. 3, Supplementary Issue 1, 41-52 (November 2005). [pdf]
4 . “Hybrid Decoherence-Free Error-Correcting Codes via Quantum Trajectories”, by K. Khodjasteh and D.A. Lidar, 6th International Conference on Quantum Communication, Measurement and Computing (QCMC 02), July 22-26, 2002. Proceedings of the Quantum Communication, Measurement and Computing, 493-495 (2003)[pdf]
3 . “Quantum Computers and Decoherence: Exorcising the Demon from the Machine”, by D.A. Lidar and L.-A. Wu, in Proceedings of the SPIE, “Noise and Information in Nanoelectronics, Sensors, and Standards”, Santa Fe, New Mexico, Vol. 5115, p. 256-270 (2003). Online at quant-ph/0302198 [pdf]
2 . “Fault-Tolerant Quantum Dynamical Decoupling”, by K. Khodjasteh and D.A. Lidar, CLEO/QELS 2005 Conference, Baltimore, MD, Joint Symposia on Coherent and Quantum Control [pdf]
1 . “Generalized Grover Search Algorithm for Arbitrary Initial Amplitude Distribution”, by D. Biron, O. Biham, E. Biham, M. Grassl, and D.A. Lidar, in “Quantum Computing and Quantum Communications”, C.P. Williams (Ed.), Springer-Verlag Lecture Notes in Computer Science, Vol. 1509, p. 140-147 (1999)[pdf]
Panels
1 . “Dreams Versus Reality: Plenary Debate Session on Quantum Computing”, Fluctuation and Noise Letters, Vol 08, No. 02, pp.C27-C31 (2003), by D. Abbott, C. Doering, C. Caves, D. Lidar, H. Brandt, A. Hamilton, D. Ferry, J. Gea-Banacloche, S. Bezrukov, and L. Kish. [pdf]