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We discuss two methods to encode one qubit into six physical qubits. Each of our two examples corrects an
arbitrary single-qubit error. Our first example is a degenerate six-qubit quantum error-correcting code. We
explicitly provide the stabilizer generators, encoding circuit, codewords, logical Pauli operators, and logical
controlled NOT operator for this code. We also show how to convert this code into a nontrivial subsystem code
that saturates the subsystem Singleton bound. We then prove that a six-qubit code without entanglement
assistance cannot simultaneously possess a Calderbank-Shor-Steane �CSS� stabilizer and correct an arbitrary
single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error
correcting CSS code. Our second example is the construction of a nondegenerate six-qubit CSS entanglement-
assisted code. This code uses one bit of entanglement �an ebit� shared between the sender and the receiver and
corrects an arbitrary single-qubit error. The code we obtain is globally equivalent to the Steane seven-qubit
code and thus corrects an arbitrary error on the receiver’s half of the ebit as well. We prove that this code is the
smallest code with a CSS structure that uses only one ebit and corrects an arbitrary single-qubit error on the
sender’s side. We discuss the advantages and disadvantages for each of the two codes.
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I. INTRODUCTION

It has been more than a decade since Peter Shor’s seminal
paper on quantum error correction �1�. He showed how to
protect one qubit against decoherence by encoding it into a
subspace of a Hilbert space larger than its own. For the first
time, it was possible to think about quantum computation
from a practical standpoint.

Calderbank and Shor then provided asymptotic rates for
the existence of quantum error-correcting codes and gave
upper bounds for such rates �2�. They defined a quantum
error-correcting code as an isometric map that encodes k qu-
bits into a subspace of the Hilbert space of n qubits. As long
as only t or fewer qubits in the encoded state undergo errors,
we can decode the state correctly. The notation for describing
such codes is ��n ,k ,d��, where d represents the distance of
the code, and the code encodes k logical qubits into n physi-
cal qubits.

These earlier codes are examples of additive or stabilizer
codes. Additive codes encode quantum information into the
+1 eigenstates of n-fold tensor products of Pauli operators
�3,4�. Gottesman developed an elegant theory, the stabilizer
formalism, that describes error correction, detection, and re-
covery in terms of algebraic group theory.

Steane constructed a seven-qubit code that encodes one
qubit, corrects an arbitrary single-qubit error, and is an ex-
ample of a Calderbank-Shor-Steane �CSS� code �5�. The
five-qubit quantum error-correcting code is a “perfect code”
in the sense that it encodes one qubit with the smallest num-
ber of physical qubits while still correcting an arbitrary
single-qubit error �6,7�.

Even though every stabilizer code is useful for fault-
tolerant computation �3,4�, CSS codes allow for simpler
fault-tolerant procedures. For example, an encoded
controlled-NOT �CNOT� gate admits a transversal implemen-
tation without the use of ancillas if and only if the code is of
the CSS type �4�. The five-qubit code is not a CSS code and
does not possess the simple fault-tolerant properties of CSS
codes �8�. The Steane code is a CSS code and is well suited
for fault-tolerant computation because it has bitwise imple-
mentations of the Hadamard and the phase gates as well �the
logical X and Z operators have bitwise implementations for
any stabilizer code �3��. However, an experimental realiza-
tion of the seven-qubit code may be more difficult to achieve
than one for the five-qubit code because it uses two addi-
tional physical qubits for encoding.

Calderbank et al. discovered two distinct six-qubit quan-
tum codes �9� which encode one qubit and correct an arbi-
trary single-qubit error. They discovered the first of these
codes by trivially extending the five-qubit code and the other
one through an exhaustive search of the encoding space. Nei-
ther of these codes is a CSS code.

The five-qubit code and the Steane code have been stud-
ied extensively �8�, but the possibility for encoding one qubit
into six has not received much attention except for the brief
mention in Ref. �9�. In the current paper, we bridge the gap
between the five-qubit code and the Steane code by discuss-
ing two examples of a six-qubit code. The first code we
present is a standard stabilizer code and the second is an
entanglement-assisted code. We have not explicitly checked
whether our first example is equivalent to the nontrivial code
of Calderbank et al., but we provide a logical argument in a
subsequent paragraph to show that they are equivalent. We
also present several proofs concerning the existence of
single-error-correcting CSS codes of a certain size. One of*bilalsha@usc.edu
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our proofs gives insight into why Calderbank et al. were
unable to find a six-qubit CSS code. The other proofs use a
technique similar to the first proof to show the nonexistence
of a CSS entanglement-assisted code that uses fewer than six
local physical qubits where one of the local qubits is half of
one ebit, and corrects an arbitrary single-qubit error.

We structure our work according to our four main results.
We first present a degenerate six-qubit quantum code and
show how to convert this code to a subsystem code. Our
second result is a proof for the nonexistence of a single-
error-correcting CSS six-qubit code. Our third result is the
construction of a six-qubit CSS entanglement-assisted quan-
tum code. This code is globally equivalent to the Steane
code. We finally show that the latter is the smallest example
of an entanglement-assisted CSS code that corrects an arbi-
trary single-qubit error.

In Sec. II, we present a degenerate six-qubit quantum
error-correcting code that corrects an arbitrary single-qubit
error. We present the logical Pauli operators, CNOT, and en-
coding circuit for this code. We also prove that a variation of
this code gives us a nontrivial example of a subsystem code
that saturates the subsystem Singleton bound �10�.

In Sec. III, we present a proof that a single-error-
correcting CSS six-qubit code does not exist. Our proof enu-
merates all possible CSS forms for the five stabilizer genera-
tors of the six-qubit code and shows that none of these forms
corrects the set of all single-qubit errors.

Section IV describes the construction of a six-qubit non-
degenerate entanglement-assisted CSS code and presents its
stabilizer generators, encoding circuit, and logical Pauli op-
erators. This code encodes one logical qubit into six local
physical qubits. One of the physical qubits used for encoding
is half of an ebit that the sender shares with the receiver. The
six-qubit entanglement-assisted code is globally equivalent
to the seven-qubit Steane code �5� and thus corrects an arbi-
trary single-qubit error on all of the qubits �including the
receiver’s half of the ebit�. This ability to correct errors on
the receiver’s qubits in addition to the sender’s qubits is not
the usual case with codes in the entanglement-assisted para-
digm, a model that assumes the receiver’s halves of the ebits
are noise free because they are already on the receiving end
of the channel. We show that our example is a trivial case of
a more general rule—every ��n ,1 ,3�� code is equivalent to a
��n−1,1 ,3 ;1�� entanglement-assisted code by using any qu-
bit as Bob’s half of the ebit.

Finally, in Sec. V, we present a proof that the Steane code
is an example of the smallest entanglement-assisted code that
corrects an arbitrary single-qubit error on the sender’s qubits,
uses only one ebit, and possesses the CSS form.

The Appendix gives a procedure to obtain the encoding
circuit for the six-qubit CSS entanglement-assisted code. It
also lists a table detailing the error-correcting properties for
the degenerate six-qubit code.

II. DEGENERATE SIX-QUBIT QUANTUM CODE

This section details an example of a six-qubit code that
corrects an arbitrary single-qubit error. We explicitly present
the stabilizer generators, encoding circuit, logical codewords,

logical Pauli operators, and CNOT operator for this code. We
also show how to convert this code into a subsystem code
where one of the qubits is a gauge qubit. We finish this
section by discussing the advantages and disadvantages of
this code.

Calderbank et al. mention the existence of two non-
equivalent six-qubit codes �9�. Their first example is a trivial
extension of the five-qubit code. They append an ancilla qu-
bit to the five-qubit code to obtain this code. Their second
example is a nontrivial six-qubit code. They argue that there
are no other codes “up to equivalence.” Our example is not
reducible to the trivial six-qubit code because every one of
its qubits is entangled with the others. It therefore is equiva-
lent to the second nontrivial six-qubit code in Ref. �9� ac-
cording to the arguments of Calderbank et al.

Five generators specify the degenerate six-qubit code.
Table I lists the generators h1 , . . . ,h5 in the stabilizer S, and

the logical operators X̄ and Z̄ for the six-qubit code. Figure 1
illustrates an encoding circuit for the six-qubit code. The
encoding circuit is not fault tolerant, but one can consult
Refs. �3,4� to determine fault-tolerant procedures for arbi-
trary stabilizer codes.

The quantum error-correcting conditions guarantee that
the six-qubit code corrects an arbitrary single-qubit error �8�.
Specifically, the error-correcting conditions are as follows: a
stabilizer S with generators si where i=1, . . . ,n−k �in our
case n=6 and k=1�, corrects an error set E if every error pair
Ea

†Eb�E either anticommutes with at least one stabilizer
generator,

∃si � S:�si,Ea
†Eb� = 0, �1�

or is in the stabilizer,

TABLE I. Stabilizer generators h1 , . . . ,h5, and logical operators

X̄ and Z̄ for the six-qubit code. The convention in the above gen-
erators is that Y =ZX.

h1 Y I Z X X Y

h2 Z X I I X Z

h3 I Z X X X X

h4 I I I Z I Z

h5 Z Z Z I Z I

X̄ Z I X I X I

Z̄ I Z I I Z Z

|0〉 H • •
|0〉 H •
|0〉 × • H • H �������� H

|0〉 H • H �������� ��������

|0〉 �������� �������� ��������

|ψ〉 �������� × �������� �������� �������� H ��������

FIG. 1. Encoding circuit for the first six-qubit code. The H gate
is a Hadamard gate. For example, we apply a Hadamard on qubit
four followed by a CNOT with qubit four as the control qubit and
qubit six as the target qubit.
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Ea
†Eb � S . �2�

These conditions imply the ability to correct any linear com-
bination of errors in the set E �8,11�. At least one generator
from the six-qubit stabilizer anticommutes with each of the
single-qubit Pauli errors, Xi ,Yi ,Zi where i=1, . . . ,6, because
the generators have at least one Z and one X operator in all
six positions. Additionally, at least one generator from the
stabilizer anticommutes with each pair of two distinct Pauli
errors �except Z4Z6, which is in the stabilizer S�. Table IV in
the Appendix lists such a generator for every pair of distinct
Pauli errors for the six-qubit code. These arguments and the
table listings prove that the code can correct an arbitrary
single-qubit error.

The logical basis states for the six-qubit code are as fol-
lows:

�0̄� =
�000000� − �100111� + �001111� − �101000�−

�010010� + �110101� + �011101� − �111010�
,

�1̄� =
�001010� + �101101� + �000101� + �100010�−

�011000� − �111111� + �010111� + �110000�
,

where we suppress the normalization factors of the above
codewords.

A series of CNOT and controlled-Z operations implement
the logical CNOT operation for the six-qubit code. Let
GCNOT�i , j� denote a CNOT operation acting on physical qu-
bits i and j with qubit i as the control and qubit j as the
target. Let GCZ�i , j� denote controlled-Z operations. The logi-
cal CNOT for the six-qubit code is as follows:

CNOT = GCZ�2,7�GCZ�5,7�GCZ�6,7�GCNOT�1,9�GCNOT�3,9�GCNOT�4,9�GCNOT�2,11�GCNOT�4,11�GCNOT�5,11� .

Figure 2 depicts the logical CNOT acting on two logical qu-
bits encoded with the six-qubit code.

Both the six-qubit code and the five-qubit code correct an
arbitrary single-qubit error. But the six-qubit code has the
advantage that it corrects a larger set of errors than the five-
qubit code. This error-correcting capability comes at the ex-
pense of a larger number of qubits—it corrects a larger set of
errors because the Hilbert space for encoding is larger than
that for the five-qubit code. In comparison to the Steane
code, the six-qubit code uses a smaller number of qubits, but
the disadvantage is that it does not admit a simple transversal
implementation of the logical CNOT. In addition, the Steane
code admits a bitwise implementation of all logical single-
qubit Clifford gates whereas the six-qubit code does not.

Subsystem code construction

We convert the degenerate six-qubit code from the previ-
ous section into a subsystem code. The degeneracy inherent

in the code allows us to perform this conversion. The code
still corrects an arbitrary single-qubit error after we replace
one of the unencoded ancilla qubits with a gauge qubit.

We briefly review the history of subsystem codes. The
essential insight of Knill et al. was that the most general way
to encode quantum information is into a subsystem rather
than a subspace �12�. In the case when the information is
encoded in a single subsystem, the Hilbert space decomposes
as H= �HA � HB� � HC where the subsystem HA stores the
protected information. Errors that act on subsystem HB, also
known as the gauge subsystem, do not require active correc-
tion because HB does not store any valuable information.
This passive error-correction ability of a subsystem code
may lead to a smaller number of stabilizer measurements
during the recovery process and may lead to an improvement
of the accuracy threshold for quantum computation �13�.
Kribs et al. recognized in Ref. �14� that this subsystem struc-
ture of a Hilbert space is useful for active quantum error-
correction as well �Knill et al. did not explicitly recognize
this ability in Ref. �12�.� See Ref. �15� for a discussion of all
aspects of subsystem code constructions and a detailed the-
oretical comparison between subsystem and stabilizer codes.

We now detail how to convert the six-qubit code from the
previous section into a subsystem code. The sixth unencoded
qubit is the information qubit and the encoding operation
transforms it into subsystem HA. We convert the fourth un-
encoded ancilla qubit to a gauge qubit. We simply consider it
as a noisy qubit so that the operators X4 and Z4 have no
effect on the quantum information stored in subsystem HA.
The operators X4 and Z4 generate the unencoded gauge
group. The encoding circuit in Fig. 1 transforms these unen-
coded operators into X4 and Z4Z6, respectively. These opera-
tors together generate the encoded gauge subgroup H
= 	X4 ,Z4Z6�. Table II lists the stabilizer generators and gauge
subgroups for the degenerate six-qubit quantum code. Errors

1 •
2 • •
3 •
4 • •
5 • •
6 •

7 Z Z Z

8
9 �������� �������� ��������

10
11 �������� �������� ��������

12

FIG. 2. Logical CNOT for the six-qubit quantum code. The first
six qubits represent a logical source qubit and the last six represent
a logical target qubit. For example we begin the circuit by applying
a controlled-Z gate from source qubit two to target qubit seven.
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in this subgroup do not affect the encoded quantum informa-
tion. The code is still able to correct an arbitrary single-qubit
error because each one of the single-qubit Pauli error pairs
anticommutes with at least one of the generators from the

new stabilizer S̃= 	h1 ,h2 ,h3 ,h5� or belong to H �16�. Table
IV shows this property for all error pairs. The code passively
corrects the error pairs X4, Z4Z6, Y4Z6 because they belong to
the gauge subgroup.

The six-qubit single-error-correcting subsystem code dis-
cussed above saturates the Singleton bound for subsystem
codes �10�,

n − k − r � 2�d − 1� , �3�

where for our code, n=6, k=1, r=1, and d=3. This code is
the smallest nontrivial subsystem code that corrects an arbi-
trary single-qubit error and is a code that satisfies the con-
jecture at the end of Ref. �17�. A trivial way to saturate this
bound is to add a noisy qubit to the five-qubit code! One of
the advantages of using the subsystem construction is that we
only need to perform four stabilizer measurements instead of
five during the recovery process.

III. NONEXISTENCE OF A [[6, 1, 3]] CSS CODE

Our proposition below proves that it is impossible for a
six-qubit code to possess the CSS structure while correcting
an arbitrary single-qubit error. An immediate corollary of this
proposition is that the seven-qubit code is the smallest
single-error-correcting CSS code.

Proposition. There is no six-qubit code that encodes one
qubit, possesses the CSS structure, and corrects an arbitrary
single-qubit error.

Proof. We first suppose that a code with the above prop-
erties exists. If a ��6, 1, 3�� CSS code exists, its stabilizer S
must have five generators:

S = 	g1, . . . ,g5� . �4�

The CSS structure implies that each of these generators in-
cludes X operators only or Z operators only �except for the
identity�. The set of correctable Pauli errors �Ej� in the Pauli
group acting on six qubits satisfies �EiEj ,S�=0 unless EiEj

�S, for all i , j. We show below that no set of five CSS
stabilizer generators acting on six qubits can correct an arbi-
trary single-qubit error and possess the CSS structure.

First assume that such generators exist. It is not possible
that all generators consist of the same type of operators �all X
or all Z� because single-qubit errors of the same type �X or Z�
are then not correctable. Consider the possibility that there is
one generator of one type, say X, and four generators of the
other type, say Z. If the generator of type X has an identity
acting on any qubit, say the first one, then the error Z1 com-
mutes with all generators. This error is not correctable unless
it belongs to the stabilizer. But if it belongs to the stabilizer,
the first qubit of the code must be fixed in the state �0�, which
makes for a trivial code. The other possibility is that the
X-type generator has the form g1=XXXXXX. But then any
combination of two Z errors �ZiZj� commutes with it, and so
they have to belong to the stabilizer. But there are five inde-
pendent such combinations of errors �Z1Z2, Z1Z3, Z1Z4, Z1Z5,
Z1Z6� and only four generators of the Z type. Therefore it is
impossible for the code to have four generators of one type
and one generator of the other type.

The only possibility left is that there are two generators of
one type, say X, and three generators of the other type, say Z.
The two X-type generators should not both have identity act-
ing on any given qubit because a Z error on that qubit com-
mutes with all generators. Such an error cannot belong to the
stabilizer because it would again make for a trivial code.
Specifically, we write the two X-type generators �g1 and g2�
one above the other

g1

g2
=

− − − − − −

− − − − − −
, �5�

where we leave the entries unspecified in the above equation,
but they are either X or I. Both generators cannot have the
column

I

I

in Eq. �5� because both generators cannot have identities
acting on the same qubit. Thus only three different columns
can build up the generators in Eq. �5�:

I

X
,

X

I
,

X

X

We distinguish the following cases:
1. Each column appears twice.
2. One column appears three times, another column ap-

pears twice, and the third column appears once.
3. One column appears three times and another column

appears three times.
4. At least one column appears more than three times.
If one and the same column appears on two different

places, say qubit one and qubit two as in the following ex-
ample:

TABLE II. Stabilizer generators h1, h2, h3, and h5, gauge sub-

group generators HX and HZ, and logical operators X̄ and Z̄ for the
six-qubit code. The convention in the above generators is that Y
=ZX.

h1 Y I Z X X Y

h2 Z X I I X Z

h3 I Z X X X X

h5 Z Z Z I Z I

HX I I I X I I

HZ I I I Z I Z

X̄ Z I X I X I

Z̄ I Z I I Z Z
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g1

g2
=

X X − − − −

I I − − − −
, �6�

then a pair of Z errors on these qubits �Z1Z2� commutes with
all generators, and therefore belongs to the stabilizer.

In the first case considered above, there are three such
pairs of errors, which up to a relabeling of the qubits can be
taken to be Z1Z2, Z3Z4, Z5Z6. They can be used as stabilizer
generators because these operators are independent. But then
the following pairs of single-qubit X errors commute with all
generators: X1X2, X3X4, X5X6. This possibility is ruled out
because the latter cannot be part of the stabilizer generators.

In the second case, up to a relabeling of the qubits, we
have the following pairs of Z errors that commute with the
stabilizer: Z1Z2, Z1Z3, Z2Z3, Z4Z5. Only three of all four are
independent, and they can be taken to be stabilizer genera-
tors. But then all three generators of Z-type have the identity
acting on the sixth qubit, and therefore the error X6 is not
correctable �and it cannot be a stabilizer generator because it
would make for a trivial code�.

In the third case, the pairs Z1Z2, Z1Z3, Z2Z3, Z4Z5, Z4Z6,
Z5Z6 �up to a relabeling�, four of which are independent,
commute with the stabilizer. But they cannot all belong to
the stabilizer because there are only three possible generators
of the Z-type.

Finally, in the fourth case, we have three or more inde-
pendent pairs of Z errors commuting with the stabilizer �for
example Z1Z2, Z1Z3, Z1Z4, which corresponds to the first four
columns being identical�. If the independent pairs are more
than three, then their number is more than the possible num-
ber of generators. If they are exactly three, we can take them
as generators. But then Z-type generators act trivially upon
two qubits, and therefore X errors on these qubits are not
correctable. This last step completes the proof. �

IV. NONDEGENERATE SIX-QUBIT CSS
ENTANGLEMENT-ASSISTED QUANTUM CODE

We detail the construction of a six-qubit CSS
entanglement-assisted quantum code in this section. We first
review the history of entanglement-assisted quantum coding
and discuss the operation of an entanglement-assisted code.
We then describe our construction. It turns out that the code
we obtain is equivalent to the Steane code �5� when includ-
ing Bob’s qubit, and therefore is not a new code. It suggests,
however, a general rule for which we present a proof—every
��n ,1 ,3�� code is equivalent to a ��n−1,1 ,3 ;1��
entanglement-assisted code with any qubit serving as Bob’s
half of the ebit. Even though our code is a trivial example of
this rule, it is instructive to present its derivation from the
perspective of the theory of entanglement-assisted codes.

Bowen constructed an example of a quantum error-
correcting code that exploits shared entanglement between
sender and receiver �18�. Brun, Devetak, and Hsieh later gen-
eralized Bowen’s example and developed the entanglement-
assisted stabilizer formalism �19,20�. This theory is an exten-
sion of the standard stabilizer formalism and uses shared
entanglement to formulate stabilizer codes. Several refer-
ences provide a review �19–21� and generalizations of the

theory to entanglement-assisted operator codes �21,22�, con-
volutional entanglement distillation protocols �23�,
continuous-variable codes �24�, and entanglement-assisted
quantum convolutional codes �25,26�. Gilbert et al. also gen-
eralized their “quantum computer condition” for fault toler-
ance to the entanglement-assisted case �27�. Entanglement-
assisted codes are a special case of “correlation-assisted
codes,” where Bob’s qubit is also allowed to be noisy. Such
codes are in turn instances of general linear quantum error-
correcting codes �28�.

An entanglement-assisted quantum error-correcting code
operates as follows. A sender and receiver share c ebits be-
fore communication takes place. The sender possesses her
half of the c ebits, n-k-c ancilla qubits, and k information
qubits. She performs an encoding unitary on her n qubits and
sends them over a noisy quantum communication channel.
The receiver combines his half of the c ebits with the n
encoded qubits and performs measurements on all of the qu-
bits to diagnose the errors from the noisy channel. The gen-
erators corresponding to the measurements on all of the qu-
bits form a commuting set. The generators thus form a valid
stabilizer, they do not disturb the encoded quantum informa-
tion, and they learn only about the errors from the noisy
channel. The notation for such a code is ��n ,k ,d ;c��, where
d is the distance of the code.

The typical assumption for an entanglement-assisted
quantum code is that noise does not affect Bob’s half of the
ebits because they reside on the other side of a noisy quan-
tum communication channel between Alice and Bob. Our
��6, 1, 3; 1�� entanglement-assisted code is globally equiva-
lent to the ��7, 1, 3�� Steane code and thus corrects errors on
Bob’s side as well. From a computational perspective, a code
that corrects errors on all qubits is more powerful than a code
that does not. From the perspective of the entanglement-
assisted paradigm, however, this feature is unnecessary and
may result in decreased error-correcting capabilities of the
code with respect to errors on Alice’s side.

We construct our code using the parity check matrix of a
classical code. Consider the parity check matrix for the �7, 4,
3� Hamming code:


1 0 0 1 0 1 1

0 1 0 1 1 0 1

0 0 1 0 1 1 1
� . �7�

The Hamming code encodes four classical bits and corrects a
single-bit error. We remove one column of the above parity
check matrix to form a new parity check matrix H as fol-
lows:

H = 
1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1
� . �8�
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The code corresponding to H encodes three bits and still
corrects a single-bit error. We begin constructing the stabi-
lizer for an entanglement-assisted quantum code by using the
CSS construction �21,22�:

�H 0

0 H
 . �9�

The left side of the above matrix is the “Z” side and the right
side of the above matrix is the “X” side. The isomorphism
between n-fold tensor products of Pauli matrices and
n-dimensional binary vectors gives a correspondence be-
tween the matrix in Eq. �9� and the set of Pauli generators
below �4,8,19�:

Z I I Z I Z

I Z I Z Z I

I I Z I Z Z

X I I X I X

I X I X X I

I I X I X X .

�10�

The above set of generators have good quantum error-
correcting properties because they correct an arbitrary single-
qubit error. These properties follow directly from the prop-
erties of the classical code. The problem with the above
generators is that they do not form a commuting set and thus
do not correspond to a valid quantum code. We use entangle-
ment to resolve this problem by employing the method out-
lined in Refs. �19–21�.

Three different but related methods determine the mini-
mum number of ebits that the entanglement-assisted quan-
tum code requires:

1. Multiplication of the above generators with one another
according to the “symplectic Gram-Schmidt orthogonaliza-
tion algorithm” forms a new set of generators �19,20�. The
error-correcting properties of the code are invariant under
these multiplications because the code is an additive code.
The resulting code has equivalent error-correcting properties
and uses the minimum number of ebits. We employ this tech-
nique in this work.

2. A slightly different algorithm in the appendix of Ref.
�23� determines the minimum number of ebits required, the
stabilizer measurements to perform, and the local encoding
unitary that Alice performs to rotate the unencoded state to
the encoded state. This algorithm is the most useful because
it “kills three birds with one stone.”

3. The minimum number of ebits for a CSS entanglement-
assisted code is equal to the rank of HHT �21,22,29�. This
simple formula is useful if we are only concerned with com-
puting the minimum number of ebits. It does not determine
the stabilizer generators or the encoding circuit. Our code
requires one ebit to form a valid stabilizer code because the
rank of HHT for our code is equal to 1.

Table III�b� gives the final form of the stabilizer for our
entanglement-assisted six-qubit code. We list both the unen-
coded and the encoded generators for this code in Table III.

Our code uses one ebit shared between sender and re-
ceiver in the encoding process. The sender performs a local
encoding unitary that encodes one qubit with the help of four
ancilla qubits and one ebit.

The symplectic Gram-Schmidt algorithm yields a sym-
plectic matrix that rotates the unencoded symplectic vectors
to the encoded symplectic vectors. The symplectic matrix
corresponds to an encoding unitary acting on the unencoded
quantum state �19,20�. This correspondence results from the
Stone–von Neumann Theorem and unifies the Schrödinger
and Heisenberg pictures for quantum error correction �30�.

The symplectic Gram-Schmidt algorithm also determines
the logical operators for the code. Some of the vectors in the
symplectic matrix that do not correspond to a stabilizer gen-
erator are equivalent to the logical operators for the code. It
is straightforward to determine which symplectic vector cor-
responds to which logical operator �X or Z� by observing the
action of the symplectic matrix on vectors that correspond to
the unencoded X or Z logical operators.

For our code, the symplectic matrix is as follows:

TABLE III. �a� The generators and logical operators for the
unencoded state. Generators g3� and g6� indicate that Alice and Bob
share an ebit. Alice’s half of the ebit is her first qubit and Bob’s
qubit is the other half of the ebit. Generators g1�, g2�, g4�, and g5�
indicate that Alice’s second, third, fourth, and fifth respective qubits

are ancilla qubits in the state �0�. The unencoded logical operators X̄

and Z̄ act on the sixth qubit and indicate that the sixth qubit is the
information qubit. �b� The encoded generators and logical operators
for the ��6, 1, 3; 1�� entanglement-assisted quantum error-correcting
code.

Bob Alice

g1� I I Z I I I I

g2� I I I Z I I I

g3� Z Z I I I I I

g4� I I I I Z I I

g5� I I I I I Z I

g6� X X I I I I I

X̄� I I I I I I X

Z̄� I I I I I I Z

�a�

Bob Alice

g1 I Z I Z Z Z I

g2 I Z Z I I Z Z

g3 Z Z I I Z I Z

g4 I X X I I X X

g5 I I X X X I X

g6 X X I I X I X

X̄ I I I I X X X

Z̄ I I Z Z I Z I

�b�
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1 0 0 1 0 1 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 1 1 1 0 1

0 1 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 1 0 1 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

� . �11�

The index of the rows of the above matrix corresponds to the
operators in the unencoded stabilizer in Table III�a�. There-
fore the first five rows correspond to the encoded Z operators
in the stabilizer and the sixth row corresponds to the logical

Z̄ operator. As an example, we can represent the unencoded

logical Z̄ operator in Table III�a� as the following binary
vector:

�000001�000000� . �12�

Premultiplying the above matrix by the above row vector

gives the binary form for the encoded logical Z̄ operator. We
can then translate this binary vector to a sixfold tensor prod-

uct of Paulis equivalent to the logical Z̄ operator in Table
III�b�. Using this same idea, the first row of the above matrix
corresponds to Alice’s Paulis in g3, the second row to g1, the
third row to g2, the fourth row to g4, the fifth row to g5, and
the seventh row to g6. The last six rows in the above matrix
correspond to encoded X operators and it is only the last row
that is interesting because it acts as a logical X operator.
Figure 3 gives the encoding circuit for the code.

We now detail the operations that give the equivalence of
this code to the seven-qubit Steane code. Consider the gen-
erators in Table III�b�. Label the columns from left to right as
1,2,…,7 where “1” corresponds to Bob’s column. Replace
the generator g1 by g1g2g3, and the generator g5 by g5g6.
Switch the new generators g4 and g5. Switch columns 2 and
3. Switch columns 1 and 5. Cyclically permute the columns
once so that 1 becomes 7, 2 becomes 1, 3 becomes 2,…, 7
becomes 6. The resulting code is exactly the Steane code if
one reads it from right to left �i.e., up to the permutation
1↔7, 2↔6, 3↔5�.

Inspection of the encoded logical operators in Table III�b�
reveals that Alice can perform logical X̄ and Z̄ operations
locally. Since the CNOT has a transversal implementation for
the Steane code, if Alice and Bob possess two logical qubits
each encoded with this entanglement-assisted code, they can
apply an encoded CNOT transversally by the use of classical
communication to coordinate their actions. We point out,
however, that the idea of computation in the entanglement-
assisted paradigm is not well motivated, since if classical
communication is allowed, Alice could send the initial state
to Bob and inform him of the operations that need to be
applied. An interesting open question is if there exist codes
that allow fault-tolerant computation on Alice’s side only.

From this example, we observe that some subset of the
entanglement-assisted codes correct errors on Bob’s side.
This phenomenon can be understood as an instance of the
more general correlation-assisted codes and linear quantum
error-correction theory detailed in Ref. �28�. It may be useful
from a practical standpoint to determine which
entanglement-assisted codes satisfy this property. Here we
provide an answer for the case of single-error-correcting
codes that use one bit of entanglement.

Proposition. Every ��n ,1 ,3�� code is equivalent to a ��n
−1,1 ,3 ;1�� code with any qubit serving as Bob’s half of the
ebit.

Proof. We prove this proposition by showing that any col-
umn in the table of stabilizer generators for such a code can
be reduced to the standard form of Bob’s column in an
entanglement-assisted code �containing exactly one X and
one Z operator�. Without loss of generality, consider the col-
umn corresponding to the first qubit. This column generally
may contain X, Y, Z, or I operators, but if the code corrects
any error on the first qubit, there must be at least two differ-
ent Pauli operators in this column. We can reduce this col-
umn to the desired form as follows. Choose one of the gen-
erators that contains X on the first qubit, and replace each of
the other generators that contain an X there by its product
with the chosen generator. Do the same for Y and Z. Thus we
are left with at most one generator with X, one with Y and
one with Z. To eliminate Y, we replace it by its product with
the X and Z generators. If either X or Z is missing, we replace
the Y generator with its product with the other nontrivial
generator. �

This result can be understood as a reflection of the fact
that in a code that corrects arbitrary single-qubit errors, every
qubit is maximally entangled with the rest and therefore can
be thought of as part of an ebit. The latter can also be seen to
follow from the property that every single-qubit error must
send the code space to an orthogonal subspace.

Note that for the case of ��n ,1 ,3 ;c�� codes with c�1,
the relation could be more complicated. If such a code cor-
rects an arbitrary single-qubit error, it is equivalent to an
��n+c ,1 ,3�� code, but it is not obvious whether a
��n+c ,1 ,3�� code can be interpreted as a ��n ,1 ,3 ;c�� code
because the type of entanglement that exists between c qubits
and the rest n qubits may not be the same as that of c ebits.

V. NONEXISTENCE OF [[n ,1 ,3;1]] CSS CODES
FOR nÏ5

We now show that there does not exist a smaller
entanglement-assisted CSS code that uses only one ebit and

⎧⎨
⎩|Φ+〉BA

• H • H

|0〉A H • H

|0〉A H • H ×
|0〉A H • H �������� H �������� H �������� H

|0〉A H • H �������� × �������� H

|ψ〉A �������� H �������� �������� �������� H �������� H

FIG. 3. Encoding circuit for the ��6,1,3;1�� code. The “H” gate is
a Hadamard gate.
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corrects an arbitrary single-qubit error on Alice’s side. The
proof is similar to that for the nonexistence of a ��6,1,3��
CSS code.

Proposition. There does not exist an ��n ,1 ,3 ;1��
entanglement-assisted CSS code for n�5.

Proof. We begin this proof by giving a dimensionality
argument for the nonexistence of quantum codes �CSS or
non-CSS� with n�4. This can be easily seen as follows.
Assume that the code is nondegenerate. There are 3n differ-
ent single-qubit errors on Alice’s side, which means that
there must exist 3n+1 orthogonal subspaces of dimension
2 inside the entire 2n+1-dimensional Hilbert space, i.e.,
�3n+1�2�2n+1. This is impossible for n�4. Since for n
�3 the number of generators is at most 3, and two of the
generators have to act nontrivially on Bob’s side, we can
have degeneracy with respect to errors on Alice’s side only
for n=3 with exactly one of the generators being equal to a
pair of errors on Alice’s side. These two errors would be the
only indistinguishable single-qubit errors on Alice’s side �no
other pair of errors on Alice’s side can belong to the stabi-
lizer�, which reduces the number of required orthogonal sub-
spaces from 3�3+1=10 to 9. The required dimensions are
2�9=18 and they cannot fit in the 24=16-dimensional Hil-
bert space.

Suppose that there exists a ��5,1,3;1�� CSS code. Its sta-
bilizer must have five generators �S= 	g1 , . . . ,g5��, each con-
sisting of only X and I operators or Z and I operators. For an
entanglement-assisted code, the generators must be of the
form

g1 = − − − − − X

g2 = − − − − − Z

g3 = − − − − − I

g4 = − − − − − I

g5 = − − − − − I

, �13�

where we have left the entries on Alice’s side unspecified.
The set of correctable Pauli errors on Alice’s side �Ej �P5�
�where P5 is the five-qubit Pauli group� must satisfy
�EiEj ,S�=0 unless EiEj �S, for all i , j=1,2 ,3 ,4 ,5. All gen-
erators cannot be of the same type �X or Z�. The possibility
that there is one generator of one type, say X, and four gen-
erators of the other �Z� type, is also ruled out because the
X-type generator would have to be of the form g1
=XXXXX �X in order that every qubit is acted upon nontrivi-
ally by at least one X operator from the stabilizer. This would
mean, however, that any combination of two Z errors �ZiZj,
i , j=1,2 ,3 ,4 ,5� would commute with the stabilizer, and so it
would have to belong to the stabilizer. There are four inde-
pendent such combinations of errors �Z1Z2 ,Z1Z3 ,Z1Z4 ,Z1Z5�
which would have to be the other four generators. But then
there would be no possibility for a Z operator on Bob’s side
�as in g2�. Therefore this is impossible.

The only possibility is that there are two generators of one
type, say X, and three generators of the other type �Z�. The
two X-type generators should not both have identity acting
on any given qubit on Alice’s side because a Z error on that
qubit would commute with all generators. Consider the fol-
lowing form for the two X-type generators:

g1 = − − − − − X

g3 = − − − − − I
. �14�

There are three different columns that can fill the unspecified
entries in the above table:

I

X
,
X

I
,
X

X
.

We distinguish the following cases: two columns appear
twice and one column appears once, one column appears
three times and another column appears twice, one column
appears three times, and each of the other columns appears
once, at least one column appears more than three times.

In the first case, up to relabeling of the qubits, we distin-
guish the following possibilities:

g1� = I I X X X X

g3� = X X I I X I
�15�

g1� = X X I I X X

g3� = X X X X I I
�16�

g1� = X X X X I X

g3� = X X I I X I
. �17�

For each possibility, the pairs of errors Z1Z2 and Z3Z4 com-
mute with the stabilizer and therefore they would have to be
equal to the stabilizer generators g4 and g5. But the pairs of
errors X1X2 and X3X4 would commute with g1, g3, g4, and g5.
Since these errors do not belong to the stabilizer, they would
have to anticommute with g3. Therefore up to interchanging
the first and second, or the third and fourth qubits, the gen-
erator g2 must have the form

g3 = ZIZIZ�Z . �18�

�Note that the fifth entry must be Z because there must be at
least one generator that has a Z acting on that qubit.� But it
can be verified that for each of the possibilities �15�–�17�, g3
anticommutes with one of the X-type generators. Therefore
the first case is impossible.

In the second case, one of the possible columns appears
three times and another column appears twice, e.g.,

g1 = X X X X X X

g3 = X X X I I I
. �19�

In such a case we would have three independent pairs of Z
errors �Z1Z2, Z1Z3, and Z4Z5� which commute with the stabi-
lizer and therefore have to belong to it. But then there would
be no possibility for a Z operator on Bob’s side �the genera-
tor g2�. Therefore this case is impossible.

In the third case, one column appears three times and each
other column appears once, as in

g1 = X X X X I X

g3 = X X X I X I
. �20�

In this case, the pairs of errors Z1Z2 and Z1Z3 commute with
the stabilizer and must be equal to g4 and g5. But in order for
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the fourth and fifth qubits to be each acted upon by at least
one Z operator from the stabilizer, the generator g2 would
have to be of the form

g2 = − − − ZZ�Z . �21�

This means that the pair of errors X4X5 commutes with the
stabilizer, and since it is not part of the stabilizer, this case is
also impossible.

Finally, if one column appears more than three times,
there would be at least three independent pairs of Z errors on
Alice’s side which have to belong to the stabilizer. This
leaves no possibility for a Z operator on Bob’s side, i.e., this
case is also ruled out. Therefore, a ��5,1,3;1�� CSS code does
not exist.

In a similar way we can show that a ��4,1,3;1�� CSS code
does not exist. Such a code would have four generators of
the form

g1 = − − − − X

g2 = − − − − Z

g3 = − − − − I

g4 = − − − − I

. �22�

The possibilities that all of the generators are of the same
type, or that one generator is of one type and the other three
are of the other type, are readily ruled out by arguments
similar to those for the ��5, 1, 3; 1�� code. The only possibil-
ity is two X-type generators and two Z-type generators. The
table of the X-type generators,

g1 = − − − − X

g3 = − − − − I
, �23�

has to be filled by the same three columns we discussed
before. As we saw in our previous arguments, in the case
when one column appears three or more times there are at
least two independent pairs of errors on Alice’s side which
commute with the stabilizer. These errors would have to be-
long to the stabilizer, but this leaves no possibility for a Z
operator on Bob’s side. In the case when one column appears
twice and another column appears twice, the situation is
analogous. The only other case is when one column appears
twice and each of the other two columns appears once, as in

g1 = X X I X X

g3 = X X X I I
. �24�

Since in this case the pair of errors Z1Z2 would commute
with the stabilizer, this pair would have to be equal to the
generator g4. The third and fourth qubits each have to be
acted upon by at least one Z operators from the stabilizer.
Thus the generator g2 would have to have the form

g2 = − − Z Z�Z . �25�

But then the pair X3X4 which does not belong to the stabi-
lizer would commute with all stabilizer generators. Therefore
a ��4, 1, 3; 1�� CSS code does not exist. �

We point out that a ��4, 1, 3; 1�� non-CSS code was found
in Ref. �20�. This is the smallest possible code that can en-
code one qubit with the use of only one ebit, and at the same

time correct an arbitrary single-qubit error on Alice’s side.
Here we have identified an example of the smallest possible
CSS code with these characteristics.

VI. SUMMARY AND CONCLUSION

We have discussed two different examples of a six-qubit
code and have included a subsystem construction for the
degenerate six-qubit code. Our proof explains why a six-
qubit CSS code does not exist and clarifies earlier results in
Ref. �9� based on a search algorithm. An immediate corollary
of our result is that the seven-qubit Steane code is the small-
est CSS code capable of correcting an arbitrary single-qubit
error. An interesting open problem is to generalize this tight
lower bound to the setting of CSS codes with a higher dis-
tance. We expect that our proof technique may be useful for
this purpose.

Our first example is a degenerate six-qubit code that cor-
rects an arbitrary single-qubit error. The presentation of the
encoding circuit and the operations required for a logical X,
Z, and CNOT should aid in the implementation and operation
of this code. We have converted this code into a subsystem
code that is nontrivial and saturates the subsystem Singleton
bound. Our six-qubit subsystem code requires only four sta-
bilizer measurements during the recovery process.

Our second example is an entanglement-assisted
��6, 1, 3; 1�� CSS code that is globally equivalent to the
Steane seven-qubit code. We have presented the construction
of this code from a set of six noncommuting generators on
six qubits. We have further shown that every ��n ,1 ,3�� code
can be used as a ��n−1,1 ,3 ;1�� entanglement-assisted code.

Based on the proof technique that we used for the earlier
six-qubit code, we have shown that the Steane code is an
example of the smallest entanglement-assisted code that pos-
sesses the CSS structure and uses exactly one ebit. Here too,
an interesting open problem is the generalization of this tight
lower bound to higher distance entanglement-assisted codes
or to codes that use more than one ebit.
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APPENDIX

1. Tables

The table in the Appendix details the error-correcting
properties of both the six-qubit degenerate quantum code and
the six-qubit subsystem quantum code. The table lists all
possible pairs of single-qubit errors and a corresponding gen-
erator of the code that anticommutes with the pair �see Table
IV�.
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2. Entanglement-assisted encoding circuit

Here we detail an algorithm that generates the encoding
circuit for the ��6, 1, 3; 1�� code. We follow the recipe out-
lined in the appendix of Ref. �23�. We begin by first convert-
ing the stabilizer generators in Table III�b� into a binary form
which we refer to as a Z �X matrix. We obtain the left Z
submatrix by inserting a “1” wherever we see a Z in the
stabilizer generators. We obtain the X submatrix by inserting
a “1” wherever we see a corresponding X in the stabilizer
generator. If there is a Y in the generator, we insert a “1” in
the corresponding row and column of both the Z and X sub-
matrices.

The idea is to convert Eq. �A1� to Eq. �A17� through a
series of row and column operations. The binary form of the
matrix in Eq. �A1� corresponds to the stabilizer generators in
Table III�b� by employing the Pauli-to-binary isomorphism
outlined in Ref. �8�. We can use CNOT, Hadamard, Phase, and
SWAP gates.

1. When we apply a CNOT gate from qubit i to qubit j, it
adds column i to column j in the X submatrix, and in the Z
submatrix it adds column j to column i.

2. A Hadamard on qubit i swaps column i in the Z sub-
matrix with column i in the X submatrix.

3. A Phase gate on qubit i adds column i in the X subma-
trix to column i in the Z submatrix.

4. When we apply a SWAP gate from qubit i to qubit j, we
exchange column i with column j in Z submatrix and column
i and column j in the X submatrix.

Row operations do not change the error-correcting prop-
erties of the code. They do not cost us in terms of gates. They
are also crucial in determining the minimum number of ebits
for the code,

The initial binary matrix for the code is as follows:



1 0 0 1 0 1 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 1 0 1 1 1 0

0 0 0 0 0 0 1 0 0 1 0 1

� . �A1�

We begin the algorithm by computing the symplectic product
�19� between the various rows of the matrix. The first row is
symplectically orthogonal to the second row. Moreover, it is
symplectically orthogonal to all the rows except row six. So
we swap the second row with the sixth row,



1 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 1

1 1 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 1 0 1 1 1 0

1 0 1 1 1 0 0 0 0 0 0 0

� . �A2�

Now apply Hadamard gates to qubits 1, 4, and 6. This op-
eration swaps the columns 1, 4, and 6 on the Z side with
columns 1, 4, and 6 on the X side,



0 0 0 0 0 0 1 0 0 1 0 1

1 0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 1 0 1 0 0 0 0 1

1 0 0 0 0 1 0 1 0 0 1 0

1 0 0 1 0 0 0 0 1 0 1 0

0 0 1 0 1 0 1 0 0 1 0 0

� . �A3�

Apply a CNOT from qubit 1 to qubit 4 and a CNOT from qubit

TABLE IV. Distinct pairs of single-qubit Pauli errors for both the six-qubit degenerate quantum code and the six-qubit subsystem code.
For the subsystem code, X4 and Z4Z6 lie in the gauge subgroup.

Error AG Error AG Error AG Error AG Error AG Error AG Error AG Error AG Error AG Error AG Error AG

X1X2 h1 X1X3 h2 X1X4 h1 X1X5 h1 X1X6 h5 X1Y2 h1 X1Y3 h2 X1Y4 h2 X1Y5 h3 X1Y6 h1 X1Z2 h1

X1Z3 h1 X1Z4 h2 X1Z5 h3 X1Z6 h2 X2X3 h1 X2X4 h3 X2X5 h3 X2X6 h1 X2Y3 h1 X2Y4 h1 X2Y5 h1

X2Y6 h2 X2Z3 h5 X2Z4 h1 X2Z5 h1 X2Z6 h1 X3X4 h1 X3X5 h1 X3X6 h2 X3Y4 h3 X3Y5 h2 X3Y6 h1

X3Z4 h3 X3Z5 h2 X3Z6 h3 X4X5 h5 X4X6 h1 X4Y5 h1 X4Y6 h2 X4Z5 h1 X4Z6 h1 X5X6 h1 X5Y6 h2

X5Z6 h1 Y1X2 h2 Y1X3 h1 Y1X4 h2 Y1X5 h2 Y1X6 h1 Y1Y2 h3 Y1Y3 h1 Y1Y4 h1 Y1Y5 h1 Y1Y6 h3

Y1Z2 h5 Y1Z3 h2 Y1Z4 h1 Y1Z5 h1 Y1Z6 h1 Y2X3 h1 y2X4 h2 Y2X5 h2 Y2X6 h1 Y2Y3 h1 Y2Y4 h1

Y2Y5 h1 Y2Y6 h5 Y2Z3 h5 Y2Z4 h1 Y2Z5 h1 Y2Z6 h1 Y3X4 h1 Y3X5 h1 Y3X6 h2 Y3Y4 h5 Y3Y5 h2

Y3Y6 h1 Y3Z4 h5 Y3Z5 h2 Y3Z6 h5 Y4X5 h1 Y4X6 h2 Y4Y5 h2 Y4Y6 h1 Y4Z5 h2 Y4Z6 h4 Y5X6 h3

Y5Y6 h1 Y5Z6 h2 Z1X2 h1 Z1X3 h5 Z1X4 h1 Z1X5 h1 Z1X6 h2 Z1Y2 h1 Z1Y3 h3 Z1Y4 h3 Z1Y5 h2

Z1Y6 h1 Z1Z2 h1 Z1Z3 h1 Z1Z4 h3 Z1Z5 h2 Z1Z6 h3 Z2X3 h1 Z2X4 h2 Z2X5 h2 Z2X6 h1 Z2Y3 h1

Z2Y4 h1 Z2Y5 h1 Z2Y6 h3 Z2Z3 h2 Z2Z4 h1 Z2Z5 h1 Z2Z6 h1 Z3X4 h3 Z3X5 h3 Z3X6 h1 Z3Y4 h1

Z3Y5 h1 Z3Y6 h2 Z3Z4 h1 Z3Z5 h1 Z3Z6 h1 Z4X5 h1 Z4X6 h2 Z4Y5 h2 Z4Y6 h1 Z4Z5 h2 Z4Z6 h4

Z5X6 h3 Z5Y6 h1 Z5Z6 h2 X1 h1 X2 h3 X3 h1 X4 h4 X5 h5 X6 h1 Y1 h2 Y2 h2

Y3 h3 Y4 h3 Y5 h3 Y6 h3 Z1 h1 Z2 h2 Z3 h3 Z4 h3 Z5 h3 Z6 h1
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1 to qubit 6. This operation adds column 1 to 4 and column
1 to column 6 on the X side. On the Z side of the matrix, the
CNOT operation adds column 4 to column 1 and column 6 to
column 1,



0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 1 0 1 0 0 1 0 0

0 0 0 0 0 1 0 1 0 0 1 0

0 0 0 1 0 0 0 0 1 0 1 0

0 0 1 0 1 0 1 0 0 0 0 1

� . �A4�

Now apply a Hadamard gate on qubit 1,



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0 0 1 0

0 0 0 1 0 0 0 0 1 0 1 0

0 0 1 0 1 0 0 0 0 0 0 1

� . �A5�

Apply a Hadamard gate on qubit 4 and qubit 6. This opera-
tion swaps columns 4 and 6 on Z side with respective col-
umns on the X side,



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 1

0 1 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 1 1 1 0

0 0 1 0 1 1 0 0 0 0 0 0

� . �A6�

Finally, we apply a CNOT gate from qubit 1 to qubit 4 and
another CNOT gate from qubit 1 to qubit 6,



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 1 1 1 0

0 0 1 0 1 1 0 0 0 0 0 0

� . �A7�

At this point we are done processing qubit 1 and qubit 2. We
now proceed to manipulate columns 2–6 on the Z and X side.
We apply a Hadamard gate on qubits 2, 4, and 5,



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 1 0

0 1 0 0 1 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0 1 0 0 0

0 0 1 0 0 1 0 0 0 0 1 0

� . �A8�

Perform a CNOT gate from qubit 2 to qubit 4 and from qubit
2 to qubit 5,



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0 1 0 0 0

0 0 1 0 0 1 0 0 0 0 1 0

� . �A9�

Perform a Hadamard on qubit 2,



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0 1 0 0 0

0 0 1 0 0 1 0 0 0 0 1 0

� . �A10�

We have processed qubit 3. Now look at the submatrix from
columns 3 to 6 on the Z and X side. Perform a SWAP gate
between qubit 3 and qubit 5. This operation swaps column 3
with 5 in the Z submatrix and column 3 and 5 in the X
submatrix,



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 0

� . �A11�

Perform a Hadamard gate on qubit 3, followed by a CNOT

gate from qubit 3 to qubit 6, and another Hadamard on qubit
3.



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 1 1 0 0 0 0 0 0

� . �A12�

Add row 4 to row 5



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 0 1 1 0 0 0 0 0 0

� . �A13�

We have completed processing qubit 4. Now focus on col-
umns 4–6. Apply a Hadamard gate on qubit 4, followed by
CNOT gate from qubit 4 to qubit 5, and again from qubit 4 to
qubit 6.
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1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 1 0 0 0 0 0 0

� . �A14�

Perform a Hadamard gate on qubit 4



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0

� . �A15�

Now look at columns 5 and 6. Apply a Hadamard gate on
qubit 5 and qubit 6, followed by a CNOT gate from qubit 5 to
qubit 6,



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

� . �A16�

Perform a Hadamard on qubit 5,



1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

� . �A17�

We have finally obtained a binary matrix that corresponds to
the canonical stabilizer generators in Table III�a�. Figure 3
gives the encoding circuit for the all the quantum operations
that we performed above. Performing the above operations in
reverse takes us from the unencoded canonical stabilizers to
the encoded ones.
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