
Quantum Codes for Simplifying Design and Suppressing

Decoherence in Superconducting Phase-Qubits

Daniel A. Lidar,1,3 Lian-Ao Wu,1 and Alexandre Blais2

Received April 4, 2002; accepted June 16, 2002

We introduce simple qubit-encodings and logic gates which eliminate the need for

certain difficult single-qubit operations in superconducting phase-qubits, while pre-

serving universality. The simplest encoding uses two physical qubits per logical qubit.

Two architectures for its implementation are proposed: one employing N physical

qubits out of which N=2 are ancillas fixed in the j1i state, the other employing

N=2þ 1 physical qubits, one of which is a bus qubit connected to all others. Details of

a minimal set of universal encoded logic operations are given, together with recou-

pling schemes, that require nanosecond pulses. A generalization to codes with higher

ratio of number of logical qubits per physical qubits is presented. Compatible deco-

herence and noise suppression strategies are also discussed.

KEY WORDS: quantum computation; superconducting phase-qubits; super-

conducting junction devices; quantum codes; dynamical decoupling; decoherence.
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1. INTRODUCTION

Solid state systems are now attracting much attention as potential compo-
nents for quantum computers, in part because of their potential scalability,
and because the parameters of a solid state qubit can be engineered with
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considerable freedom. This freedom allows one to add different building
blocks to the quantum computer, each block bringing the design closer to
satisfying the criteria required for quantum computation (QC)(1) and, in
particular, enabling universal QC according to the (non fault-tolerant)
‘‘standard paradigm’’.(2) In this standard paradigm, all single-qubit opera-
tions [generating SUð2Þ] plus an entangling two-qubit operation (e.g., con-
trolled-NOT, denoted CNOT) are necessary to achieve universal quantum
computation. Alternatively, one can use a discrete set of single-qubit
operations (e.g., Hadamard and �=8) together with CNOT in order to
approximate to arbitrary accuracy any quantum circuit,(3) a method that is
compatible with fault-tolerant quantum error correction.(4, 5) While the
different building blocks help in reaching universality, each one comes with
its fabrication difficulties and adds a potential source of noise and deco-
herence to the system.

It was realized recently that some of these building blocks can be
replaced by ‘‘software’’ means.(6) More specifically, by encoding a logical
qubit into a few physical qubits, the design of the quantum computer can be
simplified without compromising universality. This approach is known as
encoded universality.(7) E.g., it is possible to remove difficult-to-implement
single-qubit operations.(6–18) This simplification has the advantages of
facilitating fabrication and reducing some sources of decoherence and noise.
Interesting alternatives to encoding that also aim to reduce design con-
straints, some by replacing logic gates with measurements, were recently
presented in Refs. 19–22.

Studies of simplifying encodings have so far been performed primarily
for exchange-type Hamiltonians in spin-coupled solid state quantum com-
puter designs,(6–18, 23–25) and in NMR.(26, 27) Here we extend this study to
superconducting phase qubits.

Superconducting phase qubits are among the leading solid state qubit
candidates, in part due to recent experimental progress.(28, 29) Several
designs of phase qubits have been suggested in the literature; see, Ref. 30 for
a review. In this work, we first focus on the d-wave grain boundary
qubits(31, 32) and recall the relevant system Hamiltonian. A simplification of
the design suggested in Refs. 31 and 32, will yield a system Hamiltonian
which is not versatile enough to be universal, according to the standard
paradigm,(2, 3) because it lacks certain single-qubit operations. We will show
how universality can be recovered by using a simple encoding and recou-
pling techniques. The encoding will suggest the use of a ‘‘bus qubit’’, a
concept that could be useful for other quantum computer designs. In par-
ticular, we explore the possibility of using these concepts with the other
superconducting phase qubit designs. Finally, application of the dynamical
decoupling technique to decoherence reduction will be examined.
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2. SYSTEM HAMILTONIAN

The d-wave grain boundary qubit (dGB qubit), Fig. 1, has the fol-
lowing system Hamiltonian:(32)

HS ¼ HX þHZ þHZZ ð1Þ

where

HX ¼
XN
i¼1

�i�
x
i tunneling ð2Þ

HZ ¼
XN
i¼1

bi�
z
i bias ð3Þ

HZZ ¼
XN
i;j¼1

Jij �
z
i � �z

j Josephson coupling ð4Þ

and where ��
i (� ¼ x; y; z) are the Pauli matrices. In this system, coherent

tunneling of the phase is only possible when the energy levels are in reso-
nance.(56) As a result, when a bias or Josephson coupling is turned on, the
tunneling matrix element(s) �i for the corresponding qubit(s) is exponen-
tially suppressed. We therefore take only one of the terms (2), (3) or (4) to be
on at any given time.

PKPK PK

B

A A

VgVg Vg

1 2

Fig. 1. Superconducting grain boundary qubits: Terminals A1, A2

and B are d-wave superconductors, PK (parity key) represent the

SSETs, � is the mismatch angle between the lattices of Ai and B.

Positive lobes of the d-wave order parameter are shaded. Two

physical qubits are shown.
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Moreover, for the dGB qubit, turning on the bias or Josephson cou-
pling is the only way to control the value of the tunneling matrix element.
The latter can then effectively only be turned on or off, without continuous
control over its magnitude. This magnitude is determined at fabrication time
by the asymmetry between the d-wave superconductors forming the qubit
and by the width of the junction.(31) It is interesting to note that by con-
necting an external capacitor to the qubit circuit, the magnitude of �i could
be controlled independently.(33) However, this design complicates fabrica-
tion and connects the qubit to another potential source of decoherence.
Since the tunneling matrix elements depend exponentially on their param-
eters, small noise on these parameters can have dramatic effect on the
coherence of the system. In this paper, we are interested in simplifying
fabrication demands on the design and reducing sources of decoherence,
hence this possibility will not be considered further.

We now come to our main simplification: In this work we reduce the
constraints on fabrication by removing the possibility of applying bias bi on
individual qubits. This bias requires, e.g., the possibility of applying a local
magnetic field on each qubit, and is experimentally very challenging to
realize. We do retain the Josephson couplings Ji j between the qubits, as
these are necessary to produce entanglement. These couplings are realized
by connecting pairs of qubits by a superconducting single electron transistor
(SSET).(31, 32) The magnitude of Ji j can, to some extent, be tuned con-
tinuously by the SSET’s gate voltage. The sign of this energy could be
changed by inserting a strong �-junction. Again, with simplification of
design in mind, the sign of Ji j will hereafter be considered fixed.

The effective system Hamiltonian that we consider in this paper
is therefore:

HS ¼ HX þHZZ ð5Þ

where we have continuous control over Ji j. As mentioned above, when the
Josephson coupling Ji j is non-zero, the corresponding matrix elements
necessarily vanish: �i ¼ �j ¼ 0. In the idle state, �i is non-zero and the
qubit undergoes coherent tunneling. We proceed to show how universal QC
can be performed given the outlined constraints.

3. ENCODING, INITIALIZATION, AND ENCODED LOGIC GATES

3.1. Code

In Ref. 32, it was shown how to perform universal quantum compu-
tation on the dGB qubit in the case where individual control of the bias bi is
possible. Here, we do not allow for this possibility and, since HX and HZZ
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are insufficient for universal QC on the physical qubits, the techniques of
Ref. 32 will have to be supplemented. This is achieved by encoding a pair of
physical qubits as one logical qubit in the following way:

j0Lim ¼ j0i2m�1 � 1j i2m	 j02m�112mi

j1Lim ¼ j1i2m�1 � 1j i2m	 j12m�112mi

for the mth logical qubit with m ¼ 1; 2; :::::;N=2 and where there are a total
of N physical qubits. It is easy to check that any other encoding into two
qubits is not preserved under HX þHZZ. Moreover, if �x

2m terms are allowed
to act then the encoding of Eq. (6) is not preserved either. We address this
issue below.

3.2. Initialization

Initialization of each encoded qubit can be done by measurement. This
will project on the physical qubit’s computational basis. Hence measuring
the ð2m� 1Þth physical qubit will yield either j0i2m�1 or j1i2m�1 (either one
would do), while measuring the ð2mÞth physical qubit will have to be
repeated until the outcome 1j i2m is obtained. Since tunneling will cause bit-
flips immediately following the measurement, a good strategy is to simul-
taneously measure both these physical qubits, and repeat the measurement
of the ð2m� 1Þth physical qubit (projecting on the computational basis
every time) until that of the ð2mÞth physical qubit has converged on 1j i2m.
Alternatively, initialization can be performed by field-cooling the qubits. By
choosing the proper orientation for the external field, all physical qubits can
be prepared in the j1i state and, therefore, all logical qubits in the j1Li state.
This strategy will most probably not be of practical use during computation
but can serve to provide an initial supply of fresh qubits. For the dGB
qubits, a current in terminal B can also be used to initialize all qubits to the
j1Li state.

(31)

3.3. Single-Qubit Gates

On the logical qubits, the encoded single-qubit operations are:

Xm ¼ �x
2m�1

Zm ¼ �z
2m�1 � �z

2m

Xm acts as a logical �x operation on the encoded qubit, since:

Xmj0Lim ¼ �x
2m�1j02m�112mi ¼ j12m�112mi ¼ j1Lim
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Similarly, it is simple to check that Zm acts as an encoded phase shift.
Note that whenever Xm is on Zm is off, and vice versa, so that we can easily
implement an Euler angle rotation [Eq. (9) below] to generate the Lie group
SUð2Þ on the mth logical qubit.

3.4. Two-Qubit Gates

It can be shown that the present model is not universal with nearest-
neighbor interactions only in 1D. Therefore we consider a quasi-1D trian-
gular arrangement, as shown in Fig. 2. Each dot represents a physical qubit
and the numbers are our indexing scheme: odd-numbered qubits are in the
top row. In this arrangement qubits 2m� 1, 2m, 2mþ 1 are all nearest-
neighbors and are connected by SSETs. The logical qubits are represented
by pairs, as indicated by the ovals in Fig. 2. The lower line of physical qubits
are all in the state j1i. We refer to these as the ancilla qubits.

As detailed in Ref. 32, interaction between physical qubits is supplied
by the SSETs which couples pairs of qubits through a term Ji j�

z
i � �z

j . With
the above encoding, an encoded controlled-phase gate (CPHASE) between
the mth and ðmþ 1Þth logical qubits corresponds simply to coupling the
odd-numbered (top-row) physical qubits of those two logical qubits. To see
this, note that the Hamiltonian generating the CPHASE gate is

HCPHASE
m;mþ1 ¼ J2m�1;2mþ1Zm � Zmþ1

¼ J2m�1;2mþ1�
z
2m�1 � �z

2mþ1

ð7Þ

Hence the implementation of the CPHASE gate only involves a (quasi 1D-)
nearest-neighbor two-body term, and the control of the single Josephson
energy J2m�1;2mþ1. Only odd-numbered physical qubits are involved in
this gate.

We now have all the ingredients for universal QC. However, there are
some subtleties and potential simplifications, to which we now turn.

1

2

3

4

5

6

7

8

9

Fig. 2. Triangular arrangement of physical qubits, with

the ancilla qubits in the bottom row. Logical qubits are

formed by pairs of top row and ancilla qubits, as indi-

cated by the ovals. The ancilla qubits should all be kept

in the j1i state.
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4. ALTERNATIVE CODE USING A BUS QUBIT

Since the even-numbered qubits in Fig. 2must be kept in an identical state
there is the possibility of simply replacing them all by a single ‘‘bus’’ qubit which
is kept in the j1i state. Thus instead of using N physical qubits we would use
only N=2þ 1, as depicted in two possible geometries in Fig. 3. It is simple to
check that doing so is consistent with our logical operations: Since Xm ¼ �x

2m�1

andHCPHASE
m;mþ1 ¼ J2m�1;2mþ1�

z
2m�1 � �z

2mþ1, the only operation that involves the
even-numbered qubits isZm ¼ �z

2m�1 � �z
2m. If we replace the ð2mÞth qubit by a

fixed bus qubit j1ib then the only change necessary is Zm ¼ �z
2m�1 � �z

b. I.e., we
need to be able to turn on/off a Josephson coupling between all odd-numbered
qubits and the bus qubit. We remark that the situation where a qubit in a code
must be kept fixed has also arisen in the context of encoded universality for the
XY model, namely the ‘‘truncated qubit’’ of Ref. 16.

5. PROBLEMS DUE TO TUNNELING ON PASSIVE QUBITS AND

ENCODED SELECTIVE RECOUPLING

There is a problem with performing universal QC using only
HX þHZZ and the above encoding, which must now be addressed. As

Fig. 3. Architecture with single bus qubit. Two possible

arrangements are shown, with bus qubit at center of circularly

arranged qubits (a), or ‘‘long’’ bus qubit connected to all other

qubits (b). The bus qubit should always be in the j1i state.

Quantum Codes for Simplifying Design and Suppressing Decoherence 161



stressed above, in the idle state each qubit undergoes Rabi oscillations. We
therefore need to ‘‘freeze’’ the evolution of passive qubits while logical
operations are performed on active qubits. In Ref. 32 this was done by using
recoupling pulses, a technique similar to that used routinely in NMR.(34, 35)

However, this was implemented by single-qubit bias pulses, which, as
stressed above, we do not assume are available here. To solve this problem,
we therefore extend the scheme of Ref. 32 to the technique of encoded
selective recoupling developed in Ref. 13.

Like selective recoupling, encoded selective recoupling is based on
some simple identities and the elementary theory of angular momentum. Let
A and B be arbitrary Hermitian operators, �; � real numbers. Then

e�i’Aei�Bei’A ¼ ei� expð�i’AÞB expði’AÞ ð8Þ

Now assume A ¼ n̂n 
 ~JJ where n̂n is a real 3D unit vector and ~JJ ¼ ðJx; Jy; JzÞ is
an angular momentum vector operator. Then R 	 expð�i’AÞ is a rotation
operator that can be written as a product of three Euler angle rotations (see
Ref. 36, Sec. 13):

R ¼ e�i�Jze�i�Jye�i�Jz ð9Þ

where �; �; � are the Euler angles. If we take B to be an irreducible tensor
operator of rank L (i.e., a member of a set of 2Lþ 1 functions TLM,
M ¼ �L;�Lþ 1; : : :;L, which transform under the 2Lþ 1-dimensional
representation of the rotation group), then (see Ref. 36, Sec. 17):

RTLMRy ¼
X
M0

DL
M0Mð�; �; �ÞTLM0

where D are the Wigner rotation matrices, whose matrix elements
DL

M0Mð�; �; �Þ are the matrix elements of R in the LM representation. The
Wigner matrices are extensively tabulated,(36) so that in principle calcula-
ting the transformation expð�i’AÞB expði’AÞ appearing in Eq. (8) is always
possible for angular momentum operators A;B. Let us consider a few cases
of importance to us here, and of general interest in quantum computing.

Assume that A and B are anticommuting operators, e.g., different
Pauli matrices. Let I be the identity operator and assume A2 ¼ I. Then, we
define the operation of ‘‘conjugation by A’’, i.e., Eq. (8)ð37Þ:

C ’
A 
 ei�B 	 e�i’Aei�Bei’A

¼ exp½i�ðB cosð2’Þ þ iBA sinð2’ÞÞ�

¼

e�i�B if ’=��/2

e�i�ðiBAÞ if ’=��/4

ei�BðI�iAÞ=
ffiffi
2

p

if ’=��/8

8><
>:

ð10Þ
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To prove these relations one can use the Wigner D matrices as above, or,
more simply but less generally, note that for anticommuting A and B that in
addition satisfy A2 ¼ I:

e�i’ABei’A ¼ ðI cos ’� Ai sin ’ÞBðI cos ’þ Ai sin ’Þ

¼ B cos2 ’þ ABA sin2 ’� i sin ’ cos ’½A;B�

¼ B cosð2’Þ þ iBA sinð2’Þ

The result of Eq. (10) with ’ ¼ �=2 is used in the NMR technique of re-
focusing, or more generally, selective recoupling.(34, 35) It allows one to flip
the sign of a term in a Hamiltonian, which can be used to cancel unwanted
evolution. The result with ’ ¼ �=4 can be viewed as a special case of Euler
angle rotations which preserve a discrete group (in QC commonly the Pauli
group—the group of tensor products of Pauli matrices). The case with
’ ¼ �=8 allows us to move from the Pauli group to the group algebra of the
Pauli group, and is useful for rotating sums of operators into a desired
direction on the Bloch sphere (see Section 8.2 below). The conjugation
method can be used on the physical as well as the encoded qubits, in which
case we refer to it as ‘‘encoded selective recoupling.’’

Note that in order to implement e�itA where A is a Hamiltonian that
is turned on for a time t, we need to find # such that ei#A ¼ I and imple-
ment eið#�tÞA instead. This depends on A having rationally related eigen-
values, which is the case for the Hamiltonians of interest to us. E.g., for
A ¼ J�z

1 � �z
2 we have # ¼ 2�=J, so that expð�itð�JÞ�z

1 � �z
2Þ ¼

expðiðt� 2�=JÞJ�z
1 � �z

2Þ. I.e., if this Hamiltonian is applied for a time
t� 2�=J > 0 it effectively evolves as if J ! �J. This method circumvents
the need for switching the sign of the Hamiltonian itself, which is difficult to
realize in the case of the Josephson coupling Jij.

We are now ready to address and solve the issue of the idle qubit Rabi
oscillations mentioned above. We will first concentrate on the realization of
Fig. 2 before turning to the bus qubit implementation.

5.1. Leakage

In the idle state there will be tunneling on all qubits implementing
unwanted �x operations. On the even-numbered qubits of Fig. 2, these bit
flips cause a transition out of the computational space, or leakage.

Our goal is then to eliminate the leakage term on all even-numbered
qubits

� ¼
XN=2

m¼1

�2m�
x
2m
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due to the free evolution of these qubits during an idle period. For simplicity
consider just the first and second encoded qubits, i.e., the term
�2�

x
2 þ�4�

x
4 . We can refocus it using �z

2 � �z
4, which will flip the sign of

the offending term. To do so we need to turn on �z
2 � �z

4 for a time �24 such
that �24J24 ¼ ��=2 (recall Eq. (10)). Specifically, since A ¼ �z

2 � �z
4 and

B ¼ �2�
x
2 þ�4�

x
4 are Hermitian and anticommute:

eitð�2�
x
2
þ�4�

x
4
Þ C�=2

�z
2
��z

4


 eitð�2�
x
2
þ�4�

x
4
Þ

� �
¼ I

so that evolution under �2�
x
2 þ�4�

x
4 has been eliminated.

Note that Eq. (10) implicitly assumes that while A is on B is off, and
vice versa. This is satisfied in our procedure, since the tunneling term
�2�

x
2 þ�4�

x
4 is on (off) while the coupling term �z

2 � �z
4 is off (on). Inter-

estingly, this is different from most other recoupling schemes, e.g., Refs. 13
and 26, where one typically assumes strong pulses that completely dominate
the natural evolution (see Ref. 38, for an analysis of this issue). Continuing,
� can be completely eliminated if all pairs of qubits fð2; 4Þ; ð6; 8Þ; : : :g are
refocused in a similar manner, i.e., by turning on �z

4m�2 � �z
4m for a time

�4m�2;4m such that �4m�2;4mJ4m�2;4m ¼ ��=2 (where m ¼ 1; 2; : : :;N=4). With
Jij of the order of the GHz, the refocusing pulses will typically be of the
order of the nanosecond. These operations need to be applied in parallel,
which is possible because they commute (they are applied to different
qubits). This means that all J4m�2;4m must be rationally related, so that
appropriate intervals �4m�2;4m can be found. Obviously, a possibility is to set
all J4m�2;4m equal but this could be difficult to realize in practice.

5.2. Unwanted sx Operations During Encoded Single Qubit Operation

We now take care not only of leakage out of the code subspace, but of
errors due to tunneling on passive qubits during operation of encoded single
qubit gates on active qubits.

For example, while Xl ¼ �x
2l�1 is on we still have tunneling on all

qubits other than 2l� 1, again implementing unwanted �x operations. To
emphasize this let us rewrite HX as:

HX ¼ H0 þH �XX þ�

	 �2l�1Xl þ
XN=2

m 6¼l

�2m�1Xm þ
XN=2

m¼1

�2m�
x
2m

where H0 is the desired evolution, H �XX are unwanted bit flips on the passive
qubits and � is a leakage term.
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Similarly, while Zl is on, we have tunneling in all qubits other than
2l� 1 and 2l, again implementing unwanted bit flips. I.e., the Hamiltonian
while Zl is on is:

HZl
¼ JlZl þ

XN=2

m 6¼l

�2m�1Xm þ
XN=2

m 6¼l

�2m�
x
2m ð11Þ

Thus we either have to implement computational operations on the other
encoded qubits (m 6¼ l), or eliminate this unwanted evolution.

We start by first taking care of the single encoded Xl ¼ �x
2l�1 operation

in the presence of tunneling on all other qubits. I.e., we need to eliminate not
just the leakage term � but also the unwanted logical operations H �XX.
Suppose we wish to implement X1 for a time T, i.e., the operation e�iT�1X1 .
The solution is shown schematically in Fig. 4. We refocus all other qubits in
pairs fðm; nÞg ¼ fð2; 3Þ; ð4; 5Þ; ð6; 7Þ; ð8; 9Þ; : : :g, using the same idea as for the

Fig. 4. Single logical-qubit X operation. Shown in (a) is the algorithm

for the implementation of X1, with recoupling connections indicated

by dashed lines. (b) Shows a rectangular pulse with an area T�1

implementing the logical operation expð�iT�1X1Þ. (c),(d) Show the

corresponding recoupling sequence on qubits 2; 3 (exactly the same

diagrams apply to the other qubit pairs 4; 5 etc.). E.g., in (c) the first

pulse lasts for a time � such that �J2;3 ¼ �=2, immediately followed by

a tunneling period �0 (assuming �2 ¼ �3), etc.
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leakage problem. Namely, we turn on the interactions f�z
m � �z

ng for times
�mn; �

00
mn such that �mnJmn ¼ �=2 and �00mnJmn ¼ 3�=2 (we are now explicitly

taking into account the fact that we cannot switch the sign of Jmn). In
between and after the �=2 and 3�=2 periods these pairs of qubits are allowed
to evolve freely for times �0mn under the tunneling terms f�m;�ng. The
condition that must then be satisfied is:

�mn þ 2�0mn þ �00mn ¼ T

Since, e.g., �23J23 ¼ �=2, the free evolution time is determined by
�023 ¼ T� 4�23ð Þ=2 ¼ T=2� �=J23, or, in general(57):

�0mn ¼ T=2� �=Jmn

These times must be positive, so that we must be able to make Jmn (assuming
it is positive) large enough that

Jmn > 2�=T

Conversely, if Jmn has a maximum value Jmax
mn then there is a time

Tmin ¼ 2�=Jmax
mn

below which we cannot apply an encoded logical X operation. Thus all
encoded logical X operations must be implemented as e�iT�1X1 with
T � Tmin. This means that the smallest angle of rotation around the encoded
x axis is �min ¼ 2��mðnÞ=J

max
mn . With �m � 100MHz(31) and Jmn of the order

of the GHz, �min is of the order of 2�=10 and can be made smaller if the
Josephson energy Jmn is made larger. However, this is not necessary in the
fault-tolerant ‘‘standard paradigm’’ of universal QC, where all logic gates
can be built up from the Hadamard, �=8 and CPHASE gates, which require
� of �=2, �=8, and �=4 respectively.(3) Of course, here we have in mind an
encoded version of this universal set of gates.

The solution to the single encoded Zl ¼ �z
2l�1 � �z

2l operation in the
presence of tunneling on all other qubits, Eq. (11), is almost identical to that
of single encoded X operations. Suppose we wish to implement Z1 ¼ �z

1 � �z
2

for a time T, i.e., the operation e�iTJ1Z1 . The solution is shown schematic-
ally in Fig. 5. We refocus all other qubits in pairs fðm; nÞg ¼
fð3; 5Þ; ð4; 6Þ; ð7; 9Þ; ð8; 10Þ; : : :g by again turning on the interactions
f�z

m � �z
ng for times �mn; �

00
mn such that �mnJmn ¼ �=2 and �00mnJmn ¼ 3�=2. All

other details are the same as above.
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5.3. Unwanted sx Operations During Two Qubit Encoded Z6Z Operation

The problem is the same as in the previous cases. We now have to deal
with the Hamiltonian

HZlZlþ1
¼ J2l�1;2lþ1ZlZlþ1 þ

XN=2

m 6¼l;lþ1

�2m�1Xm þ� ð12Þ

i.e., leakage plus unwanted X operations on all but encoded qubits l; lþ 1.
The solution is completely analogous to the case of single encoded Z
operations.

5.4. Compatibility of Recoupling Sequences

There is still one problem with the above method that needs to be
solved: recoupling in the single encoded X case requires pairing up N� 1
physical qubits, whereas recoupling in the single encoded Z and encoded
Z� Z cases requires pairing up N� 2 physical qubits. Thus in the former
case we would want N to be odd, while in the latter we need N to be even.
Assuming N to be even, there are several possible solutions to this.

Fig. 5. Single logical-qubit Z operation. Other details as in Fig. 4.
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One solution is to reintroduce single-qubit �z operations, but only on
(say) the last qubit. This qubit can then be refocused independently. This is
however not very elegant (or practical) as our aim was to eliminate single-
qubit �z operations in the first place.

A second possibility is to make the Josephson coupling energy much
larger than the tunneling matrix element. In this case, it is possible to neglect
the evolution of the passive qubits due to tunneling during the on-time of
the Josephson coupling on the active qubit. Reaching the necessary con-
straint jJijj � j�kj 8k can however be difficult in practice and, even if it is
reached, there will be accumulation of small errors on the passive qubits.
This solution is therefore not the most practical either.

The simplest way to solve the compatibility problem is to assume that
we can fix (say) the last qubit (number N) in the j1i state. This corresponds
to producing that qubit with a very high tunneling barrier and initializing it
in the j1i state. In this manner this qubit is ‘‘frozen’’ and the problem of
unwanted evolution on it does not arise. For the dGB qubit, producing a
qubit with a high tunneling barrier can be done by choosing proper mis-
alignment between the two d-wave superconductors or, more simply, by
working with larger junctions.(31)

An interesting alternative is to extend this concept of ‘‘frozen’’ qubit to
all ancilla qubits. In this case, there is no possible leakage out of the code
subspace. Moreover, this applies well to the concept of ‘‘bus qubit’’ pre-
sented above. In this case, the bus is a single qubit with a large tunneling
barrier and initialized to the j1i state.

Considering the bus qubit case, even if there is no leakage, the problem
of freezing passive qubits is still present. Fortunately, the solution explained
above still applies. However, as illustrated in Fig. 6, with a bus qubit the
number of physical qubits should be odd. The reason is that otherwise,
during the implementation of, e.g., Z1 ¼ �z

1 � �z
b we would be left with an

odd number of qubits to be refocused (Fig. 6(d)). As seen in Fig. 6(a)–(c),
with an odd number of logical qubits all logic operations can be performed
provided the bus qubit can be kept fixed in the j1i state during single qubit X
operations (Fig. 6(a)).

The question of which of the two designs, bus qubit or with N=2
ancilla qubits, is superior, will be decided by engineering constraints. The
bus qubit imposes a circular geometry (as in Fig. 3(a)), or has to be made
long (as in Fig. 3(b)), or some other method has to be found to connect it to
all other qubits. In particular, it can be challenging experimentally to con-
nect many qubits to the bus. Having several bus qubits and, for example,
repeating the circular geometry of Fig. 3(a) in an triangular lattice could
help in reducing these constraints.
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6. CODES WITH HIGHER RATES

So far we have considered encoding a single logical qubit into two
physical qubits. This code has a rate of 1=2. In this section we consider codes
with higher rates. Specifically, we propose an encoding of two logical qubits
into three physical qubits, yielding a rate of 2=3.

Consider the following encoding:

j0Li � j0Li ¼ j010203i

j0L1Li ¼ j010i

j1L0Li ¼ j100i

j1L1Li ¼ j110i

Fig. 6. Logic operations with recoupling connections in bus qubit

architecture. Recoupling works well with an odd number of non-bus

qubits, as shown in (a)–(c). (a) Single logical-qubit X1 operation, qubits

2; 3 recoupled. Here it is essential that the bus qubit can be kept fixed in

the j1i state by a method other than recoupling; (b) Single logical-qubit

Z1 operation, qubits 2; 3 recoupled; (c) Two logical-qubit CPHASE

operation, qubit 1 recouples with bus qubit. With an even number of

non-bus qubits there is a problem, as shown in (d): it is not possible to

implement a single logical-qubit Z2 operation because three non-bus

qubits have to be recoupled.
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The third physical qubit is always 0 here, so once again the bus qubit idea
applies. The corresponding logical operations are:

X1 ¼ �x
1 X2 ¼ �x

2

Z1 ¼ �z
1�

z
3 Z2 ¼ �z

2�
z
3

Z1Z2 ¼ �z
1�

z
2

as is readily checked. E.g.,

Z1Z2j0L0Li ¼ �z
1�

z
2j000i ¼ j000i ¼ j0L0Li

Z1Z2j0L1Li ¼ �z
1�

z
2j010i ¼ �j010i ¼ �j0L1Li

etc. Note that Z1 and Z2 explicitly use the third qubit, showing that it is
essential. As before, we think of these logical operations as Hamiltonians,
not gates. We therefore have a universal generating set for two logical qubits
encoded into the first three physical qubits. To complete the universal set we
also need to be able to couple logical qubits belonging to different blocks of
three physical qubits. Let physical qubits 4; 5; 6 encode the next pair of
logical qubits. Then

Z2Z3 ¼ �z
2�

z
4

is a logical operation coupling the two blocks. To verify this consider the
truth table for this operation. Let x; y be 0 or 1. Then:

Z2Z3jxL0Lij0LyLi ¼ �z
2�

z
4jx10203ij04y506i

¼ jx10203ij04y506i ¼ jxL0Lij0LyLi

Z2Z3jxL0Lij1LyLi ¼ �z
2�

z
4jx10203ij14y506i

¼ �jx10203ij14y506i ¼ �jxL0Lij1LyLi

Z2Z3jxL1Lij0LyLi ¼ �z
2�

z
4jx11203ij04y506i

¼ �jx11203ij04y506i ¼ �jxL1Lij0LyLi

Z2Z3jxL1Lij1LyLi ¼ �z
2�

z
4jx11203ij14y506i

¼ jx11203ij14y506i ¼ jxL1Lij1LyLi

which is the desired action. Note that next-nearest neighbor couplings are
involved in Z1 (inside a block of three) and Z2Z3 (between blocks of three).
Figure 7 shows a possible arrangement in 3D. Two triangular arrays of
qubits are superimposed such that the relevant qubits form tetrahedrons (see
caption). With this particular geometry, only nearest neighbor couplings are
required. Qubit arrays of lower dimensionality will require next-nearest
neighbor couplings, which may or may not be easier to implement experi-
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mentally. For definiteness we continue the discussion here while referring to
the 3D layout, but it should be kept in mind that a 1D/2D layout with
overlapping wires may prove to be advantageous.

Recoupling will still be needed since we still have passive tunneling on
the idle physical qubits. The recoupling paths are shown in Fig. 8. As in the
rate 1=2 code, there is an incompatibility between the number of qubits
required for recoupling in the case of a logical X operation, and the number
required for the logical Z and ZZ operations. This can be solved by
introducing an auxiliary qubit. This qubit then has to be frozen in the j0i
state, as discussed above.

All the considerations above can be modified easily to the case of a
single bus qubit, taken to be, e.g., a long single qubit fixed in the j0i state
(i.e., the single bus qubit now replaces all physical qubits numbered 3n,
n ¼ 1; 2; . . . in the discussion above). This architecture is shown in Fig. 9.
The recoupling paths are shown in Fig. 10 (compare to the recoupling fig-
ures for the one-in-two encoding). However, note that with a ‘‘global’’ bus
qubit the advantage of a higher rate disappears. As in the above encoding of
one logical qubit per two physical qubits, with a global bus qubit optimal
use of all physical qubits has already been made.

There will be codes with even higher rates (e.g., use four physical
qubits to encode three logical qubits by fixing the fourth physical qubit).
However, in this case the geometrical constraints may become impossible to

Fig. 7. 3D architecture using 3 physical qubits to

encode 2 logical qubits. Two triangular 2D arrays are

superimposed (alternating solid and dashed lines),

such that qubits 1,2,3,4 form a tetrahedron, likewise

for qubits 3,6,7,9, and 8,10,11,12, etc. Pairs of logical

qubits correspond to physical qubits 123, 456, 789,

etc. This allows qubits 12,23,13,24 to have nearest

neighbor interactions, so that the logical operations

Z1, Z2, Z1Z2, Z2Z3 can all be implemented through

nearest neighbor couplings. Likewise, qubits

45,56,46,57 are nearest neighbors, allowing logical

operations Z3, Z4, Z3Z4, Z4Z5 to be implemented

through nearest neighbor couplings. The required

connections between qubits belonging to different

planes are shown by short-dashed lines.
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satisfy even in 3D if we can only use nearest-neighbor coupling. Therefore,
such higher rate codes will require introducing longer-range coupling. What

Fig. 9. Architecture using 3 physical qubits

to encode 2 logical qubits, using a global bus

qubit. Ovals indicate grouping, i.e., blocks of

three physical qubits are formed by physical

qubit 1, 2, bus; 3, 4, bus; etc. The bus is fixed

in the j0i state.

Fig. 8. (a) Implementation of logical X1 operation on logical

qubit 1 is done by allowing physical qubit 1 to undergo free

tunneling. This requires recoupling all other physical qubits in

pairs as indicated by short-dashed lines. (b) Implementation of

logical Z1 operation on logical qubit 1 is done by Josephson

coupling physical qubit 1 to its ancilla qubit, number 3. This

requires recoupling all other physical qubits in pairs as indi-

cated by dashed lines. (c),(d),(e) Same as (b), for implementing

logical operations Z2, Z1 � Z2, Z2 � Z3.
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the tradeoffs are between a 3D arrangement and long-range couplings, is,
again, an implementation-dependent question that we cannot answer here.

7. IMPLEMENTATION AND CONNECTION TO OTHER DESIGNS

We now turn to a discussion of the usefulness and practicality of the
above scheme to the dGB qubits and to the other superconducting phase-
qubits in general.

For the dGB qubits, the usefulness of the above scheme is clear. The
application of individual qubit bias following the scheme of Refs. 31 and 32
would be rather difficult experimentally. The encoding and bus qubit pro-
posed here circumvent this problem. Moreover, for the dGB qubits, the
implementation of the bus qubit concept turns out to be a rather simple
modification of the layout already presented in Refs. 31 and 32. As shown in
Fig. 11, the bus can be a large piece of d-wave superconductor coupled to
terminal B of the qubits by a weak link. If this bus is large and has the proper

Fig. 10. (a) Implementation of logical X operation on logical qubit 1

is done by allowing physical qubit 1 to undergo free tunneling. This

requires recoupling all other physical qubits in pairs as indicated by

dashed lines. (b) Implementation of logical Z operation on logical

qubit 1 is done by Josephson coupling physical qubit 1 to bus. This

requires recoupling all other physical qubits in pairs as indicated by

dashed lines. Similarly for (c),(d), and (e).
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misalignment of its order parameter with respect to terminal B, it will have a
fixed phase and hence correspond to a fixed logical state. This bus is coupled
to the other qubits by SSETs to provide the necessary Ji j couplings. Thus,
based on the encoding of Eq. (6) which suggested the use of a bus qubit, the
equivalent of single-qubit bias operations could be reintroduced in a way that
is experimentally simpler than what was previously suggested.(31,32)

The concepts explored in this paper can be applied to the other
superconducting phase qubit designs.(33, 39–41) First, for the rf-SQUID-like
design of Ref. 39 and 40, single-qubit logical operations are provided by
control of external fluxes in two different loops of the SQUID, Fig. 12(a).
One of these fluxes controls the asymmetry of the qubit’s potential energy
landscape (i.e., �z

i operations), while the other controls the tunnel barrier
(i.e., �x

i operations). Qubits can be coupled inductively to provide the
necessary two-qubit logical gates. These coupling can be arranged to pro-
vide a term in the Hamiltonian which has the same symmetry as considered
above, Jij �

z
i � �z

j .
(40)

Consider moving to a design with only 3 junctions and one loop
(as was used experimentally in(28), such that only the asymmetry can be
controlled, Fig. 12(b). By choosing the Josephson energies such that in the
idle state coherent tunneling is possible, the Hamiltonian describing the
system is (5), with the same constraints as for the dGB qubit. The encoding
and results presented here, therefore, apply equally to these qubits and
provide enough control to perform universal QC. Of course, the application

PKPK

PK

B

A

PK

A

Vg Vg

Vg Vg

1 2

Fig. 11. Superconducting grain boundary qubits with

‘‘bus qubit’’. The qubits are connected to the bus by

SSETs.
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of the logical operations is more laborious than in the original 4-junction
design but this has other advantages. First, there is some simplification in
fabrication. Moreover, the external flux controlling the tunnel barrier is a
source of noise to the system. Removing such a source of decoherence in a
system which has a small coherence time to begin with, is clearly advanta-
geous. For this design, rather than the simplification in fabrication, the
possibility of reducing sources of noise is the real advantage of using the
encoding (6).

Similarly, for the ‘‘quiet qubit’’ design of Ref. 33, one could eliminate
the external capacitor which is used to tune the tunneling amplitude, and
choose the Josephson energies such that tunneling is possible in the idle
state, Fig. 12(c). Connection to the strong �=2-junctions, used to control the
asymmetry, can also be discarded, retaining only two-qubit couplings,
Fig. 12(d). In this way the system again is described by (5) and the same
ideas apply. As with the rf-SQUID design, use of the encoding (6) allows to
remove some of the components of the quantum computer design while

s
s

2φ

Fig. 12. (a) Original persistent-current qubit design. Currents Iz and Ix
provide flux in large and small loop respectively and are used to control

single-qubit operations. Coupling to a second qubit (not shown) can be

inductive (long-dashed line). (b) Using the encoding of Eq. (6), a pair of

coupled physical qubits can be used as one logical qubit. Unnecessary

control lines have been discarded, keeping only the inductive two-qubit

coupling. (c) ‘‘Quiet qubit’’ design. The 2�-junction realizes the two-level

system. Single qubit operations are implemented by voltage pulses on the

switches ‘‘s’’. Coupling to other qubits is not shown. (d) As in (b), only

coupling between a pair of physical qubits is retained to obtain one

logical qubit.
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maintaining universality. We again stress that this reduces engineering
constraints and removes some important sources of noise.

Implementation of the bus qubit for the ‘‘quiet qubit’’ design is similar
to the phase bus discussed in Ref. 33. Similar ideas can be used for the rf-
SQUID like qubits.

By using the encoding suggested here, we are now relying mostly
on two-qubit gates to perform QC. Therefore, qubit–qubit coupling should
be easily controlled and the ratio of the characteristic energy when the
qubit–qubit ‘‘switch’’ is on compared to when it is off should be high. These
requirements are not different from the standard situation when the
encoding (6) is not used. Further, for this scheme to be useful in practice, the
two-qubit gates should not be much slower than the 1-qubit gates.
By choosing strong enough Josephson junctions for the SSETs, this should
be satisfied for the dGB qubits. Similarly, in the design of Refs. 39 and
40 the inductive coupling qubits should be of the order of single-
qubit energies. The situation is similar for the ‘‘quiet qubit’’ design. All of
the above remarks apply equally for the multi-terminal superconducting
phase qubit.(41)

8. REDUCTION OF ERRORS DUE TO DECOHERENCE

Standard quantum error correction techniques(42) are certainly com-
patible with the dGB qubit design. Here we focus on the recou-
pling(13, 34, 35, 43, 44) and the decoupling, or ‘‘bang-bang’’ (BB) method
introduced in Ref. 45, and developed further, e.g., in Refs. 23–25 and 46–53.
The advantage of the recoupling and BB methods, is that they do not
require extra qubit (space) resources, unlike quantum error correction(42)

and/or decoherence-free subspaces.(54, 55) Specifically, we will show that
decoherence can be reduced significantly using only the existing controllable
interactions, acting on the encoded qubits. Different methods will be pre-
sented depending on the symmetry of the system-bath interaction. ‘‘Enco-
ded decoupling’’ (i.e., acting on encoded qubits) of the type we discuss below
has been previously suggested for solid-state(23–25) and NMR(26, 27) QC
proposals. We further note that use of BB pulses for dGB qubits was pre-
viously discussed in Ref. 32, but access to single-qubit Z operations was
assumed. We extend and generalize this discussion here.

The total Hamiltonian of a qubit system (S) and bath (B) can be
written as

H ¼ HS þHB þHSB

where HSB is the system-bath coupling. In order to use the BB method one
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makes two assumptions: First, (as in the threshold result of fault tolerant
QC(4, 5)) that a controllable part of HS can be made so strong that we can
make H approximate that part of HS to arbitrary precision. This is needed
so that HSB can be neglected during the pulse. Second, that one can pulse
this controllable part of HS with a pulse repetition time that is much shorter
than the inverse of the bath frequency cutoff. This requirement arises since
in between BB pulses the bath should not change, or else it will acquire
phases that, when the bath is traced over, will result in decoherence in the
system.(45)

We will take the interaction term to have the linear form
HSB ¼ �i ~��i 
 ~BBi, where ~��i is the vector of Pauli matrices acting on the system,
and ~BBi are corresponding bath operators. This can represent the interaction
of a qubit with a fluctuating control field. For example, for the super-
conducting phase qubit, a term �z

i B
z
i arises due to fluctuation of local

magnetic field. The relation of HSB to the parameters of the system and bath
can be analyzed in detail.(30) Our approach to decoherence suppression
depends on the time-scales that emerge from this analysis, and on the
symmetry of the system-bath interaction.

8.1. Suppression of Axially Symmetric System-Bath Interaction by Z� Z
Recoupling Method

Suppose that jJijj � j�ij; jB
x
i j; jB

y
i j; jB

z
i j so that the strong parts of

HS are

Hij ¼ Jij�
z
i � �z

j

which we can turn on and off freely. If HSB is of the general form
P

i ~��i 

~BBi,

then Hij obviously is not enough to eliminate HSB by decoupling methods,
since it commutes with the �z

i B
z
i terms. However, by the same token, if the

system-bath interaction has an axial symmetry so that

HSB ¼
X
i

�x
i B

x
i þ �y

i B
y
i


 �

it can be eliminated by

expð�iHSBt=2Þ C�=2

�N=2
m¼1

Zm


 expð�iHSBt=2Þ

� 

¼ I ð13Þ

where as before Zm ¼ �z
2m�1 � �z

2m is the logical Z operation. Implicit in this
calculation is that HSB is negligible while Zm is on. To the extent that this
assumption breaks down there will be an error proportional to the ratio of
the largest eigenvalue of HSB by the smallest eigenvalue of HS. The
important point is that this type of axially symmetric system-bath inter-
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action can be suppressed without any extra resources, simply by using the
already available Josephson coupling. Moreover, the decoupling pulse

C �=2PN=2
m¼1

Zm

used in Eq. (13) commutes with all Zm0 , Zm0Zm00 and with all Xm0 such that
m0;m00 6¼ m. All these logical operations can therefore be executed in parallel
with this decoupling procedure. However, since the decoupling pulses
anticommute with Xm this logical operation is eliminated if it is turned on
during decoupling. Hence we must alternate suppressing decoherence on the
mth qubit and performing logical X operations on it. This implies that this
qubit will suffer some decoherence while Xm is applied to it, unless we
protect it by other means, such as active quantum error correction.(42)

8.2. Suppression of Partial Symmetric System-Bath Interaction Hamiltonians

by Decoupling

Suppose that jJijj � j�ij � jBx
i j; jB

y
i j; jB

z
i j, so that we can freely turn

�i�
x
i and Ji j�

z
i � �z

j on and off, and while we do so HSB becomes negligible.
The only effect of HSB is to decohere the qubit system when it evolves freely,
i.e., under expð�itðHB þHSBÞÞ.

Now suppose the system-bath interaction has a symmetry so that

H
yz
SB ¼

X
i

�y
i þ �z

i


 �
B
yz
i þ �x

i B
x
i

Note that, using Eq. (10), a term of the form exp i�ð�y þ �zÞ can be rotated
to expði��yÞ:

C��=8
�x 
 exp i�ð�y þ �zÞ=

ffiffiffi
2

ph i
¼ exp i��yð Þ

Hence

C��=8
�x
i


 exp it �y
i þ �z

i


 �
B
yz
i þ �x

i B
x
i


 �� �
¼ exp it

ffiffiffi
2

p
�y
i B

yz
i þ �x

i B
x
i

� �h i

But this we can eliminate using the Josephson coupling, since conjugation
by �z

i � �z
iþ1 will flip the sign of both �y

i and �x
i :

exp it
ffiffiffi
2

p
�y
i B

yz
i þ �x

i B
x
i

� �h i

� C�=2
�z
i
��z

iþ1

 exp it

ffiffiffi
2

p
�y
i B

yz
i þ �x

i B
x
i

� �h i� �
¼ I

Performing this in parallel for i ¼ 1; 3; : : : will suppress the system-bath
interaction completely. Again, there is the implicit assumption that during

178 Lidar, Wu, and Blais



the on-time of the tunneling and Josephson operations HSB is negligible.
Regarding computation, similar comments as in the previous subsection
apply, i.e., those logical operations that commute with the decoupling pulses
can be turned on simultaneously with the latter, while those that anti-
commute cannot. However, the cases

H
xy
SB ¼

X
i

�x
i þ �y

i


 �
B
xy
i þ �z

i B
z
i

and

Hzx
SB ¼

X
i

�z
i þ �x

i


 �
Bzx
i þ �y

i B
y
i

cannot be dealt with using this decoupling method, given the available
interactions. To treat these cases we must introduce an additional short-
time assumption, which may or may not be more severe than the usual
BB assumption.

8.3. Decoupling Method for System-Bath Interaction Without Symmetry

Suppose again that jJijj � j�ij � jBx
i j; jB

y
i j; jB

z
i j, but that there is no

symmetry in the system-bath interaction, i.e., the case of arbitrary
HSB ¼ �i ~��i 
 ~BBi. Unlike the previous cases, where there was a symmetry in
HSB, we now have to resort to a small time approximation in order to
expand the time evolution. Namely

eiðAþBÞ ¼ lim
n!1

eiA=neiB=n

 �n

¼ eiA=neiB=n þO

�
1

n2

�

To see how this is useful, assume that we leave the system-bath interaction
on for a short time, so that:

e�iHSBt=n ¼
YN
i¼1

e�i�x
i B

x
i t=ne�i�y

i
B

y
i
t=ne�i�zi B

z
i t=n þO

�
1

n2

�
ð14Þ

which can be partly decoupled using the Josephson interaction. First:

C�=2
�z
i
�z
iþ1




� Y
�¼x;y;z

e�i��i B
�
i t=n



¼ ei�

x
i B

x
i t=nei�

y
i
B
y
i
t=ne�i�z

i B
z
i t=n

Therefore:

e�iHSBt=n C�=2

�N�1
i¼1;3;: : :

�z
i
�z
iþ1


 e�iHSBt=n

� 


¼ e�i�i�
z
i B

z
i t=n þOðn�2Þ
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The remaining term can be decoupled using the tunneling Hamiltonian:

e�i�i�
z
i B

z
i t=n C�=2

�N
i
�x
i


 e�i�i�
z
i B

z
i t=n

h i
¼ IþO

�
1

n2

�

This procedure requires pulses that are short not only on the time scale of
the bath inverse frequency cutoff (for the BB procedure), but also on the
time scale of the system-bath interaction (in order to justify the expansion of
the exponential in Eq. (14)). We see once more that some decoherence
reduction can be performed without using more resources than is required
for computation.

9. CONCLUSIONS

By encoding two physical qubits into one logical qubit, or three
physical qubits into two logical qubits, we have shown how some of the
building blocks that have so far been considered indispensable in super-
conducting phase-qubit quantum computers, can in fact be eliminated.
Moreover, by grouping the code’s ancilla qubits into a single ‘‘bus qubit’’,
we were able to further simplify the engineering constraints on the fabri-
cation of this important class of solid-state qubits. A significant additional
advantage of the encoding is that it allows one to eliminate potential
external sources of noise and decoherence. We have shown how to use
decoupling pulse methods in order to further drastically suppress the
remaining sources of errors on these encoded qubits, without using extra
space resources. We believe that the approach presented here will prove to
be useful in reducing design constraints as well as decoherence and noise
sources in superconducting phase-qubit quantum computers.
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