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Decoherence-free subspaces for multiple-qubit errors.
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Decoherence-free subspa¢B$S9 shield quantum information from errors induced by the interaction with
an uncontrollable environment. Here we study a model of correlated errors forming an Abelian subgroup
(stabilizey of the Pauli group(the group of tensor products of Pauli matricednlike previous studies of
DFSs, this type of error does not involve any spatial symmetry assumptions on the system-environment
interaction. We solve the problem of universal, fault-tolerant quantum computation on the associated class of
DFSs. We do so by introducing a hybrid DFS quantum error-correcting-code approach, where errors that arise
due to departure of the codewords from the DFS are corrected actively.
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I. INTRODUCTION which errors can afflict the quantum information contained
in p [9]. Conversely, if there is only one Kraus operator, then
Methods to protect fragile quantum superpositions are ofrom the normalization condition it must be unitani
paramount importance in the quest to construct devices that exp(~iHt) with H Hermitian, so thap satisfies thelosed
can reliably process quantum informatidn2]. Compared to  system Liouville equatiop=—i[H,p], H being the system
their classical counterparts, such devices feature spectaculdamiltonian. In this case there is no decoherence.
advantages in both computation and communication, as dis- Two principal encodingmethods have been proposed to
cussed in a number of recent revief&-5]. The dominant solve the decoherence proble():Quantum error-correcting
source of the fragility of a quantum information processorcodes(QECCS [10-16 (for a recent review sefl7]), (ii)
(QIP) is the inevitable interaction with its environment. This decoherence-free subspacBsS9 [18—-24, also known as
coupling leads talecoherencea process whereby coherence “noiseless” or “error-avoiding quantum codes.” In both
of the QIP wave function is gradually destroyed. Formally,methods, quantum information is protected against decoher-
the evolution of an open systefooupled to an environment ence by encoding it into “codewords{entangled superpo-
such as a QIP can be described by a completely positive magitions of multiple-qubit statgeswith special symmetry prop-
[6], which can always be written in the explicit form known erties. To exhibit these, it is useful to expand the Kraus
as the Kraus operator sum representafioin operators over a fixed operator basis. For qubits, a particu-
larly useful basis is formed by the elements of the Pauli
group, which is the group of tensor products of all Pauli

P(t)=§ Ag()p(0)AL(1). (1. matrices{o}*}, wherea=0x,y,z (¢° is the 2x2 identity
matrix) andk=1- - -K is the qubit index. An element of the

. . K a
Herep is the system density matrix, and the “Kraus opera-Paull group can be \iV]Ijltten a&a= @110, ", wh.ere a
tors” {A4} are time-dependent operators acting on the sys= (@1, - - - ,ax). The 4 elementgE,;} of the Pauli group
tem Hilbert space, constrained only to sum to the identity(We include factors of-, =i in this coun} square to identity,
operator:EdAgAdzl (to preserve Tip]).! Decoherence is are both umtayy and THermman, l<<a|ther commute or anticom-
the situation in which there are at least two Kraus operator§'Ute, and satisfy TE;E,]= 64,/2". When the Kraus opera-
that are inequivalent under scalar multiplication. The Kraudors are expanded as
operators are in that case related to the different ways in

Ag(t) =2 Cag()Ea, (12

*Present address: Chemistry Department, University of Torontothe operatordE,} acquire the significance of representing
80 St. George Street, Toronto, Ontario, Canada M5S 3H6. the different physical errors that can corrupt the quantum

1as shown, e.g., i8], the operator sum representation can beinformation. The weightv(E,) is the number of nonzera,

derived from a Hamiltonian model by considering the reduced dyin & Let us now assume a short-time expansion ofcht)
namics of a system coupled to a ba#h p(t)=Trg(U(t)[p(0) (relative to the bath-correlation timeThe situation where
@pg(0)]UT(t)). Here the trace is over the bath degrees of freedomOnly thoseE, with w(E,)=1 have nonvanishing,4(t) is
U=exp(—iHsg) is the unitary evolution operator of the combined called the “independent errors” modéhssuming theq,
system bath, andlgg is their interaction Hamiltonian. One finds which are essentially bath correlation functidi®3, are sta-
Ag-(un)= V1{u|U|v), where|u),|v) are bath states in the spec- tistically independent Correlated errors correspond to the
tral decomposition of the bath density matrpg=S u|u){ . situation in which somé&, with w(E,)>1 have nonvanish-
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ing c,q4(t): two or more qubits are acted upon nontrivially posed of tensor products of identical @Jrotations+ con-
with the same coefficient,y. QECCs can be classified ac- tractions on all qubits. Here we will not concern ourselves
cording to the maximum weight of the errors they can stillwith the collective decoherence model, and the term “stabi-
correct(this is related to the notion of a “distance” of a code lizer” will be reserved for the Abelian subgroups of the Pauli
[17]). QECCs can generally deal at least with errors ofgroup.
weight 1. Barring accidental degeneracies, nontrivial DFSs, In a companion papd29] (referred to from here on as
on the other hand, generally do not exist if there are errorspaper I”), we began a study of DFSs for noncollective
with weight 1[22]. To make these ideas more precise, let userrors. We derived a necessary and sufficient condition for a
briefly recall the definitions of QECCs and DFSs. subspace to be decoherence-free when the Kraus operators
A QECC is a subspac@=spa{|i)}] of the system Hil- are expanded as linear combinations over the elements of an
bert space with the symmetry property that different errorsarbitrary group. The decoherence-free states were shown to
take orthogonal codewords) and|j) to orthogonal states be those states that transform according to the one-
[16]: dimensional irreducible representatidirseps of this group.
e As above, it is natural to focus on the case where this group
(I|EZEb|}) = Yandij - (1.3 js the Pauli group. This is so not only because of the con-
nection to stabilizer QECCs, but also because the Pauli
group arises in the context of many-qubit systems, where it is
often natural to expand the Hamiltonians in terms of tensor
products of Pauli matrices. To find DFSs, therefore, we focus
here on subgroups of the Pauli group. Note that the non-
NAbelian subgroups of the Pauli group do not have one-
dimensional irrep$29], and hence in this case a DFS can be
ssociated only with the Abelian subgroupsich of course
ave only one-dimensional irreducible representajions
We can now define the error model that will concern us in
this paper. Unlike the stabilizer-QECCs case, where the er-
rors that the code can correct are those that anticommute
with the stabilizer,in the DFS case the errors are the ele-
{ETE qi=0. (1.4 mentglof the stabilizer itseNNe_shaII refer to these errors as
a=b: “stabilizer errors.” The Abelian subgroups of the Pauli
This is because under the stipulated condit(dnkE;EbU) group cannot contain single-qubit opergtors, since these
et N et N et | would generally generate the whole Pauli gréugence as
~(1|EaBpali) =~ (i|aEsEpli) = —(i[EEslj) ~so that errors the elements of the subgroup represeuitiple-qubit
(i|ELEy|j)= &, [15]: the QECC conditioiEq. (1.3)] is sat- . group represeufipled
N ! : i ) couplings to the bath. As explained above, this is therefore a
isfied. To correct an errdg, one simply applies the unitary

h = e correlated-errors model, which is distinguished from previ-
operatorE, to the code. Note that this involves active inter- 4\« \work on DESs in that it does not involve any spatial-

vention, namely measurements to diagnose the error and &fymmetry assumptions. The physical relevance of this error
ror reversal. . ) . . model was discussed in paper I, and will be embellished

DFSs can be viewed as highly “degenerate” QECCS,pore The DFS is not affected by these stabilizer-errors, but
where degeneracy refers to the rank,ofDFSs are rank-1  he rest of the Hilbert space is and may decohere under their
QECCs(i.e., Yab=va¥) [23,29. Equivalently, a DFS can iyfuence. Several examples of DFSs corresponding to Abe-

Here y,, are the elements of a Hermitian matnxand &;; is
the Kronecker delta. This property ensures that if an eor
occurs, it can be detected and subsequently revéiggdA
large variety of QECCs have been fourdd]. A particularly
useful and large class, one which will occupy our attention i
this paper, arises when one considers Abelian subgrQups
of the Pauli group. Given such an Abelian Pauli subgroup, o
stabilizer Q (we will use both terms interchangably in this h
papej, its +1 eigenspace is a QECC known astabilizer
code[15]. The set of error§E,} is correctable by this code
if for every two errorsk, ,E, there exists somge Q such
that

be defined as the simultaneous eigensphcespari{|j)}] lian subgroups were given in paper |. Our purpose in this
of all Kraus operator§23]: sequel paper is to complete our study of this class of DFSs
_ _ by showing how to perform universal fault-tolerant quantum
Adli)=a4li) (1.5  computation on them.

) ) ) ) The central challenge in demonstrating universal fault-
({aq} are the eigenvalugsViewed in this way, DFSs have (olerant quantum computation on DFSs is to show how this
the remarkable property that they offer complete protection.gn pe done using only one- and two-body Hamiltonians,
for quantum information without the need for any active in- g a small number of measuremeh8everal previous pub-
tervention: p(t) =2 4A4(t)p(0)AY(t) =p(0)=4lag/*=p(0),
for p with support exclusively ofi{. Thus a DFS is a “quiet

corner” of the system Hilbert space, which is completely 2the exceptions aré) the subgroup operators have constant
immune to decoherence. Like stabilizer QECCs, DFSs can-x, y, or z, which is the Pauli matrix index(ii) the single-qubit

also be characterized as thel eigenspace of a stabilizer, operators act only on those qubits where all other operators act as
which, however, is generallyjon-Abelianover the Pauli identity.

group [26,27] (i.e., a DFS is generally a nonadditive code 3By “small” we mean that the measurements do not have to be

[28]). Most work on DFSs to date has focused on a model ofast compared to the bath correlation time. If they are, then the

highly correlated errors, known as “collective decoher-decoherence is avoided essentially by use of the quantum Zeno
ence.” In this model, thgnon-Abelian stabilizer is com- effect.
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lications have addressed the issue of universal quantum corsyndrome throughout our gate construction. While our main
putation on DFSs, but left this challenge unanswerednotivation in this paper is to study computation on DFSs in
[22,30,3]. In Refs.[26,27], we accomplished this task for the presence of stabilizer errors, it is also interesting to con-
the first time in the collective decoherence model. Collectivesider the implications of the techniques we develop here to
decoherence is the situation in which all qubits are coupledhe usual model of errors that anticommute with the stabi-
in an identical manner to the bath, i.e., there is a strondizer. We consider this question briefly in Sec. VIlI, and
spatial symmetryqubit permutation invariance. In this case, show that our methods provide another way to implement
by using exchange operations, it is possible to implemengniversal quantum computation that is fault tolerant with re-
universal quantum computation without ever leaving theSpect to errodetection We conclude and summarize in Sec.
DFS. The procedure is therefore naturally fault-tolerant. InlX.

the present paper, we will show how to implement universal

fault-tole_rant quantum computatio_n on DFSs_ 'Fhat arise frqm Il. CONNECTION BETWEEN PAULI SUBGROUP DESs

the Pauli subgroup_error model_, Wl_thout requiring any spatial AND STABILIZER CODES

symmetry assumption. Howevetr will not be possible to do

so without leaving the DFS, thus exposing the states to the In paper | we proved the following result.

subgroup errors As will be shown here, fault tolerance is  Theorem 1 Suppose that the Kraus operators belong to
obtained by using the encoded states twice, in a dual DFShe group algebra of some groug={G,}, i.e., Aq
QECC mode. This duality arises from the fact that the DFS= SN 1ag.G,. If a set of stateg[])} belong to a given
remains a pe_rfectly valid QECC for the errors with which theone-dimensionalrrep of G, then the DFS conditiomdm
stabilizer anticommutes. - )

There are several ways to achieve universal fault-tolerant Cql]) holds. If no assumptions are made on the bath coef-
quantum computation on stabilizer-QECCs; e.g., use of thécients{ay .}, then the DFS conditioly|j)=c4[]) implies
sets of gategHadamard,o>?, Toffoli} [32,14 or {Had-  that|]) belongs to @ne-dimensionairrep of G.
amard,ai"‘, controllednoT!} [33]. Additional methods were This theorem provides a characterization of DFSs in terms
provided in[34,35. Our construction reverts to the early of the group-representation properties of the basis set used to
ideas on the implementation of universal quantum computexpand the Kraus operators. There are good physical reasons
ing: we use single-qubit S operations and a controlled- to choose the Pauli group as this basis set: as argued in paper
NOT (CNOT) gate[36—39, except that these asncodecbp- |, the Pauli group naturally appears as a basis in Hamilto-
erations, acting on codewordsot on physical qubits In  nians involving qubits. Furthermore, using the Pauli group
general, such encoded operations involve multiple qubitsgllows us to make a connection to the theory of stabilizer
and are not naturally available. The key to our construction iQECCs. To see this, consider the identity irrep, for which
a method to generate many-qubit Hamiltonians by composeach elemenG,, in the groupg acts on a decoherence-free
ing operations orfat mos} pairs of physical qubits. This is state|¢) as
done by selectively turning certain interactions on and off. A
difficulty is that the very first such step can transform the Gl ) =) (2.1)
encoded states and take them outside of the DFS. However,
by carefully choosing the interactions that we turn on/off and ) )
their order, we show that the transformed states become Gn00singg from now on as a Pauli subgroup, the DFS
QECC with respect to the stabilizer errors to which the DFS/1X€d by the identity irrep is a stabilizer code, wheges the
was immune. This fact is responsible for the fault tolerancet@bilizer group. As mentioned above, a stab|I|ze4r code is
of our procedure. After the final interaction is turned off, the d€fined as ther 1 eigenspace of the Abelian gro@” It is

states return to the DFS, and are once again immune to tHBUS clear that the states fixed @yplay a dual rolethey are
stabilizer errors. at once a DFS with respect to the stabilizer errors and a

The structure of the paper is as follows. In Sec. I weQECC with respect to the errors that anticommute with some

briefly review the main result of paper | and the connection€'ément of Q _ _ _ N
between the DFSs considered here and stabilizer QECCs. 't IS simple to verify that basic properties of stabilizer
We then discuss in Sec. Ill the meaning of fault tolerance irfodes hold, e.g., that if the stabilizer group las| genera-
light of the error model considered in this paper. In the fol-tors, then the code spa¢i this case the DFShas dimen-
lowing two sections we present the main ideas and results 60" 2 (i.e., there ard encoded qubits[15]. Indeed, the
this paper: in Sec. IV, we show how to generate many-qubifj'mffls'()” of an Abelian group witk —I generators iN
Hamiltonians by composing two- and single-qubit Hamilto- =2 ', and we showed in paper | that the dimension of the
nians, and in Sec. V, we prove the fault tolerance of thisDFS is 2/N=2".

procedure. We use it to generate encoded25dperations

on the DFS qubits. Section VI shows how, by using similar

methods, we can fault tolerantly perform encodeeT op- “The DFSs corresponding to the other 1D irreps can also be turned
erations on the encoded qubits, thus coupling blocks of quinto stabilizer codes by a redefinition of the subgroup, taking into
bits and completing the set of operations needed for univeraccount the minus signs appearing in the irrep in question. This
sal computation. The final ingredient is presented in Seckind of freedom is well known in the stabilizer theory of QECCs
VII, where we show how to fault tolerantly measure the error[15].
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Ill. THE MEANING OF FAULT TOLERANCE K K
- aj @ aifj _aio B
. . . = . ST o, ~l
The observation that the Pauli subgroup DFSs are stabi''S 21 azgy,z} @i i i>]z:1 Q’B:%,yvz} JijHeii@ot,
lizer codes allows us to employ some results from stabilizer 4.1

theory, and aids in the analysis of when it is possible to

perform universal fault-tolerant computation on these DFSS.yith controllable parameterisn "1}, {J?fiﬁj}_

Before delving into the analysis, however, we should clarify ! !

what we mean by fault tolerance in the present context. The

usual meaning of fault tolerance, as it is used in the theory of

QECC, is the following: an operatiofgate U) is not fault Suppose we are given an error subgr@generated by

tolerant if an erroiE that the code could fix before applica- the elements{qi}!g‘l. From the results of paper | we know

tion of the gate has become an unfixable ertdEU") after  how to identify the corresponding DFS, which is also a sta-

application of the gate. For example, a single-qubit phasgilizer code with respect to the errors that anticommute with

error (|®Z) becomes a two-qubit phase err@«Z) due to Q. This QECC aspect will not be needed as long as we are

the application of eNOT gate[34]; if the code used could only interested irstoringinformation in this DFS: then th@

only correct single-qubit errors, then as a result of¢h@T  errors will have no effect. However, here we are interested in

gate (unless it is applied transversally, i.e., not couplingthe more ambitious goal afomputingin the presence of the

physical qubits involved in representing the same encode@ errors, which means that we must be able to implement

qubi) this code can no longer offer protection. In this sce-logic gates. As discussed above, these gates will take the

nario, therefore, thecNOT gate was not a fault-tolerant op- states out of the DFS and expose them toG@herrors. To be

eration. Conversely, an operatigfault-tolerant if the code gple to compute, we will need some basic results from the

offers the same protection against the errors that appear aftgeory of fault-tolerant quantum computation using stabilizer

application of the operationdUEU") as it does against the codes, as developed primarily in R¢B4]. Let us briefly

errors before the operatiortJ. review these results.

A complementary(“Heisenberg” [40]) picture to the The set of operators that commute with the stabilizer

(“Schrodinger”) description above is to consider the errorsthemselves form a group called thermalizerof the code,

as unchanged and the codeas well as the stabilizé@, as  N(Q). These elements are of interest because they are op-

transformed after the application of each gate:UC and  erations that preserve the DFS. lpt Q, | ) € DFS(Q); if

Q—UQU. Then fault tolerance can be viewed as the rene N(Q), then

quirement that the new code is capable of correcting the

original errors. This point of view will be particularly useful a(nl¢)) =na¥)=n[), (4.2

for our purposes. In our case, the original errors are the ele-

ments of the Pauli subgroup (the stabilizey, and the gates so thatn|) is in the DFS as well. Clearly, the stabiliz&ris

U will turn out not to preserve the original code. Neverthe-in the normalizemN(Q) and so the only operations that act

less, we will show that to the new stabiliz’ =UQU™  nontrivially on the subspace are those that are in the normal-

corresponds a QEC@he transformed cod€’'=U(C) that izer but not in the stabilizeM(Q)/Q. While this means that

can correct the original errors. In this way, the fault-tolerancehese operations can be used to perform useful manipulations

criterion is satisfied. on the DFS, it also means that if they act uncontrollably, then
they appear as errors that the cadanotdetect. As will be
seen later on, these are both crucial aspects in our construc-

IV. ENCODED SU(2) FROM HAMILTONIANS tion.
For any Pauli-subgroup stabilizer code, the normalizer is

enerated by the single-qub¥ and Z; operations, wheré

A. Background

We now begin in earnest our discussion of how to imple-
ment universal, fault-tolerant quantum computation on the? , -
Pauli-subgroup DFSs. In this section, we show how arbitrary L: - - - | [abels theencodedjubits[34]. The bar superscript
single encoded-qubit operations can be implemented fauffenotes that these are “encoded operations™: they perform a
tolerantly. We will do so by generating the entire encodedbit flip and a phase flip on the encoded qubits. The gAtes
SU(2) group from at most two-qubit Hamiltonians. We as- andZ;, however, are by themselves insufficient for universal
sume that the system Hamiltonian is of the general two-qubitjuantum computation. The usual stabilizer-QECC construc-
form tion deals with(typically uncorrelated errors that anticom-

mute with the stabilizer. In this case, in addition to generat-
ing the normalizer of the Pauli group(Pyk), one other

5The reader may wonder whether it should not be possible tcpperapon is needed, such as th'e Toffoli g&g]. Such con-
simply take over the results about universal fault-tolerant computaStructions have been covered in several recent publications
tion from stabilizer theory and apply them directly in the presentl32—35,41. However, as emphasized above, the errors here
case. However, a problem is encountered when that construction &€ qualitatively different: not only are they always corre-

applied to the error model considered here, because multiple-qubi@ted, rather than anticommuting with the stabilizibe er-
errors may propagate back amnperturbativesingle-qubit errors ~ rors are the stabilizer itselfThus the usual construction does

due to interaction with a “bare’(non-DFS ancilla. We are in- not apply, and we introduce a different approach. We show
debted to Dr. Daniel Gottesman for pointing out this problem to ushow to perform universal fault-tolerant quantum computa-
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tion using the early S(2)+controlledNOT (CNOT) construc-  a tensor product of single-body gates. This is exactly the

tion [37,39,43, but applied to encodedFS) qubits. structure that is suggested by Hg.5), and thus it should
allow us to construct expgX) and expi#z) for any Pauli
B. A useful formula: Conjugation by /4 subgroup using at most two-body interactions. The caveat,

Instead of treating< and Z as gates, as in the usual NOWEVer, is that while exp(X) and expi6z) always pre-

stabilizer-QECC construction, we employ themamilto- ~ S€"V€ the codesince they are in the normalizgthe opera-
tions that generate them from Hamiltonians involving at

nians SinceX andZ are in the normalizer, so are ex@\() most two-body interactions may corrupt the code, as ex-

and exp(6Z), and so are any other encoded (8Ugroup plained in Sec. Ill above.

[denotedSU(2)] operations obtained from them. By apply-  Let us then state the challenges ahead. We need to show

ing operations fronSU(2) alone, we ensure that the code ishow the HamiltonianX andZ can be generated usirt at

preserved. To obtain oth&U(2) operations fronX and Z, most two-body interactionsji) fault tolerantly.

we use the Euler angle constructipts], which shows that

any rotation can be composed out of rotations about only two C. Simple example: The subgroupQ,

orthogonal axes:

Let us pause by introducing a simple example illustrating

exfd —iw(n- 0)/2]=exp —i Bo,/2)exp —i Oy /2) the notion of universal computation using normalizer ele-
. ments which are two-body Hamiltonians. Our example uses
xXexp—iao,/2). (4.3 a group whose natural structure is such that the two-body

H h i ion is b b he di restriction is automatically satisfied. To this end, consider the
ere the resulting rotation is by an angbeabout the direc- subgroupQ,= {14 X®4 Y®4 754 \which we studied in de-

tion specified by the unit vectar, both of which are func-

. _ : tail in paper I. It is generated bl —I=4—1=2 elements
tions of a, S, and ¢. Using Eq.(4.3) and the mapping =4 754y "ang therefore encodds=2 qubits, with states

{ox,0y,04—{X,Y,Z}, we can construct any element of given by

SU(2). To do so, we nowlerive a form of the Euler angle
construction that is particularly relevant to operations with

i(|OOO()+|111:I>),

Pauli matrices. Assume thAtandB are both tensor products 00). = 2
of Pauli matricedand thus square to identjtyThen
; ; 1
SXH(—1eA)B expl+1eA) 01 =—75 (11009 +0110),
=(l cosp—Aising)B(l cosp+Aising) 4.6
=B cogp+ABAsiIe—i sing cosg[A,B 1 .
? ¢ # coselAB] |10 =—=(]1100 +[0013)),
B if [AB]=0 V2
— 4.4
Bcos2p+iBAsin2¢ if {A,B}=0. 9 1
11), =—(|0101 +|1010).
For the special case af= /4, we define the conjugation 10 \/§(| »+[1010)
with A by
These states are easily seen totbk eigenstates d,. The
. . _ T : LT normalizer in this case contains twq and Z; operations,
Tacexpl 0B)_exp( ! 4A)exp(| eB)exp< i 4A) one for each encoded qubit:
B expioB) if [A,B]=0 45 Y:L:XX”, Z:|ZZ|,
~ |exdif(iAB)] if {A,B}=0. ' (4.7

Xo=IXXI, Z,=ZZII.
This can be understood geometrically as a rotationgby
= m/4 about the “axis”A, followed by a rotation byd about  |ndeed, we have, for example(1|a by =|1—a,b), and
B, followed finally by ag= — /4 rotation abou#, resulting Zl|a b).=(—1)%a,b),, soX; andZ, act, respectively, as

overall in rotation by§ about the “axis”iAB. All g=m/4 4 hitflip and a phase flip on the first encoded qubit. As easily
rotations about a Pauli group member are elements of the

hecked, X and Z; commute withQ,, so that they keep
normalizer of the Pauli group: they take elements in the Paullctates W|th|n the DFS as should be the case for normalizer
group under conjugation to other elements of the Pa ulP

group. elements. AsHamiltonians X; and Z; are valid two-body
Note that the “conjugation-byst/4)A” operation interactions and hence can be used directly to generate the

T ,oexp(6B) is equivalent to multiplication 0B to the leftby ~ encoded S(2) group on each encoded qubit. That is,

iA inside the exponent. This is very useful, since the ele€xp{aX;) and exp(8Z;) can be combined directly, with arbi-

ments of the normalizer of any stabilizer can always be writirary values for the angles andg, to produce any operation

ten as a tensor product of single-qubit Pauli matrices, i.e., a& SU(2) by using the Euler angle formula. For example, we
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can construct a rotation about the encodfedixis by conju-  of two-qubit HamiltoniansAj=ogJ®aj“i with j € 7 and y;
gation:  expi(fY;)=exp(—i(m/4)X)exp(-i6Z)exp(+i(m/ . \e call thebth qubit the “base qubit.”A; and of
4)X;). We have, therefore, two independent encoded qubitggree on one qubit index but differ on the Pauli matrix ap-
that can be operated upon separately by encode@)33p-  plied to that qubit, so they anticommutgA;,of}=0. Let
erations. , _ J(i) denote theth element in the index sef. If we use the
What about coupling between the encoded qubits so thatconjugation-by-(w/4)Aj(1)” operation about expeo-g) [re-
the full SU(4) can be used to do computation? Note thaly)| Eq. (4.5)], we obtain
Hamiltonians likeZ,® Z,=Z1Z1, which are two-body on the
encoded qubits, can be implemented directly since they are Ta
also two-body on the physical qubitthis is not a generic
feature, however, as discussed in Sec. VD beldtvis a =exg =i 003@0?{5)], (4.9
fundamental theorem of universal quantum computation
[37,39,42 that the ability to perform S(2) on two qubits  where the sign is determined by that@;ﬂl)ﬁnl, according
plus the ability to performany nontrivial two-bodyHamil-  to the usual rule of multiplication Pauli matrices:
tonian between these qubits is universal over the combined
SU(4) of these two qubits. Thus we can perform universal ooP= —igap,07. (4.10
computation on theQ, DFS. In this case, the normalizer
elements that perform th8U(4) are all two-body Hamilto- APPlying all other “conjugation-by-¢/4)A ;)" operations,
nians, and there is no need to apply any new methods ih=1: -+|J1, we obtain
order to perform fault-tolerant computation, which preserves )
this DFS. TAy(m)o' ' 'OTAJ(i)OeXFxI 0oy)
Anticipating the discussion in Sec. VI, note that while we
have demonstrated universal computation on a single DFS
block, we have not yet addressed how to accomplish this

when we have clusters of th@, DFSs. This, of course, is 1 js clear that by appropriately choosing the sequence of
necessary to scale up the quantum computer undeQie pg i matrices, i.e., ther;), we can obtainy=g. Further,

model of decoher_ence: In order to perform universal fa““’conjugating by— /4 (instead of+ 7/4) allows us to always
tolerant computation with clusters, we must show that thesﬁdjust the sign in the exponent to. Thus the action of this
can be coupled in a nontrivial manner. Methods for perform-gate sequence is to generate the Hamiltomams desired:
ing nontrivial couplings between clusters exist for any stabi-
lizer code[34]. In particular, theQ, DFS is a Calderbank-

Shor-Stean€CS9S code, whose clusters can be coupled by A

performing bitwise _paralle_l qontrolledeT gates _between An example of this type of gate netwof&nalyzed in detalil
two clusters of qubits. This implements as desired an eny, gec. VQ is shown in Fig. 1. Since the elements of the

coded controlledioT between these clusters. In Sec. VI, We g malizer of any stabilizer can always be written as a tensor
will discuss what is needed to make this procedure fau“‘product of single-qubit Pauli matrices, EG.12 gives a
tolerant _ _ constructive way of generating these normalizer elements as
Q4 Is a special case because of the fact that the normalizgfamiltonians(i.e., appearing as arguments in the exponent
elements are all two-body interactions. In general, the norye nave thus met the first challenge mentioned above: we

malizer elements will be many-body interactions and more =
. . ave shown how to generate the HamiltoniXnandZ usin
general techniques are needed, to which we turn next. at most two-body ilgnteractions. More generally quz?
o . . can be considered as a constructive procedure for generating
D. Generating X and Z using at most two-body interactions desired many-body Hamiltonians from given two-body inter-

We now move on to the general case in which the noractions.
malizer elements are possibly many-body Pauli operators. Finally, we note that it is perfectly possible to replace the
Our first task is to show that the “conjugation-by=4)A” central single-qubit Hamiltonian with a two-qubit one, spe-
operationT ,oexp(6B) can be used to generate any many-cifically by A 1oy . This may be more convenient for prac-
body Hamiltonian inside the exponent using at most two-ical applications, where control of two-body interactions
qubit Hamiltonians. In Sec. V, we show that this is a fault-may be more easily achievablas in the case of exchange
tolerant procedure if applied correctly to a DFS. interactions in quantum do{&l4]). This change would not

Suppose the many-body Pauli Hamiltonidrwe want to  affect our fault-tolerance analysis in the next sections.
generate is of the following general form:

0, X 9of)=exdif(i agm)@a;{g))og]

=exp(*if ® O'g®0'jaj). (4.11)
jeg

weoTa cexplifog) =exp(ioH).  (4.12

P V. GENERATING ENCODED SU (2) FAULT TOLERANTLY
H=0f® o7, (4.8 FOR ANY ABELIAN PAULI SUBGROUP
iedg
We are now ready to show how to generate encoded
where 7 is some index set and« 7. From Eq.(4.1), we  SU(2) operations fault tolerantly for any Pauli error sub-

have at our disposal a single-qubit Hamilton'taf] and a set group. LetQ be such a subgroup, generated by the elements
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A 4 A A A A A A
— O e D H o B—
L2 ] 12 ] FIG. 1. Fault-tolerant circuit implementing
/4 J_‘ J_‘ —m/4 exp( 6Z) for the Q,x subgroup. The transformed
1 Z ] 12 ] Z is shown at each gate, and directly below the
original normalizer element with which it anti-
@ @ commutes.

transformed
normalizer: ZZZZ Yizz  zZlZ i A zZii Yir Znz Yizz 7777

anticommutes — — — — -

with: z X z X X z X z

{gi}i-1, |Q|=2". Recall that here these elements play theN’=Q (i.e., the stabilizer is the commutant of the normal-
dual role of errors and of defining the DFS by fixing its izer).
elements. A new(transformegl stabilizer is obtained after Proof. The Pauli group splits into three sets of operators:
each application of a gate expfA;). To this sequence of (i) the stabilizerQ, (i) the normalize, (iii) the errors{E},
stabilizers corresponds a sequence of stabilizer QEGCs  which anticommute wittQ. The normalizer itself splits into
Our strategy will be to find conditions on the Hamiltonians two parts: the elements that are in the stabilipgg, and the
{Aj} such that after each gate application, the current QECGlements that are nd¥l». Now, clearly the erroréE} are not
is able to correct the origindD errors. _ in the commutant oN, because they anticommute wikh, .

Let Q; [N(Q))] denote the stabilizetnormalizey ob-  The elements oNp are not in the commutant df because

tained after application of the gatth =exp(e;A). If ¢jisan 55 is well known from the theory of stabilizer codeé,
integer multiple of7/4 (as we will always assumethen  t5mq 5 representation of a Pauli gro(., if we encodd

there are only three mutually exclusive possibilities for thequbits, thenN» is a representation of the Pauli group bn

fo emphasize the erfor and stabizer slement aspects, esp JubitS: BUL f0r every member of a representation of a Paui
tively)p as follows P »resp gfoup there is another element with which it anticommutes.

(i) e Q;. The error is part of the transformed stabilizer. ThUSNP cannot be in the commutant beither. F|'na.1I!y,NQ
In this case, the transformed code is immuneté.e., the 'S clearly a member of the commutant Nf by definition of

transformed code is a DFS with respecejoand there is no 1€ normalizer.

problem. Theorem 2 Given are a Pauli subgroup of errogs its
(i) e anticommutes with some element @f . The error ~normalizerN, and a sequence of their imagg;} and{N;}
is detectable by the transformed code. under conjugation by unitarigs);}. Corresponding t@ is a

(i) ee N(Q))/Q; (i.e., e commutes withQ; but is not in pFS(pode C. A sufficient condition so thgt neeQ i; ever
it). The error infiltrated the transformed normalizer. This is ain N; is that either(i) eachn; e N; equals its source if, or
problem since the error igndetectable by the transformed (i) for eachn;eN; there existsme N such that{n;,m}
code, and acts on it in a nontrivial manner. =0. Then the transformed codés=U;C;_; (C;=U;C) can
Suppose the erroese Q are exclusively of typéi) or (ii).  always correct the origindD errors.
Then those that are of typ@) are not only detectable but Proof. From lemma 1 we know thatQ')’=Q. In other
also correctable. This is so because they form a gr&p (  words, the only operations that commute with the normalizer
and therefore any product of two errors is again either ofyre those in the stabilizer. Now let, be the image of
type (i) or (ii), which is exactly the error correction <N after thejth transformation. The observatidi’=Q
criterion® Thus the problematic case (i), and this is the allows us to exclude cas@i) by checking if, for everyn,
case we focus on in order to make a prudent choice of. \. (wheren;#n), there existsne N with which n. anti-
HamiltoniansA; . To simplify the notation, from now on we comjmutes. T(]) see this, note first thanjf=n, then be defi-
shall denoteN(Q;)/Q; simply by N; (and byN whenQ;  nition n; cannot be inQ. Second, for am; e N; that differs
=Q), and refer to this as the normalizéwithout risk of o jts'source irlN, assume that it anticommutes with some
confusion. o me N. This implies than; is not in the commutant df,, and
Is there a simple criterion to check whetlee N;? The g therefore not irQ. If this is true for alin;eN;, then we
answer is contained in the theorem following this lemma. 5ve covered the entire new normalizgrand not found an
Lemma 1LetQ b_e a s_tablllzer over the Pauli group and glement ofQ in it. This guarantees that no element of the
let N be its normalizer, i.e., the set of all operations thatoriginal stabilizerQ becomes a member of the new normal-
commute withQ: N=Q" (N is thecommutanf Q). Then o, N;. QED.
Note that if the conditions of the theorem are satisfied,
thenall elements of the original stabilizer are excluded from
Note that this is not true for errors in the usual stabilizer-QECCthe transformed normalizer. Therefore, also all products of
case, where the errors do not close as a group under multiplicatiostabilizer elements are excludddince the stabilizer is a
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group, so that all stabilizer errors are both detectable and

correctable

Below we make repeated use of the result of theorem 2.

The first application is to show how to construct two-body
Hamiltonians{A,} that can be applied in succession to pro-

PHYSICAL REVIEW A 63 022307

An=X1Z, , (5.9

z,e€ Z,

Bi=ZXy, XeX, (5.6)

wheren=1---|Z| andi=1---|4], i.e.,A, (B;) has aZ (X)

duce arbitrary normalizer elements, such that at every poinf, the nth (ith) position of the index seg (). If there is an

the theorem is satisfied. To this end, we need a basic resul

from the theory of stabilizer codes, regarding a standard for

for the normalizer. We then illustrate the general construc- ;
tion with the relatively simple case of CSS codes, and finallthe penultimate step we hag® M

move on to general stabilizer errors.

A. Standard form of the normalizer for stabilizer codes

It is shown in[45] that, due to the fact that the normalizer
is invariant under multiplication by stabilizer elements, the
normalizer of every stabilizer code can be brought into th
following standard form:

Z=(I8 - @I0Z;0I® - a®(M)a(Ix---&I),

v S’ | E—
I r K—I-r
_ . (D)
Xi=(I® - -0IeX;®l®---®)®(NL)® (M%) .
N AN AN
1 r K—I-r
(5.2
Here sz=®nezj2n, No=®,_.2Z,, and M}
]

= ®iexjxi, whereZz;, Zj’, and A; are (possibly empty in-
dex sets of lengths, r, andK —| —r, respectivelyi.e., ML,
N%, andM/ are tensor products d¢fs and single-qubit Pauli

Z and X matrices, respectivelyRecall thatk is the number
of physical qubits]l is the number of encoded qubits. The
exact form ofM%, NL, andM{, as well as the value of the
integerr, can be found from the stabilizg45], but is unim-
portant for our purposes. We only need the result that fo
every pair of encoded and X operations, acting on thgh

m

e

tven number of’s in Z then the last Hamiltonian should be

aken asA|z=X; (since, as we show below, in that case in
,®19K~1""for 7), and
similarly for the lastB; .” Note thatA,,,X]=[B;,Z]=0, so
that transforming? does not affeck, and vice versa. There
are now two ways to constru@ and X fault tolerantly: in
parallel or in series. The parallel implementation has the ad-

vantage that it requires only three basic steps and thus is very
efficient. Its disadvantage is that it may be hard to implement

e
t

in practice because it requires simultaneous control over
many qubits.

1. Series Construction

We assume throughout this discussion that we wish to
generate expfZ). The symmetry betweed and X in the
CSS case implies that our arguments hold for B¥)(as
well, with obvious modifications.

The series construction consists of applying first the se-
qguence of gates{exp(i(rr/4)An)}LZ=|1, then the gate
exp(6z;), and then the reverse sequence of gates
{exp(—i(w/4)An)}ﬁ:|Z‘. An example is shown in Fig. 1.
First, as an application of the general E4.12), let us prove

that this procedure indeed generates &)
TAlOTAZO e TA‘Z‘Oqui 021)

|Z] p( T )
® exp —i—A
n=1 4 "

r =

exp(ifZ,)

encoded qubit, it is possible to express the operations in the

blockwise product shown in Eq5.1) and(5.2).

B. CSS stabilizer errors on one encoded qubit

For simplicity, let us now restrict attention to the case of

a single encoded qubit in CSS codes, i.e., those codes where

everyf and X can be written as a product of onB/s and
only X’s, respectively. Then, from Eq$5.1) and (5.2) the
standard form igdropping thej index)

Z=7Z,0M 2K 1T, (5.3

X=X;®1°" @My, (5.4)

i.e., N,=1%". Our goal is to construct such and X from
single- and two-body Hamiltonians. We shall do this by
starting from the single-body Hamiltoniag and X,, and

conjugating by certain two-body Hamiltonians. The idea is tothen A;=X,Z,, A,=X;Z3, A;=X

successively construct th&s in M, and theX’s in My . We

claim that the required two-body Hamiltonians have the

natural form

1

® exX
n=|Z|

-y

=exf (—)Zli 67],

LT
+i1—A

X
4

d

|2
ilZ] Az,
n=1

j

(5.7)

where in the first line we used the definition of the
“conjugation-by-(r/4)A," operation, in the second the re-
sult that this operation corresponds to multiplication inside
the exponent, and in the third the form in E&.3) for Z.
Note that the reason we have a series of conjugation-by-
(7/4)A,, operationgas opposed to trivial identity operations

"For example, suppos@=2(Zz2)(I1) and X=X(I11)(XX);
lZ4l A4:X11 B]_:ZlX5, and
A A
B,=

Z,Xs. Then we havez(I11)(11)y—Y(ZI1) (1)~ Z(ZZ1)(I1)
Az Ag__ By By
—Y(2Z2)(11)—Z, andX (111 ) (11— Y1) (X)X,
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is that {ITK_1A,Z, A} =0Vk=<|Z|. Finally, we can elimi- Thus it suffices to show that, anticommutes witkZ, which
nate the minus sig(if | 2] is odd by changing one of the s true sincdZ,Z,]=0:
wl4's to — /4.

Next we must demonstrate that the conditions of theorem
2 are satisfied at each point in the corresponding circuit in L L
order to guarantee the fault tolerance of this implementation. =—2ZXc0g20)—iZXZ,sin(20)
Let us divide the proof into three parts, by following the
transformations of the normalizer elements before and after

the central expfZ;) gate, and showing that either or X

X,Z=XZ cog26)+iXZ,Zsin(26)

=—7ZX,. (5.12

anticommutes with the transformed normalizer at each ste

along the way.

Errors before the central gateAfter application of the

first k gates{exp(i (w/4)A)}k_,, Z is transformed taz®

EHLlAnf (we neglect the unimportant factors offrom
now on. From Eq.(5.5) the product is

II A= . (5.8
if k=2l+1.

Therefore, using the standard form,
2 2l
(H AnZ)le_[ Z, ZX
n=1 n=1 "

21
:“__]I Zzz_
n=1 "

2|
= —ﬁ 11 Az, (5.9
n=1
so that{z®),X}=0. On the other hand,
2l+1 21+1
(H AnZ>Z=X1H z,72Z
n=1 n=1 n
21+1
=-zx 11 z,z
n=1 "

21+1
- _E< H Anz),
n=1

(5.10

so that{Z(?*1 7}=0. Thus theorem 2 is satisfied after each
gate application, wittZz and X alternating in the role of the

anticommuting original-normalizer element.

Error immediately after the central gatét the end of
step(i), Z has been transformed & . Since the central gate
(6 rotation uses onlyZ;, the transformedZ does not

change. Therefore, is still anticommutes with the origD?aI
and satisfies the criterion of theorem 2. For the same reason,

however X is transformed by the central gate:

X—X,=X cog26)+iXZ, sin(26). (5.11)

Errors after the central gateAfter application of the first
" inverse gateslexp(—i(m/4)ANA X "1, Z, is trans-
formed toZ'W=11X_ A Z. Therefore, the same reasoning
as in (i) applies toz’®. As for X (which is nowX,), the
Ycos(ZB) component commutes with the inverse gates
exp(—i(m/4)A,) so that it does not change. The

iXZ4sin(20) component, however, anticommutes with the
inverse gates eXp-i(w/4)A,). Therefore, it flips back and
forth betweeniXZ, sin(26) and iXY,sin(20). These terms
anticommute with the origina andY, respectively. But so
does theX cos(2) component, so their sum anticommutes
alternately with the originaZ andY.

We conclude that theorem 2 is satisfied at each stage of
the circuit. Therefore, the series construction is indeed fault
tolerant. Of course, this fault tolerance is achieved in practice
by supplementing the circuit with error-detection and
-correction procedures after each gétee parallel construc-
tion discussed next is much more economical for this rea-
son. We discuss this issue in Sec. VII.

2. Parallel construction

Since theA, (B;) all commute, the corresponding gates
can also be implemented parallel. That is,

=ex;;< iZ ngz An),

=exp(i%g,%8i>,

can be used as parallel gates in our cir¢sie Fig. 2 for an
example. To see directly that this circuit really does imple-
ment the normalizer gate expf) [or exp{#X)], observe
that, by definition{A,,Z,}={B;,X;}=0 for all n andi. This
means that conjugation a&f by U, will act as multiplication
by I1,,. zA, and thus transfornzZ, to Z (without changing
X1). The same is true foX; by changingZ’s to X's andU

to Ug. Therefore, UAzluI\=z and UBX1UE=X, from
which it follows immediately by Taylor expansion that

LT
Upr=® exp(|—An
neZz 4

(5.13

u p('WB
B= ® exp | —+bB;
ieX 4 I

Uaexpli 0Z,)Uk=exp(i62),

(5.14
Ug expl(i 6X,)U L= exp(i 6X).

This too is a fault-tolerant construction. The reason is that it
corresponds to looking at the series construction just at the

022307-9



LIDAR, BACON, KEMPE, AND WHALEY PHYSICAL REVIEW A 63 022307

Since for there is just one encoded qubit, we expect
Qax s “ P

to find just oneX and oneZ. In the case of,y it is easily
verified that the normalizer is generated by

zZ Z _
- i -n/4i = 0z X=XIII,
T T

_ (5.19
7=27277

zZ Z —
L= L= X is already a single-body Hamiltonian and therefore can be
FIG. 2. Parallel implementation afZ for the Q,x subgroup. implemented directly. Let us show ho& can be imple-
mented as a Hamiltonian using at most two-body interac-
following three points: right before the central gate, righttions.

after the central gate, and the end. Note thathx_supports a CSS code. Comparing the above
expressions foZ to the standard form for CSS normalizer
C. Example: The subgroupQ,y elements[Eq. (5.3)], we haveM,=2,Z;Z, and My=0.

As an example with a many-body normalizer eIement,TherEfore’ frpm the recipe of E‘ﬁ5-5)' An=X1Zn 1 for n
--3 while A,=X;. The series-circuit implementing

consider the Pauli subgroup/stabilizer generated by the errors+ "2
XX, IXXI, 1IXX: exp(62) thus has the form depicted in Fig. 1. The parallel

version of the same circuit is shown in Fig. 2. To verify
Qax={ XX XTEX XX, XEXTEXXELIXEX XXX directly that these circuits indeed implement é¥@j, use
(5.19  Eq. (4.12 and choose the base qubit to be the first qubit.

It describes a physically interesting error model, of bit-ﬂipThen
errors that act on all pairs of nearest-neighbor qubits. This . _ .
situation is of interest, e.g., when decoherence results from Txzie Txizie Txuze Txan *Xpi 0Z11) = expli 02222).

spin-rotation coupling in a dipolar Hamiltonian, typical in (5.20
NMR [46]: As required, this is an implementation that uses at most two-
body interactions.
YiYk i R i
Hi=2> J_s[gj -0 —3(0 1) (o )], (518 _ Figure 1 also sho_vv_s the transformEdat each point, _and
bk Ty directly below the original normalizer elemerX or Z) with

which this transformed normalizer element anticommutes.
This verifies that the circuit is indeed a fault-tolerant imple-

mentation of exp’@f) for Qo -

Here v; is the gyromagnetic ratio of spipp andrjy is the
distance between spifandk. In the anistropic casee.g., a
liquid crysta) this can be rewritten as

D. CSS stabilizer errors on multiple encoded qubits

1
=S ik aB ag Byy-—a—pB
H, % rj3k a,ﬁzz,l gik (0@ 0k)Y, » (517 The CSS case of more than one encoded qubit is a simple

extension of the single encoded qubit case discussed above.
where Y|" are the spherical harmonics argfkﬁ is the From Egs.(5.1) and(5.2) the standard form for a CSS code
anisotropy tensor. Whegji’= 8,08500jx. only theof@of IS NOW
terms remain(coupled toY9), which leads to decoherence
described by the subgrou,, (defined similarly toQ-y),
analyzed in paper |I. — .
To find the DFS undeB,y, we construct in accordance Xj=X;@1°TeoM. (5.22

with the techniques of paper | the projec®r= ;=,q; (cor- ) , o
responding to the identity irrep dD,y), where the sum is Operations on different encoded qubit$’ commute. There-
over all g;e Q,x. Applying this projector to an arbitrary fore, the single encoded qubit constructions still holds when

initial state, we find a two-dimensional DFS, spanned by théhe Hamiltonians are modified to read

states ;
Ag”:szzn, Zy€ 2 (5.23

Zj=Z2;aMLe|®K 1T, (5.21)

0,)=(]0000) +|0013) +|0102) +|0110 +|1002)

BW=zZX,, xedi. 5.2
+]1010 +]1100 +|1111)/8, A T (624

18 Asis easily checked, the entire proof for the single encoded

(5.
|1,)=(]0003) +|0010 +|0100 +|0113 +[1000 qubit case carries through when the base qubit becomes

+]1013) +|1102) +|1110)/ 8. physical qubit numbey instead of number 1. This thus al-
lows us to fault tolerantly implemerU(2)*' on all | en-
This DFS thus encodes a full qubit. coded qubits.
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To couple encoded qubits within the same bldthkus —1) =
generatingSU(2) ], one could use a standard trick from sta- {x®,z}=
bilizer theory[34], using an auxiliary block to swap infor-
mation into and out of. This transversal operation involves
applying encoded controlledoT operations, which we treat =
in Sec. VI below. In that section, we also show how coupling
multiple encoded qubits can be achieved directly, without
resorting to an auxiliary block. Thus theorem 2 is satisfied after eaCh.-gate application,

with Z playing the role of the anticommuting original-
E. General stabilizer errors normalizer element. This means that use of the Hamiltonians
. . . .., C,,» does not spoil the fault tolerance of the circuit. We know

The entire analysis for the CSS case carries through in thg ) he calculations in the single encoded qubit case that
general stabilizer case for the implementation of &)  the rest of the circuit is also fault tolerant. Hence we can
sinceZ remains unchangefdecall Eq.(5.1)]. However, the conclude at this point that our method of constructing nor-

(zp< 11 anYZﬁ(zl)k I1 z.x

! 4 ’ !
n EZk n eZk

(zp* 11 z.|{x.z}=0. (5.28

’ ’
n' ez,

encodedX operation now includes the additional blobl : malizer elements is fault-tolerant for any stabilizer code.
X=X;®N;®My [Eq. (5.2)]. Therefore, to generate this op-
eration we must include a new set of Hamiltonians: F. Summary
C.=2,Z n ez (5.25 Let us recapitulate the main result of this section. Given a
n’ n’ s . .

set of errors corresponding to some Abelian subgroup of the
. . = . Pauli group(i.e., a stabilizex, there is a DFS that is immune

I there IhS a? even Eumber ‘Z_ys in Z, then the last Hamil- to these errors. We have shown how to implement arbitrary
tonian should be taken &z, =Z,. We now need to repeat gncoded S(p) operations on this class of DFSs. To do so,
the analysis for the generation of eiX). Again, there is a we gave an explicit construction of encodeg and o, op-
series and a parallel construction. Since @} and B; all erations, which together span encoded &4 for each DFS

commute, the gate qubit. The construction involves turning on and off a series
of one- and two-body Hamiltonians for a specific duration.
Ugc=Up®U¢ Each such operation takes the encoded states outside of the
DFS. However, our construction guarantees that the errors
= ® ex;{izBi ol ® exp{ i ch,> always remain correctable by the code formed by the trans-
iex 4 N eg 4 formed states. That is, these states form a QECC with respect
to the Pauli subgroup errors. Therefore, our construction
N works by supplementing the unitary gates executing the en-
=ex+ Z( ng Bi+ ,EZ, Cn’) (528 codede, and o, operations by appropriate error-correction
"e procedures. To complete the construction, we still need to

_ . . . . show how to execute encoded two-body gates, and how to
can be .|mpl-emented -m_parallel. Conjugatlor-1 of ally) by ¢4 ¢ tolerantly measure the error syndrome. This is the sub-
Ugc will yield exp(iX) by Eq. (4.12, since {X;,Bi}  ject of the next two sections.

={X4,Cy/}=0. It is further straightforward to check that

this is_ a fault-tolerant i_mplementation, since the arguments VI. ENCODED CONTROLLED- NoT
used in the case of a single encoded CSS qubit are still valid
here. The unitarycNOT operation from the first qubit‘control

We are thus left to check only the series constructionqubit) to the second qubit‘target qubit”) can be written in
Here the only new element is that we must make sure thahe basis ofr, eigenstates as
the application of theC,, Hamiltonians does not allow for

undetectable errors to take place. Apart from this, everything I 0

is the same as in the CSS case. Now, after application of the Ucenor= ( 0 X) 6.1
first k gates{expli (w/4)Cn,)}E,:1, X is transformed to

Y(k)EHﬁ_lcn,Y_ This product is (where each entry is a22 matri¥. Since we are working in

the Heisenberg picture, it is useful to consider how two-qubit
operators transform undenoT. For example,

IT z., if k=2

K n' ez, : I 0\/0 I\[1 O
H Cn': (527) x®|'_)UCNOT(X®|)UCNOT: 0 X | 0 0 X
n'=1 z, [1 z, if k=21+1,
n' EZ& _ 0 X 6.2
=lx ol (6.2
where Z, are the firsk elements of the index set’. There-
fore, As is simple to verify, the full transformation table is
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X@l—=>X®X, code leaves the DF6As in theSU(2) case, we must check
that the original errors are still correctable at each interme-
[@X—=>10X, diate step. Theorem 2 will still apply if error-correction pro-
(6.3 cedures are implemented on each block separately, after each
Zel—>Zol, bitwise cNOT operation(since the blocks are only coupled
during the execution of thenoT). Therefore, we need to
l®Z—~28Z. check that for each block in which the normalizer changed,

SinceU(A® B)UT=U(A®I)UTU(I ®B)UT, the rest of the there exists an element in the original _normal_lzer that anti-
transformations undernoT follow simply by taking appro- commutes with the transformed normalizer. It is easy to see
priate products of the above, e.gX®Z=(X®I)(l from Eq.(6.4) thatX; does not change in the first block, and
®Z)—(X®X)(Z®Z)=-Y®Y. We need to show how to the sequence of transformeq'’s in the second block anti-
fault tolerantly construct an encodedioT operation for the  commutes withz; at every step. Therefore, error correction
DFS corresponding to a given Pauli subgroup of errors.  is possible at each intermediate step.
To complete the construction, it is necessary to check that

A. CSS stabilizer errors the remaining normalizer elements are appropriately trans-

formed. Repeating the calculation of H.4), it is straight-

It is well known that a bitwiseeNOT gate between physi- "
9 phy gorward to check that this is true, namely

cal qubits in different blocks is an operation that preserve
any CSS code, and acts as the encodedT gate between
the blocks encoding different qubif84]. However, this is
true only at theconclusionof the operation, i.e., after all the
bitwise operations have been applied. During the execution
of the bitwise operations, the codewords are exposed to er- KD S =
rors. To demonstrate this, consider the transformation of the I"teZi~>ZieZ;,
normalizer elements of a CSS code. latoT; ; denote
the cNOT operation from control qubjt(in the first blockA)

to target qubif (in the second blocB). For definiteness, let
us consider the transformation o¢1®I®K under bitwise
CNOT's. Then, because of the standard form Xgr, the first
CNOT operation is applied from control quhjt and subse-
guentcNOT's from control qubits are determined by the in-
dex setX;, i.e., acting on pairs of physical qubits at positions
{(ia.ig)}icx- Using Egs.(5.21) and(5.22 for Z; and X|,
and the transformation table of E@.3), we find

|®K®ZH|®K®Y]‘ ,

Z;®1°%—Z,01%K, (6.5

with 1°%@X; and Z;® 1K invariant under the bitwise
CNOT's (thus requiring no error correctipnand the trans-

formed| ®K®Z- anticommuting at each step with the original

i _
This completes our demonstration thatneoT gate can be
implemented fault tolerantly using bitwiseNOT's in the
CSS case.

B. General stabilizer errors

In the non-CSS case, the bitwisslOT does not act as a

X @128 =[X;® 1" oMy [1®'@1° @l ®K 171 cNoT. One quick way to realize this is to note that since
®1—=>X®X, by unitarity X® X—X®]I, but this is not the
CNOT, g case at the encoded level:

= [ X @12 eMy]e[X;®1® @ ®K 1] o
X®X=[Xl® N2®Mx]®[XK+1® N2®Mx]

CNOT,
1A lB
= [Xj®|®r®Mx]®[Xj®|®r®xil] n—)[xl®|®r®MX]®[|K+l®NZ®|®K7|7r]
e[ X IPTRMYIR[X @ 1% @ My] #X®| %K,
=X;©X;. 6.4  Thus adifferent implementation of theior is needed. Now,

it is clear that if the product of stabilizers for different blocks
Similarly, one can check that the rest of the transformationéeach encoding one qubit or mgrie mapped to itself at the
of Eq. (6.9 are satisfied at the encoded level. Therefore, thig€nd of thecnot implementation, then the stabilizer errors
calculation demonstrates that the full bitwissoT gate in-  will not have changed, the DFS qubits will not have
deed acts as aencodedcNOT operation, since it transforms changed, and thus the DFS code still offers protection
encoded normalizer operations according to the transformaagainst the stabilizer errors. Gottesnj@d] has given such
tion rules of cNoOT, as per Eq.6.3). In our context, this an implementation of thenort for arbitrary stabilizer codes.
implies that given a certain Pauli subgroup of errors, applidt uses transformations involving four blocks at a time where
cation of the full bitwisecNOT gate will implement thecnoT
gate on the DFS in a way that keeps the codewords inside the
DFS at the end of the operation. However, as in $42) 8Note that this is equally true for stabilizer QECCs, which are thus
case, this is not true at intermediate steps, meaning that thexposed to errors during gate execution.
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two blocks serve as ancillas and are discarded after a mea-
surement at the end of the implementation. We will not re- — —'_9_2_'— —
peat this analysis here—the interested reader is referred to p.
133 of [34] for details. The faster the gate sequence imple-
menting thiscnoT is executed compared to the time scale for
the errors to appear, the higher the probability that the code Uy Ul
will not be taken outside of the DFS. However, as shown in — —
Appendix A, the gate sequengegig. 2 of[34]) does not have
the property we have been able to demonstrate above for all
our constructions, i.e., it allows for errors to become part of
the transformed normalizer. Therefore, we cannot use this
construction. Instead, we now introduce a different construc-
tion for thecnor, in the spirit of what we have done above

for the SU(2) operations. — mEdss —

Consider two blocksA and B encoding one DFS qubit
each. We already know how to implement ex¥h(®Xg). S— I

Suppose one can also implement é#B{®Xg). Then by use U, Ut
of the Trotter formula eXp(t;0;+1,0,)/n]
=lim,_..[expli(t;/n)Oexpli(t,/n)0,)]" [47], or its
short-time approximation

exfit(0;+0,)/n]=exfditO;/n]exditO,/n]+0O(n"?)
(6.6

FIG. 3. Fault-tolerant implementation of ex@X) needed to
valid for arbitrary operator®, andO,, we can form, to any generateNoT.
desired accuracy,
system can couple the two blocks connected by this Hamil-
_ | 0 tonian, then so can the environment. Therefore, instead of
exdi 9(|A®XB—ZA®XB)/2]:(O expli 6. ))- considering the error subgroug, and Qg separately, we
B 6.7) must now consider the new error subgroQpx Qg. But

then the appropriate normalizer yg=NxXNg, and the
For 6=m/2 this is thecnot operation between the two sequence of transformed normalizers satisfgg;=Na
blocks. Thus our problem reduces to showing howXNg;. This makes the fault-tolerance verification task very

exp(Z,®Xg) can be implemented fault tolerantly for arbi- Simple: We already checked in o&U(2) discussion that
trary stabilizer DFSs. theorem 2 is satisfied for each block separately. Now, clearly

Consider the circuit shown in Fig. 3. It describes thePoth Na®lg,I1n©NgeNyg. Therefore, since for every

implementation oEandYoperations, as in thBU(2) case, tratr_wsforme(t:i_ norrlnal|ze{_elt<ahmen_'[ .MA'Ii [NB’j]I';:zerT\l IS {;}[n
with the difference that the single-body central gates hav<?n icommuting element in the original normali2ég [Ng], i

been replaced with a two-body gate, generated by the Hami ollows thatN® I g [| a®Ng] will correspondingly anticom-

tonian H = Z2® X (hereA andB are the two blocks and mute with the elements df,g ;. This means that theorem 2

the subscript 1 indicates the first physical qubit in eachIS satisfied also for the combination of blocksand B, and

. At fault tolerance is guaranteed as in tBg(2) case.
bl(fk)' By the SU(2) construction, we have thalaZ,U As promised in Sec. V D, the construction presented here

_ Byt _ % ! . . . .
=Zp andUgX7Ug=Xg (recall Sec. VB 2 Therefore, Us- 5150 applies to multiple qubits encoded into a single block.

ing the fact that for any nonsingular mati the equality 1o see this, consider the case of two encoded qubits in the
MexpH)M™"=expMHM ™) holds, the gates in Fig. 3 yield 50 piock, and let us show that we can generatei @p(

(Up®Upg)exp(i aHAB)(U;(@UE) ®22) between them. This coupling, together with single

_ R encoded-qubit operations, suffices to gene&lik2') (for |

=exfdif(Up®Ug)Hap(Upr®Upg)] encoded qubits in a blogkNow, from the standard form we
. have

=exfi 6(UaZUR) ® (UgXFUL)]

— - _ 1 QK—I—r
=exp(i 0Z,® X3), (6.9 Z2,=72,3Mz®] , (6.9
as desired. Z,=Z,0M2e | K-1-T, (6.10

It remains to verify that this is a fault-tolerant construc- o -
tion. The only difference compared to ti$J(2) construc- Let Zl=U121UJ1r and 22=U221U£. Note that[Uq,Z,]
tion above is the fact that we are now usingveo-body  =[U,,Z;]=0 sinceU, ) containsX,,. For the same rea-
central Hamiltonian. It is reasonable to assume that if theson alsq U,,U,]=0. Therefore,
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(U1 Up)exp(i 6Z,Z,) (Ul UY) x — &R &

=exgiO(U,0U,)Z,0Z,(Uloul)]

=exfi (U Z,UD) @ (U,Z,U})]

=exp(i 0Z,07Z,). (6.11) ! Ky (o] -

The same idea can be used to implememT between z
multiple qubits encoded into a single block. We have thus T
provided a fault-tolerant implementation afor for any sta-  [0.) B X X X
bilizer DFS.

FIG. 4. Measurement of the stabilizer elem&rdyY X

VII. FAULT-TOLERANT MEASUREMENT

OF THE ERROR SYNDROME applied, with one modification: a Hadamard transform

correction is possible in between gate applications. We now R E
complete our discussion by showing that it is indeed possible

to do so fault tolerantly. This requires the ability to measure, st pe applied before and after the controlledperation.
the sequence of transformed stabilizer generators in a manngpe effect of the Hadamard transform before the controlled-

that doe; not !ntroduce new errors in a catastrophic way._T% operation is to change the corresponding qubit intoZhe
accomplish this fault-tolerant measurement, we follow, W'theigenbasis after which th-type construction applies. The

some modifications, the usual stabilizer construcfii. . -
Let us recall the basics of measurement within stabilizerSeCOnd Hadamard transform returns the qubit to the original

theory. A DFS statéy) in the stabilizeQ is a+ 1 eigenstate basis. This colnstrgc-tio.n Is shown sr-:hem.atically in Fig. 4

of all elements ofQ. An errore is an operator that anticom- ~_ Note that sinceX is in the normalizer, it commutes with
mutes with at least one element of the stabiligersayq. If all stabilizer errors. This means that any such error occurring
|) e Q, thenqge|)=—eq ¢)=—e|), so thate|y) is an  on the ancilla before th& is equivalent to the same error
eigenstate ofj with eigenvalue— 1. Therefore, each genera- after theX, and therefore the error has no effect. In other
tor measurement that returns the eigenvalug¢ indicates words, the ancilla does not ever leave the DFS under the
that no error has occurred, while eaefl result indicates an application ofX, nor can an error on the ancilla propagate

error, which can be fixed by applying the ergoto the state.  pack to the data qubifsNote further that since the ancilla is

The sequence of 1's that results from measuring all stabi- 4t z)| times unentangled from the data qubits, the measure-
lizer generators is called the “error syndrome.” The identity ment is nondestructive on the data qubits.

of e is uniquely determined by this “syndrome,” since the  \wyhat if a stabilizer error occurs on the data qubits right
measurement process projects any linear combination of egfter the application of the Hadamard gate? This can clearly

So far we have taken for granted that error detection and 1 (1 1
1 -1

(7.1

rors to an error in the Pauli group. present a problem, since it may, for example, flip the data
qubit controlling theX applied to the ancilla. Onestandargl
A. CSS stabilizer errors way of dealing with such errors is to repeat the measurement

geveral times in order to improve our confidence in the re-
sult. An alternative is to use concatenated cd@&s48—5Q.
This will be of use if the stabilizer error is correctable by the
éransformed code, i.e., if we can verify that the conditions of
heorem 2 are satisfied. Then we can use the DFS at the
lowest level, and concatenate it with the QECC it transforms
into under the stabilizer error&see Ref.[23] for concat-
enated DFS-QECC in the collective decoherence model
Now, recall the CSS form of the normalizer elements, Eq.
(5.3). For every Hadamard transform in the first seé.,

In this case, the stabilizer generators contain either pro
ucts only of Z's (*Z-type”) or products only ofX’s
(" X-type™). Suppose we wish to measure-dype stabilizer
generator. Thet 1 eigenstates of such a generator are th
“even-parity states,” i.e., those states containing an eve
number of|1)’s. Prepare an ancilla in the encod@q) state
(below we discuss howThen for each data qubit where the
given stabilizer generator hasza(not anl), apply a con-

trolled X from this qubit to the ancilla. The ancilla will flip
every time the data qubit was| &), so measuring the ancilla
at the end and finding it if0,_) will indicate no error(even

number of flipg, whereas|1,) will indicate an error(odd
%This DFS construction is different from the usual QECC-

number of flipg. Distinguishing betweer|O, ) and |1,) 1S : _ :

e . . stabilizer construction, where multiple control operations to the
amounts to measuring on the ancilla, which we can_do same ancilla qubit are not fault-tolerant because they are not trans-
directly by measuring on all those ancilla qubits whos®  versal. There multiple cnoT's from different data qubits to the
has aZ. same ancilla qubit can cause errors to spread catastrophically if the

Now suppose we wish to measure Hrtype stabilizer ancilla qubit undergoes a phase erfeecall that undercnor, |
element. The same procedure asZdype generators can be ®z—7®7).
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before the controlledk operation on a qubit in a position implementation are ignored. However, here we are only able
corresponding to aiX in an X-type stabilizer generator, the t0 consider independent single-qubit errors, so that the inclu-
normalizer elements transform by having and Z inter-  sion of the special type of correlated many-body errors rep-
change in this position. In the standard form of E§.3), if resented by thg s_tabilizer errors is a rather unrealistic error
this happens to be the first qubit, thEI%X@MZ@I, which model. The main importance of the result presented here is

. ith th iqinal. d X>Zol oM that it suggests an alternative route to universal quantum
anticommutes with the origina?, and X—Z31@My, computation that is fault-tolerant with respect to ermetec-

which in turn anticommutes with the originXl. If the posi-  tion, and is highly parallelizable. We believe that this may
tion of the X in the X-type stabilizer generator is whek;  lead to an improved threshold for fault-tolerant computation
has aZ, thenZ—Z®M,®1, whereM; has thatZ changed in the setting of concatenated codé&§].

into anX. This transformed& anticommutes with the original Let us recall the error-detection and -correction criteria
X. Similarly, YHX@I@Mg(With anX changed into &, and for a stabilizer codeQ={q,} to be able to deal with all

i — ) - single-qubit errors:
this transformedX anticommutes with the origina&. Thus
the conditions of theorem 2 are again satisfied. Yi,j,a,B3ks.t.{qy U_a®a,_3}:0_ (8.2

.. 1) 1 1Y ]

The second set of Hadamard transforms restores the origi-
nal normalizer. One then proceeds to measure the next st&an we implement encoded $) operations in the
bilizer generator. We thus see that this measurement proc@dependent-errors model similarly to what we did above for
dure is fault-tolerant of stabilizer errors. stabilizer errors? To do so, we need to make sure that the
errors do not become part of the sequence of transformed
normalizers. The important difference compared to the

N stabilizer-errors case is that now the errors are “small”
In the non-CSS case, the stabilizer generators may Contat@ingle-body which means that we must avoid using a

Y’s as well, so our analysis above requires some modificagjngle-qubit Hamiltonian as a central gdter it is a normal-
tions. The unitary operation that transforiviso Z is izer element that will not be distinguishable from an exrtfr
. we restrict ourselves to using two-body Hamiltonians as cen-
1L tral gates(which ways d Il th t at
Q=— _ (7.2 ral gates(which we can always do—recall the comment a
J2\1 i the end of Sec. IV} then we run into a similar problem
regarding the two-body form of E@8.1), i.e., if the central
It also mapsZ—X—Y. When this operation is applied im- gate uses the Hamiltonian{*® ajg, then we will not be able
mediately before the controlled-to the ancilla and immedi- 0 correct the two errors{* and of . However, as we now
ately after it for everyyin the stabilizer, th&-type construc- Show, as long as we use a two-body central gate, it is nearly
tion applies again. However, for the purpose of@lways possible to satisfy the errdetection criterion,
concatenation we need to check that the procedure is stiWi,a3k s.t.{qx,0{"}=0. ) o )
fault-tolerant of stabilizer errors. The normalizer generators Let us demonstrate this explicitly for Steane’s seven-qubit
now have the form of Eqs(5.1) and (5.2). Every time a code[12]. This is a CSS code encoding one qubit into seven,
Hadamard oQ operation is appliedZ— X in a single posi- and in standard form has the normalizer
tion in Z. Similarly, Z— X, or X—Z (if Hadamard or Y (if
Q) in a single position inX.

The case of the transformed is trivial: if Z—X any-
where, then the transformetianticommutes with the origi-
nal Z. Consider the transformed. The possibilities ar¢i)  Consider the gate constructipderived from Eq(5.5)]
Xq—Z4 or Yq, (i) Z—X in the Ny part, (iii) X—Z or Y in _
the My part. In all these cases, it is easily verified that the expi 02) =Ty, z cexpi 6Y1Z,). (8.3
transformedX anticommutes with the origina{. Therefore,

the measurement procedure is fault-tolerant also in the nonthe normalizer transforms as
CSS case. X125 Y174

X = X > cog26)X+i sin(26)Z,Z,XsXg

B. General stabilizer errors

Y: X1X5X6,
_ (8.2
Z= 212324 .

VIII. OUTLOOK: IMPLICATIONS FOR THE
INDEPENDENT-ERRORS MODEL X123 o o
) o — cog20)X+sin(20)Y
The methods we have introduced in this paper need not be
restricted to stabilizer errors. In this section, we briefly touch X123 Y124 X123
upon the implications of our construction for universal quan- =XexXp2i0Z)Z — Y12, Y1Z,— Z. (8.9
tum computation in the independent-errors model, when sta-
bilizer errors are taken into account as well. We thus geneWe see that at no point does a single-qubit error become part
alize the standard treatment of stabilizer cofi®4], where of the transformed normalizer, so that all single-qubit errors

stabilizer errors that may occur during the course of gatere detectable. On the other hand, while we can always de-
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tect the occurrence of both the andZ, errors, we cannot stabilizer codes it is once again necessary to apply two-body
distinguish between them after the first gate has been appliezentral gates. Fault-tolerant measurement of the error syn-
(since our normalizer i¥,Z, at that point. Since we might drome can be done using the standard techniques available
accidentally try to reverse the errgy when in fact the error  for stabilizer code$34].

Z, has taken place, this means that our construction is fault-

tolerant only for error detection. Similarly, the gate construc- IX. SUMMARY AND CONCLUSIONS

tion
_ In a previous papef29], we derived conditions for the
exp(i 6X) =Tz x oexpli 6Y1Xq) (8.5  existence of a class of decoherence-free subspdeSs
defined by having Abelian stabilizers over the Pauli group.
yields In this sequel paper, we addressed the problem of universal,

fault-tolerant quantum computation on this class of DFSs.
The errors in this model are the elements of the stabilizer,
and thus are necessarily correlated. This model is comple-
YiXe mentatryb_tlg the stanctjard model of qu?ntum cdoénépEuCtaCti;n us-
=, . ing stabilizer quantum error-correcting co ,
= COY20)Z+1SIN20)X1Z5724Xs where the errors that are correctable by the code anticom-
Z,%s mute with the stabilize(rather than being part of)it The
s cos{20)2+ sin(26)7:fexr(—2i X)), corrglatlon betwee.n errors in the present m0(_je| |mpI!es no
(8.6) spatial symmetry in the system—bgth interaction, unlike in
most previous studies of computation on DR&#hich con-
which also satisfies the error-detecti@ut not correction  Sidered the “collective decoherence” model, and where the
condition for single-qubit errors, in that no single-qubit error stabilizer is non-Abelian Therefore, our present results sig-
becomes part of the transformed stabilizer. nificantly enlarge the scope of the theory of DFSs.

Let us now consider the general stabilizer case. Recall It turns out that even though the class of DFSs we con-
once more the standard form of the normalizer, H§sl) sidered are Pauli-group stabilizer codes, the usual universal-
and(5.2). Our gate construction acts by transforming one ofity constructions do not apply, because of the different error
the normalizer elements to two-body form, where it is ap-model we assume. Our alternative construction of a set of
plied as the centrad gate, and then is transformed back to its universal quantum gates resorts to the early ideas about uni-
standard form. All other normalizer elements are left un-versal quantum computation, except that our operations all
changed until the application of the central gate, with whichact onencodedDFS) qubits: we showed how to implement

they anticommute. At this point eagh[ X] is multiplied by ~ arbitrary single-encoded-qubit operatidtise SU(2) groug
exp(—2i6X) [exp(26Z)]. The final sequence of gates flips and cnoT gates between pairs of encode_zd qu_blt_s. The chal-
these normalizer elements back and forth betweedtn9€ here was to show how to accomplish this implementa-

= — — — tion using only physically reasonable Hamiltonians, i.e.,
exp(—2i6X) and exp{-2i6Y) [exp(26Z) and exp(2dY)] (re-  {hose involving no more than two-body interactions. To do

call the analysis in Sec. VIBAIl these operations have the g, \ye switched from the usual point of view of treating the

effect of expanding, rather than shrinking, the normalizef, o majizer elementsi.e., the operations that preserve the

elements, as seen in the example of the seven-qubit CO4§rg) a5 gates to one in which these elements are considered

above. s many-body Hamiltonians. We then introduced a proce-

. , a
The ability to error-detect at each point thus translates tQy,re whereby these Hamiltonians could be simulated using
the question of whether any normalizer element ever beai most two-body interactions. Unlike our previous work

comes a single-body Hamiltonian under this sequence ofyncerning universal computation in the collective decoher-
t_ransformanon;. It is not hard to see from the above descripspce model[26,27, the gate sequence implementing this
tion of the orbit of the normalizer that this can only be the gjnjation does not preserve the DFS except at the beginning
case if in the standarq form the n.orr.’nallzer contains a singlezng end. Throughout the execution of the gates, the DFS
body element to begin with. This is certainly possible, asgiates are exposed to the stabilizer errors. However, we
indeed shown in ouQ,x example(Sec. VQ, where X  showed that in fact the DFS is transformed into a sequence
=XIIl. However, it is not the case for most interesting sta-of stabilizer codes, each of which is capable of detecting and
bilizer codes, i.e., those offering protection against arbitrancorrecting the original stabilizer errors. Moreover, we
single-qubit errors. Such codes must have “large” normal-showed that these errors can be diagnosed in a fault-tolerant
izer elements since they may not contain any single-qubitanner, i.e., without introducing new errors as a result of the
errors to begin with. We conclude that o8lJ(2) construc- associated measurements. In all, we showed how by using
tion using just two-qubit Hamiltonians works for all stabi- this type of hybrid DFS-QECC approach, universal, fault-
lizer codes of interest, in the sense that it is fault-tolerantolerant quantum computation can be implemented.
with respect to error detection. Our results have implications beyond computation on
To complete the repertoire of universal operations, theDFSs. We briefly considered here also the question of
cnoT gate is still needed. The discussion given in Sec. Viwhether our techniques can be used to compute fault toler-
applies here as well, with the modification that for non-CSSantly in the standard stabilizer error model. We found the

Z1Xs Y1Xg Z1X5  Z3Xs
Xi=> Y Xg—=> Y Xg+—=> XZ+— Z
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answer to be affirmative for the purpose of single-qubit error APPENDIX: WHY THE FOUR-BLOCK
detection, but not correction. While this is interesting in its IMPLEMENTATION OF cnot IS NOT FAULT-TOLERANT
own right because of the new universality construction we FOR NON-CSS STABILIZERS

introduced, it may also have important implications for the  The construction of thenor in Ref. [34] uses a series of
question of quantum computation using concatenated codegitwise cNOT's (along with some other operationacting
The reason is that our construction is highly parallelizable yetween pairs of qubits in four different blocks. Let us cal-
meaning that it requires a very small number of operationg, ate the result of applying bitwisenoTs on | “KgX (i.e.,
during which the encoded information is exposed to errorsqn o out of the four blocks Recall that for a non-CSS

We speculate that this can significantly reduce the threShmgodeY=X®N ©My [Eq. (5.2)]. Therefore, it follows from
for fault-tolerant quantum computation. Eq. (6.3 that 27 XL A ’

Finally, an interesting open question is whether the meth-
ods developed here are applicable to the problem of univer- |®K®%_>[| ®NZ®|®K*14]®Z (A1)
sal quantum computation on other classes of DFSs.
i.e., theZ's are copied backwards into the first block. There-
ACKNOWLEDGMENTS fore, Ehg normalizer on the first block now confcailn@ N5
®1®K~17" This element obviously commutes with both the
This material is based upon work supported by the U.Sgriginal X andZ [Eq. (5.1)], but does not equal either. There-
Army Research Office under Contract/Grant No. DAAG55-fore, it must be in the original stabilize®. Turning this
98-1-0371, and in part by NSF CHE-9616615. We wouldaround, we see that an erree Q has become part of the
like to thank Dr. Daniel Gottesman for very useful corre- new normalizeN;(Q;)/Q;, which is catastrophic since this
spondence. error is now undetectable.
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