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Decoherence-free subspaces for multiple-qubit errors.
II. Universal, fault-tolerant quantum computation
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Decoherence-free subspaces~DFSs! shield quantum information from errors induced by the interaction with
an uncontrollable environment. Here we study a model of correlated errors forming an Abelian subgroup
~stabilizer! of the Pauli group~the group of tensor products of Pauli matrices!. Unlike previous studies of
DFSs, this type of error does not involve any spatial symmetry assumptions on the system-environment
interaction. We solve the problem of universal, fault-tolerant quantum computation on the associated class of
DFSs. We do so by introducing a hybrid DFS quantum error-correcting-code approach, where errors that arise
due to departure of the codewords from the DFS are corrected actively.
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I. INTRODUCTION

Methods to protect fragile quantum superpositions are
paramount importance in the quest to construct devices
can reliably process quantum information@1,2#. Compared to
their classical counterparts, such devices feature specta
advantages in both computation and communication, as
cussed in a number of recent reviews@3–5#. The dominant
source of the fragility of a quantum information process
~QIP! is the inevitable interaction with its environment. Th
coupling leads todecoherence, a process whereby coheren
of the QIP wave function is gradually destroyed. Forma
the evolution of an open system~coupled to an environment!
such as a QIP can be described by a completely positive
@6#, which can always be written in the explicit form know
as the Kraus operator sum representation@7#:

r~ t !5(
d

Ad~ t !r~0!Ad
†~ t !. ~1.1!

Herer is the system density matrix, and the ‘‘Kraus ope
tors’’ $Ad% are time-dependent operators acting on the s
tem Hilbert space, constrained only to sum to the iden
operator:(dAd

†Ad5I ~to preserve Tr@r#).1 Decoherence is
the situation in which there are at least two Kraus opera
that are inequivalent under scalar multiplication. The Kra
operators are in that case related to the different way

*Present address: Chemistry Department, University of Toro
80 St. George Street, Toronto, Ontario, Canada M5S 3H6.

1As shown, e.g., in@8#, the operator sum representation can
derived from a Hamiltonian model by considering the reduced
namics of a system coupled to a bathB: r(t)5TrB„U(t)@r(0)
^ rB(0)#U†(t)…. Here the trace is over the bath degrees of freed
U5exp(2iHSBt) is the unitary evolution operator of the combine
system bath, andHSB is their interaction Hamiltonian. One find
Ad5(m,n)5Am^muUun&, whereum&,un& are bath states in the spe
tral decomposition of the bath density matrix:rB5(mum&^mu.
1050-2947/2001/63~2!/022307~18!/$15.00 63 0223
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which errors can afflict the quantum information contain
in r @9#. Conversely, if there is only one Kraus operator, th
from the normalization condition it must be unitary:A
5exp(2iHt) with H Hermitian, so thatr satisfies theclosed-
system Liouville equationṙ52 i @H,r#, H being the system
Hamiltonian. In this case there is no decoherence.

Two principal encodingmethods have been proposed
solve the decoherence problem:~i! Quantum error-correcting
codes~QECCs! @10–16# ~for a recent review see@17#!, ~ii !
decoherence-free subspaces~DFSs! @18–24#, also known as
‘‘noiseless’’ or ‘‘error-avoiding quantum codes.’’ In both
methods, quantum information is protected against deco
ence by encoding it into ‘‘codewords’’~entangled superpo
sitions of multiple-qubit states! with special symmetry prop-
erties. To exhibit these, it is useful to expand the Kra
operators over a fixed operator basis. For qubits, a part
larly useful basis is formed by the elements of the Pa
group, which is the group of tensor products of all Pa
matrices$sk

ak%, wherea50,x,y,z (s0 is the 232 identity
matrix! andk51•••K is the qubit index. An element of the
Pauli group can be written asEa5 ^ k51

K sk
ak , where a

5(a1 , . . . ,aK). The 4K11 elements$Ea% of the Pauli group
~we include factors of6,6 i in this count! square to identity,
are both unitary and Hermitian, either commute or antico
mute, and satisfy Tr@Ea

†Eb#5dab/2
K. When the Kraus opera

tors are expanded as

Ad~ t !5( cad~ t !Ea , ~1.2!

the operators$Ea% acquire the significance of representin
the different physical errors that can corrupt the quant
information. The weightw(Ea) is the number of nonzeroak
in a. Let us now assume a short-time expansion of thecad(t)
~relative to the bath-correlation time!. The situation where
only thoseEa with w(Ea)51 have nonvanishingcad(t) is
called the ‘‘independent errors’’ model~assuming thecad ,
which are essentially bath correlation functions@8#, are sta-
tistically independent!. Correlated errors correspond to th
situation in which someEa with w(Ea).1 have nonvanish-
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ing cad(t): two or more qubits are acted upon nontrivial
with the same coefficientcad . QECCs can be classified ac
cording to the maximum weight of the errors they can s
correct~this is related to the notion of a ‘‘distance’’ of a cod
@17#!. QECCs can generally deal at least with errors
weight 1. Barring accidental degeneracies, nontrivial DF
on the other hand, generally do not exist if there are err
with weight 1 @22#. To make these ideas more precise, let
briefly recall the definitions of QECCs and DFSs.

A QECC is a subspaceC5span@$u i &%] of the system Hil-
bert space with the symmetry property that different err
take orthogonal codewordsu i & and u j & to orthogonal states
@16#:

^ i uEa
†Ebu j &5gabd i j . ~1.3!

Heregab are the elements of a Hermitian matrixg andd i j is
the Kronecker delta. This property ensures that if an errorEa
occurs, it can be detected and subsequently reversed@16#. A
large variety of QECCs have been found@17#. A particularly
useful and large class, one which will occupy our attention
this paper, arises when one considers Abelian subgroupQ
of the Pauli group. Given such an Abelian Pauli subgroup
stabilizer Q ~we will use both terms interchangably in th
paper!, its 11 eigenspace is a QECC known as astabilizer
code@15#. The set of errors$Ea% is correctable by this code
if for every two errorsEa ,Eb there exists someqPQ such
that

$Ea
†Eb ,q%50. ~1.4!

This is because under the stipulated condition^ i uEa
†Ebu j &

5^ i uEa
†Ebqu j &52^ i uqEa

†Ebu j &52^ i uEa
†Ebu j & so that

^ i uEa
†Ebu j &}d i j @15#: the QECC condition@Eq. ~1.3!# is sat-

isfied. To correct an errorEa one simply applies the unitar
operatorEa

† to the code. Note that this involves active inte
vention, namely measurements to diagnose the error an
ror reversal.

DFSs can be viewed as highly ‘‘degenerate’’ QECC
where degeneracy refers to the rank ofg: DFSs are rank-1
QECCs~i.e., gab5gagb) @23,25#. Equivalently, a DFS can
be defined as the simultaneous eigenspaceH̃5span@$u j̃ &%]
of all Kraus operators@23#:

Adu j̃ &5adu j̃ & ~1.5!

($ad% are the eigenvalues!. Viewed in this way, DFSs have
the remarkable property that they offer complete protect
for quantum information without the need for any active
tervention: r̃(t)5(dAd(t) r̃(0)Ad

†(t)5 r̃(0)(duadu25 r̃(0),

for r̃ with support exclusively onH̃. Thus a DFS is a ‘‘quiet
corner’’ of the system Hilbert space, which is complete
immune to decoherence. Like stabilizer QECCs, DFSs
also be characterized as the11 eigenspace of a stabilize
which, however, is generallynon-Abelian over the Pauli
group @26,27# ~i.e., a DFS is generally a nonadditive cod
@28#!. Most work on DFSs to date has focused on a mode
highly correlated errors, known as ‘‘collective decohe
ence.’’ In this model, the~non-Abelian! stabilizer is com-
02230
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posed of tensor products of identical SU~2! rotations1 con-
tractions on all qubits. Here we will not concern ourselv
with the collective decoherence model, and the term ‘‘sta
lizer’’ will be reserved for the Abelian subgroups of the Pa
group.

In a companion paper@29# ~referred to from here on a
‘‘paper I’’ !, we began a study of DFSs for noncollectiv
errors. We derived a necessary and sufficient condition fo
subspace to be decoherence-free when the Kraus oper
are expanded as linear combinations over the elements o
arbitrary group. The decoherence-free states were show
be those states that transform according to the o
dimensional irreducible representations~irreps! of this group.
As above, it is natural to focus on the case where this gr
is the Pauli group. This is so not only because of the c
nection to stabilizer QECCs, but also because the P
group arises in the context of many-qubit systems, where
often natural to expand the Hamiltonians in terms of ten
products of Pauli matrices. To find DFSs, therefore, we fo
here on subgroups of the Pauli group. Note that the n
Abelian subgroups of the Pauli group do not have o
dimensional irreps@29#, and hence in this case a DFS can
associated only with the Abelian subgroups~which of course
have only one-dimensional irreducible representations!.

We can now define the error model that will concern us
this paper. Unlike the stabilizer-QECCs case, where the
rors that the code can correct are those that anticomm
with the stabilizer,in the DFS case the errors are the ele
ments of the stabilizer itself. We shall refer to these errors a
‘‘stabilizer errors.’’ The Abelian subgroups of the Pau
group cannot contain single-qubit operators, since th
would generally generate the whole Pauli group.2 Hence as
errors the elements of the subgroup representmultiple-qubit
couplings to the bath. As explained above, this is therefo
correlated-errors model, which is distinguished from pre
ous work on DFSs in that it does not involve any spati
symmetry assumptions. The physical relevance of this e
model was discussed in paper I, and will be embellish
here. The DFS is not affected by these stabilizer-errors,
the rest of the Hilbert space is and may decohere under t
influence. Several examples of DFSs corresponding to A
lian subgroups were given in paper I. Our purpose in t
sequel paper is to complete our study of this class of DF
by showing how to perform universal fault-tolerant quantu
computation on them.

The central challenge in demonstrating universal fau
tolerant quantum computation on DFSs is to show how t
can be done using only one- and two-body Hamiltonia
and a small number of measurements.3 Several previous pub

2The exceptions are~i! the subgroup operators have constanta
5x, y, or z, which is the Pauli matrix index;~ii ! the single-qubit
operators act only on those qubits where all other operators ac
identity.

3By ‘‘small’’ we mean that the measurements do not have to
fast compared to the bath correlation time. If they are, then
decoherence is avoided essentially by use of the quantum Z
effect.
7-2
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DECOHERENCE-FREE SUBSPACES . . . . II. . . . PHYSICAL REVIEW A 63 022307
lications have addressed the issue of universal quantum c
putation on DFSs, but left this challenge unanswe
@22,30,31#. In Refs. @26,27#, we accomplished this task fo
the first time in the collective decoherence model. Collect
decoherence is the situation in which all qubits are coup
in an identical manner to the bath, i.e., there is a stro
spatial symmetry: qubit permutation invariance. In this cas
by using exchange operations, it is possible to implem
universal quantum computation without ever leaving
DFS. The procedure is therefore naturally fault-tolerant.
the present paper, we will show how to implement univer
fault-tolerant quantum computation on DFSs that arise fr
the Pauli subgroup error model, without requiring any spa
symmetry assumption. However,it will not be possible to do
so without leaving the DFS, thus exposing the states to
subgroup errors. As will be shown here, fault tolerance
obtained by using the encoded states twice, in a dual D
QECC mode. This duality arises from the fact that the D
remains a perfectly valid QECC for the errors with which t
stabilizer anticommutes.

There are several ways to achieve universal fault-tole
quantum computation on stabilizer-QECCs; e.g., use of
sets of gates$Hadamard,sz

1/2, Toffoli% @32,14# or $Had-
amard,sz

1/4, controlled-NOT% @33#. Additional methods were
provided in @34,35#. Our construction reverts to the ear
ideas on the implementation of universal quantum comp
ing: we use single-qubit SU~2! operations and a controlled
NOT ~CNOT! gate@36–39#, except that these areencodedop-
erations, acting on codewords~not on physical qubits!. In
general, such encoded operations involve multiple qub
and are not naturally available. The key to our constructio
a method to generate many-qubit Hamiltonians by comp
ing operations on~at most! pairs of physical qubits. This is
done by selectively turning certain interactions on and off
difficulty is that the very first such step can transform t
encoded states and take them outside of the DFS. Howe
by carefully choosing the interactions that we turn on/off a
their order, we show that the transformed states becom
QECC with respect to the stabilizer errors to which the D
was immune. This fact is responsible for the fault toleran
of our procedure. After the final interaction is turned off, t
states return to the DFS, and are once again immune to
stabilizer errors.

The structure of the paper is as follows. In Sec. II, w
briefly review the main result of paper I and the connect
between the DFSs considered here and stabilizer QEC
We then discuss in Sec. III the meaning of fault tolerance
light of the error model considered in this paper. In the f
lowing two sections we present the main ideas and result
this paper: in Sec. IV, we show how to generate many-qu
Hamiltonians by composing two- and single-qubit Hamilt
nians, and in Sec. V, we prove the fault tolerance of t
procedure. We use it to generate encoded SU~2! operations
on the DFS qubits. Section VI shows how, by using simi
methods, we can fault tolerantly perform encodedCNOT op-
erations on the encoded qubits, thus coupling blocks of
bits and completing the set of operations needed for uni
sal computation. The final ingredient is presented in S
VII, where we show how to fault tolerantly measure the er
02230
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syndrome throughout our gate construction. While our m
motivation in this paper is to study computation on DFSs
the presence of stabilizer errors, it is also interesting to c
sider the implications of the techniques we develop here
the usual model of errors that anticommute with the sta
lizer. We consider this question briefly in Sec. VIII, an
show that our methods provide another way to implem
universal quantum computation that is fault tolerant with
spect to errordetection. We conclude and summarize in Se
IX.

II. CONNECTION BETWEEN PAULI SUBGROUP DFSs
AND STABILIZER CODES

In paper I we proved the following result.
Theorem 1. Suppose that the Kraus operators belong

the group algebra of some groupG5$Gn%, i.e., Ad

5(n51
N ad,nGn . If a set of states$u j̃ &% belong to a given

one-dimensionalirrep of G, then the DFS conditionAdu j̃ &
5cdu j̃ & holds. If no assumptions are made on the bath co
ficients$ad,n%, then the DFS conditionAdu j̃ &5cdu j̃ & implies
that u j̃ & belongs to aone-dimensionalirrep of G.

This theorem provides a characterization of DFSs in ter
of the group-representation properties of the basis set use
expand the Kraus operators. There are good physical rea
to choose the Pauli group as this basis set: as argued in p
I, the Pauli group naturally appears as a basis in Hami
nians involving qubits. Furthermore, using the Pauli gro
allows us to make a connection to the theory of stabili
QECCs. To see this, consider the identity irrep, for whi
each elementGn in the groupG acts on a decoherence-fre
stateuc& as

Gnuc&5uc&. ~2.1!

ChoosingG from now on as a Pauli subgroupQ, the DFS
fixed by the identity irrep is a stabilizer code, whereQ is the
stabilizer group. As mentioned above, a stabilizer code
defined as the11 eigenspace of the Abelian groupQ.4 It is
thus clear that the states fixed byQ play a dual role:they are
at once a DFS with respect to the stabilizer errors and
QECC with respect to the errors that anticommute with so
element of Q.

It is simple to verify that basic properties of stabiliz
codes hold, e.g., that if the stabilizer group hasK2 l genera-
tors, then the code space~in this case the DFS! has dimen-
sion 2l ~i.e., there arel encoded qubits! @15#. Indeed, the
dimension of an Abelian group withK2 l generators isN
52K2 l , and we showed in paper I that the dimension of t
DFS is 2K/N52l .

4The DFSs corresponding to the other 1D irreps can also be tu
into stabilizer codes by a redefinition of the subgroup, taking i
account the minus signs appearing in the irrep in question. T
kind of freedom is well known in the stabilizer theory of QECC
@15#.
7-3
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III. THE MEANING OF FAULT TOLERANCE

The observation that the Pauli subgroup DFSs are st
lizer codes allows us to employ some results from stabili
theory, and aids in the analysis of when it is possible
perform universal fault-tolerant computation on these DFS5

Before delving into the analysis, however, we should clar
what we mean by fault tolerance in the present context.
usual meaning of fault tolerance, as it is used in the theor
QECC, is the following: an operation~gateU) is not fault
tolerant if an errorE that the code could fix before applica
tion of the gate has become an unfixable error (UEU†) after
application of the gate. For example, a single-qubit ph
error (I ^ Z) becomes a two-qubit phase error (Z^ Z) due to
the application of aCNOT gate@34#; if the code used could
only correct single-qubit errors, then as a result of theCNOT

gate ~unless it is applied transversally, i.e., not coupli
physical qubits involved in representing the same enco
qubit! this code can no longer offer protection. In this sc
nario, therefore, theCNOT gate was not a fault-tolerant op
eration. Conversely, an operationis fault-tolerant if the code
offers the same protection against the errors that appear
application of the operation (UEU†) as it does against th
errors before the operation (E).

A complementary~‘‘Heisenberg’’ @40#! picture to the
~‘‘Schrödinger’’! description above is to consider the erro
as unchanged and the codeC, as well as the stabilizerQ, as
transformed after the application of each gate:C°UC and
Q°UQU†. Then fault tolerance can be viewed as the
quirement that the new code is capable of correcting
original errors. This point of view will be particularly usefu
for our purposes. In our case, the original errors are the
ments of the Pauli subgroupQ ~the stabilizer!, and the gates
U will turn out not to preserve the original code. Neverth
less, we will show that to the new stabilizerQ85UQU†

corresponds a QECC~the transformed codeC85UC) that
can correct the original errors. In this way, the fault-toleran
criterion is satisfied.

IV. ENCODED SU„2… FROM HAMILTONIANS

We now begin in earnest our discussion of how to imp
ment universal, fault-tolerant quantum computation on
Pauli-subgroup DFSs. In this section, we show how arbitr
single encoded-qubit operations can be implemented f
tolerantly. We will do so by generating the entire encod
SU~2! group from at most two-qubit Hamiltonians. We a
sume that the system Hamiltonian is of the general two-q
form

5The reader may wonder whether it should not be possible
simply take over the results about universal fault-tolerant comp
tion from stabilizer theory and apply them directly in the pres
case. However, a problem is encountered when that constructi
applied to the error model considered here, because multiple-q
errors may propagate back as~nonperturbative! single-qubit errors
due to interaction with a ‘‘bare’’~non-DFS! ancilla. We are in-
debted to Dr. Daniel Gottesman for pointing out this problem to
02230
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(
a,b5$x,y,z%

Ji j
a ib js i

a i ^ s j
b j ,

~4.1!

with controllable parameters$v i
a i%, $Ji j

a ib j%.

A. Background

Suppose we are given an error subgroupQ generated by
the elements$qi% i 51

uQu . From the results of paper I we know
how to identify the corresponding DFS, which is also a s
bilizer code with respect to the errors that anticommute w
Q. This QECC aspect will not be needed as long as we
only interested instoring information in this DFS: then theQ
errors will have no effect. However, here we are interested
the more ambitious goal ofcomputingin the presence of the
Q errors, which means that we must be able to implem
logic gates. As discussed above, these gates will take
states out of the DFS and expose them to theQ errors. To be
able to compute, we will need some basic results from
theory of fault-tolerant quantum computation using stabiliz
codes, as developed primarily in Ref.@34#. Let us briefly
review these results.

The set of operators that commute with the stabiliz
themselves form a group called thenormalizerof the code,
N(Q). These elements are of interest because they are
erations that preserve the DFS. LetqPQ, uc&PDFS(Q); if
nPN(Q), then

q~nuc&)5nquc&5nuc&, ~4.2!

so thatnuc& is in the DFS as well. Clearly, the stabilizerQ is
in the normalizerN(Q) and so the only operations that a
nontrivially on the subspace are those that are in the norm
izer but not in the stabilizer:N(Q)/Q. While this means that
these operations can be used to perform useful manipulat
on the DFS, it also means that if they act uncontrollably, th
they appear as errors that the codecannotdetect. As will be
seen later on, these are both crucial aspects in our cons
tion.

For any Pauli-subgroup stabilizer code, the normalize
generated by the single-qubitX̄i and Z̄i operations, wherei
51, . . . ,l labels theencodedqubits@34#. The bar superscrip
denotes that these are ‘‘encoded operations’’: they perfor
bit flip and a phase flip on the encoded qubits. The gatesX̄i

andZ̄i , however, are by themselves insufficient for univer
quantum computation. The usual stabilizer-QECC constr
tion deals with~typically uncorrelated! errors that anticom-
mute with the stabilizer. In this case, in addition to gener
ing the normalizer of the Pauli groupN(PK), one other
operation is needed, such as the Toffoli gate@32#. Such con-
structions have been covered in several recent publicat
@32–35,41#. However, as emphasized above, the errors h
are qualitatively different: not only are they always corr
lated, rather than anticommuting with the stabilizer,the er-
rors are the stabilizer itself. Thus the usual construction doe
not apply, and we introduce a different approach. We sh
how to perform universal fault-tolerant quantum compu

to
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t
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DECOHERENCE-FREE SUBSPACES . . . . II. . . . PHYSICAL REVIEW A 63 022307
tion using the early SU~2!1controlledNOT ~CNOT! construc-
tion @37,39,42#, but applied to encoded~DFS! qubits.

B. A useful formula: Conjugation by pÕ4

Instead of treatingX̄ and Z̄ as gates, as in the usu
stabilizer-QECC construction, we employ them asHamilto-

nians. SinceX̄ and Z̄ are in the normalizer, so are exp(iuX̄)
and exp(iuZ̄), and so are any other encoded SU~2! group
@denotedSU(2)# operations obtained from them. By appl
ing operations fromSU(2) alone, we ensure that the code
preserved. To obtain otherSU(2) operations fromX̄ and Z̄,
we use the Euler angle construction@43#, which shows that
any rotation can be composed out of rotations about only
orthogonal axes:

exp@2 iv~n•s!/2#5exp~2 ibsz/2!exp~2 iusy/2!

3exp~2 iasz/2!. ~4.3!

Here the resulting rotation is by an anglev about the direc-
tion specified by the unit vectorn, both of which are func-
tions of a, b, and u. Using Eq. ~4.3! and the mapping

$sx ,sy ,sz%°$X̄,Ȳ,Z̄%, we can construct any element o

SU(2). To do so, we nowderive a form of the Euler angle
construction that is particularly relevant to operations w
Pauli matrices. Assume thatA andB are both tensor product
of Pauli matrices~and thus square to identity!. Then

exp~2 iwA!B exp~1 iwA!

5~ I cosw2Ai sinw!B~ I cosw1Ai sinw!

5B cos2w1ABAsin2w2 i sinw cosw@A,B#

5H B if @A,B#50

B cos 2w1 iBA sin 2w if $A,B%50.
~4.4!

For the special case ofw5p/4, we define the conjugation
with A by

TA+exp~ iuB![expS 2 i
p

4
ADexp~ iuB!expS 1 i

p

4
AD

5H exp~ iuB! if @A,B#50

exp@ iu~ iAB!# if $A,B%50.
~4.5!

This can be understood geometrically as a rotation byw
5p/4 about the ‘‘axis’’A, followed by a rotation byu about
B, followed finally by ab52p/4 rotation aboutA, resulting
overall in rotation byu about the ‘‘axis’’ iAB. All w5p/4
rotations about a Pauli group member are elements of
normalizer of the Pauli group: they take elements in the P
group under conjugation to other elements of the Pa
group.

Note that the ‘‘conjugation-by-(p/4)A’’ operation
TA+exp(iuB) is equivalent to multiplication ofB to the left by
iA inside the exponent. This is very useful, since the e
ments of the normalizer of any stabilizer can always be w
ten as a tensor product of single-qubit Pauli matrices, i.e.
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a tensor product of single-body gates. This is exactly
structure that is suggested by Eq.~4.5!, and thus it should
allow us to construct exp(iuX̄) and exp(iuZ̄) for any Pauli
subgroup using at most two-body interactions. The cav
however, is that while exp(iuX̄) and exp(iuZ̄) always pre-
serve the code~since they are in the normalizer!, the opera-
tions that generate them from Hamiltonians involving
most two-body interactions may corrupt the code, as
plained in Sec. III above.

Let us then state the challenges ahead. We need to s
how the HamiltoniansX̄ andZ̄ can be generated using~i! at
most two-body interactions,~ii ! fault tolerantly.

C. Simple example: The subgroupQ4

Let us pause by introducing a simple example illustrat
the notion of universal computation using normalizer e
ments which are two-body Hamiltonians. Our example u
a group whose natural structure is such that the two-b
restriction is automatically satisfied. To this end, consider
subgroupQ45$I ^ 4,X^ 4,Y^ 4,Z^ 4%, which we studied in de-
tail in paper I. It is generated byK2 l 542 l 52 elements
(X^ 4,Z^ 4), and therefore encodesl 52 qubits, with states
given by

u00&L5
1

A2
~ u0000&1u1111&),

u01&L5
1

A2
~ u1001&1u0110&),

~4.6!

u10&L5
1

A2
~ u1100&1u0011&),

u11&L5
1

A2
~ u0101&1u1010&).

These states are easily seen to be11 eigenstates ofQ4. The
normalizer in this case contains twoX̄i and Z̄i operations,
one for each encoded qubit:

X̄15XXII, Z̄15IZZI,
~4.7!

X̄25IXXI, Z̄25ZZII.

Indeed, we have, for example,X̄1ua,b&L5u12a,b&L and
Z̄1ua,b&L5(21)aua,b&L , so X̄1 and Z̄1 act, respectively, as
a bit flip and a phase flip on the first encoded qubit. As ea
checked,X̄i and Z̄i commute withQ4, so that they keep
states within the DFS, as should be the case for normal
elements. AsHamiltonians, X̄i and Z̄i are valid two-body
interactions and hence can be used directly to generate
encoded SU~2! group on each encoded qubit. That
exp(iaX̄i) and exp(ibZ̄i) can be combined directly, with arbi
trary values for the anglesa andb, to produce any operation
in SU(2) by using the Euler angle formula. For example,
7-5
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can construct a rotation about the encodedYi axis by conju-
gation: exp(iuȲi)5exp„2 i (p/4)X̄i…exp(2iuZ̄i)exp„1 i (p/
4)X̄i…. We have, therefore, two independent encoded qu
that can be operated upon separately by encoded SU~2! op-
erations.

What about coupling between the encoded qubits so
the full SU(4) can be used to do computation? Note t
Hamiltonians likeZ̄1^ Z̄25ZIZI, which are two-body on the
encoded qubits, can be implemented directly since they
also two-body on the physical qubits~this is not a generic
feature, however, as discussed in Sec. V D below!. It is a
fundamental theorem of universal quantum computat
@37,39,42# that the ability to perform SU~2! on two qubits
plus the ability to performany nontrivial two-bodyHamil-
tonian between these qubits is universal over the combi
SU~4! of these two qubits. Thus we can perform univer
computation on theQ4 DFS. In this case, the normalize
elements that perform theSU(4) are all two-body Hamilto-
nians, and there is no need to apply any new method
order to perform fault-tolerant computation, which preserv
this DFS.

Anticipating the discussion in Sec. VI, note that while w
have demonstrated universal computation on a single D
block, we have not yet addressed how to accomplish
when we have clusters of theQ4 DFSs. This, of course, is
necessary to scale up the quantum computer under theQ4
model of decoherence. In order to perform universal fa
tolerant computation with clusters, we must show that th
can be coupled in a nontrivial manner. Methods for perfor
ing nontrivial couplings between clusters exist for any sta
lizer code@34#. In particular, theQ4 DFS is a Calderbank
Shor-Steane~CSS! code, whose clusters can be coupled
performing bitwise parallel controlled-NOT gates between
two clusters of qubits. This implements as desired an
coded controlled-NOT between these clusters. In Sec. VI, w
will discuss what is needed to make this procedure fa
tolerant

Q4 is a special case because of the fact that the norma
elements are all two-body interactions. In general, the n
malizer elements will be many-body interactions and m
general techniques are needed, to which we turn next.

D. Generating X̄ and Z̄ using at most two-body interactions

We now move on to the general case in which the n
malizer elements are possibly many-body Pauli operat
Our first task is to show that the ‘‘conjugation-by-(p/4)A’’
operationTA+exp(iuB) can be used to generate any man
body Hamiltonian inside the exponent using at most tw
qubit Hamiltonians. In Sec. V, we show that this is a fau
tolerant procedure if applied correctly to a DFS.

Suppose the many-body Pauli HamiltonianH we want to
generate is of the following general form:

H5sb
b ^

j PJ
s j

a j , ~4.8!

whereJ is some index set andb¹J. From Eq.~4.1!, we
have at our disposal a single-qubit Hamiltoniansb

b and a set
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of two-qubit HamiltoniansAj5sb
g j ^ s j

a j with j PJ and g j

Þb. We call thebth qubit the ‘‘base qubit.’’Aj and sb
b

agree on one qubit index but differ on the Pauli matrix a
plied to that qubit, so they anticommute:$Aj ,sb

b%50. Let
J( i ) denote thei th element in the index setJ. If we use the
‘‘conjugation-by-(p/4)AJ(1)’’ operation about exp(iusb

b) @re-
call Eq. ~4.5!#, we obtain

TAJ(1)
+exp~ iusb

b!5exp@ iu~ isb
gJ(1)^ sJ(1)

aJ(1)!sb
b#

5exp@6 iusb
h1^ sJ(1)

aJ(1)#, ~4.9!

where the sign is determined by that of«gJ(1)bh1
, according

to the usual rule of multiplication Pauli matrices:

sasb52 i«abgsg. ~4.10!

Applying all other ‘‘conjugation-by-(p/4)AJ( i )’’ operations,
i 51•••uJu, we obtain

TAJ(uJu)
+•••+TAJ( i )

+exp~ iusb
g!

5exp~6 iu ^

j PJ
sb

h
^ s j

a j !. ~4.11!

It is clear that by appropriately choosing the sequence
Pauli matrices, i.e., theaJ( i ) , we can obtainh5b. Further,
conjugating by2p/4 ~instead of1p/4) allows us to always
adjust the sign in the exponent to1. Thus the action of this
gate sequence is to generate the HamiltonianH, as desired:

TAJ(uJu)
+•••+TAJ( i )

+exp~ iusb
g!5exp~ iuH !. ~4.12!

An example of this type of gate network~analyzed in detail
in Sec. V C! is shown in Fig. 1. Since the elements of th
normalizer of any stabilizer can always be written as a ten
product of single-qubit Pauli matrices, Eq.~4.12! gives a
constructive way of generating these normalizer element
Hamiltonians~i.e., appearing as arguments in the expone!.
We have thus met the first challenge mentioned above:
have shown how to generate the HamiltoniansX̄ andZ̄ using
at most two-body interactions. More generally, Eq.~4.12!
can be considered as a constructive procedure for gener
desired many-body Hamiltonians from given two-body inte
actions.

Finally, we note that it is perfectly possible to replace t
central single-qubit Hamiltonian with a two-qubit one, sp
cifically by AJ(1)sb

g . This may be more convenient for prac
tical applications, where control of two-body interactio
may be more easily achievable~as in the case of exchang
interactions in quantum dots@44#!. This change would not
affect our fault-tolerance analysis in the next sections.

V. GENERATING ENCODED SU „2… FAULT TOLERANTLY
FOR ANY ABELIAN PAULI SUBGROUP

We are now ready to show how to generate enco
SU~2! operations fault tolerantly for any Pauli error su
group. LetQ be such a subgroup, generated by the eleme
7-6
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FIG. 1. Fault-tolerant circuit implementing

exp(iuZ̄) for the Q2X subgroup. The transformed

Z̄ is shown at each gate, and directly below t
original normalizer element with which it anti
commutes.
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n , uQu52n. Recall that here these elements play t

dual role of errors and of defining the DFS by fixing i
elements. A new~transformed! stabilizer is obtained afte
each application of a gate exp(iwjAj). To this sequence o
stabilizers corresponds a sequence of stabilizer QECCsCj .
Our strategy will be to find conditions on the Hamiltonia
$Aj% such that after each gate application, the current QE
is able to correct the originalQ errors.

Let Qj @N(Qj )# denote the stabilizer~normalizer! ob-
tained after application of the gateU j5exp(iwjAj). If w j is an
integer multiple ofp/4 ~as we will always assume!, then
there are only three mutually exclusive possibilities for t
errorsePQ ~we use the notationse andq for members ofQ
to emphasize the error and stabilizer element aspects, res
tively!, as follows.

~i! ePQj . The error is part of the transformed stabilize
In this case, the transformed code is immune toe ~i.e., the
transformed code is a DFS with respect toe!, and there is no
problem.

~ii ! e anticommutes with some element ofQj . The error
is detectable by the transformed code.

~iii ! ePN(Qj )/Qj ~i.e., e commutes withQj but is not in
it!. The error infiltrated the transformed normalizer. This i
problem since the error isundetectable by the transforme
code, and acts on it in a nontrivial manner.

Suppose the errorsePQ are exclusively of type~i! or ~ii !.
Then those that are of type~ii ! are not only detectable bu
also correctable. This is so because they form a group (Q),
and therefore any product of two errors is again either
type ~i! or ~ii !, which is exactly the error correctio
criterion.6 Thus the problematic case is~iii !, and this is the
case we focus on in order to make a prudent choice
HamiltoniansAj . To simplify the notation, from now on we
shall denoteN(Qj )/Qj simply by Nj ~and by N when Qj
5Q), and refer to this as the normalizer~without risk of
confusion!.

Is there a simple criterion to check whetherePNj? The
answer is contained in the theorem following this lemma

Lemma 1. Let Q be a stabilizer over the Pauli group an
let N be its normalizer, i.e., the set of all operations th
commute withQ: N5Q8 ~N is thecommutantof Q). Then

6Note that this is not true for errors in the usual stabilizer-QE
case, where the errors do not close as a group under multiplica
02230
e
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N85Q ~i.e., the stabilizer is the commutant of the norma
izer!.

Proof. The Pauli group splits into three sets of operato
~i! the stabilizerQ, ~ii ! the normalizerN, ~iii ! the errors$E%,
which anticommute withQ. The normalizer itself splits into
two parts: the elements that are in the stabilizer,NQ , and the
elements that are not,NP . Now, clearly the errors$E% are not
in the commutant ofN, because they anticommute withNQ .
The elements ofNP are not in the commutant ofN because
as is well known from the theory of stabilizer codes,NP

forms a representation of a Pauli group~i.e., if we encodel
qubits, thenNP is a representation of the Pauli group onl
qubits!. But, for every member of a representation of a Pa
group there is another element with which it anticommut
ThusNP cannot be in the commutant ofN either. Finally,NQ

is clearly a member of the commutant ofN, by definition of
the normalizer.

Theorem 2. Given are a Pauli subgroup of errorsQ, its
normalizerN, and a sequence of their images$Qj% and$Nj%
under conjugation by unitaries$U j%. Corresponding toQ is a
DFS ~code! C. A sufficient condition so that noePQ is ever
in Nj is that either~i! eachnjPNj equals its source inN, or
~ii ! for each njPNj there existsmPN such that$nj ,m%
50. Then the transformed codesCj5U jCj 21 (C15U1C) can
always correct the originalQ errors.

Proof. From lemma 1 we know that (Q8)85Q. In other
words, the only operations that commute with the normali
are those in the stabilizer. Now letnj be the image ofn
PN after the j th transformation. The observationN85Q
allows us to exclude case~iii ! by checking if, for everynj

PNj ~wherenj5” n), there existsmPN with which nj anti-
commutes. To see this, note first that ifnj5n, then by defi-
nition nj cannot be inQ. Second, for annjPNj that differs
from its source inN, assume that it anticommutes with som
mPN. This implies thatnj is not in the commutant ofN, and
is therefore not inQ. If this is true for allnjPNj , then we
have covered the entire new normalizerNj and not found an
element ofQ in it. This guarantees that no element of th
original stabilizerQ becomes a member of the new norma
izer Nj . QED.

Note that if the conditions of the theorem are satisfie
thenall elements of the original stabilizer are excluded fro
the transformed normalizer. Therefore, also all products
stabilizer elements are excluded~since the stabilizer is an.
7-7
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group!, so that all stabilizer errors are both detectable a
correctable.

Below we make repeated use of the result of theorem
The first application is to show how to construct two-bo
Hamiltonians$Aj% that can be applied in succession to pr
duce arbitrary normalizer elements, such that at every p
the theorem is satisfied. To this end, we need a basic re
from the theory of stabilizer codes, regarding a standard fo
for the normalizer. We then illustrate the general constr
tion with the relatively simple case of CSS codes, and fina
move on to general stabilizer errors.

A. Standard form of the normalizer for stabilizer codes

It is shown in@45# that, due to the fact that the normaliz
is invariant under multiplication by stabilizer elements, t
normalizer of every stabilizer code can be brought into
following standard form:

~5.1!

~5.2!

Here MZ
j 5 ^ nPZj

Zn , NZ
j 5 ^ n8PZ

j8
Zn8 , and MX

j

5 ^ i PXj
Xi , whereZj , Zj8 , andXj are ~possibly empty! in-

dex sets of lengthsr, r, andK2 l 2r , respectively~i.e., MZ
j ,

NZ
j , andMX

j are tensor products ofI ’s and single-qubit Paul
Z andX matrices, respectively!. Recall thatK is the number
of physical qubits;l is the number of encoded qubits. Th
exact form ofMZ

j , NZ
j , andMX

j , as well as the value of the
integerr, can be found from the stabilizer@45#, but is unim-
portant for our purposes. We only need the result that
every pair of encodedZ andX operations, acting on thej th
encoded qubit, it is possible to express the operations in
blockwise product shown in Eqs.~5.1! and ~5.2!.

B. CSS stabilizer errors on one encoded qubit

For simplicity, let us now restrict attention to the case
a single encoded qubit in CSS codes, i.e., those codes w
every Z̄ and X̄ can be written as a product of onlyZ’s and
only X’s, respectively. Then, from Eqs.~5.1! and ~5.2! the
standard form is~dropping thej index!

Z̄5Z1^ MZ^ I ^ K2 l 2r , ~5.3!

X̄5X1^ I ^ r
^ MX , ~5.4!

i.e., NZ5I ^ r . Our goal is to construct suchZ̄ and X̄ from
single- and two-body Hamiltonians. We shall do this
starting from the single-body HamiltoniansZ1 and X1, and
conjugating by certain two-body Hamiltonians. The idea is
successively construct theZ’s in MZ and theX’s in MX . We
claim that the required two-body Hamiltonians have t
natural form
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An5X1Zzn
, znPZ, ~5.5!

Bi5Z1Xxi
, xiPX, ~5.6!

wheren51•••uZu andi 51•••uXu, i.e.,An (Bi) has aZ (X)
in thenth (i th) position of the index setZ ~X!. If there is an
even number ofZ’s in Z̄, then the last Hamiltonian should b
taken asAuZu5X1 ~since, as we show below, in that case
the penultimate step we haveY1^ MZ^ I ^ K2 l 2r for Z̄), and
similarly for the lastBi .7 Note that@An ,X̄#5@Bi ,Z̄#50, so
that transformingZ̄ does not affectX̄, and vice versa. There
are now two ways to constructZ̄ and X̄ fault tolerantly: in
parallel or in series. The parallel implementation has the
vantage that it requires only three basic steps and thus is
efficient. Its disadvantage is that it may be hard to implem
in practice because it requires simultaneous control o
many qubits.

1. Series Construction

We assume throughout this discussion that we wish
generate exp(iuZ̄). The symmetry betweenZ̄ and X̄ in the
CSS case implies that our arguments hold for exp(iuX̄) as
well, with obvious modifications.

The series construction consists of applying first the
quence of gates$exp„i (p/4)An…%n51

uZu , then the gate
exp(iuZ1), and then the reverse sequence of ga
$exp„2 i (p/4)An…%n5uZu

1 . An example is shown in Fig. 1
First, as an application of the general Eq.~4.12!, let us prove
that this procedure indeed generates exp(iuZ̄):

TA1
+TA2

+•••TAuZu
+exp~ iuZ1!

5F ^

n51

uZu

expS 2 i
p

4
AnD Gexp~ iuZ1!

3F ^

n5uZu

1

expS 1 i
p

4
AnD G

5expF iuS i uZu)
n51

uZu

AnZ1D G
5exp@~2 ! uZuiuZ̄#, ~5.7!

where in the first line we used the definition of th
‘‘conjugation-by-(p/4)An’’ operation, in the second the re
sult that this operation corresponds to multiplication ins
the exponent, and in the third the form in Eq.~5.3! for Z̄.
Note that the reason we have a series of conjugation
(p/4)An operations~as opposed to trivial identity operations!

7For example, supposeZ̄5Z(ZZZ)(II ) and X̄5X(III )(XX);
then A15X1Z2 , A25X1Z3 , A35X1Z4 , A45X1 , B15Z1X5, and

B25Z1X6. Then we haveZ(III )(II )°
A1

Y(ZII )(II )°
A2

Z(ZZI)(II )

°
A3

Y(ZZZ)(II )°
A4

Z̄, andX(III )(II )°
B1

Y(III )(XI)°
B2

X̄.
7-8
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is that $)n51
k21AnZ1 ,Ak%50;k<uZu. Finally, we can elimi-

nate the minus sign~if uZu is odd! by changing one of the
p/4’s to 2p/4.

Next we must demonstrate that the conditions of theor
2 are satisfied at each point in the corresponding circui
order to guarantee the fault tolerance of this implementat
Let us divide the proof into three parts, by following th
transformations of the normalizer elements before and a
the central exp(iuZ1) gate, and showing that eitherZ̄ or X̄
anticommutes with the transformed normalizer at each s
along the way.

Errors before the central gate. After application of the
first k gates$exp„i (p/4)An…%n51

k , Z̄ is transformed toZ̄(k)

[)n51
k AnZ̄ ~we neglect the unimportant factors ofi from

now on!. From Eq.~5.5! the product is

)
n51

k

An55 )
n51

k

Zzn
if k52l

X1)
n51

k

Zzn
if k52l 11.

~5.8!

Therefore, using the standard form,

S )
n51

2l

AnZ̄D X̄5 )
n51

2l

Zzn
Z̄X̄

52X̄)
n51

2l

Zzn
Z̄

52X̄S )
n51

2l

AnZ̄D , ~5.9!

so that$Z̄(2l ),X̄%50. On the other hand,

S )
n51

2l 11

AnZ̄D Z̄5X1 )
n51

2l 11

Zzn
Z̄Z̄

52Z̄X1 )
n51

2l 11

Zzn
Z̄

52Z̄S )
n51

2l 11

AnZ̄D , ~5.10!

so that$Z̄(2l 11),Z̄%50. Thus theorem 2 is satisfied after ea
gate application, withZ̄ and X̄ alternating in the role of the
anticommuting original-normalizer element.

Error immediately after the central gate. At the end of
step~i!, Z̄ has been transformed toZ1. Since the central gate
(u rotation! uses only Z1, the transformedZ̄ does not
change. Therefore, is still anticommutes with the originaX̄
and satisfies the criterion of theorem 2. For the same rea
however,X̄ is transformed by the central gate:

X̄°X̄u5X̄ cos~2u!1 iX̄Z1 sin~2u!. ~5.11!
02230
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Thus it suffices to show thatX̄u anticommutes withZ̄, which
is true since@ Z̄,Z1#50:

X̄uZ̄5X̄Z̄ cos~2u!1 iX̄Z1Z̄ sin~2u!

52Z̄X̄ cos~2u!2 i Z̄X̄Z1 sin~2u!

52Z̄X̄u . ~5.12!

Errors after the central gate. After application of the first

k8 inverse gates$exp„2 i (p/4)An…%n5uZu
uZu2k811, Z1 is trans-

formed to Z̄8(k)[)n51
k8 AnZ̄. Therefore, the same reasonin

as in ~i! applies toZ̄8(k). As for X̄ ~which is now X̄u), the
X̄ cos(2u) component commutes with the inverse ga
exp„2 i (p/4)An… so that it does not change. Th
iX̄Z1 sin(2u) component, however, anticommutes with t
inverse gates exp„2 i (p/4)An…. Therefore, it flips back and
forth betweeniX̄Z1 sin(2u) and iX̄Y1 sin(2u). These terms
anticommute with the originalZ̄ andȲ, respectively. But so
does theX̄ cos(2u) component, so their sum anticommut
alternately with the originalZ̄ and Ȳ.

We conclude that theorem 2 is satisfied at each stag
the circuit. Therefore, the series construction is indeed fa
tolerant. Of course, this fault tolerance is achieved in prac
by supplementing the circuit with error-detection a
-correction procedures after each gate~the parallel construc-
tion discussed next is much more economical for this r
son!. We discuss this issue in Sec. VII.

2. Parallel construction

Since theAn (Bi) all commute, the corresponding gate
can also be implementedin parallel. That is,

UA[ ^

nPZ
expS i

p

4
AnD5expS i

p

4 (
nPZ

AnD ,

~5.13!

UB[ ^

i PX
expS i

p

4
Bi D5expS i

p

4 (
i PX

Bi D ,

can be used as parallel gates in our circuit~see Fig. 2 for an
example!. To see directly that this circuit really does imple
ment the normalizer gate exp(iuZ̄) @or exp(iuX̄)#, observe
that, by definition$An ,Z1%5$Bi ,X1%50 for all n andi. This
means that conjugation ofZ1 by UA will act as multiplication
by )nPZAn and thus transformZ1 to Z̄ ~without changing
X1). The same is true forX1 by changingZ’s to X’s andUA

to UB . Therefore, UAZ1UA
†5Z̄ and UBX1UB

†5X̄, from
which it follows immediately by Taylor expansion that

UA exp~ iuZ1!UA
†5exp~ iuZ̄!,

~5.14!
UB exp~ iuX1!UB

†5exp~ iuX̄!.

This too is a fault-tolerant construction. The reason is tha
corresponds to looking at the series construction just at
7-9
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following three points: right before the central gate, rig
after the central gate, and the end.

C. Example: The subgroupQ2X

As an example with a many-body normalizer eleme
consider the Pauli subgroup/stabilizer generated by the e
XXII, IXXI, IIXX:

Q2X5$IIII ,XXII,XIIX,IIXX,XIXI,IXXI,IXIX,XXXX%.
~5.15!

It describes a physically interesting error model, of bit-fl
errors that act on all pairs of nearest-neighbor qubits. T
situation is of interest, e.g., when decoherence results f
spin-rotation coupling in a dipolar Hamiltonian, typical
NMR @46#:

HI5(
j ,k

g jgk

r jk
3 @sj•sk23~sj•r jk!~sk•r jk!#. ~5.16!

Here g j is the gyromagnetic ratio of spinj, and r jk is the
distance between spinsj andk. In the anistropic case~e.g., a
liquid crystal! this can be rewritten as

HI5(
j ,k

g jgk

r jk
3 (

a,b521

1

gjk
ab~s j

a
^ sk

b!Y2
2a2b , ~5.17!

where Yl
m are the spherical harmonics andgjk

ab is the
anisotropy tensor. Whengjk

ab5da0db0gjk , only thes j
z
^ sk

z

terms remain~coupled toY2
0), which leads to decoherenc

described by the subgroupQ2Z ~defined similarly toQ2X),
analyzed in paper I.

To find the DFS underQ2X , we construct in accordanc
with the techniques of paper I the projectorP5 1

8 ( iqi ~cor-
responding to the identity irrep ofQ2X), where the sum is
over all qiPQ2X . Applying this projector to an arbitrary
initial state, we find a two-dimensional DFS, spanned by
states

u0L&5~ u0000&1u0011&1u0101&1u0110&1u1001&

1u1010&1u1100&1u1111&)/A8,
~5.18!

u1L&5~ u0001&1u0010&1u0100&1u0111&1u1000&

1u1011&1u1101&1u1110&)/A8.

This DFS thus encodes a full qubit.

FIG. 2. Parallel implementation ofuZ̄ for the Q2X subgroup.
02230
t

t,
rs

is
m

e

Since forQ2X there is just one encoded qubit, we expe
to find just oneX̄ and oneZ̄. In the case ofQ2X it is easily
verified that the normalizer is generated by

X̄5XIII ,
~5.19!

Z̄5ZZZZ.

X̄ is already a single-body Hamiltonian and therefore can
implemented directly. Let us show howZ̄ can be imple-
mented as a Hamiltonian using at most two-body inter
tions.

Note thatQ2X supports a CSS code. Comparing the abo
expressions forZ̄ to the standard form for CSS normalize
elements@Eq. ~5.3!#, we haveMZ5Z2Z3Z4 and MX5B.
Therefore, from the recipe of Eq.~5.5!, An5X1Zn11 for n
51•••3 while A45X1. The series-circuit implementing
exp(iuZ̄) thus has the form depicted in Fig. 1. The paral
version of the same circuit is shown in Fig. 2. To veri
directly that these circuits indeed implement exp(iuZ̄), use
Eq. ~4.12! and choose the base qubit to be the first qu
Then

TXZII+TXIZI+TXIIZ+TXIII +exp~ iuZIII !5exp~ iuZZZZ!.
~5.20!

As required, this is an implementation that uses at most t
body interactions.

Figure 1 also shows the transformedZ̄ at each point, and
directly below the original normalizer element (X̄ or Z̄) with
which this transformed normalizer element anticommut
This verifies that the circuit is indeed a fault-tolerant imp
mentation of exp(iuZ̄) for Q2X .

D. CSS stabilizer errors on multiple encoded qubits

The CSS case of more than one encoded qubit is a sim
extension of the single encoded qubit case discussed ab
From Eqs.~5.1! and ~5.2! the standard form for a CSS cod
is now

Z̄j5Zj ^ MZ
j

^ I ^ K2 l 2r , ~5.21!

X̄j5Xj ^ I ^ r
^ MX

j . ~5.22!

Operations on different encoded qubitsj , j 8 commute. There-
fore, the single encoded qubit constructions still holds wh
the Hamiltonians are modified to read

An
( j )5XjZzn

, znPZj ~5.23!

Bi
( j )5ZjXxi

, xiPXj . ~5.24!

As is easily checked, the entire proof for the single encod
qubit case carries through when the base qubit beco
physical qubit numberj instead of number 1. This thus a
lows us to fault tolerantly implementSU(2)^ l on all l en-
coded qubits.
7-10
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To couple encoded qubits within the same block@thus
generatingSU(2l)#, one could use a standard trick from st
bilizer theory @34#, using an auxiliary block to swap infor
mation into and out of. This transversal operation involv
applying encoded controlled-NOT operations, which we trea
in Sec. VI below. In that section, we also show how coupli
multiple encoded qubits can be achieved directly, with
resorting to an auxiliary block.

E. General stabilizer errors

The entire analysis for the CSS case carries through in
general stabilizer case for the implementation of exp(iuZ̄),
sinceZ̄ remains unchanged@recall Eq.~5.1!#. However, the
encodedX operation now includes the additional blockNZ :
X̄5X1^ NZ^ MX @Eq. ~5.2!#. Therefore, to generate this op
eration we must include a new set of Hamiltonians:

Cn85Z1Zn8 , n8PZ8. ~5.25!

If there is an even number ofZ’s in Z̄, then the last Hamil-
tonian should be taken asCuZ8u5Z1. We now need to repea
the analysis for the generation of exp(iuX̄). Again, there is a
series and a parallel construction. Since theCn8 and Bi all
commute, the gate

UBC[UB^ UC

5F ^

i PX
expS i

p

4
Bi D G ^ F ^

n8PZ8

expS i
p

4
Cn8D G

5expF i
p

4 S (
i PX

Bi1 (
n8PZ8

Cn8D G ~5.26!

can be implemented in parallel. Conjugation of exp(iuX1) by
UBC will yield exp(iuX̄) by Eq. ~4.12!, since $X1 ,Bi%
5$X1 ,Cn8%50. It is further straightforward to check tha
this is a fault-tolerant implementation, since the argume
used in the case of a single encoded CSS qubit are still v
here.

We are thus left to check only the series constructi
Here the only new element is that we must make sure
the application of theCn8 Hamiltonians does not allow fo
undetectable errors to take place. Apart from this, everyth
is the same as in the CSS case. Now, after application of
first k gates $exp„i (p/4)Cn8…%n851

k , X̄ is transformed to

X̄(k)[)n851
k Cn8X̄. This product is

)
n851

k

Cn855 )
n8PZk8

Zn8 if k52l

Z1 )
n8PZk8

Zn8 if k52l 11,

~5.27!

whereZk8 are the firstk elements of the index setZ8. There-
fore,
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$X̄(k),Z̄%5F ~Z1!k )
n8PZk8

Zn8X̄G Z̄1Z̄F ~Z1!k )
n8PZk8

Zn8X̄G
5F ~Z1!k )

n8PZk8
Zn8G $X̄,Z̄%50. ~5.28!

Thus theorem 2 is satisfied after eachCn8-gate application,
with Z̄ playing the role of the anticommuting origina
normalizer element. This means that use of the Hamiltoni
Cn8 does not spoil the fault tolerance of the circuit. We kno
from the calculations in the single encoded qubit case
the rest of the circuit is also fault tolerant. Hence we c
conclude at this point that our method of constructing n
malizer elements is fault-tolerant for any stabilizer code.

F. Summary

Let us recapitulate the main result of this section. Give
set of errors corresponding to some Abelian subgroup of
Pauli group~i.e., a stabilizer!, there is a DFS that is immun
to these errors. We have shown how to implement arbitr
encoded SU~2! operations on this class of DFSs. To do s
we gave an explicit construction of encodedsx andsz op-
erations, which together span encoded SU~2!’s for each DFS
qubit. The construction involves turning on and off a ser
of one- and two-body Hamiltonians for a specific duratio
Each such operation takes the encoded states outside o
DFS. However, our construction guarantees that the er
always remain correctable by the code formed by the tra
formed states. That is, these states form a QECC with res
to the Pauli subgroup errors. Therefore, our construct
works by supplementing the unitary gates executing the
codedsx and sz operations by appropriate error-correctio
procedures. To complete the construction, we still need
show how to execute encoded two-body gates, and how
fault tolerantly measure the error syndrome. This is the s
ject of the next two sections.

VI. ENCODED CONTROLLED- NOT

The unitaryCNOT operation from the first qubit~‘‘control
qubit! to the second qubit~‘‘target qubit’’! can be written in
the basis ofsz eigenstates as

UCNOT5S I 0

0 XD ~6.1!

~where each entry is a 232 matrix!. Since we are working in
the Heisenberg picture, it is useful to consider how two-qu
operators transform underCNOT. For example,

X^ I °UCNOT~X^ I !UCNOT
† 5S I 0

0 XD S 0 I

I 0D S I 0

0 XD
5S 0 X

X 0 D . ~6.2!

As is simple to verify, the full transformation table is
7-11
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X^ I °X^ X,

I ^ X°I ^ X,
~6.3!

Z^ I °Z^ I ,

I ^ Z°Z^ Z.

SinceU(A^ B)U†5U(A^ I )U†U(I ^ B)U†, the rest of the
transformations underCNOT follow simply by taking appro-
priate products of the above, e.g.,X^ Z5(X^ I )(I
^ Z)°(X^ X)(Z^ Z)52Y^ Y. We need to show how to
fault tolerantly construct an encodedCNOT operation for the
DFS corresponding to a given Pauli subgroup of errors.

A. CSS stabilizer errors

It is well known that a bitwiseCNOT gate between physi
cal qubits in different blocks is an operation that preser
any CSS code, and acts as the encodedCNOT gate between
the blocks encoding different qubits@34#. However, this is
true only at theconclusionof the operation, i.e., after all th
bitwise operations have been applied. During the execu
of the bitwise operations, the codewords are exposed to
rors. To demonstrate this, consider the transformation of
normalizer elements of a CSS code. LetCNOT j A , j B

denote

the CNOT operation from control qubitj ~in the first blockA)
to target qubitj ~in the second blockB). For definiteness, le
us consider the transformation ofX̄j ^ I ^ K under bitwise
CNOT’s. Then, because of the standard form forX̄j , the first
CNOT operation is applied from control qubitj, and subse-
quentCNOT’s from control qubits are determined by the i
dex setX, i.e., acting on pairs of physical qubits at positio

$( i A ,i B)% i PX . Using Eqs.~5.21! and ~5.22! for Z̄j and X̄j ,
and the transformation table of Eq.~6.3!, we find

X̄j ^ I ^ K5@Xj ^ I ^ r
^ MX# ^ @ I ^ l

^ I ^ r
^ I ^ K2 l 2r #

°

CNOTj A , j B

@Xj ^ I ^ r
^ MX# ^ @Xj ^ I ^ r

^ I ^ K2 l 2r #

°

CNOTi 1A ,i 1B

@Xj ^ I ^ r
^ MX# ^ @Xj ^ I ^ r

^ Xi 1
#

°•••°@Xj ^ I ^ r
^ MX# ^ @Xj ^ I ^ r

^ MX#

5X̄j ^ X̄j . ~6.4!

Similarly, one can check that the rest of the transformati
of Eq. ~6.3! are satisfied at the encoded level. Therefore,
calculation demonstrates that the full bitwiseCNOT gate in-
deed acts as anencodedCNOT operation, since it transform
encoded normalizer operations according to the transfor
tion rules of CNOT, as per Eq.~6.3!. In our context, this
implies that given a certain Pauli subgroup of errors, ap
cation of the full bitwiseCNOT gate will implement theCNOT

gate on the DFS in a way that keeps the codewords inside
DFS at the end of the operation. However, as in theSU(2)
case, this is not true at intermediate steps, meaning tha
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code leaves the DFS.8 As in theSU(2) case, we must chec
that the original errors are still correctable at each interm
diate step. Theorem 2 will still apply if error-correction pro
cedures are implemented on each block separately, after
bitwise CNOT operation~since the blocks are only couple
during the execution of theCNOT!. Therefore, we need to
check that for each block in which the normalizer chang
there exists an element in the original normalizer that a
commutes with the transformed normalizer. It is easy to
from Eq.~6.4! that X̄j does not change in the first block, an
the sequence of transformedX̄j ’s in the second block anti-
commutes withZ̄j at every step. Therefore, error correctio
is possible at each intermediate step.

To complete the construction, it is necessary to check
the remaining normalizer elements are appropriately tra
formed. Repeating the calculation of Eq.~6.4!, it is straight-
forward to check that this is true, namely

I ^ K
^ X̄j°I ^ K

^ X̄j ,

Z̄j ^ I ^ K°Z̄j ^ I ^ K, ~6.5!

I ^ K
^ Z̄j°Z̄j ^ Z̄j ,

with I ^ K
^ X̄j and Z̄j ^ I ^ K invariant under the bitwise

CNOT’s ~thus requiring no error correction!, and the trans-
formedI ^ K

^ Z̄j anticommuting at each step with the origin
X̄j .

This completes our demonstration that aCNOT gate can be
implemented fault tolerantly using bitwiseCNOT’s in the
CSS case.

B. General stabilizer errors

In the non-CSS case, the bitwiseCNOT does not act as a
CNOT. One quick way to realize this is to note that sinceX
^ I °X^ X, by unitarity X^ X°X^ I , but this is not the
case at the encoded level:

X̄^ X̄5@X1^ NZ^ MX# ^ @XK11^ NZ^ MX#

°@X1^ I ^ r
^ MX# ^ @ I K11^ NZ^ I ^ K2 l 2r #

ÞX̄^ I ^ K.

Thus a different implementation of theCNOT is needed. Now,
it is clear that if the product of stabilizers for different block
~each encoding one qubit or more! is mapped to itself at the
end of theCNOT implementation, then the stabilizer erro
will not have changed, the DFS qubits will not hav
changed, and thus the DFS code still offers protect
against the stabilizer errors. Gottesman@34# has given such
an implementation of theCNOT for arbitrary stabilizer codes
It uses transformations involving four blocks at a time whe

8Note that this is equally true for stabilizer QECCs, which are th
exposed to errors during gate execution.
7-12
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two blocks serve as ancillas and are discarded after a m
surement at the end of the implementation. We will not
peat this analysis here—the interested reader is referred
133 of @34# for details. The faster the gate sequence imp
menting thisCNOT is executed compared to the time scale
the errors to appear, the higher the probability that the c
will not be taken outside of the DFS. However, as shown
Appendix A, the gate sequence~Fig. 2 of @34#! does not have
the property we have been able to demonstrate above fo
our constructions, i.e., it allows for errors to become part
the transformed normalizer. Therefore, we cannot use
construction. Instead, we now introduce a different constr
tion for the CNOT, in the spirit of what we have done abov
for the SU(2) operations.

Consider two blocksA and B encoding one DFS qubi
each. We already know how to implement exp(iuIA^X̄B).
Suppose one can also implement exp(iuZ̄A^X̄B). Then by use
of the Trotter formula exp@i(t1O11t2O2)/n#
5limn→`@exp„i (t1 /n)O1…exp„i (t2 /n)O2…#

n @47#, or its
short-time approximation

exp@ i t ~O11O2!/n#5exp@ i tO1 /n#exp@ i tO2 /n#1O~n22!
~6.6!

valid for arbitrary operatorsO1 andO2, we can form, to any
desired accuracy,

exp@ iu~ I A^ X̄B2Z̄A^ X̄B!/2#5S I 0

0 exp~ iuX̄B!
D .

~6.7!

For u5p/2 this is the CNOT operation between the tw
blocks. Thus our problem reduces to showing h
exp(iuZ̄A^X̄B) can be implemented fault tolerantly for arb
trary stabilizer DFSs.

Consider the circuit shown in Fig. 3. It describes t
implementation ofZ̄ andX̄ operations, as in theSU(2) case,
with the difference that the single-body central gates h
been replaced with a two-body gate, generated by the Ha
tonianHAB5Z1

A
^ X1

B ~hereA andB are the two blocks and
the subscript 1 indicates the first physical qubit in ea
block!. By the SU(2) construction, we have thatUAZ1

AUA
†

5Z̄A and UBX1
BUB

†5X̄B ~recall Sec. V B 2!. Therefore, us-
ing the fact that for any nonsingular matrixM the equality
Mexp(H)M215exp(MHM21) holds, the gates in Fig. 3 yield

~UA^ UB!exp~ iuHAB!~UA
†

^ UB
† !

5exp@ iu~UA^ UB!HAB~UA
†

^ UB
† !#

5exp@ iu~UAZ1
AUA

† ! ^ ~UBX1
BUB

† !#

5exp~ iuZ̄A^ X̄B!, ~6.8!

as desired.
It remains to verify that this is a fault-tolerant constru

tion. The only difference compared to theSU(2) construc-
tion above is the fact that we are now using atwo-body
central Hamiltonian. It is reasonable to assume that if
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system can couple the two blocks connected by this Ham
tonian, then so can the environment. Therefore, instead
considering the error subgroupsQA and QB separately, we
must now consider the new error subgroupQA3QB . But
then the appropriate normalizer isNAB5NA3NB , and the
sequence of transformed normalizers satisfiesNAB, j5NA, j
3NB, j . This makes the fault-tolerance verification task ve
simple: We already checked in ourSU(2) discussion tha
theorem 2 is satisfied for each block separately. Now, cle
both NA^ I B ,I A^ NBPNAB . Therefore, since for every
transformed normalizer element inNA, j @NB, j # there is an
anticommuting element in the original normalizerNA @NB#, it
follows thatNA^ I B @ I A^ NB# will correspondingly anticom-
mute with the elements ofNAB, j . This means that theorem
is satisfied also for the combination of blocksA andB, and
fault tolerance is guaranteed as in theSU(2) case.

As promised in Sec. V D, the construction presented h
also applies to multiple qubits encoded into a single blo
To see this, consider the case of two encoded qubits in
same block, and let us show that we can generate exp(iuZ̄1

^Z̄2) between them. This coupling, together with sing
encoded-qubit operations, suffices to generateSU(2l) ~for l
encoded qubits in a block!. Now, from the standard form we
have

Z̄15Z1^ MZ
1

^ I ^ K2 l 2r , ~6.9!

Z̄25Z2^ MZ
2

^ I ^ K2 l 2r . ~6.10!

Let Z̄15U1Z1U1
† and Z̄25U2Z1U2

† . Note that @U1 ,Z2#
5@U2 ,Z1#50 sinceU1(2) containsX2(1) . For the same rea
son also@U1 ,U2#50. Therefore,

FIG. 3. Fault-tolerant implementation of exp(iuZ̄X̄) needed to
generateCNOT.
7-13
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~U1^ U2!exp~ iuZ1^ Z2!~U1
†

^ U2
†!

5exp@ iu~U1^ U2!Z1^ Z2~U1
†

^ U2
†!#

5exp@ iu~U1Z1U1
†! ^ ~U2Z2U2

†!#

5exp~ iuZ̄1^ Z̄2!. ~6.11!

The same idea can be used to implementCNOT between
multiple qubits encoded into a single block. We have th
provided a fault-tolerant implementation ofCNOT for any sta-
bilizer DFS.

VII. FAULT-TOLERANT MEASUREMENT
OF THE ERROR SYNDROME

So far we have taken for granted that error detection
correction is possible in between gate applications. We n
complete our discussion by showing that it is indeed poss
to do so fault tolerantly. This requires the ability to measu
the sequence of transformed stabilizer generators in a ma
that does not introduce new errors in a catastrophic way
accomplish this fault-tolerant measurement, we follow, w
some modifications, the usual stabilizer construction@45#.

Let us recall the basics of measurement within stabili
theory. A DFS stateuc& in the stabilizerQ is a11 eigenstate
of all elements ofQ. An errore is an operator that anticom
mutes with at least one element of the stabilizerQ, sayq. If
uc&PQ, thenqeuc&52equc&52euc&, so thateuc& is an
eigenstate ofq with eigenvalue21. Therefore, each genera
tor measurement that returns the eigenvalue11 indicates
that no error has occurred, while each21 result indicates an
error, which can be fixed by applying the errore to the state.
The sequence of61’s that results from measuring all stab
lizer generators is called the ‘‘error syndrome.’’ The ident
of e is uniquely determined by this ‘‘syndrome,’’ since th
measurement process projects any linear combination o
rors to an error in the Pauli group.

A. CSS stabilizer errors

In this case, the stabilizer generators contain either pr
ucts only of Z’s ~‘‘ Z-type’’! or products only of X’s
~‘‘ X-type’’!. Suppose we wish to measure aZ-type stabilizer
generator. The11 eigenstates of such a generator are
‘‘even-parity states,’’ i.e., those states containing an e
number ofu1& ’s. Prepare an ancilla in the encodedu0L& state
~below we discuss how!. Then for each data qubit where th
given stabilizer generator has aZ ~not an I ), apply a con-
trolled X̄ from this qubit to the ancilla. The ancilla will flip
every time the data qubit was au1&, so measuring the ancilla
at the end and finding it inu0L& will indicate no error~even
number of flips!, whereasu1L& will indicate an error~odd
number of flips!. Distinguishing betweenu0L& and u1L&
amounts to measuringZ̄ on the ancilla, which we can do
directly by measuringZ on all those ancilla qubits whoseZ̄
has aZ.

Now suppose we wish to measure anX-type stabilizer
element. The same procedure as forZ-type generators can b
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applied, with one modification: a Hadamard transform

R5
1

A2
S 1 1

1 21D ~7.1!

must be applied before and after the controlled-X̄ operation.
The effect of the Hadamard transform before the controll
X̄ operation is to change the corresponding qubit into thZ
eigenbasis, after which theZ-type construction applies. Th
second Hadamard transform returns the qubit to the orig
basis. This construction is shown schematically in Fig. 4

Note that sinceX̄ is in the normalizer, it commutes with
all stabilizer errors. This means that any such error occurr
on the ancilla before theX̄ is equivalent to the same erro
after theX̄, and therefore the error has no effect. In oth
words, the ancilla does not ever leave the DFS under
application ofX̄, nor can an error on the ancilla propaga
back to the data qubits.9 Note further that since the ancilla i
at all times unentangled from the data qubits, the meas
ment is nondestructive on the data qubits.

What if a stabilizer error occurs on the data qubits rig
after the application of the Hadamard gate? This can cle
present a problem, since it may, for example, flip the d
qubit controlling theX̄ applied to the ancilla. One~standard!
way of dealing with such errors is to repeat the measurem
several times in order to improve our confidence in the
sult. An alternative is to use concatenated codes@35,48–50#.
This will be of use if the stabilizer error is correctable by t
transformed code, i.e., if we can verify that the conditions
theorem 2 are satisfied. Then we can use the DFS at
lowest level, and concatenate it with the QECC it transfor
into under the stabilizer errors~see Ref.@23# for concat-
enated DFS-QECC in the collective decoherence mod!.
Now, recall the CSS form of the normalizer elements, E
~5.3!. For every Hadamard transform in the first set~i.e.,

9This DFS construction is different from the usual QEC
stabilizer construction, where multiple control operations to
same ancilla qubit are not fault-tolerant because they are not tr
versal. There multiple CNOT’s from different data qubits to the
same ancilla qubit can cause errors to spread catastrophically i
ancilla qubit undergoes a phase error~recall that underCNOT, I
^ Z°Z^ Z).

FIG. 4. Measurement of the stabilizer elementXZYX.
7-14



e

l

ri
s

oc

ta
c

-

o
s
or

he

o

t
c
n

st
e

at

ble
clu-
ep-
rror
e is
tum

ay
ion

ria

for
the
ed

the
ll’’
a

en-
at

arly

bit
en,

part
ors
de-

DECOHERENCE-FREE SUBSPACES . . . . II. . . . PHYSICAL REVIEW A 63 022307
before the controlled-X̄ operations! on a qubit in a position
corresponding to anX in an X-type stabilizer generator, th
normalizer elements transform by havingX and Z inter-
change in this position. In the standard form of Eq.~5.3!, if
this happens to be the first qubit, thenZ̄°X^ MZ^ I , which
anticommutes with the originalZ̄, and X̄°Z^ I ^ MX ,
which in turn anticommutes with the originalX̄. If the posi-
tion of theX in the X-type stabilizer generator is whereMZ

has aZ, then Z̄°Z^ MZ8 ^ I , whereMZ8 has thatZ changed

into anX. This transformedZ̄ anticommutes with the origina
X̄. Similarly, X̄°X^ I ^ MX8 with anX changed into aZ, and

this transformedX̄ anticommutes with the originalZ̄. Thus
the conditions of theorem 2 are again satisfied.

The second set of Hadamard transforms restores the o
nal normalizer. One then proceeds to measure the next
bilizer generator. We thus see that this measurement pr
dure is fault-tolerant of stabilizer errors.

B. General stabilizer errors

In the non-CSS case, the stabilizer generators may con
Y’s as well, so our analysis above requires some modifi
tions. The unitary operation that transformsY to Z is

Q5
1

A2
S 1 2 i

1 i D . ~7.2!

It also mapsZ°X°Y. When this operation is applied im
mediately before the controlled-X̄ to the ancilla and immedi-
ately after it for everyYin the stabilizer, theZ-type construc-
tion applies again. However, for the purpose
concatenation we need to check that the procedure is
fault-tolerant of stabilizer errors. The normalizer generat
now have the form of Eqs.~5.1! and ~5.2!. Every time a
Hadamard orQ operation is applied,Z°X in a single posi-
tion in Z̄. Similarly, Z°X, or X°Z ~if Hadamard! or Y ~if
Q) in a single position inX̄.

The case of the transformedZ̄ is trivial: if Z°X any-
where, then the transformedZ̄ anticommutes with the origi-
nal Z̄. Consider the transformedX̄. The possibilities are~i!
X1°Z1 or Y1, ~ii ! Z°X in the NZ part, ~iii ! X°Z or Y in
the MX part. In all these cases, it is easily verified that t
transformedX̄ anticommutes with the originalX̄. Therefore,
the measurement procedure is fault-tolerant also in the n
CSS case.

VIII. OUTLOOK: IMPLICATIONS FOR THE
INDEPENDENT-ERRORS MODEL

The methods we have introduced in this paper need no
restricted to stabilizer errors. In this section, we briefly tou
upon the implications of our construction for universal qua
tum computation in the independent-errors model, when
bilizer errors are taken into account as well. We thus gen
alize the standard treatment of stabilizer codes@34#, where
stabilizer errors that may occur during the course of g
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implementation are ignored. However, here we are only a
to consider independent single-qubit errors, so that the in
sion of the special type of correlated many-body errors r
resented by the stabilizer errors is a rather unrealistic e
model. The main importance of the result presented her
that it suggests an alternative route to universal quan
computation that is fault-tolerant with respect to errordetec-
tion, and is highly parallelizable. We believe that this m
lead to an improved threshold for fault-tolerant computat
in the setting of concatenated codes@50#.

Let us recall the error-detection and -correction crite
for a stabilizer codeQ5$qk% to be able to deal with all
single-qubit errors:

; i , j ,a,b'k s.t.$qk ,s i
a

^ s j
b%50. ~8.1!

Can we implement encoded SU~2! operations in the
independent-errors model similarly to what we did above
stabilizer errors? To do so, we need to make sure that
errors do not become part of the sequence of transform
normalizers. The important difference compared to
stabilizer-errors case is that now the errors are ‘‘sma
~single-body!, which means that we must avoid using
single-qubit Hamiltonian as a central gate~for it is a normal-
izer element that will not be distinguishable from an error!. If
we restrict ourselves to using two-body Hamiltonians as c
tral gates~which we can always do—recall the comment
the end of Sec. IV D!, then we run into a similar problem
regarding the two-body form of Eq.~8.1!, i.e., if the central
gate uses the Hamiltonians i

a
^ s j

b , then we will not be able
to correct the two errorss i

a and s j
b . However, as we now

show, as long as we use a two-body central gate, it is ne
always possible to satisfy the error-detection criterion,
; i ,a'k s.t. $qk ,s i

a%50.
Let us demonstrate this explicitly for Steane’s seven-qu

code@12#. This is a CSS code encoding one qubit into sev
and in standard form has the normalizer

X̄5X1X5X6 ,
~8.2!

Z̄5Z1Z3Z4 .

Consider the gate construction@derived from Eq.~5.5!#

exp~ iuZ̄!5TX1Z3
+exp~ iuY1Z4!. ~8.3!

The normalizer transforms as

X̄ °

X1Z3

X̄ °

Y1Z4

cos~2u!X̄1 i sin~2u!Z1Z4X5X6

°

X1Z3

cos~2u!X̄1sin~2u!Ȳ

5X̄ exp~2iuZ̄!Z̄ °

X1Z3

Y1Z4 °

Y1Z4

Y1Z4 °

X1Z3

Z̄. ~8.4!

We see that at no point does a single-qubit error become
of the transformed normalizer, so that all single-qubit err
are detectable. On the other hand, while we can always
7-15
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tect the occurrence of both theY1 andZ4 errors, we cannot
distinguish between them after the first gate has been app
~since our normalizer isY1Z4 at that point!. Since we might
accidentally try to reverse the errorY1 when in fact the error
Z4 has taken place, this means that our construction is fa
tolerant only for error detection. Similarly, the gate constru
tion

exp~ iuX̄!5TZ1X5
+exp~ iuY1X6! ~8.5!

yields

X̄ °

Z1X5

Y1X6 °

Y1X6

Y1X6 °

Z1X5

X̄Z̄ °

Z1X5

Z̄

°

Y1X6

cos~2u!Z̄1 i sin~2u!X1Z3Z4X6

°

Z1X5

cos~2u!Z̄1sin~2u!Ȳ5Z̄exp~22iuX̄!,
~8.6!

which also satisfies the error-detection~but not correction!
condition for single-qubit errors, in that no single-qubit err
becomes part of the transformed stabilizer.

Let us now consider the general stabilizer case. Re
once more the standard form of the normalizer, Eqs.~5.1!
and~5.2!. Our gate construction acts by transforming one
the normalizer elements to two-body form, where it is a
plied as the centralu gate, and then is transformed back to
standard form. All other normalizer elements are left u
changed until the application of the central gate, with wh
they anticommute. At this point eachZ̄ @X̄# is multiplied by
exp(22iuX̄) @exp(2iuZ̄)#. The final sequence of gates flip
these normalizer elements back and forth betw
exp(22iuX̄) and exp(22iuȲ) @exp(2iuZ̄) and exp(2iuȲ)] ~re-
call the analysis in Sec. V B!. All these operations have th
effect of expanding, rather than shrinking, the normali
elements, as seen in the example of the seven-qubit c
above.

The ability to error-detect at each point thus translates
the question of whether any normalizer element ever
comes a single-body Hamiltonian under this sequence
transformations. It is not hard to see from the above desc
tion of the orbit of the normalizer that this can only be t
case if in the standard form the normalizer contains a sin
body element to begin with. This is certainly possible,
indeed shown in ourQ2X example ~Sec. V C!, where X̄
5XIII . However, it is not the case for most interesting s
bilizer codes, i.e., those offering protection against arbitr
single-qubit errors. Such codes must have ‘‘large’’ norm
izer elements since they may not contain any single-q
errors to begin with. We conclude that ourSU(2) construc-
tion using just two-qubit Hamiltonians works for all stab
lizer codes of interest, in the sense that it is fault-toler
with respect to error detection.

To complete the repertoire of universal operations,
CNOT gate is still needed. The discussion given in Sec.
applies here as well, with the modification that for non-C
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stabilizer codes it is once again necessary to apply two-b
central gates. Fault-tolerant measurement of the error s
drome can be done using the standard techniques avai
for stabilizer codes@34#.

IX. SUMMARY AND CONCLUSIONS

In a previous paper@29#, we derived conditions for the
existence of a class of decoherence-free subspaces~DFSs!
defined by having Abelian stabilizers over the Pauli grou
In this sequel paper, we addressed the problem of unive
fault-tolerant quantum computation on this class of DF
The errors in this model are the elements of the stabiliz
and thus are necessarily correlated. This model is com
mentary to the standard model of quantum computation
ing stabilizer quantum error-correcting codes~QECCs!,
where the errors that are correctable by the code antic
mute with the stabilizer~rather than being part of it!. The
correlation between errors in the present model implies
spatial symmetry in the system-bath interaction, unlike
most previous studies of computation on DFSs~which con-
sidered the ‘‘collective decoherence’’ model, and where
stabilizer is non-Abelian!. Therefore, our present results si
nificantly enlarge the scope of the theory of DFSs.

It turns out that even though the class of DFSs we c
sidered are Pauli-group stabilizer codes, the usual univer
ity constructions do not apply, because of the different er
model we assume. Our alternative construction of a se
universal quantum gates resorts to the early ideas about
versal quantum computation, except that our operations
act onencoded~DFS! qubits: we showed how to implemen
arbitrary single-encoded-qubit operations@the SU(2) group#
and CNOT gates between pairs of encoded qubits. The ch
lenge here was to show how to accomplish this implemen
tion using only physically reasonable Hamiltonians, i.
those involving no more than two-body interactions. To
so, we switched from the usual point of view of treating t
normalizer elements~i.e., the operations that preserve th
DFS! as gates to one in which these elements are consid
as many-body Hamiltonians. We then introduced a pro
dure whereby these Hamiltonians could be simulated us
at most two-body interactions. Unlike our previous wo
concerning universal computation in the collective decoh
ence model@26,27#, the gate sequence implementing th
simulation does not preserve the DFS except at the begin
and end. Throughout the execution of the gates, the D
states are exposed to the stabilizer errors. However,
showed that in fact the DFS is transformed into a seque
of stabilizer codes, each of which is capable of detecting
correcting the original stabilizer errors. Moreover, w
showed that these errors can be diagnosed in a fault-tole
manner, i.e., without introducing new errors as a result of
associated measurements. In all, we showed how by u
this type of hybrid DFS-QECC approach, universal, fau
tolerant quantum computation can be implemented.

Our results have implications beyond computation
DFSs. We briefly considered here also the question
whether our techniques can be used to compute fault to
antly in the standard stabilizer error model. We found t
7-16
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answer to be affirmative for the purpose of single-qubit er
detection, but not correction. While this is interesting in
own right because of the new universality construction
introduced, it may also have important implications for t
question of quantum computation using concatenated co
The reason is that our construction is highly parallelizab
meaning that it requires a very small number of operati
during which the encoded information is exposed to erro
We speculate that this can significantly reduce the thresh
for fault-tolerant quantum computation.

Finally, an interesting open question is whether the me
ods developed here are applicable to the problem of uni
sal quantum computation on other classes of DFSs.
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APPENDIX: WHY THE FOUR-BLOCK
IMPLEMENTATION OF CNOT IS NOT FAULT-TOLERANT

FOR NON-CSS STABILIZERS

The construction of theCNOT in Ref. @34# uses a series o
bitwise CNOT’s ~along with some other operations! acting
between pairs of qubits in four different blocks. Let us c
culate the result of applying bitwiseCNOT’s on I ^ K

^ X̄ ~i.e.,
on two out of the four blocks!. Recall that for a non-CSS
codeX̄5X^ NZ^ MX @Eq. ~5.2!#. Therefore, it follows from
Eq. ~6.3! that

I ^ K
^ X̄°@ I ^ NZ^ I ^ K212r # ^ X̄, ~A1!

i.e., theZ’s are copied backwards into the first block. Ther
fore, the normalizer on the first block now containsI ^ NZ
^ I ^ K212r . This element obviously commutes with both th
original X̄ andZ̄ @Eq. ~5.1!#, but does not equal either. There
fore, it must be in the original stabilizerQ. Turning this
around, we see that an errorePQ has become part of the
new normalizerNj (Qj )/Qj , which is catastrophic since thi
error is now undetectable.
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