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I. INTRODUCTION

When an open quantum system undergoes a dynamical
evolution generated by a Hamiltonian, how far does its state
evolve from itself compared to the magnitude of the Hamil-
tonian? This is a fundamental question that is central to
quantum-information science �1� and quantum control �2,3�.
In order to make it more precise, suppose that the unitary
propagator of the evolution, U�t�, which is related to the
Hamiltonian H�t� via the Schrödinger equation U̇=− i

�HU, is
written in terms of an effective Hamiltonian ��t� as U�t�
=exp�−it��t� /��. The effective Hamiltonian can in turn by
calculated from the Hamiltonian H�t� using a Dyson or Mag-
nus expansion. If the system S is “open,” it is coupled to a
bath B and its time-evolved state is given via the partial trace
operation by �S�t�=TrB U�t���0�U�t�† �4,5�. In the context of
quantum information, the question we have stated pertains to
the problem of “quantum memory”: i.e., what is
��S�t�−�S�0�� compared to ���t�� or �H�t��? When the issue
is quantum computation or general quantum control, one is
interested in comparing two time-evolved states: the “ideal”
state �S

0�t�, which is error free and is described by an “ideal”
effective Hamiltonian �0�t� �e.g., for a quantum algorithm�,
and the “actual” state �S�t�, which undergoes the full noisy
dynamics described by the total effective Hamiltonian ��t�.
Then the question becomes the following: what is
��S�t�−�S

0�t�� compared to ���t�−�0�t�� or �H�t�−H0�t��?
The memory question can, of course, be seen as a special
case of the computation question.

Here we prove bounds that answer these fundamental
questions. Our bounds have immediate applications to prob-
lems in decoherence control �6� and fault-tolerant quantum
computation �7�, as they quantify the sense in which a dis-
tance between �effective� Hamiltonians describing the evolu-
tion should be made small, in order to guarantee a small
distance between a desired and actual state.

To begin, we first recall the definition and key properties
of so-called unitarily invariant norms, as we use such norms

extensively �Sec. II�. We mention the trace norm and opera-
tor norm, and a norm that mixes them via a duality between
the Schrödinger and Heisenberg pictures. We then briefly
review the accepted distance measures between states so as
to quantify the meaning of an expression such as
��S�t�−�S

0��t� �Sec. III�. Next, we discuss how to compute the
effective Hamiltonian ��t� using the Magnus expansion or
Thompson’s theorem, and introduce a generalized effective
superoperator generator �Sec. IV�. Since in many applica-
tions one is interested not in the distance between states gen-
erated by unitary, closed-system evolution, but instead in the
distance between states of systems undergoing nonunitary,
open-system dynamics, we prove an upper bound on the dis-
tance between such system-only states in terms of the dis-
tance between the full “system�bath” states �Sec. V�. We
then come to our main result: an upper bound on the distance
between system states in terms of the distance between �ef-
fective� Hamiltonians describing the system�bath dynamics
�Sec. VI�. We find the intuitive result that the distance is
upper bounded by a function depending on the spectral di-
ameter of the difference between the effective Hamiltonians.
We present a discussion of our result in terms of an example
borrowed from decoherence control using dynamical decou-
pling �Sec. VII�. We conclude in Sec. VIII with some open
questions.

II. UNITARILY INVARIANT NORMS

Unitarily invariant norms are norms satisfying, for all uni-
tary U ,V �8�,

�UAV�ui = �A�ui. �1�

We list some important examples.
�i� The trace norm:

PHYSICAL REVIEW A 78, 012308 �2008�

1050-2947/2008/78�1�/012308�7� ©2008 The American Physical Society012308-1

http://dx.doi.org/10.1103/PhysRevA.78.012308


�A�1 � Tr�A� = �
i

si�A� , �2�

where �A��	A†A and si�A� are the singular values �eigenval-
ues of �A��.

�ii� The operator norm: Let V be an inner product space
equipped with the Euclidean norm �x��	�i�xi�2
ei ,ei�,
where x=�ixiei�V and V=Sp�ei
. Let � :V�V. The opera-
tor norm is

���� � sup
x�V

��x�
�x�

= max
i

si��� . �3�

Therefore ��x�� �����x�. In our applications V=L�H� is the
space of all linear operators on the Hilbert space H, � is a
superoperator, and x=� is a normalized quantum state:
���1=Tr �=1.

�iii� The Frobenius, or Hilbert-Schmidt, norm:

�A�2 � 	Tr A†A = 	�
i

si�A�2. �4�

All unitarily invariant norms satisfy the important property
of submultiplicativity �9�:

�AB�ui � �A�ui�B�ui. �5�

The norms of interest to us are also multiplicative over ten-
sor products and obey an ordering �9�

�A � B�i = �A�i�B�i, i = 1,2,� ,

�A�� � �A�2 � �A�1,

�AB�ui � �A���B�ui,�B���A�ui. �6�

There is an interesting duality between the trace and operator
norm �9�:

�A�1 = max��Tr�B†A��:�B�� � 1
 , �7�

�A�� = max��Tr�B†A��:�B�1 � 1
 , �8�

�Tr�BA�� � �A���B†�1,�B†���A�1. �9�

In the last three inequalities A and B can map between spaces
of different dimensions. If they map between spaces of the
same dimension, then

�A�1 = max
B†B=I

�Tr�B†A�� . �10�

We now define another norm, which we call the “operator-
trace” norm �O-T norm�:

����,1 � sup
��L�H�

����1

���1
= sup

���1=1
����1, �11�

where � :V�V and V is a normed space equipped with the
trace norm. Note that if �� is another normalized quantum
state, then ����,1=1. Also, by definition, ����1� ����,1.
Moreover, it follows immediately from the unitary
invariance of the trace norm that the OT norm is unitarily
invariant. Indeed, let � · =V ·V† be a unitary superoperator

�i.e., V is unitary�; then, ��1��2
†��,1=sup��V2V1����V1

†V2
†�1

=sup�����1= ����,1. Therefore the OT norm is also submul-
tiplicative. However, note that unlike the case of the standard
operator norm, there is no simple expression for ����,1 in
terms of the singular values of �.

On the other hand, if �� denotes the Hilbert-Schmidt dual
of �, i.e.,

Tr�����X� = Tr�����X�� ∀ �,X , �12�

then one can prove the following identity �see, e.g., Sec. 2.4
of Ref. �10� or Eq. �9� of Ref. �11��:

����,1 = �����: = sup
�X��=1

����X��� = max
i

si���� . �13�

For example, for completely positive maps �1,4,5� ��
=�iAi�Ai

† �where �Ai
 are the Kraus operators�, it is easily
verified that ���=�iAi

†�Ai. The duality �12� between � and
�� is the duality between the Heisenberg and Schrödinger
pictures.

III. DISTANCE AND FIDELITY MEASURES

Various measures are known that quantify the notion of
distance and fidelity between states. For example, the dis-
tance measure between quantum states �1 and �2 is the trace
distance

D��1,�2� �
1

2
��1 − �2�1. �14�

The trace distance is the maximum probability of
distinguishing �1 from �2: namely, D��1 ,�2�
=max0	P	I�
P�1− 
P�2�, where 
P�i=Tr �iP and P is a pro-
jector, or more generally an element of a positive operator-
valued measure �POVM� �1�. The fidelity between quantum
states �1 and �2 is

F��1,�2� � �	�1
	�2�1 = 		�1�2

	�1, �15�

which reduces for pure states �1= �
�

� and �2= ���
�� to
F��
� , ����= �

 ����. The fidelity and distance bound each
other from above and below �12�:

1 − D��1,�2� � F��1,�2� � 	1 − D��1,�2�2, �16�

so that knowing one bounds the other. Many other measures
exist and are useful in a variety of circumstances �1�.

IV. GENERATORS OF THE DYNAMICS

A. Effective superoperator generators

We shall describe the evolution in terms of an effective
superoperator generator L�t�, such that

��0� � ��t� � etL�t���0� . �17�

The advantage of this general formulation is that it incorpo-
rates nonunitary evolution as well. Nevertheless, here we
focus primarily on the case of unitary evolution ��t�
=U�t���0�U�t�†, with U̇=− i

�HU, for which we have
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L�t� = −
i

�
���t�, ·� . �18�

This follows immediately from the identity e−iA�eiA

=e−i�A,·����n=0
� �−i�n

n! �nA ,��, satisfied for any Hermitian op-
erator A, where �nA ,�� denotes a nested commutator—i.e.,
�nA ,��= �A , �n−1A ,���—with �0A ,����.

B. Magnus expansion

In perturbation theory the effective Hamiltonian can be
evaluated most conveniently by using the Magnus expan-
sion, which provides a unitary perturbation theory, in con-
trast to the Dyson series �13�. The Magnus expansion ex-
presses ��t� as an infinite series: ��t�=�n=1

� �n�t�, where
�1�t�= 1

t �0
t H�t1�dt1 and the nth-order term involves an inte-

gral over an nth-level nested commutator of H�t� with itself
at different times. A sufficient �but not necessary� condition
for absolute convergence of the Magnus series for ��t� in the
interval �0, t� is �14�

�
0

t

H�s��ds 	 � . �19�

C. Relating the effective Hamiltonian to the “real”
Hamiltonian

There is also a way to relate the effective Hamiltonian to
the real Hamiltonian in a nonperturbative manner. To this
end we make use of a recently proven theorem due to Th-
ompson �15,16�.

Let us consider a general quantum evolution generated by
a time-dependent Hamiltonian H, where V is considered a
perturbation to H0 �in spite of this we will not treat V per-
turbatively�:

H�t� = H0�t� + V�t� . �20�

The propagators satisfy

dU�t,0�
dt

= − iH�t�U�t,0� , �21�

dU0�t,0�
dt

= − iH0�t�U0�t,0� . �22�

We define the interaction picture propagator with respect to
H0, as usual, via

Ũ�t,0� = U0�t,0�†U�t,0� . �23�

It satisfies the Schrödinger equation

dŨ�t,0�
dt

= − iH̃�t�Ũ�t,0� , �24�

with the interaction picture Hamiltonian

H̃�s� = U0�t,0�†V�t�U0�t,0� . �25�

See Appendix A for a proof.

The interaction picture propagator Ũ�t ,0� can be formally
expressed as

Ũ�t,0� = T�exp�− i�
0

t

H̃�s�ds�� �26�

�exp�− it�̃�t�� , �27�

where the second equality serves to define the effective in-

teraction picture Hamiltonian �̃�t�.
Lemma 1. There exist unitary operators �W�s�
 such that

�̃�t� �
1

t
�

0

t

W�s�H̃�s�W�s�†ds . �28�

This is remarkable since it shows that the time-ordering
problem can be converted into the problem of finding the
�continuously parametrized� set of unitaries �W�s�
.

Proof. The formal solution �26� can be written as an infi-
nite, ordered product

Ũ�t,0� = lim
N→�

�
j=0

N

exp�− i
t

N
H̃� jt

N
�� . �29�

Thompson’s theorem �15,16� states that for any pair of op-
erators A and B, there exist unitary operators V and W, such
that eAeB=eVAV†+WBW†

. It follows immediately that if �Aj
 j=0
N

are Hermitian operators, then it is always possible to find
unitary operators �Wj
 j=1

N such that

�
j=0

N

exp�− iAj� = exp�− i�
j=0

N

WjAjWj
†� . �30�

The proof is nonconstructive, i.e., the unitary operators
�Wj
 j=1

N are not known. Applying this to Eq. �29� yields

Ũ�t,0� = lim
N→�

exp�− i
t

N�
j=0

N

WjH̃� jt

N
�Wj

†�
= exp�− i�

0

t

W�s�H̃�s�W�s�†ds� , �31�

which is the claimed result with the effective Hamiltonian

�̃�t� defined as in Eq. �28�. �
An immediate corollary of Lemma 1 is the following:

Corollary 1. The effective Hamiltonian �̃�t� defined in
Eq. �28� satisfies, for any unitarily invariant norm,

��̃�t��ui �
1

t
�

0

t

ds�V�s��ui � 
�V�ui� �32�

� sup
0	s	t

�V�s��ui. �33�

Proof. We have �Eq. �25�� H̃�s�=U0�t ,0�†V�t�U0�t ,0� and

�Eq. �28�� ��̃�t��ui= � 1
t �0

t W�s�H̃�s�W�s�†ds�ui. The result fol-
lows from the triangle inequality. �

We have presented the bound in the interaction picture.
Clearly, the same argument applies to the Schrödinger pic-
ture, where instead one obtains
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���t��ui �
1

t
�

0

t

ds�H0�s� + V�s��ui. �34�

V. DISTANCE BEFORE AND AFTER PARTIAL
TRACE

Since we are interested in the distances between states
undergoing open system dynamics, we now prove the fol-
lowing.

Lemma 2. Let HS and HB be finite-dimensional Hilbert
spaces of dimensions dS and dB, and let A�HS � HB. Then
for any unitarily invariant norm that is multiplicative over
tensor products the partial trace satisfies the norm inequality

�trB A� �
dB

�IB�
�A� , �35�

where I is the identity operator.
This result was already known for the trace norm as a

special case of the contractivity of trace-preserving quantum
operations �1�.

Proof. Consider a unitary irreducible representation
�UB�g� ,g�G
 of a compact group G on HB. Then it follows
from Schur’s lemma that the partial trace has the following
representation �17�:

1

dB
trB�X� � IB = �

G

�IA � UB�g��X�IA � UB�g�†�d
�g� ,

�36�

where d
�g� denotes the left-invariant Haar measure normal-
ized as �Gd
�g�=1 and dB�dim�HB�. Then

�trB X� =
1

�IB�
�trB�X� � IB�

�
dB

�IB��G

��IA � UB�g��X�IA � UB�g�†��d
�g�

=
dB

�IB��G

�X�d
�g� =
dB

�IB�
�X� . �37�

�

In particular, �IB�1=dB, �IB�2=	dB, and �IB��=1, and since
the trace, Frobenius, and operator norms are all multiplica-
tive over tensor products, we have, specifically,

�trB X�1 � �X�1, �38�

�trB X�2 � 	dB�X�2, �39�

�trB X�� � dB�X��. �40�

Note that not all unitarily invariant norms are multiplicative
over tensor products. For instance, the Ky-Fan k norm � · ��k�
is the sum of the k largest singular values and is unitarily
invariant �8�, but it is not multiplicative in this way. For
example, when dA=dB=d�k�2 we have �IA��k�= �IB��k�
= �IA � IB��k�=k. So for X= IA � IB we have �trBX��k�=d�IA��k�

=dk, but �dB / �IB��k���X��k�= �d /k�k=d, which gives an in-
equality in the wrong direction.

VI. DISTANCE BOUND

We are now ready to prove our main theorem, which pro-
vides a bound on the distance between states in terms of the
distance between effective superoperator generators. As an
immediate corollary, we obtain the bound in terms of the
effective Hamiltonians.

How much does the deviation between L�t� and L0�t� im-
pact the deviation between ��t� and �0�t�? We shall assume
that the desired evolution is unitary—i.e., etL0�t�

=U0�t� ·U0�t�†, where U0�t�=e− i
�

t�0�t�.
Theorem 1. Consider two evolutions: the “desired” unitary

evolution ��0���0�t��etL0�t���0�=e−�i/��t��0�t�,·���0�
and the “actual” evolution ��0����t��etL�t���0�. Let
�L�t��L�t�−L0�t�. Then

D���t�,�0�t�� � min�1,
1

2
�et��L�t���,1 − 1�� .

If in addition t��L�t���,1�1, then

D���t�,�0�t�� � t��L�t���,1.

Note that, using the Heisenberg-Schrödinger duality �13�, we
can replace ��L�t���,1 by ��L��t���, where �L� is the dual
generator to �L. In the case of Hamiltonian evolution we can
make this explicit as follows.

Corollary 2. For Hamiltonian evolution, where
L�t�=− i

� ���t� , ·� and L0�t�=− i
� ��0�t� , ·�, and defining

the spectral diameter ���t��maxi,j��i�t�−� j�t��
=maxi�i�t�−maxi�i�t�, where ��i�t�
 are the eigenvalues of
���t����t�−�0�t�,

D���t�,�0�t�� � min�1,
1

2
�et ���t�/� − 1�� �41�

�t ���t�/� if t ���t�/� � 1. �42�

Corollary 2 means that the “spectral action” t ���t� /� plays
a key role in bounding the distance between states, a pleas-
ingly intuitive result.

Proof of Theorem 1. Let us define Hermitian operators

H0 � itL0�t�, H � itL�t� , �43�

and consider �superoperator� unitaries generated by these op-
erators as a function of a new time parameter s �we shall
hold t constant�:

dU0/ds = − iH0U0, dU/ds = − iHU . �44�

Then

U0�s� = e−isH0
, U�s� = e−isH, �45�

and we can define an interaction picture via

U�s� = U0�s�S�s� , �46�

where the interaction picture “perturbation” is
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Ṽ�s� � U0
†�s��H − H0�U0�s� = itU0

†�s��L�t�U0�s� . �47�

Then, using �1� unitary invariance and �2� the definition of
the � ��,1 norm �Eq. �11��,

D���t�,�0�t�� =
1

2
�etL0�t��e−tL0�t�etL�t� − I���0��1

=
�1�1

2
��S�1� − I���0��1�

�2� 1

2
�S�1� − I��,1,

�48�

which explains why we introduced S. We can compute S
using the Dyson series of time-dependent perturbation
theory:

dS/ds = − iṼS ,

S�s� = I + �
m=1

�

Sm�s� ,

Sm�s� = �
0

s

ds1�
0

s1

ds2�
0

m−1

dsmṼ�s1�Ṽ�s2� ¯ Ṽ�sm� .

�49�

Using submultiplicativity and the triangle inequality, we can
then show that �see Appendix B for the details�

�S�s� − I��,1 � e�t �L�t�s��,1 − 1. �50�

Thus, finally, we have from Eq. �48�

D���t�,�0�t�� �
1

2
�e�t �L�t���,1 − 1� . �51�

If additionally t��L��,1�1, then the inequality ex−1
� �e−1�x yields D���t� ,�0�t��� t��L�t���,1. On the other
hand, note that D���t� ,�0�t��= 1

2 ��S�1�−I���0��1

�
1
2 ��S�1���0��1+ ���0��1�=1. �
Proof of Corollary 2. For Hamiltonian evolution we have

���L�t���,1 = �����t�, ·���,1 =
�1�

�����t�, ·���� =
�2�

�����t�, ·���

= max
i,j

��i�t� − � j�t�� � ���t� , �52�

where ��i
 are the eigenvalues of ��. To obtain this result
we used �a� Eq. �13� and �b� the duality relation �12�, which
yields Tr���� ,���X�=Tr����� ,X��=Tr��−�� ,��X� ∀� ,X,
and hence ��� , ·��= �−�� , ·�. �

VII. DISCUSSION

A. General bound

By putting together Eq. �35� and Corollary 2, we can an-
swer the question we posed in the Introduction.

Theorem 2. Consider a quantum system S coupled to a
bath B, undergoing evolution under either the “actual” joint
unitary propagator U�t�=e−i/�t��t� or the “desired” joint uni-
tary propagator U0�t�=e−i/�t�0�t�, generated, respectively, by

H�t� and H0�t�. Let ���t� denote the spectral diameter of
��t�−�0�t�. Then the trace distance between the actual time-
evolved system state �S�t�=trBU�t���0�U�t�† and the desired
one �S

0�t�=trBU0�t���0�U0�t�† satisfies the bound

D��S�t�,�S
0�t�� � min�1,

1

2
�et ���t�/� − 1�� �53�

�min�1,
1

2
�e�2/���
��H�t����� − 1�� , �54�

where 
�X���� 1
t �0

t ds�X�s��� and �H�t� is the Hamiltonian
generating U��t��e−�i/��t ���t�.

To obtain the second inequality we used ���t�
= �����t� , ·����2����t��� and Corollary 1.

Theorem 2 shows that to minimize the distance between
the actual and desired evolution it is sufficient to minimize
the spectral diameter of the actual and desired effective
Hamiltonians, or the time average of the operator norm of
the difference Hamiltonian �H. Techniques for doing so
which explicitly use the Magnus expansion or operator
norms include dynamical decoupling �18,19� and quantum
error correction for non-Markovian noise �20–24�.

B. Illustration using concatenated dynamical decoupling

As an illustration, consider the scenario of a single qubit
coupled to a bath via a general system-bath Hamiltonian
HSB=HS � IB+��=x,y,z�� � B� �HS is the system-only Hamil-
tonian, �� are the Pauli matrices, and B�� IB are bath opera-
tors�, with a bath Hamiltonian HB and controlled via a sys-
tem Hamiltonian HC�t�, so that the total Hamiltonian is
H�t�=HC�t� � IB+HSB+ IS � HB. Suppose that one wishes to
preserve the state of the qubit—i.e., we are interested in
“quantum memory”—so that �0�t�=HC�t� � IB+ IS � HB. It
was shown in Ref. �19�, Eq. �51�, that by using concatenated
dynamical decoupling �a recursively defined pulse sequence
�25�� and assuming zero-width pulses, the Magnus expansion
yields the following upper bound:

T���T� − �0�T��ui/� � JT��T/N1/2�log4 N. �55�

Here ��t� is the effective Hamiltonian corresponding to the
evolution generated by H�t�, T=N� �the duration of a con-
catenated pulse sequence with pulse interval ��, and

� � �HB�ui, J � max
�

�B��ui �56�

are measures of the bath and system-bath coupling strength,
respectively. Here we shall take the norm in these last two
definitions as the operator norm. The bound �55� is valid as
long as �T�1 �19�. When this is the case, the right-hand
side of Eq. �55� decays to zero superpolynomially in the
number of pulses, N. The bound �53� then yields, for suffi-
ciently large N,

D��S�T�,�S
0�T�� �

1

2
�e2JT��T/N1/2�log4 N

− 1�

� 2JT��T/N1/2�log4 N, �57�

which shows that the distance between the actual and desired

DISTANCE BOUNDS ON QUANTUM DYNAMICS PHYSICAL REVIEW A 78, 012308 �2008�

012308-5



state is maintained arbitrarily well. Distance bounds of this
type have also been used in dynamical decoupling applica-
tions involving multiple qubits �26,27�.

VIII. CONCLUSIONS

We have presented various bounds on the distance be-
tween states evolving quantum mechanically, either as closed
or as open systems. These bounds are summarized in Theo-
rem 2. We expect our bounds to be useful in a variety of
quantum computing or control applications. An undesirable
aspect of Eqs. �53� is that the operator norm can diverge if
the bath spectrum is unbounded, as is the case, e.g., for an
oscillator bath. A brute force solution is the introduction of a
high-energy cutoff. However, a more elegant solution is to
note �28� �Lemma 8� that every system with energy con-
straints �such as a bound on the average energy� is essentially
supported on a finite-dimensional Hilbert space. An even
more satisfactory solution in the unbounded spectrum case is
to find a distance bound involving correlation functions. This
can be accomplished by performing a perturbative treatment
in the system-bath coupling parameter, as is done in the stan-
dard derivation of quantum master equations �4,5�.
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APPENDIX A: INTERACTION PICTURE

We prove that Ũ�t ,0� defined in Eq. �23� satisfies the
Schrödinger equation �24� with the interaction picture
Hamiltonian defined in Eq. �25�. This requires proof since all
the Hamiltonians considered are time dependent, whereas
usually one only considers the perturbation to be time depen-
dent. To see this we differentiate both sides of Eq. �23�,
while making use of Eqs. �24� and �25�:

dU�t,0�
dt

=
d�U0�t,0�Ũ�t,0��

dt

=
dU0�t,0�

dt
Ũ�t,0� + U0�t,0�

dŨ�t,0�
dt

= − iH0�t�U0�t,0�Ũ�t,0� − iU0�t,0�H̃�t�Ũ�t,0�

= − iH0�t�U0�t,0�Ũ�t,0�

− iU0�t,0�U0�t,0�†V�t�U0�t,0�Ũ�t,0�

= − i�H0�t� + V�t��U0�t,0�Ũ�t,0�

= − iH�t�U�t,0� ,

which is the same differential equation as Eq. �21�. The ini-
tial conditions of the equations are also the same
�U�0,0�= I�; thus, Eqs. �23�–�25� describe the propagator
generated by H�t�.

APPENDIX B: DYSON EXPANSION BOUND

We prove Eq. �50�. The proof makes use of �1� the tri-
angle inequality, �2� submultiplicativity, and �3� unitary in-
variance:

�S�s� − I��,1 = ��
m=1

�

Sm�s���,1�
�1�

�
m=1

�

�Sm�s���,1

= �
m=1

�

��
0

s

ds1¯�
0

sm−1

dsm�
i=1

m

Ṽ�si���,1

�
�1�

�
m=1

� �
0

s

ds1¯�
0

sm−1

dsm��
i=1

m

Ṽ�si���,1

�
�2�

�
m=1

� �
0

s

ds1¯�
0

sm−1

dsm�
i=1

m

�Ṽ�si���,1

=
�3�

�
m=1

� �
0

s

ds1¯�
0

sm−1

dsm�t �L�t���,1
m

= �
m=1

�

�t �L�t���,1
m sm

m!
= e�t �L�t�s��,1 − 1.

�1� M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information �Cambridge University Press, Cam-
bridge, UK, 2000�.

�2� H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa,
Science 288, 824 �2000�.

�3� P. W. Brumer and M. Shapiro, Principles of the Quantum Con-
trol of Molecular Processes �Wiley, New York, 2003�.

�4� R. Alicki and K. Lendi, Quantum Dynamical Semigroups and
Applications, Vol. 286 of Lecture Notes in Physics �Springer-
Verlag, Berlin, 1987�.

�5� H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems �Oxford University Press, Oxford, 2002�.

�6� M. S. Byrd, L.-A. Wu, and D. A. Lidar, J. Mod. Opt. 50, 1285
�2004�.

�7� F. Gaitan, Quantum Error Correction and Fault Tolerant
Quantum Computing �CRC Press, Boca Raton, 2008�.

�8� R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics,
No. 169 �Springer-Verlag, New York, 1997�.

�9� J. Watrous, http://www.cs.uwaterloo.ca/ watrous/lecture-notes/
701/all.pdf

�10� O. Bratteli and D. W. Robinson, Operator Algebras and Quan-
tum Statistical Mechanics 1, 2nd ed. �Springer, Berlin, 1987�.

�11� D. Kretschmann, D. Schlingemann, and R. F. Werner, IEEE
Trans. Inf. Theory 54, 1708 �2008�.

LIDAR, ZANARDI, AND KHODJASTEH PHYSICAL REVIEW A 78, 012308 �2008�

012308-6



�12� C. A. Fuchs and J. van de Graaf, IEEE Trans. Inf. Theory 45,
1216 �1999�.

�13� A. Iserles, Not. Am. Math. Soc. 49, 430 �2002�.
�14� F. Casas, J. Phys. A 40, 15001 �2007�.
�15� R. C. Thompson, Linear Multilinear Algebra 19, 187 �1986�.
�16� A. M. Childs, H. L. Haselgrove, and M. A. Nielsen, Phys. Rev.

A 68, 052311 �2003�.
�17� G.M. D’Ariano, P. Perinotti, and M. F. Sacchi, J. Opt. B:

Quantum Semiclassical Opt. 6, S487 �2004�.
�18� L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417

�1999�.
�19� K. Khodjasteh and D. A. Lidar, Phys. Rev. A 75, 062310

�2007�.
�20� B. M. Terhal and G. Burkard, Phys. Rev. A 71, 012336 �2005�.

�21� P. Aliferis, D. Gottesman, and J. Preskill, Quantum Inf. Com-
put. 6, 97 �2006�.

�22� D. Aharonov, A. Kitaev, and J. Preskill, Phys. Rev. Lett. 96,
050504 �2006�.

�23� E. Novais, E. R. Mucciolo, and H. U. Baranger, Phys. Rev.
Lett. 98, 040501 �2007�.

�24� Our Theorem 2 can be argued to be similar in spirit to Eq. �76�
in Ref. �21�.

�25� K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 95, 180501
�2005�.

�26� K. Khodjasteh and D. A. Lidar, e-print arXiv:0803.4320.
�27� D. A. Lidar, Phys. Rev. Lett. 100, 160506 �2008�.
�28� G. M. D’Ariano, D. Kretschmann, D. Schlingemann, and R. F.

Werner, Phys. Rev. A 76, 032328 �2007�.

DISTANCE BOUNDS ON QUANTUM DYNAMICS PHYSICAL REVIEW A 78, 012308 �2008�

012308-7


