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Universal quantum logic from Zeeman and anisotropic exchange interactions
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Some of the most promising proposals for scalable solid-state quantum computing, e.g., those using electron
spins in quantum dots or donor electron or nuclear spins in Si, rely on a two-qubit quantum gate that is ideally
generated by an isotropic exchange interaction. However, an anisotropic perturbation arising from spin-orbit
coupling is inevitably present. Previous studies focused on removing the anisotropy. Here we introduce a new
universal set of quantum logic gates thattakes advantageof the anisotropic perturbation. The price is a
constant but modest factor in additional pulses. The gain is a scheme that is compatible with the naturally
available interactions in spin-based solid-state quantum computers.
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I. INTRODUCTION

A fundamental notion in quantum computing~QC! is uni-
versality: a set of quantum logic gates~unitary transforma-
tions! is said to be ‘‘universal for QC’’ if any unitary trans
formation can be approximated to arbitrary accuracy b
quantum circuit involving only those gates@1#. Mathemati-
cally, this means the ability to efficiently generate a den
subgroup of the group of unitary operations onN qubits,
U(2N). Physically, this is accomplished by carefully manip
lating single qubit-external field and~or only! qubit-qubit
interactions, thus generating unitary gate operations
universal-gate setthat accomplishes this, may be continuou
discrete, or both. A well-known example is the set of
single-qubit gates plus a controlled-phase~CP! gate~that flips
the phase of a target qubit depending on the state of a co
qubit!, but many other universal sets are known@1#. An im-
portant example of a universal gate set, of relevance to u
the set generated by controlling onlyisotropic Heisenberg
exchange interactions. This set was shown@2# to be universal
in the context of research on decoherence-free subsp
~DFSs! @3#, and requires that a logical qubit be encoded in
at least three physical qubits@4#. Efficient gate sequences fo
universal QC in this case were subsequently presente
Ref. @5#. These results assume that all qubits have equal
ergies. However, this assumption may break down un
magnetic field and~or! g-factor inhomogeneity@6#. When the
resulting Zeeman splitting is taken into account, it can
shown that the isotropic Heisenberg interaction is unive
for QC using an encoding of one logical qubit into only tw
physical qubits, and efficient gate sequences have been f
@7,8#. We describe here a new universal gate set: that ge
ated by the Zeeman splitting and theanisotropicHeisenberg
interaction, defined more precisely below. This set is of p
ticular importance to spin-based solid-state approache
quantum computing@9,10#, where anisotropy is inherentl
present@11#.

II. ZEEMAN AND EXCHANGE INTERACTIONS

A single spinSW 5(Sx,Sy,Sz) with magnetic momentmB
couples to a magnetic fieldB(t) oriented along thez axis
through the Zeeman splitting HamiltoniangmBB(t)Sz. This
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interaction can be spatially controlled by makingB(t) inho-
mogeneous@9#, or by modulating theg factor @10#. Con-
versely, inhomogeneities and~or! or a nonuniformg factor
may be naturally present@6#. The Zeeman splitting remove
the degeneracy of the two-spin states and serves to defi
physical qubit. Switching on the Zeeman term for thej th
qubit causes a phase shift, i.e., it generates the single-q

gatee2 ihSj
z
, where

h5E dtgmBB~ t !

is a controllable parameter~we use units where\51). For
example, a useful gate isZj5 i exp(2ipSj

z), which is a 1800

rotation about thez axis. The typical switching time of the
Zeeman splitting is fast: it is similar to that of the Heisenbe
interaction~GHz!, which is the interaction assumed to go
ern the operation of two-qubit gates in some of the sp
based approaches to quantum computing@9,10#. These QC
proposals, as well as schemes for universal QC using
Heisenberg interaction alone@2,5# rely on this interaction
being perfectly isotropic. However, in a crystal environme
that lacks inversion symmetry, the actual interaction betw
spinsi and j is

Hi j ~ t !5J~ t !@SW i•SW j1bW ~ t !•SW i3SW j1g~ t !bW ~ t !•SW ibW ~ t !•SW j #,
~1!

where only the exchange parameterJ(t) is directly control-
lable @11#. This means that the isotropic Heisenberg inter
tion J(t)SW i•SW j itself is not independently tunable. The aniso
tropic part arises from spin-orbit coupling, as a relativis
correction. As written, the anisotropy parametersbW andg are
dimensionless; in systems like coupled GaAs quantum d
ubW u is of the order of a few percent, while the last term is
the order of 1024 @11#. Hi j (t) given in Eq.~1! is the most
general anisotropic exchange interaction that is symme
about agiven axis, herebW . Further corrections will be even
smaller. The anisotropic perturbation has been consider
problem and strategies have been designed to cancel it.
example, it can be removed to first order by shaped pu
@12#, or canceled in the absence of an external magnetic fi
©2002 The American Physical Society14-1
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@13#. Instead of trying to cancel the anisotropy, we show h
how to use it to our advantage in order to generate a uni
sal gate set.

We first focus on the case of time-independentbW andg,
which should be dominant as discussed recently in Ref.@13#.
The corrections arising from the time-dependent anisotro
interaction are much weaker, sufficiently so that they
below the threshold for fault tolerant quantum computat
@13,14#. Nevertheless, we also consider the time-depend
case below. Now, turning on the exchange termHi j (t) gen-
erates a unitary evolution

Ui j ~w!5exp@2 iH i j ~w!#

through the Schro¨dinger equation, whereHi j (w)}w and

w5E dtJ~ t !

is a second controllable parameter.
We assume thatwe can only use the two parametersh

and w to manipulate computational states and construc
universal gate set. Direct control of Hamiltonian terms th
generate single-qubit rotations about thex andy axes causes
device heating and other major technical problems, so
this type of control is best avoided@5,7#. We thus refer toHi j
and the Zeeman splitting as the ‘‘available Hamiltonian
We now show that using control only over these availa
Hamiltonians suffices to generate universal gate sets f
variety of orientations of the vectorbW .

Following Ref. @11#, the orientation ofbW is expressed in
terms of the vectorRW i j pointing from qubiti ~e.g., the center
of the i th quantum dot! to qubit j ~Fig. 1!. We can always
choose the direction of the magnetic field as thez axis. Since
RW i j is a vector in the plane the quantum dots are lying on
the magnetic field is applied parallel tobW , it too should be in
the plane of the dots@Fig. 1~a!#. A more common case is

FIG. 1. Geometries of magnetic fieldBW , relative position of

quantum dotsRW i j , and spin-orbit fieldbW , considered in the text
Quantum dots are indicated by shaded circles.
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when the magnetic field is perpendicular to the plane of
dots @Figs. 1~b!–1~d!#. We proceed to analyze each of the
four cases.

III. CASE 1: MAGNETIC FIELD PARALLEL TO b¢

We first discuss the case in which the magnetic fieldBW is
parallel tobW @5beW z , Fig. 1~a!#. In this ~and only this! case it
was shown in Ref.@13# that the effect of the anisotropy ma
be made to cancel exactly. However, this approach requ
precise alignment ofBW along bW , and utilizes single-qubit
Sx,Sy interactions for universality, which as discussed abo
we seek to avoid here. Indeed, in thebW uuBW case, the available
Hamiltonians are not universal for QC because they have
much symmetry:Hi j and the Zeeman splitting both commu
with S1

z1S2
z . There is a simple way to solve the problem: w

encode a pair of physical qubit states into a logical qu
u0L&5u↑&u↓& and u1L&5u↓&u↑& ~see Refs.@7,8,15# for other
cases where this encoding proved useful for universality!. In
this manner the first logical qubit is given by physical qub
1,2, the second by physical qubit 3, 4, and so on. A calcu
tion then shows that theencoded~denoted by a bar! sin-
gle-qubit operations areSx

i5SW 2i 21•SW 2i2S2i 21
z S2i

z , Sy
i

52(SW 2i 213SW 2i)z and Sz
i5(S2i 21

z 2S2i
z )/2, where the sub-

script denotes thei th encoded qubit. These operators ha
the same commutation relations as the three componen
spin angular momentum@i.e., they generatesu(2)]. Under
our assumption of a controllable Zeeman splitting, we c
switchSz on or off, and hence can perform arbitrary rotatio
about thez axis of the encoded qubit. While we do not ha
direct access toSx, the three-step quantum circuit depicted
Fig. 2~a! yields this operation.

The ability to perform arbitrary rotations about thez andx
axes suffices for performing arbitrary single-qubit ope
tions, through a standard Euler angle contruction@1#. To
complete the universal gate set we also need a logic
coupling different encoded qubits in a nontrivial mann
such as aCP gate. We have previously shown that the inte
action Sz

1Sz
2 between logical qubits 1 and 2, and whic

generates aCP gate between these qubits, is equivalent to
interactionS2

zS3
z between physical qubits 2 and 3@15#. This

can be implemented by the four-step quantum circuit
picted in Fig. 2~b!. We note that this circuit also provides
way to cancel the anisotropic interaction by controlling t
Zeeman splitting~see also Ref.@13#!. In addition, the en-
coded qubit is a DFS against collective dephasing errors@2#,
so an automatic layer of error protection is built into the
circuits.

IV. CASE 2: MAGNETIC FIELD PERPENDICULAR
TO THE PLANE OF DOTS

We now analyze the more common case where the m
netic field is perpendicular to thex-y plane the quantum dot
are on. First we considerbW 5beW x ~or beW y), which can be
along the directionRW 12 from qubit 1 to qubit 2@Fig. 1~b!#.
As shown in the previous case@of Fig. 1~a!#, the isotropic
4-2
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Heisenberg interaction and Zeeman splitting become uni
sal for QC by using an encoding. In contrast, as we n
show, Hi j together with the Zeeman splitting are univers
without encoding. SinceSz is by our assumptions contro
lable, the problem for single-qubit rotations is to show ho
to generateSx. We will explicitly be using the anisotropic
perturbation to this end, so the speed of theSx gate will be
on the order of a few percent of theSz gate. This is still
reasonable since it is similar to, or even better than, the r
tive strength of the two-spin interaction and the external
diofrequency magnetic fields in NMR@1#.

To generate theSx gate we first introduce a simple thre
step quantum circuit, that will serve as a building block f
other gates,

V5U12~p/A11b2!Z1Z2U12~2p/A11b2!

~note thatZ1Z2 can be implemented in one parallel step!.
Contrary to its appearance, this gate is actually separable
qubits 1 and 2. This allows us to use it for creating sing
qubit gates, e.g., the following eight-step circuit:

exp~2 i4eS1
x!5Z1VZ1V.

Recall thate5arctanb and b is fixed ~given! so that this
circuit is discrete~only whole multiples of the angle 4e can
be generated!. Alternatively, the following 17-step circui
yields a continuousSx gate@17#:

FIG. 2. Diagrams of circuits implementing logical operations

thebW uuBW case. Lines denote physical qubits; time flows from left
right. The three-step circuit~a! implements the transformatio

X̄(f)[exp(2ifSx
1)5exp(2ieSz

1)U12(f/A11b2)exp(ieSz
1). Here

f is an arbitrary angle ande5arctanb is a time-independent con
stant@16#. The four-step circuit~b! implements the transformatio
ZZ(f)[exp(ifSz

1S
z
2)5U23(u)Z2U23(u)Z2, where u5

1
2 f/(1

1gb2). The notation used in the diagrams isUZ(e)[exp(2ieSz),
Z[ i exp(2ipSz).
06231
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exp~ ifS1
x!5exp~ idS1

z!V exp~ ihS1
z!VZ1Z2V

3exp~2 ihS1
z!VZ1Z2 exp~2 idS1

z!,

with d5p/22arctan(tanh/2 cos 2e), and continuous angle
f52 arccos(122 sin2 h/2 sin2 2e), controlled in terms ofh.
However, ufu is bounded because ofe. For example, its
maximum is approximatelyp/12 if e50.03. Therefore, in
order to perform exactly a single-qubitSx gate with larger
angle, one can first useV to approximate the needed gate a
then converge using the 17-step continuous gate.

To complete the discussion of universality we again ne
to generate a logic gate coupling qubits. Such a two-qu
operation can be obtained in terms of the following~not
necessarily optimized! 55-step quantum circuit,

exp~2 ifS1
zS2

z!5Z2 expS 2 i
e

2
~S1

x2S2
x! DU12~w!Z2

3exp~ i eS2
x!U12~w!expS i

e

2
~S1

x2S2
x! D ,

where the arbitrary anglef52wA11b2 is controlled in
terms of the anglew in Hi j . This gate is therefore no longe

slow. Note thateif(S1
x
2S2

x) can be implemented as above by
17-step quantum circuit. Further note that sinceany entan-
gling gate is universal~together with single-qubit gates! @18#,
in practice one may be able to reduce our 55-step circ
e.g., using geometric time-optimal control methods@19#.

V. CASE 3: GENERAL TIME-INDEPENDENT CASE

The generalbW'BW case is wherebW 5bxeW x1by eW y , i.e.,
time independent and somewhere in thex-y plane@Fig. 1~c!#.
However, this case is equivalent up to a unitary rotation
the bW 5beW x case. Specifically, the transformatio

eiv(S1
z
1S2

z)U12(w)e2 iv(S1
z
1S2

z) @where v5arctan(by /bx)], ro-
tatesbW so that it becomes parallel toeW x . The treatment above
then applies provided we everywhere replaceb by
Abx

21by
2.

It is worth noting that in the present case of tim
independentbW , similarly to Ref.@5# where efficient gate se
quences for the isotropic Heisenberg interaction were
tained, we did not employ the short-time approximation, i.
made use only of finite-time steps. In contrast to the num
cally derived circuits of Ref.@5#, our circuits are based on
analytical results, and can be understood using elemen
angular momentum theory@16,17#.

VI. CASE 4: GENERAL TIME-DEPENDENT CASE

Finally, we also consider the general case withbW and g

both time dependent,bW (t) in the x-y plane @Fig. 1~d!#. In
contrast to the time-independent case, gates now have t
implemented using the short-time approximation:eADteBDt

5e(A1B)Dt1O(Dt2) for operatorsA and B that do not neces-
sarily commute, andDt!1. While this is less accurate tha
the exact circuits given above, it is nevertheless a valua
4-3
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and common tool in discussions of universality@1,2,20#. The
short-time evolution operator corresponding toHi j has the
same form as before:U12(Df) with Df5JDt, except that
now J is an average value of the coupling constant in
time interval from 0 toDt. Assuming that all time-dependen
parameters do not vary appreciably within the short timeDt,
a two-qubitCP gate is given by the repeated four-step circ

exp~2 ifS1
zS2

z!'@U12~f/4n!Z1Z2U12~f/4n!Z1#2n, ~2!

wheref5nDf. The approximation improves with increa
ing n. Since f/4n!1 we only need to know the detaile
properties of the evolution operator around time zero. N
we must generate the single-qubitSx gate. To do so we com
bine a short-time and a finite-time circuit. First,

e2 if(S1
zS2

y
2S1

yS2
z)'~eiv(S1

z
1S2

z)U12~2Df!Z1Z2

3U12~Df!Z1Z2e2 iv(S1
z
1S2

z)!n,

where f5nDfAbx
21by

2 and we have used the short-tim
approximation. Then the single-qubitSx gate is given in
terms of the following circuit:

e2 ifS1
x
5eipS1

zS2
z
e2 if(S1

zS2
y
2S1

yS2
z)Z2

3e2 if(S1
zS2

y
2S1

yS2
z)e2 ipS1

zS2
z
Z2 .

This completes the generation of single-qubit gates, and
proves universality of our available interactions in the tim
dependent case.

VII. MANAGING DECOHERENCE

A discussion of universal quantum computation is inco
plete without a consideration of decoherence, the proc
whereby quantum information is degraded through the in
action of qubits with their environment. In principle, three
the major methods for resisting decoherence, quantum e
correcting codes@1,4,14#, DFSs @2–4#, and fast or strong
‘‘bang-bang’’ ~BB! pulses@21# are compatible with our uni-
versality results. As mentioned above, in the case ofbW uuBW we
have used an encoding into a DFS that is automatically
sistant to collective dephasing errors. We have rece
shown how, starting from a general~linear! system-bath cou-
pling, to actively create the conditions for collective dec
herence by applying BB pulses generated by the isotro
Heisenberg interaction@22#. In this case an encoding into
three- or four-qubit DFS is possible, which resists the
-

s.
,
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maining collective errors. Leakage errors~which would arise
due to corrections to the short-time approximation invok
in BB theory! can likewise be eliminated using only the is
tropic Heisenberg interaction@23#. We conjecture that the
same~creation of collective decoherence, leakage elimin
tion! should be possible using the available interactions
considered here. Even without encoding, the use of
pulses should serve to significantly enhance the robustne
our circuits under decoherence.

We further note that some of our circuits already have
form of decoherence-resistance built into them. For exam
the form of Eq.~2! is that of a parity-kick operation@21#,
which implies that this circuit eliminates all Hamiltonian
~including system bath! containing system operators whic
anticommute withZ1Z2 andZ1 or Z2. In fact the same con-
sideration shows that this circuit also eliminates the und
ired anisotropic interaction in the more complicated case
which the strength of the anisotropic interaction is not p
portional to that of the Heisenberg interaction.

VIII. CONCLUSIONS

We have introduced a new set of universal Hamiltonia
the Zeeman splitting and anistropic Heisenberg interact
This set is of direct relevance to quantum computing
solid-state systems that rely on spin-spin interactions@9,10#.
Until recently, most studies of such systems assumed an
tropic Heisenberg interaction, which, however, is an appro
mation due to spin-orbit coupling and other perturbatio
@6,11#. Instead of trying to cancel the resulting anisotro
@12,13#, we showed here how to advantageously use the
isotropy. We analytically derived circuits which impleme
universal quantum logic in a variety of geometries of inte
est, for both time-independent and time-dependent pertu
tions. In the former case, depending on geometry and typ
gate implemented, these circuits come with an overhead
between 3 and at most 55 extra pulses. We hope that
methods presented here will enhance the prospects of q
tum information processing in those promising quantu
computing proposals, where the inherent anisotropy of
exchange interaction cannot be ignored.
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