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Purity and state fidelity of quantum channels
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We associate with every quantum chanfiefcting on a Hilbert spacé{ a pair of Hermitian operators,
referred to as “Hamiltonians,” over the symmetric subspact/®?. The expectation values of these Hamil-
tonians over symmetric product states give either the purity or the pure-state fid€elityTofs allows us to
analytically compute these measures for a wide class of channels, and to identify states that are optimal with
respect to these measures.
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[. INTRODUCTION since we know from the theory of QECCs and DFSs that it is
possible to encode quantum information in a manner that
maximizes purity by restricting to a subspace. In particular:

Definition 2. If P(T,C)=1 we say that thatC is a

ecoherence-free subspace with respecflTtdn short, a
-DFS.

In many cases it will not be possible to findTaDFS. A
central question we shall be concerned with here is the char-
acterization of those states that optimally approximate a
T-DFS, i.e., those states for whidR(T,C) is as large as

TX) = XA [XeEEndH)], 1 possible. Thus:
0 ZA A ndH)] @ Definition 3.The optimal purity ofT is

The study of open quantum systerfd§ is of interest in
fields as diverse as quantum information scieffje quan-
tum control [3], and foundations of quantum physi¢4].
Such systems can be described, very generally, using t
following formalism. LetT e CP(H) be a completely posi-
tive (CP) trace-preserving quantum map, i.egtennelover
the finite-dimensional quantum state sp&terhe channel
has a(nonunique Kraus operator sum representaticj

where the Kraus operators satisfy the constrainE,A'A P(T) := maxP(T,C). 3)

=1, which guarantees preservation of the trace of a state ceH

(density operatgrX=p. A fundamental property of a state is  Note thatP(T)=1- the set ofT-DFSs is nonempty. How-

its purity p[p]=Tr(p?. States are called pure if and only if ever, this situation is rather rare and generally requires that
p=1 and mixed ifp<1. In the paradigmatic scenario of there be asymmetryin the system-environment interaction.
open quantum systems, a state starts out as perieg (i, Associated with this symmetry is a conserved quantity:
and is then mapped, e.g., via the interaction with an environquantum coherence. This in turn leads to the preservation of
ment, to a mixed state by the action of a chanflel quantum information. Here we wish to depart from the no-
p[T(p)1=Tr[T(|){¢)?]<1. In this case we say that the state tion of a strict symmetry and explicitly consider the situation
|¢) has beendecoheredby the channel. A typical goal of, where one can only expect optimal, as opposed to ideal,
e.g., quantum information processing, is to maximize the pupurity. However, the optimization problem defined ByT)

rity of a state that is transmitted via some chanheTo this is a hard one, since it involves a search over all possible
end, a variety of decoherence-reduction techniques haveubspace€ C H; the number of such subspaces grows quite
been developed, such as quantum error correcting codeapidly in the dimension ot{, which itself may be exponen-
(QECCy [6-9 and decoherence-free subspaq@FSg tial in the number of particles, in a typical quantum informa-
[10,17. In this work we are interested in the intrinsic purity tion processing application. Moreover, even if one restricts
of quantum channels: In the following, unless otherwisethe problem to the computation 8(T,C) (for a given, fixed
specified, all state vectotg)’s (and|¥)’s) will be normal-  subspacg one is still faced with a complicated-looking func-

ized. tional.
Definition 1. The purity of the channelT over the sub- In this work we focus on the the computation BfT,C)
spaceCCH is and we associate a Hamiltonian with each channel. This
‘ . 5 “channel Hamiltonian” is a mathematical trick, rather than a
P(T.C) = ﬂ,?'erl TrT (). (2 physical Hamiltonian. But, as we shall show, this has the

advantage in that it allows us to cast the purity problem into
Minimization is required since we must consider thethe familiar framework of computing eigenvalues of Hermit-
worst-case scenario. We invoke subspaces in our definitiofan operators. In addition, we show that our channel Hamil-
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tonian leads to an elegant physi¢egd-) interpretation of the Equation (5) now follows by taking the minimum over
channel purity in terms of the expectation value of these ) EC. |
operator. Note thatQ)(T) is a formal Hamiltonian over the “double”

Our work is also related to questions about channel caHilbert spaceH®?, and is therefore unrelated to the physical
pacity; indeed recently it has been shown that multiplicativ-Hamiltonian for the original problem. However, as we show
ity of generalized maximal purities implies additivity of the below, there does exist an attractive physical interpretation of
minimal output entropy of the quantum channel. The latterEq. (5), in terms of the expected value of tee/apP operator.
in turn, is equivalent to the additivity of the Holevo channel
capacity[12].

We introduce the first channel Hamiltonian in Sec. Il. We
then derive a number of properties and bounds on the purity We now derive upper and lower bounds on the purity and
based on this formalism in Sec. lll. We then devote Sec. I\Mthen give a characterization 3DFSs.
to a number of examples designed to illustrate our formal- Proposition 1.Let wy(A) denote the minimum eigenvalue
ism, and derive some interesting properties for a class off the symmetric operatoh in the symmetric subspace of
channels. In Sec. V we derive an alternative interpretation of{®2 and letII*(C) denote the normalized projector over the
the expression for the channel purity, in terms of a dual mapsymmetric part of2®2. Then the following bounds hold:

It turns out that the same methods we introduce for the chan-

nel purity also apply to the pure-state fidelity of the channel. Tr{IT*(C)Q(T)] = P(T,C) = wy[ U(T)]. (7)

In particular, we can introduce a second-channel Hamil-
tonian to this end. This is addressed in Sec. VI. We conclud
in Sec. VILI.

Ill. BOUNDS AND OTHER CHANNEL PROPERTIES

Proof. Note that since)(T) is a symmetric operator, the
gymmetric subspace 6{®? is Q(T) invariant. Therefore, the
minimum expectation value df(T) in this subspace coin-
cides with the minimum eigenvalue). The lower bound in
Il. AHAMILTONIAN OPERATOR Eq. (7) is simply due to the fact that minimization over the
FOR QUANTUM CHANNELS symmetric subspace 62 includes the minimization over
the|y)®2€ C®2. The upper bound in Eq7) derives from the
identity [|y){(®2=11*(C) (integration over the uniform dis-
tribution overC [13]) and from the obvious fact that the
average value of a function is no smaller than its minimum

QM =20 20, Q =AA. 4) Vvalue. m
(M % b @ Lemma 1Let T be unital[T(1)=1]. ThenO|y)EH:

Associated with the chann& we define an operator over
HEZ:
Definition 4.The channel purity Hamiltonian is

[We shall refer toQ(T) simply as the “channel Hamil- QM| < 1. (8)
tonian” until our discussion of the pure-state fidelity in Sec.
VI.] It follows immediately fromQE:jS that Q(T) is a
symmetric, Hermitian operator. ThuQ(T) has the status of
a Hamiltonian overH{®2. Moreover,()(T) is independent of > pﬁ => <¢|AiTAjA,TAi|¢> = > (YAA|p =1,
the particular Kraus operator-sum representation chosen for ij ij i
T: all possible operator-sum representation$ afe obtained

by considering new Kraus operators of the forAf where in the firs{secong equality we used the unitalityCP
=2;Uj;A;, where theU;;'s are the entries of unitary matrix.

map condition=;AA =1 (SA/A=1). Now
i

By inserting this expression into the definitigd) one can 22| = Ta Ta Ta
explicitly check thatQ)(T) is invariant. lemEA™ ”% AAlY) & AL < % lAAll

We now come to our key result: a representation of the

Proof. Let pj; ::||AjTAi|¢>||. One has the following normal-
ization condition

purity of quantum channels as the expectation value of the X|ATAlD) =2 pypi < 2 pi=1, (9
channel Hamiltonian. Lefy®2)=|y®)? (we will use both i i
notations interchangeally where in the last line we used the Cauchy-Schwartz inequal-

Proposition Q.For every quantum chann@&land subspace ity for the Hilbert-Schmidt product of matrices,
C, one has the identity
P(T,C) = min (422 Q(T)|42). (5) > ppyi = TrP?=(P,P") < ||P|||[P"]| =[|P|*= X pf .
lmec I !
[ |
We now proceed to characteriZeDFSs. To this end we
Tr T2(|)(g]) = 2, UATATDUATA ) = D (g ATA )2 introduce a special subspace:
lal ij d ' 1A JW ij i ! 1) Definition 5. The subspaceH® of Q-invariant states
(H*C H®?) is the eigenspace dd with eigenvalue one.

Proof. One has

= E THIWI™?ATA © ATA] Proposition 2.
i () If Dlg)eC and i, it holds that Aly)=aU|y),
= TH (2], 6)  All)=a;U'|y), whereU is unitary, theny)®2€H®,
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(i) Let T be unital. TherC is aT-DFS= C®2C H .

(iii) T-DFS <« the first inequality in Eq(7) is an equality.

Proof.

(i) Notice first that from the CP map conditioE,-AiTAi
=1, it follows that2;|a;|?=1. Now for |) €C, one has that
WM 22 =3 |aioy|*= (Zi]i])?=1

(i) (=) If Cis aT-DFS then min,ec(y*?|Q(T)[y*?)

PHYSICAL REVIEW A70, 012315(2004)

P(M=1-2 maxa; =0
i=1,2,3

(12

(of course in this single-qubit example there are no nontrivial
subspacesC="H). In this general case we cannot directly
determine the actual purity or find the corresponding maxi-
mally robust state), since the Bell triplet states are not
product states. To find the optimal purity states in such a

=1. But from the Cauchy-Schwartz inequality and Lemma 1¢ase one has to resort to other optimization techniques.

above, one has that (4*?Q(T)|¢*?)<1 (O],
and the equality holds if and only if)(T)|4%?)=|4®?)
(O EC). Now, if | W) is in the symmetric part of®2, one

has that [W)=TL.(C0)[W)=a(C)fc|*?)(*?|¥) [where
a(C):=dimC(dimC+1)]. Therefore,
QUMW) = (0) f QM2 =2 w)
C
= a(C) J |22, (10)
C

It follows that | W) € H®.

(<) If O|yy EC it holds that|y)®2€ H, thenC is clearly
aT-DFS, i.e.,P(T,C)=1. A fortiori, this holds if all the ele-
ments of the symmetric part @2 are inH*.

(i) We have just seen thafl|¥)=|#)®? such that
|y €C, one hagW|Q(T)|¥)=1. By integrating ovef), one
obtains that the averadéeftmost part of Eq(7)] coincides
with the minimum[middle term in Eq(7)]. |

IV. EXAMPLES

We now present a variety of examples to illustrate our

However, in certain special cases the eigenstat€y of will
be product states, whence our method directly yields the op-
timally robust states. For instance, consider the qase;
=1/2 andp,=p3=0; one findsQ)(T)=(1+0,® 0,)/2. In this
cas€ly),|¢”) are degenerate, as dig),|¢*). We then find,
respectively, the symmetric product eigenstatfs0)
-|1))/+2]22 and [(|0)+|1))/42]%2, both with eigenvalue 1.
The states+): =(|0)+|1))/2 are thus botfT-DFSs. This is
intuitively clear, as the channel in this case is simly)
=pop+pP10*pc*, and the statelt) lie on the Bloch spherg
axis, which is invariant.

As another example, consider the fully depolarizing chan-
nel with p;=(1-py)/3, (i=1,2,3. Then the following(anti-
ferromagnetic Heisenberg exchangelamiltonian is ob-
tained: Q(T)=apl + a3 ,0' ® o', where ag=p3+(1-p)?/3,
a=(2/3)[po(1-po) +(1-pg)?/3]=0. We can rewrite this as
Q(T)=apl +a(2S-1), where theswap operatorS is defined
by its action on basis stat&3i) ® [j)=|j)®|i). In this case,
clearly every symmetric product state is an eigenstate of
Q(T), with eigenvalueay+a, which equals the channel pu-
rity. Thus all single-qubit states are equalpnd optimally
robust. Again, this is intuitively clear: the fully depolarizing
channel isotropically shrinks the Bloch sphere.

Example 2. Correlated two-qubit anistropic depolarizing

formalism, to actually compute the purity of a number of .pannel.
interesting channels, and to find the corresponding optimally  ~onsider the correlated map

pure states.

Example 1. Single qubit anisotropic depolarizing channel.

Let T be the one-qubit channel given by =2 pio'pd’,
where theg”'s are the Pauli matrice&s°=1) and thep;’s a
probability distributioane findsQq;=Q;0=\popic°c’
=Vpopic’; Q=-Q=ivppieio” (1=1,2,3; Qi=pil, (i
=0,...,3. It then follows that

3
Q= E ai(ri 7,

i=0

(11)

where ao=3} 0, a=2(popitpipy) (i#]j#k,k=1,2,3.
Note that =% .ai=(22,p)?=1, that ayE€[1/4,1], and
«€[0,1/2, (k=1,2,3. The eigenstates of}(T) are the
Bell stat_es|¢‘>:(|01>—|10>)/\L2 (singley and {|¢)=(]00)
—|120) /32, |y =(|02) +]100)/V2,| 4"y =(|00) +|12)) / 2}
(triplet). Their respective eigenvalues areyp21 and {1
—2aq,1-203,1 - 25} Furthermore, note that
Spec)(T) C[-1/2,1] and that()(T) in the triplet sector is a

T(p) = 2 Pal04 ® 0 )p(04 ® 0). (13
ThenQ,3=\Vp,Ppo,0s® 0,05 and
Q= X pieh®+ X ppo,® )%
a=0X,y,z a#BF+y
(14)

This example can be solved directly by observing that each
of the Bell states has eigenvalue +1 or —1 under the action of
o,®a,, when the purity is one. Thus, the Bell states are
T-DFSs. Notice that this result appears to be related to the
communication problem for channels with correlated noise
studied in Ref[17].

One can also find theninimal purity states by differenti-
ating (Q):=“%y1Q(T)|¢)®? as a function of expansion pa-
rameters of|y) over the Bell states. This yield&2) i
:Eazo,x,y,zpii and the corresponding minimally robust set of
states are superpositions of pairs of Bell states with arbitrary

positive operator. The triplet sector is symmetric, while thephases

singlet is antisymmetric. From E¢7), we thus know that the

minimal eigenvalue in the triplet sector provides a lower

bound on the purity

eial ei.Bl
i) = 7(|00> +[11) + 7(|01> - [10)),

012315-3
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g gB2 As a particular instance of this kind of channel, let us
i) = 7(|00> -[11) + 7(|01> +[10)). consider arN-qubit case with théJ,’s generating an Abelian
subgroup ofG the Pauli groupall tensor products of Pauli
This channel thus has the interesting property that the maxinatrices onN qubity, as was the case in Examples 1 and 2
mally entangled Bell states are more robust than any sep@&bove. The set of singlets is now given by the stabilizer of
rable (pure state. G [denotedS(G)], i.e., the subspace generated by fike
Example 3. Amplitude damping. such thatU,|)=|y) (O k). SinceU,=U], one finds imme-
Let T(p)=|0)(0|, O pE S(CY). A set of Kraus operators is diately that elements of the forf)®?, where|) € S(G), are
given by A=]0Xil|, (i=1,...,d). Note that the channel is eigenvectors ofQ)(T) with maximum eigenvalueX, qy.
nonunital: =,AA =d|0)(0|>1. One hasAjTAi=|j>(i|, so that These states also play the role of code words of stabilizer
Q(T):zij|j><i|® |i><j|:Eij|ji)(ij|:S (the swap operatoy. QECCs][8]. We thus see that, in this example, the stabilizer-
Here all states are mapped onto a pure one @fd) is QECC code_wo_rds are maximally robust, though no active
identically 1 in the symmetric subspace. A slight generaliza-€rTor correction is assumed.

tion is given byT(p)=(1-p)p+p|0)0|, (pE€[0,1]). In this In fact, the connection to quantum error correction can be
case one finds made more general: the formalism developed so far allows

us to establish an intriguing identity for the purity of states
Q(T)=(1-p)21 + p?S+p(1-p)(|0)0| @ 1 + 1 & |0)0))S. belonging to a QECC for the CP mapT: p— 2 AipAiT. If
). |th) €C, then the error correction condition is

(15)
ATA5) = G 8,5, 19

Note that [|[Q(T)||<(1-p)2+p?+2p(1-p)=1. The only WAl 5) = GjOap (19
T-DFS isC|0). where the matrixc; is Hermitian, non-negative, and has

Example 4. Projective measurements. trace ong7]. For nondegenerate codeg,has maximal rank.

Let T(p)=3ILpll, ILI=61L, SIL=1. Then Q; Let us now consider states of the for,)®2 (|1, € C).
= g;11;, from which From Eq.(4) and the error correction condition, one has that

oam=S1 &I, (16) P(T,0) = (3 210M[4;2) = 2 Kbl AA )
i 1
— 2 _ 2

If H;=ImII; thenH2C H®, i.e., from Proposition 2 all the _izjl |cij|*=Tr(c?). (20

eigenvectors of thél;’s are one-dimensiondllD) T-DFSs.

The maximum eigenvalue di(T) is 1; this follows from Viewing c as a statédensity operatgr we have thus found
(P|Q(T)|¥)< 1(0]P)). The latter inequality results from the that the purity of the channel acting on the code word§ of
following  argument: 192=(;I1)®2=3, 1T, @ I1;=(T) is just the purity of the “statet associated to the code itself.
+3; I ®1I;. The last term is a non-negative operatsum Fo.r example, for DFSg; is simply a rank-'one mgtrix with
of products of non-negative operatprso thatl-Q(T)=0.  unit trace[14], so that Trc?=1 and the maximum eigenvalue
Taking the expectation value of the last inequality with re-condition is readily recovered. As a more interesting ex-

spect to|¥) proves the bound above. ample, consider &P mapT with A=\p U, with unitary Uj's
In the following, we use the operator norfpA.. (e.g., chosen frTom the Pauli group, as in s.tab|I|zer QEC
i=max| 1| Al)]. We shall write]|All for simplicity. Recall thatc=\"\, where the matrix\ is defined by the

Example 5. Unitary mixture of a group representation. ~ €rror-recovery relatiolR Ai=\,;1 (restri<1:teq_ toC), for each
This is a rather general and quite important examplefecovery operatoR, [7]. ThenR =\;U;~/\p;, and from the

which includes Examples 1 and 2 above. Let CP condition =, RIR.=1, we find =, |\,|*=p;. Assume for
simplicity that there is a unique recovery operator per error,
T(p) = pUpUl, (17) €. Ni=Nidi, \j#0 O i (this is an example of a nondegen-
P g Po-ePXg erate code Then|\;|?=p; andc=diagp;); it follows that the

. I purity over such a QECC associatedTtds simply given by
whereg— py is a probability distribution over the group 3 pi2.
={g} and g— Uy is a unitary representation ¢f. One finds
Qgh=PgPRUUp=pghnUg-1n; thus
V. THE DUAL REPRESENTATION

Q(T) = X, qUy ® Uy, (18)
kEG <k “ We now develop an alternative representation of the chan-

nel Hamiltonian, which is useful for the derivation of several
where q:=2gpgPgi1 is also a probability distribution. If additional results, and sheds light on the physical interpreta-
lWEH is a G singlet, i.e., Ug|y)=[y) (0 gEG) then tion of the channel purity.
lye2eH?, ie., all theg singlets are 1DT-DFSs. Here Definition 6.The dualT. of aCP mapT [see Eq(1)] is
again, the maximum eigenvalue 6(T) is 1: Indeed, it is  T.(X)==; ATXA.
easy to see thatlQ(MI<L1:1QAUMI<Z,gullU® Ul Proposition 3. Let S be the swap operator (defined
=2 g=1. aboveg. Then
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QT) =T249)S.

We give two different proofs.
Proof.

@

PA98=2 (AT @ A)SIA @ A)S=2 (Al @ AN (A @ A)
ij ij

(21)

=2 ATA © ATA =Q(T).
i

(22)

(b) By writing the swap operator explicitly asS
=S, Mm@ [IXm| and applying T&?, one obtains
Simii ATIMXIA; @ Alll)(m|A;. Then the proof follows by ex-

PHYSICAL REVIEW A70, 012315(2004)

THTEAS (1 +S
f dyy TI TSyl *2] = %
_ 2 ®2
- l)Tr[ST® (1) +TE49S].
(25
|

In other words, the Haar average purity of a chanhé
given by the expectation value 61(T) over the maximally
mixed statell,(H)=(1+9S)/[d(d+1)] over the symmetric
subspace ot ®?.

Corollary 3.Using Eq.(24) one can get the Haar averaged

plicitly comparing the matrix elements of the latter operatorPurities of the channels considered above:

times S, with the ones of)(T). [ |
We remark that one is led to consider the operiﬁﬁ(S)
by the following argument:
TI[T?(p)] = THS(T(p) © T(p)}] = THST**(p © p)]
=TT %Sp @ pl,
where in the first step we used the identity
Tr{AB]=Ti[SA® B], (23

which is valid for general operatoss B [15], and in the last
step we “dualized” the map. Then for pure inpyts|y)y]
one hag ¢®2Q(T)|y*2) = (¥ TEX9)|*%). This dualization

(i) One qubit depolarizing channéfl +2ag)/3.

(i) Amplitude damping channel: (1-p)%+p?+2p(1
-p)/d.

(i) Projective measurementsi+X;(Tr I1;)%]/[d(d+1)].

(iv) Unitary mixing: [d+Zgeg gl Tr Ug[?]/[d(d+1)].
From (iii ) and(iv), it follows that:

(@) One-dimensional projective measurements achieve
the minimal average purity, of 2d+1).

(b) For unitary mixing and assuming a Haar uniform
distribution(all g4 equal, i.e., the fully depolarizing chanpel
minimal purity is obtained foly's in a G irrep. Indeed, one
has in general thatl/|G)Sq4eq [Tr Ugl2=2; nd, wheren, is
the multiplicity of the Jth G irrep [16]. The minimum is
clearly achieved when just one irrep appears, i.e., the irre-

is quite useful since it moves the burden of calculation of theducible case.

channel action away from the entiget of statesp to the
single observables.

Before concluding this section we would like to point out
that the formula(W|Q(T)|W)=Tr[ST*2(|¥)(¥|)] allows us

Corollary 1. Upon restriction to the symmetric subspaceto give an operational meaning to the operdigrand in the

of H®2, one can writeQ(T)=T24(9).
Proof. Immediate. |

particular case in which|¥)=]¢)®?, to the purity of
T(|)(4). Indeed, this expectation value 6f(T) is nothing

The following corollary contains a general derivation, but the expectation value of the observaBlén the state

based on the dual representation(ifT), of a fact that was
already proved for specific examples in Sec. IV.
Corollary 2. |Q(T)||<1.
SR OIS

Proof. One has [|Q(T)|=[T¢*99 <

=

smaller (greatey than the identity(minus the identity are

mapped onto elements smaller than the identity. Sinte -

<S<1, one has +=<T?%9 <1. This relation implies in par-

ticular that the maximum eigenvalue of the Hermitian opera
tor T®%(S) is smaller than one. Since this maximum eigen-

value coincides with thg-|... norm of T¥4(S), the inequality
is proved. |

©2(9)||. SinceT#? is the dual of aCP map, elements

T92(|WXW|). The latter state can in turn be viewed as the
result of an action of the channel on a pair of, possibly en-
tangled, input states fror.

VI. PURE STATE FIDELITY OF A CHANNEL

We now show how many of the techniques introduced
above for the channel purity carry over to tisgmplen prob-

1em of calculating the

Definition 7.Pure-state fidelity

We now present a result that allows one to directly com-

pute theaveragepurity of a quantum channel.
Proposition 4.The Haar average purity of theP map T
is given by

TT ()]’ = THST?() +Q(M]. (24

1
d(d+1)

Proof. Using the fact thafdy{){4{®? is the normalized pro-

jector over the symmetric subspace 6{®? ie., (1
+9)/[d(d+1)] [13], one has

F(T,|4) = (AT D). (26)
Proposition 5.
0]
F(T.[4)) = (4" (D2, (27)
whereQ4(T) :==(1® T:)(SS.
(i)
OE E A oA (28)
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(iii) We now report, as corollaries of poifitii) above, the
L average pure-state fidelities of a few relevant channels.
T = Corollary 4.
F(T1¥) d(d+ 1)Tr[Ql(T) +SAe Tl (29 (i) Mixing of unitaries from the Pauli grougN qubit9:
) ) (L Npg) (L2,
_In p_artlcular, for a unltgl map the average pure-state fidelity (i) Mixing of general unitaries{d+S;p;|Tr Ui[?]/[d(d
is given by[d+Z;|Tr A|?]/[d(d+1)]. +1)].
g)ro"f- (i) Amplitude damping: 1(1-1/d).

(iv) Projective measuremenigd+3;|Tr IT;|2]/[d(d+1)].

As in the channel-purity case, the res@®) can be sim-
ply stated by saying that the Haar average fidelity of a chan-
nel T is given by the expectation value 6I,(T) over the
maximally mixed statell,(H)=(1+S)/[d(d+1)] over the
symmetric subspace 6“2 We note that a formula related
to Eq.(29) for the average fidelity of quantum operations has
been given in Ref[18].

F(T. ) = (T D) = T T ()]
= TSy © T(| (D] = TS0 ® T “?]
=Tr{(1 @ T)(S)|y)9l*?]
= ("1 @ TN Y"?).
(i)

(1®T)(9S= 2 (e AiT)S(H © A)S= 2 (e AIT)(AIT ®1) VIl. CONCLUSIONS AND OUTLOOK

‘ ‘ We have introduced a “Hamiltonian” operator formalism
for the calculation of the channel purity and pure-state fidel-
ity. Using this formalism we have been able to analytically
compute these measures for a variety of channels of interest
in the theory of open quantum systems, and quantum infor-
mation theory. These analytical results are restricted to cases
where the eigenstates of the Hamiltoniar{or ()") are prod-
uct states in the symmetric subspace}f2. When this is
not the case one may have to resort to numerical methods to

=2 A0A.
(iii)

F(T. )Y = f Trl )y “2Q4(T)]
[

- w compute the purity and fidelity.
dd+1) A tempting generalization of our method is to consider
perturbations to the channel Hamiltonian and use the well-
= T + 18 T)(S)] developed tools of perturbation theory to thus study pertur-
d(d+1) bations to given channels. One may further speculate about

Notice that the second term inside the square brackets is, & adiabatic approxmauon,_ wherein S.|OWIY tlme-dependept
: . - channels can be studied using the adiabatic theorem applied
unital maps, simply T6=d. |

Is important to stress thad,(T) defined above is, in gen- to the channel Hamiltonian. We leave these as subjects for

eral, nonrHermitian. On the other hand);(T)S=(1® T+)(9 future investigations.
is Hermitian (image of an Hermitian operator viaP map
and has the same expectation value§las) over symmet- _ .
ric states inH®2. We thus associate a second channel Hamil- P.Z. gratefully acknowledges financial support by
tonian with T. Cambridge-MIT Institute Limited and by the European
Definition 8.The channel fidelity Hamiltonian is Union project TOPQIP(Contract No. IST-2001-39235
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