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Universal quantum logic from Zeeman and anisotropic exchange interactions
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Some of the most promising proposals for scalable solid-state quantum computing, e.g., those using electron
spins in quantum dots or donor electron or nuclear spins in Si, rely on a two-qubit quantum gate that is ideally
generated by an isotropic exchange interaction. However, an anisotropic perturbation arising from spin-orbit
coupling is inevitably present. Previous studies focused on removing the anisotropy. Here we introduce a new
universal set of quantum logic gates thakes advantage®f the anisotropic perturbation. The price is a
constant but modest factor in additional pulses. The gain is a scheme that is compatible with the naturally
available interactions in spin-based solid-state quantum computers.
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[. INTRODUCTION interaction can be spatially controlled by makiBgt) inho-
mogeneoud 9], or by modulating theg factor [10]. Con-
A fundamental notion in quantum computit@C) is uni-  versely, inhomogeneities ar(dr) or a nonuniformg factor

versality a set of quantum logic gatdsnitary transforma- may be naturally presefi6]. The Zeeman splitting removes
tions) is said to be “universal for QC” if any unitary trans- the degeneracy of the two-spin states and serves to define a
formation can be approximated to arbitrary accuracy by ghysical qubit. Switching on the Zeeman term for b
guantum circuit involving only those gat¢$]. Mathemati-  qubit causes a phase shift, i.e., it generates the single-qubit
cally, this means the ability to efficiently generate a dens%]atee—insjzl where

subgroup of the group of unitary operations hnqubits,

U(2M). Physically, this is accomplished by carefully manipu-

lating single qubit-external field antbr only) qubit-qubit U:f dtgugB(t)

interactions, thus generating unitary gate operations. A

universal-gate sethat accomplishes this, may be continuous,is g controllable parametéwe use units wheré =1). For

discrete, or both. A well-known example is the set of a”example a useful gate & =i exp(—i=S), which is a 188
single-qubit gates plus a controlled-phése) gate(that flips  oation about the axis. The typical switching time of the
the phase of a target qubit depending on the state of a Contr??eeman splitting is fast: it is similar to that of the Heisenberg

qubiy, but many other universal sets are knolh Anim- o8 ction(GHz), which is the interaction assumed to gov-
portant example of a universal gate set, of relevance to us, IS, the operation of two-qubit gates in some of the spin-

the set ggnerateq by cor_1tro||ing oniyotropic Heisgnberg based approaches to quantum compufi@d.0]. These QC
exchange interactions. This set was sh@jto be universal proposals, as well as schemes for universal QC using the

in the context of research on decoherence-free subspacggisennerg interaction alon@,5] rely on this interaction
(DFS9 [3], and requires that a logical qubit be encoded intoyeing perfectly isotropic. However, in a crystal environment

at least three physical qubité]. Efficient gate sequences for yhat jacks inversion symmetry, the actual interaction between
universal QC in this case were subsequently presented Yinsi andj is

Ref.[5]. These results assume that all qubits have equal en-
ergies. However, this assumption may break down under,, .. _ 2 2L AN.dvwd 200y & By &
magnetic field andor) g-factor inhomogeneity6]. When the Hij(D=JOLS- S+ (1) SX S+ ¥(O B - S AL SJ](
resulting Zeeman splitting is taken into account, it can be

shown that the isotropic Heisenberg interaction is universalynere only the exchange paramel§t) is directly control-

for QC using an encoding of one logical qubit into only twWo |5pe [11]. This means that the isotropic Heisenberg interac-

physical qubits, and efficient gate sequences have been found > 2. . . .
: . ) tion J(1)S;- S; itself is notindependently tunable. The aniso-

[7,8]. We describe here a new universal gate set: that 9€N€L opic part ajrises from spin-orbit coupling, as a relativistic

ated by the Zeeman splitting and thrisotropicHeisenberg P p i P } pling, as

interaction, defined more precisely below. This set is of parcorrection. As written, the anisotropy parametgrandy are

ticular importance to spin-based solid-state approaches tdimensionless; in systems like coupled GaAs quantum dots

quantum computind9,10], where anisotropy is inherently | B| is of the order of a few percent, while the last term is of

presenf11]. the order of 10* [11]. Hij(t) given in Eq.(1) is the most
general anisotropic exchange interaction that is symmetric
Il. ZEEMAN AND EXCHANGE INTERACTIONS about agiven axis hereé. Further corrections will be even

R smaller. The anisotropic perturbation has been considered a

A single spinS=(S*,9,S%) with magnetic momenj.g problem and strategies have been designed to cancel it. For
couples to a magnetic fielB(t) oriented along the axis  example, it can be removed to first order by shaped pulses
through the Zeeman splitting HamiltonigmgB(t)S%. This  [12], or canceled in the absence of an external magnetic field
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FIG. 1. Geometries of magnetic fiel, relative position of
and spin-orbit field,é, considered in the text.

quantum dotsR;; ,

Quantum dots are indicated by shaded circles.

[13]. Instead of trying to cancel the anisotropy, we show her
how to use it to our advantage in order to generate a univers

sal gate set.

We first focus on the case of tiniedependenis and y,
which should be dominant as discussed recently in R&i.
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when the magnetic field is perpendicular to the plane of the
dots[Figs. 1b)—1(d)]. We proceed to analyze each of these
four cases.

lll. CASE 1: MAGNETIC FIELD PARALLELTO g

We first discuss the case in which the magnetic i@l
parallel tog [ = Be,, Fig. 1(a)]. In this (and only thig case it
was shown in Ref[13] that the effect of the anisotropy may
be made to cancel exactly. However, this approach requires

precise alignment oB along ,é and utilizes single-qubit
S¥,9 interactions for universality, which as discussed above,

we seek to avoid here. Indeed, in tBEB case, the available
Hamiltonians are not universal for QC because they have too
much symmetryH;; and the Zeeman splitting both commute
with S{+S3 . There is a simple way to solve the problem: we
encode a pair of physical qubit states into a logical qubit:
|0L)=|1)|1) and|1.)=|1)|T) (see Refs[7,8,15 for other
cases where this encoding proved useful for universality
dhis manner the first logical qubit is given by physical qubits
1,2, the second by physical qubit 3, 4, and so on. A calcula-
tion then shows that thencoded(denoted by a barsin-

gle-qubit operations are§i:82i_1-82i—sgi_ls§i, g,
=—(S5_1XS,), and§i=(S§i_1—S§i)/2, where the sub-

The corrections arising from the time-dependent anisotropiscript denotes théth encoded qubit. These operators have
interaction are much weaker, sufficiently so that they ardhe same commutation relations as the three components of
below the threshold for fault tolerant quantum computationspin angular momenturi.e., they generateu(2)]. Under
[13,14. Nevertheless, we also consider the time-dependergur assumption of a controllable Zeeman splitting, we can
case below. Now, turning on the exchange té#i(t) gen-  switchS? on or off, and hence can perform arbitrary rotations
erates a unitary evolution about thez axis of the encoded qubit. While we do not have
direct access t8%, the three-step quantum circuit depicted in
Fig. 2(a) yields this operation.

The ability to perform arbitrary rotations about thandx
axes suffices for performing arbitrary single-qubit opera-
tions, through a standard Euler angle contructiagh To
complete the universal gate set we also need a logic gate
coupling different encoded qubits in a nontrivial manner,
such as a&p gate. We have previously shown that the inter-
is a second controllable parameter. action $4;S%, between logical qubits 1 and 2, and which

generates ar gate between these qubits, is equivalent to the

We assume thatve can only use the two parameters N ) ) :
and ¢ to manipulate computational states and construct dteractionS;S; between physical qubits 2 and[25]. This

universal gate set. Direct control of Hamiltonian terms thatc@n be implemented by the four-step quantum circuit de-
generate single-qubit rotations about thandy axes causes Picted in Fig. 2b). We note that this circuit also provides a
device heating and other major technical problems, so th#/@y to cancel the anisotropic interaction by controlling the

this type of control is best avoidd8, 7). We thus refer ta4;; ~ £€éman splitting(see also Ref[13]). In addition, the en-
and the Zeeman spliting as the “available Hamiltonians.”¢ded qubit is a DFS against collective dephasing ef@jrs

We now show that using control only over these available>? an automatic layer of error protection is built into these
Hamiltonians suffices to generate universal gate sets for &rcults.

variety of orientations of the vect(ﬁ’.

Following Ref.[11], the orientation ofg is expressed in
terms of the vectoﬁij pointing from qubiti (e.g., the center
of the ith quantum dagtto qubitj (Fig. 1). We can always We now analyze the more common case where the mag-
choose the direction of the magnetic field aszlais. Since netic field is perpendicular to they plane the quantum dots
ﬁij is a vector in the plane the quantum dots are lying on, ifare on. First we consideg= 3e, (or ﬁéy), which can be
the magnetic field is applied parallel & it too should be in along the directiorﬁlz from qubit 1 to qubit 2[Fig. 1(b)].
the plane of the dot§Fig. 1(a@]. A more common case is As shown in the previous cagef Fig. 1(a)], the isotropic

Uij(@)=exd —iH;j(¢)]

through the Schidinger equation, wherkl;;(¢)> ¢ and

o= f dtJ(t)

IV. CASE 2: MAGNETIC FIELD PERPENDICULAR
TO THE PLANE OF DOTS
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(a) exp(i $S%) =exp(i 6S)V expli nS5)VZ,Z,V
X exp(—inS))VZ1Z, exp(—i 8S)),

1 — Ul©|— U, (&) —

_ with 6= w/2—arctan(tany/2 cos Z), and continuous angle
V@) = X — ¢=2 arccos(1 2 sir? 7/2 sirf 2¢), controlled in terms of;.

2 v, L i) However, |¢| is bounded because af For example, its
maximum is approximatelyr/12 if €=0.03. Therefore, in
order to perform exactly a single-qutst gate with larger
angle, one can first uséto approximate the needed gate and

(b) then converge using the 17-step continuous gate.

To complete the discussion of universality we again need

1 to generate a logic gate coupling qubits. Such a two-qubit
operation can be obtained in terms of the followifrpt

7 | o, U 5 . ] | necessarily optimizedb5-step quantum circuit,

U,,(6) Usn(8) & [z €
30— — exp—i¢S[S)) =2, exp( =i E(S)l(_sé))UlZ(QD)ZZ
4

Xexrl(iesé)ulz(wem{ i g(Si—Sé)),

FIG. 2. Diagrams of circuits implementing logical operations in

the ,E'Hé case. Lines denote physical qubits; time flows from left to . _ 7 .
right. The three-step circuita) implements the transformation where the arbitrary angleé=2¢y1+° is controlled in

X( )= exp(— ¢S ) =exp(ieS U & T+ BDexp(eSy). Here terms of the angl@ in Hj; . This gate is therefore no longer
¢ is an arbitrary angle ané=arctang is a time-independent con- Slow. Note thag' #(517%) can be implemented as above by a
stant[16]. The four-step circuitb) implements the transformation 17-Step quantum circuit. Further note that sirece/ entan-
ZZ($)=exp(dFT)=U,o(0)Z,U(0)Z,, where 6=34/(1  gling gate is universakogether with single-qubit gategl8],

+ yB2). The notation used in the diagramsUs(€)=exp(~ieS), in practice one may be able to reduce our 55-step circuit,
Z=i exp(-inS). e.g., using geometric time-optimal control methdd9].

Heisenberg interaction and Zeeman splitting become univer- V. CASE 3: GENERAL TIME-INDEPENDENT CASE

sal for QC by using an encoding. In contrast, as we now S ) R - .

show, H;; together with the Zeeman splitting are universal The general3L B case is whergs=fye,+ B, ey, i.e.,
without encoding Since S is by our assumptions control- fime independent and somewhere in thg plane[Fig. 1(c)].
lable, the problem for single-qubit rotations is to show howHowever, this case is equivalent up to a unitary rotation to
to generateS*. We will explicitly be using the anisotropic the gB=pge, case. Specifically, the transformation
perturbation to this end, so the speed of 8fegate will be  gie(Si+S)y (p)e @S+ [where w=arctanf,/B,)], ro-

on the order of a few percent of tH& gate. This is Still 54055 5o that it becomes parallel & . The treatment above

reasonable since it is similar to, or even better than, the rela[h : .
. S ) ' en applies provided we everywhere replage by
tive strength of the two-spin interaction and the external ra-

9 P N ,8X2+ ,8y2.

diofrequency magnetic fields in NMRL]. . . . .
To generate th&* gate we first introduce a simple three- Itis WOfEh r?ot!ng that in the present. (?ase of time-
step quantum circuit, that will serve as a building block forindependens, similarly to Ref.[5] where efficient gate se-

other gates, quences for the isotropic Heisenberg interaction were ob-
tained, we did not employ the short-time approximation, i.e.,
m nly of finite-tim . In contr he numeri-

V=U o T+ BB Z4ZoU 1o — NI+ BD) ade use only o te-time steps. In contrast to the nume

cally derived circuits of Ref[5], our circuits are based on
analytical results, and can be understood using elementary
(note thatZ,Z, can be implemented in one parallel step angular momentum theoifl6,17.
Contrary to its appearance, this gate is actually separable for
qubits 1 and 2. This allows us to use it for creating single- ;| cASE 4: GENERAL TIME-DEPENDENT CASE
qubit gates, e.g., the following eight-step circuit:
Finally, we also consider the general case v@trand y
exp(—i4eS))=2Z,VZ,V. both time dependent3(t) in the x-y plane[Fig. 1(d)]. In
contrast to the time-independent case, gates now have to be

Recall thate=arctang and 8 is fixed (given) so that this implemented using the short-time approximati@f'e®4!
circuit is discrete(only whole multiples of the angleedcan = e(A*BIAt-O(?) for gneratorsA and B that do not neces-

be generated Alternatively, the following 17-step circuit sarily commute, andt<1. While this is less accurate than
yields a continuou$* gate[17]: the exact circuits given above, it is nevertheless a valuable
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and common tool in discussions of universality2,2Q. The
short-time evolution operator correspondingHg has the
same form as befordJ ,(A¢) with A$=JAt, except that

PHYSICAL REVIEW A 66, 062314 (2002

maining collective errors. Leakage errgvghich would arise
due to corrections to the short-time approximation invoked
in BB theory) can likewise be eliminated using only the iso-

now J is an average value of the coupling constant in thetropic Heisenberg interactiof23]. We conjecture that the

time interval from 0 taAt. Assuming that all time-dependent
parameters do not vary appreciably within the short tite

same(creation of collective decoherence, leakage elimina-
tion) should be possible using the available interactions we

a two-qubitcp gate is given by the repeated four-step circuitconsidered here. Even without encoding, the use of BB

exp( —i ¢pS;S5) ~[ U1 p/4n) Z,Z,U 1o p14n) 217", (2)

where ¢=nA ¢. The approximation improves with increas-
ing n. Since ¢/4n<1 we only need to know the detailed

pulses should serve to significantly enhance the robustness of
our circuits under decoherence.

We further note that some of our circuits already have a
form of decoherence-resistance built into them. For example,
the form of Eq.(2) is that of a parity-kick operatioh21],

properties of the evolution operator around time zero. Nex{yhich implies that this circuit eliminates all Hamiltonians

we must generate the single-quBftgate. To do so we com-
bine a short-time and a finite-time circuit. First,

e 19SS SIS)~ (el (S1+SHU ( — A $) Z,Z,
XU (A d)Z,Z,e @S+ SD)n,

where ¢=nA¢\/BX2+ﬁy2 and we have used the short-time
approximation. Then the single-qub8 gate is given in
terms of the following circuit:

e 145 = gl TS1S;e 1 4(S1S)— s{sg)zz

X e 1#(SISSIS)e17SiS;7,

(including system bathcontaining system operators which
anticommute withZ,Z, andZ, or Z,. In fact the same con-
sideration shows that this circuit also eliminates the undes-
ired anisotropic interaction in the more complicated case in
which the strength of the anisotropic interaction is not pro-
portional to that of the Heisenberg interaction.

VIIl. CONCLUSIONS

We have introduced a new set of universal Hamiltonians:
the Zeeman splitting and anistropic Heisenberg interaction.
This set is of direct relevance to quantum computing in
solid-state systems that rely on spin-spin interacti@%0].

Until recently, most studies of such systems assumed an iso-
tropic Heisenberg interaction, which, however, is an approxi-

This completes the generation of single-qubit gates, and thyg 4oy que to spin-orbit coupling and other perturbations

proves universality of our available interactions in the time-[6 11),

dependent case.

VIl. MANAGING DECOHERENCE

A discussion of universal quantum computation is incom->

Instead of trying to cancel the resulting anisotropy
[12,13, we showed here how to advantageously use the an-
isotropy. We analytically derived circuits which implement
universal quantum logic in a variety of geometries of inter-
est, for both time-independent and time-dependent perturba-
ns. In the former case, depending on geometry and type of

plete without a consideration of decoherence, the proce . L :
whereby quantum information is degraded through the interdate implemented, these circuits come with an overhead of
action of qubits with their environment. In principle, three of between 3 and at most 55 extra pulses. We hope that the
the major methods for resisting decoherence, quantum errépethods presented here will enhance the prospects of quan-

correcting codeg1,4,14, DFSs[2—4], and fast or strong tum infprmation processing in those promi§ing guantum
“bang-bang” (BB) pulses[21] are compatible with our uni- computing proposals, where the inherent anisotropy of the

versality results. As mentioned above, in the casg|tB we exchange interaction cannot be ignored.
have used an encoding into a DFS that is automatically re-
sistant to collective dephasing errors. We have recently
shown how, starting from a geneiéihear system-bath cou- This material is based on research sponsored by the De-
pling, to actively create the conditions for collective deco-fense Advanced Research Projects Agency under the QuIST
herence by applying BB pulses generated by the isotropiprogram and managed by the Air Force Research Laboratory
Heisenberg interactiof22]. In this case an encoding into a (AFOSR), under agreemen(iGrant No. F49620-01-1-0468
three- or four-qubit DFS is possible, which resists the re{to D.A.L.).
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