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Abstract: We present an efficient quantum algorithm for the exact evaluation of either
the fully ferromagnetic or anti-ferromagnetic q-state Potts partition function Z for a
family of graphs related to irreducible cyclic codes. This problem is related to the eva-
luation of the Jones and Tutte polynomials. We consider the connection between the
weight enumerator polynomial from coding theory and Z and exploit the fact that there
exists a quantum algorithm for efficiently estimating Gauss sums in order to obtain the
weight enumerator for a certain class of linear codes. In this way we demonstrate that for
a certain class of sparse graphs, which we call Irreducible Cyclic Cocycle Code (ICCCε)
graphs, quantum computers provide a polynomial speed up in the difference between
the number of edges and vertices of the graph, and an exponential speed up in q, over
the best classical algorithms known to date.

1. Introduction

A wealth of results has been obtained since the dramatic early results [1,2] on quan-
tum speedups relative to classical algorithms. A relatively unexplored field is quantum
algorithms for problems in classical statistical mechanics. The earliest contribution to
this subject [3] obtained a modest speedup in that it avoided critical slowing down [4] in
the problem of sampling from the Gibbs distribution for Ising spin glass models. Sub-
sequently Ref. [5] raised the question of providing a classification of classical statistical
physics problems in terms of their quantum computational complexity. In this work we
shed light on this classification by considering the problem of evaluating the Potts model
partition function Z for classical spin systems on graphs. It is known that under particu-
lar conditions even certain approximations for Z are unlikely to be efficient, barring an
N P = R P surprise [6]. Here we present a class of sparse graphs (which we call ICCCε)
for which exact quantum evaluation of Z is possible with a polynomial speedup in the
size of the graph and an exponential speedup in the number of per-spin states, over the
best classical algorithms available to date.
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The Potts partition function of graphs in ICCCε is equivalent to the weight
enumerators of certain linear codes. The evaluation of weight enumerators (in this
case) involves the evaluation of Gauss sums or Zeta functions. The evaluation of Gauss
sums is in general hard and equivalent to the calculation of discrete log [7]. This sug-
gests that ICCCε includes cases that are unlikely to be solved as efficiently on classical
computers.

1.1. The Potts model. Let Γ = (E, V ) be a weighted graph with edge set E and vertex
set V . The q-state Potts model is a generalization of the Ising model where a q-state spin
resides on each vertex. In the Ising model q = 2, whereas in the Potts model q ≥ 2. The
edge connecting vertices i and j has weight Ji j , which is also the interaction strength
between the corresponding spins. The Potts model Hamiltonian for a particular spin
configuration σ = (σ1, . . . , σ|V |) is

H(σ ) = −
∑

<i j>

Ji jδσi σ j , (1)

where summation is over nearest neighbors, and where δσi σ j = 1 (0) if σi = σ j
(σi �= σ j ). Thus only nearest neighbor parallel spins contribute to the energy. The
probability P(σ ), of finding the spin in the Potts model in some configuration σ at a
given temperature T , is given by the Gibbs distribution

P(σ ) = e−βH(σ )

Z(β)
, (2)

where β = 1/(kBT ) is the inverse temperature in energy units, and kB is the Boltzmann
constant. The normalization factor is the partition function

Z(β) =
∑

{σ }
e−βH(σ ), (3)

which plays a central role in statistical physics, since many thermodynamic quantities
can be derived from it [7]. When for all configurations β � |H(σ )|, the probability
distribution becomes flat: P(σ ) ≈ 1/Z(β), so that at high temperatures randomness
dominates.

The partition function can be rewritten as a polynomial:

Z(β) =
∑

{σ }
eβ

∑
<i j> Ji j δσi σ j =

∑

{σ }

∏

<i j>

eβ Ji j δσi σ j

=
∑

{σ }

∏

<i j>

(1 + vi j (β)δσi σ j ), (4)

where

vi j (β) = eβ Ji j − 1. (5)

Now let us consider the case when the interactions Ji j are a constant J . Then the
Hamiltonian (1) of this system can be written as

H(σ ) = −J |U (σ )|, (6)
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where U (σ ) is the subset of edges whose vertices have the same spin for a particular
spin configuration σ , and |U (σ )| is the number of such subsets. If we let

y = e−
J

kT (7)

we can write the Potts partition function as

Z(y) =
∑

σ

y−|U (σ )|. (8)

1.2. Relation between the Potts partition function, knot invariants, and graph theory.
There is a rich inter-relation between classical statistical mechanics and topology, in
particular, the theory of the classification of knots. The first such connection was esta-
blished by Jones [8], who discovered the second knot invariant (the Jones polynomial
(a Laurent polynomial), after the Alexander polynomial) during his investigation of the
topological properties of braids [9]. It is known that the classical evaluation of the Jones
polynomial is �P-hard [10].

A direct connection between knots and models of classical statistical mechanics was
established by Kauffman [11]. Knot invariants are, in turn, also tightly related to graph
theory; e.g., the graph coloring problem can be considered an instance of evaluation of
the Kauffman bracket polynomial, via the Tutte polynomial [11,12]. The q-state Potts
partition function on a graph Γ is connected to the Tutte polynomial TΓ for the same
graph via

ZΓ (v) = qnTΓ

(q + v

v
, v + 1

)
, (9)

where as in Eq. (5), v+1 = e−β . This means that the Potts partition function is equivalent
to some, easily computed function times the Tutte polynomial along the hyperbola
Hq = (x − 1)(y − 1) = q. But for planar graphs, when q > 2 the Tutte polynomial is
�P-hard to evaluate at points along Hq [6]. For a review of the connection between the
Potts partition function and the various polynomials mentioned above, see [11] and also
[5,13]. It immediately follows from Eq. (9) and complexity results concerning the Tutte
polynomial, that the evaluation of the Potts partition function is also �P-hard. It is not
known whether there is an fpras (fully polynomial randomized approximation scheme)
[6] for the q-state fully ferromagnetic Potts partition function, but it is known that if
there is an fpras for the fully anti-ferromagnetic Potts partition function then N P = R P
[6] and therefore it seems unlikely that an fpras will be found for this case.

1.3. Previous complexity results. The first connection between knots and quantum field
theory was established by Witten, who showed that the Jones polynomial can be expres-
sed in terms of a topological quantum field theory [14]. Recently this connection was
extended to the possibility of efficient evaluation of the Jones polynomial by Freedman
and co-workers, after showing that quantum computers can efficiently simulate topolo-
gical quantum field theory [15]. More specifically, there are recent results demonstrating
the efficacy of quantum computers in approximating the Jones polynomial at primitive
roots of unity [16–18]. In Ref. [16] tools from topological quantum field theory [14]
were utilized and it was shown that approximating the Jones polynomial at primitive
roots of unity is BQP-complete, but no explicit algorithm was provided. More recently in
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[17], a combinatorial approach was taken which yielded an explicit quantum algorithm
and which extended the results in [16] to all primitive roots of unity. This leads one to
hypothesize that quantum computers will also be efficient at estimating partition func-
tions. Indeed, an immediate corollary of the results in [16–19], is that the Potts partition
function over any planar graph can be approximated efficiently on a quantum computer
at certain imaginary temperatures (see also [5]). This follows by noting that in order to
obtain an equality between the Potts partition function and the Jones polynomial (up to
multiplication by an easily computed function), the Jones variable t and the temperature

T must be related by t = −e±J±/kBT [11]. With t a root of unity (t = e
2π i

r ) we then
find:

T = i
J±r

kBπ(2 + r)
, r ∈ N.

This result is of interest mainly in light of quantum Monte Carlo simulations [20], where
one retrieves real time dynamics from a simulation in terms of imaginary time, via analy-
tic continuation. Perhaps a similar extrapolation can be achieved here between imaginary
and real temperature dynamics. While this is interesting, here we are concerned with
thermodynamics, and hence evaluations of the Potts partition function at physically
relevant, real temperatures.

Most closely related to our work is the very recent result due to Aharonov et al. [21]
who – generalizing Temperley-Lieb algebra representations used in [17] – provided a
quantum algorithm for the additive approximation of the Potts partition function (and
other points of the Tutte plane) for any planar graph with any set of weights on the edges.
These results are the most impressive to date in the context of approximate evaluations
of the Potts partition function, but are also subject to certain caveats.1 In particular,
Ref. [21] leaves as an open problem the complexity of physical instances (real tempera-
ture, positive partition function) under the restriction of an additive approximation. Nor
is it clear whether the algorithm found in Ref. [21] provides a quantum speedup. The
authors state: “We believe that the main achievement here is that we demonstrate how to
handle non-unitary representations, and in particular, we are able to prove universality
using non-unitary matrices.”

Recently Ref. [22] gave a scheme for studying the partition function of classical
spin systems including the Potts and Ising model. Their approach involves transforming
the problem of evaluating the partition function into the evaluation of a probability
amplitude of a quantum mechanical system and then using classical techniques to extract
the pertinent information. In essence their method involves moving into a quantum
mechanical formalism to obtain a classical result. The scheme is therefore classical and
not a quantum algorithm.

1 To quote from the abstract of Ref. [21]: “Additive approximations are tricky; the range of the possible out-
comes might be smaller than the size of the approximation window, in which case the outcome is meaningless.
Unfortunately, ruling out this possibility is difficult: If we want to argue that our algorithms are meaningful,
we have to provide an estimate of the scale of the problem, which is difficult here exactly because no efficient
algorithm for the problem exists!”. And: “The case of the Potts model parameters deserves special attention.
Unfortunately, despite being able to handle non-unitary representations, our methods of proving universality
seem to be non-applicable for the physical Potts model parameters. We can provide only weak evidence that
our algorithms are non-trivial in this case, by analyzing their performance for instances for which classical
efficient algorithms exist. The characterization of the quality of the algorithm for the Potts parameters is thus
left as an important open problem.” Finally, quoting from Sect. 1.5 of Ref. [21]: “Proving anything about the
complexity of our algorithm for the Potts model remains a very important open problem. It is still possible
that this case of the Tutte polynomial, with our additive approximation window, can be solved by an efficient
classical algorithm.”
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In addition, two purely classical results should be mentioned here. One is a state of
the art result by Hartmann [23], who provides an algorithm which is well suited to large
ferromagnetic systems for either the Potts or Ising model. We do not know the exact
complexity of this algorithm, however. The approach taken in our work is to utilize the
connection between classical coding theory and the partition function. For this reason
we mention the classical algorithm given in [24] for calculating the Zeta function of
certain curves. This is also a state of the art algorithm and it can be used to find the Potts
partition function via the scheme we present in this paper, though it is slower than using
quantum resources.

A quantum algorithm for finding the Zeta function of a curve is given in [25]. One
could replace the role that the Gauss sum estimation [26] plays in our scheme with this
quantum algorithm for the Zeta function. It seems that using Gauss sums is more efficient
but further work is required to make this conclusive.

Finally, we mention that it was recently shown that one can construct interesting
classes of graphs for which the Potts model can be computed analytically [46]. These
so called n-ladder graphs are recursively defined.

1.4. Structure of the paper. The structure of this paper is as follows. In Sect. 2 we define
the class of graphs our quantum algorithm applies to, and present our main theorem. In
Sect. 3 we compare the computational complexity of our algorithm with the state of the
art in classical algorithms. In Sect. 4 we give a brief summary of the entire algorithm.
In Sect. 5 we provide several illustrative examples of graphs and codes to which our
algorithm applies. Finally, in Sect. 6 we conclude and discuss future directions. The
Appendix provides pertinent background on matroids, irreducible cyclic codes, and
Gauss sums.

2. A Theorem about Quantum Computation and Certain Instances
of the Potts Model

2.1. Main Theorem. We present here a polynomial time quantum algorithm for the exact
evaluation of the q-state (fully ferromagnetic or anti-ferromagnetic) Potts partition func-
tion Z for a certain class of graphs. This class of graphs, which we call “Irreducible Cyclic
Cocycle Code” ICCCε graphs, comprises graphs whose incidence matrices generate cer-
tain cyclic codes. This and other concepts used below are given precise definitions in
Sect. 2.2. The key ingredients used are the connection of Z to the weight enumerators
of codes [27] and a quantum algorithm for the approximation of Gauss sums [26].

The overall structure of the algorithm is the following:

1. Given a graph Γ = (E, V ), first determine if Γ belongs to the ICCCε class. This
decision problem can be solved efficiently using the quantum discrete log algorithm
[1]. If Γ ∈ ICCCε proceed to Step 2, otherwise the algorithm may not evaluate ZΓ

efficiently.
2. Identify the linear code C(Γ ) for which we shall determine the weight spectrum.
3. Using the quantum Gauss sum estimation algorithm find the weight spectrum of the

words in C . This step is believed to be classically hard but the exact complexity
is unknown. It is known, however, that this step is at least as hard as determining
discrete log [26]. This is the most expensive step of the algorithm due to the large
number of words one has to deal with. This is because the number of possible spin
configurations grows exponentially in the number of vertices.
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4. Take a tally of the weight spectrum obtained in the previous step. Grover’s search
algorithm can be used to give an additional quadratic speed up but this does not help
in reducing the overall complexity since the computational cost of Step 3 is greater
than that of the current step.

5. Using the relation given by Eq. (15) between the weight spectrum of a code and Z ,
use the tally from the previous step to obtain Z (for graphs in ICCCε).

We now give the main theorem, after the definition of the family of graphs for which
the scheme applies.

Definition 1. (ICCCε) Given a constant ε < 1, ICCCε is the family of graphs whose
cycle matroid matrix (CMM) representation generates a cyclic code whose dual is irre-
ducible cyclic of dimension k and length n, such that

n = qk − 1

αks(k)
(10)

(where α ∈ R is chosen so that n ∈ N and where s(k) is an arbitrary function whose
role will be clarified below) and

θn,k = 1

q − 1
min

0< j≤αks(k)
S′( jn) (11)

(where S′(x) is the sum of the digits of x in base q) so that

ε ≤ qθn,k−1

4
√

qk
. (12)

Below we define the concepts entering this definition and clarify the role of θn,k and
of the bound on ε.

We work in units such that the Boltzmann constant kB = 1.

Theorem 1 (Main Theorem). Let Γ = (E, V ) be a graph, n = |E | and k = |E | −
|V | + c(Γ ), where c(Γ ) is the number of connected components of Γ . A quantum
computer can return the exact q-state fully anti-ferromagnetic or ferromagnetic Potts
partition function ZΓ for graphs in ICCCε . For each family (ε fixed), the overall running
time is O( 1

ε
k2 max[1,s(k)](log q)2) and the success probability is at least 1 − δ, where

δ = [2((qk − 1)2ε − 2)]−1.

Some remarks:

1. The function s(k) determines the complexity of the schemes. If s(k) = c ∈ R
(constant) then we have a polynomial time algorithm for the exact evaluation of
Z for each family ICCCε . This restriction is reflected in the graphs by enforcing
that n = O(qk/ks), i.e., that the number of edges (n) and vertices (n − k) is
close. We have numerically solved for the number of edges |E | as a function of
the number of vertices |V |, given by the corresponding transcendental equation
|E | = |V | − c(Γ ) + logq(|E |(|E | − |V | + c(Γ ))s + 1) [Eq. (10)]. A numerical fit
reveals that to an excellent approximation

|E | = |V | + a + b log |V |, (13)
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Fig. 1. Coefficients a and b as a function of s, for different values of q. Here c(Γ ) = 1. See text for details

where the constants a and b depend on q and s, and both increase slowly with
s, and decrease with q, as shown in Fig. 2.1. By direct substitution of Eq. (13)
into the above transcendental equation it can be seen that the analytical solution
will have a correction of order log log(|V |) to the right-hand side of Eq. (13). The
fact that there are logarithmically more edges than vertices in the graphs that are
members of ICCCε is the reason we call these graphs sparse. The important point
is that there are families of graphs for which there exist exact polynomial-time
evaluation schemes via the methods presented in this paper. As we show below, in
these cases we also obtain polynomial speed ups over the best classical algorithms
available.

2. Note that if we have an efficient evaluation for ICCCε′ then we also have an efficient
evaluation for ICCCε , provided ε > ε′.

3. We provide a discussion of the computational complexity, both classical and quan-
tum, in Subsect. 3. As argued there, we obtain a polynomial speed up in the difference
between the number of edges and vertices and an exponential speed up in q over the
best current classical algorithm for the ICCCε class of graphs.

Corollary 1. For a given graph Γ , whose CMM is the direct sum of the CMMs of two
graphs Γ1 and Γ2 in ICCCε , a quantum computer will be able to return ZΓ with a
running time equal to the sum of the running times required to obtain ZΓ1 and ZΓ2 .

Proofs of the main theorem and the corollary are provided in Sects. 2.4 and 2.5.
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2.2. Background. Theorem 1 connects the problem of estimating the Potts partition
function to a quantum algorithm for Gauss sums, via weight enumerators for irreducible
cyclic codes. In somewhat more detail, the connections we need are as follows. In [27], it
was shown that the Potts partition function can be written as the weight enumerator of the
cocycle code of the graph Γ , over which the Potts model is defined. Weight enumerators
of irreducible cyclic codes are related to Gauss sums via the McEliece Theorem [28].

2.2.1. Cycle matroid matrix representation of a graph A connected component of a
graph is any subset of vertices which are all connected to each other via a path along the
graph’s edges. We denote the number of connected components by c(Γ ). The incidence
matrix of a finite graph Γ (E, V ) is a |V |× |E | binary matrix where column c represents
edge c with non-zero entries in row i and j if and only if vertices i and j are the boundaries
of edge c. Every finite graph Γ also gives rise to a cycle matroid matrix (CMM) [29],
which essentially captures the presence and locations of cycles in the graph.

Definition 2. The cycle matroid matrix of a graph Γ = (E, V ), CMM(Γ ), is formed
as follows: write down the incidence matrix of Γ using 1 for the i th and −1 for the j th

rows, where i < j . Then apply elementary row operations and Gaussian reduction to
obtain a (|V | − c(Γ )) × |E | matrix of the form [I|V |−c(Γ )|X ], where Ia is the a × a
identity matrix and X is a (|V | − c(Γ ))× (|E | − |V | + c(Γ )) matrix. This is CMM(Γ )

(see Prop. 4.7.14 of [30]).

We give more details on cycle matroids in Appendix 7. As an example consider the
square [|V | = |E | = 4, c(Γ ) = 1] and its incidence matrix

⎛

⎜⎝

1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

⎞

⎟⎠ .

Applying elementary row operations and Gaussian reduction one obtains the CMM
⎛

⎝
1 0 0 −1
0 1 0 −1
0 0 1 −1

⎞

⎠ ,

which is indeed of the form [I|V |−c(Γ )|X ] with dimensions as in the definition, i.e., X is
(4−1)×(4−4+1). Over Z2 one would replace all the−1’s with +1’s. The column space
of this matrix represents the cycle structure of the graph where a cycle (or circuit) is a
path in the graph for which the first vertex of the path is the same as the last. Any set of
columns that are linearly dependent indicate a cycle. The first three columns in the CMM
of the square are linearly independent, but together with the fourth column they become
linearly dependent, since there is a cycle in the graph involving the corresponding four
edges.

What is the equivalence class of graphs with the same CMM? This is answered by
the following:

Definition 3. Two graphs G and G ′ are called 2-isomorphic if there exists a 1− 1 cor-
respondence between the edges of G and G ′ such that the cycle (or circuit) relationships
are preserved.

Thus all 2-isomorphic graphs have the same CMM (up to elementary row and column
operations).
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2.2.2. Irreducible cyclic codes We provide some background material in coding theory
which allows us to exhibit the connection between Eq. (8) and the so-called cocycle
code of the graph Γ . (A good reference is [31].)

Definition 4. Let Fq be a finite field with q prime. A linear code C is a k dimensional
subspace of the vector space Fn

q and is referred to as an [n, k] code. The code is said to
be of length n and of dimension k.

In our case q is the number of possible states per spin.

Definition 5. A k × n matrix whose rows are a basis for C is called a generator matrix
for C.

Recall from Definition 2 that CMM(Γ ) is a (|V | − c(Γ )) × |E | matrix. The |E |
columns of CMM(Γ ) reflect the cycle structure of the given graph via linear indepen-
dence in the vector space Fn

q (see Appendix 7). We now view the |V | − c(Γ ) rows of
the CMM as generating an [n = |V |, k = |E | − c(Γ )] “cocycle code” C :

Definition 6. The cocycle code C(Γ ) of a graph Γ is the row space of CMM(Γ ) [27].

We focus our attention on a subclass known as cyclic codes and a smaller subclass
known as irreducible cyclic codes.

Definition 7. A linear code C is a cyclic code if for any word (c0, c1, . . . , cn−1) ∈ C,
also (cn−1, c0, c1, . . . , cn−2) ∈ C. If C contains no subspace (other than 0) which is
closed under cyclic shifts then it is irreducible cyclic.

Cyclic codes have an interesting underlying algebraic structure which we review in
Appendix 8. In general the generator matrix of an [n, k] cyclic code can be written as

⎛

⎜⎝

g0 g1 · · · gn−k 0 0 · · · 0
0 g0 · · · gn−k−1 gn−k 0 · · · 0
0 0 · · · · · · 0
0 0 · · · g0 g1 · · · gn−k

⎞

⎟⎠ . (14)

The non-zero matrix elements can be used to construct the “generator polynomial”
g(x) = g0 + g1x + · · · gn−k xn−k . Both can be used to generate a cyclic code; the manner
in which this is done via the generator polynomial is reviewed in Appendix 8. For
an [n, k] non-degenerate irreducible cyclic code (no words are repeated) the relation
between n and k is k = ordqn, i.e., k is the smallest integer such that qk = 1 mod n.
Equivalently, qk − 1 = nN , where N counts the number of equivalence classes under
cyclic permutations of words, which is an upper bound on the number of different
weights. Non-degenerate irreducible cyclic codes have generator polynomials of the
form

gi (x) = xn − 1

wi (x)
,

where xn − 1 = w1(x)w2(x) · · ·wt (x) is the decomposition of xn − 1 into irreducible
factors. Here t is the number of q-cyclotomic cosets mod n (see Subsect. 2.6).

Next we explain the connection to weight enumerators.
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Definition 8. Let C be a linear code of length n and let Ai be the number of vectors in
C having i non-zero entries (Hamming weight of i). Then the weight enumerator of C
is the bi-variate polynomial

A(x, y) =
n∑

i=0

Ai xn−i yi .

The set {Ai } is called the weight spectrum of the code.

In this paper our only concern for the weight spectrum is its connection to the Potts
partition function, but in coding theory it can be used to reveal information about the
effiency of a code [31]. The connection between Eq. (8) and the cocycle code of the
graph Γ for the Potts model is given in the following theorem proved in [27].

Theorem 2. Let A(x, y) be the weight enumerator of the [n = |E |, k = |V | − c(Γ )]
cocycle code C(Γ ) of the graph Γ = (E, V ), and let the number of states per spin
(vertex) in the corresponding Potts model be a prime q. Then

ZΓ (y) = y−nqc(Γ ) A(1, y). (15)

We take q to be prime and not a power of a prime to simplify matters. In this manner
the cocycle code has words whose entries are in Fq , as will the corresponding irreducible
cyclic code in the trace representation over Fqr – see Appendix 8 for details.

The connection between the Potts partition function and weight enumerators can also
be understood via a previous result which shows that Z is equivalent to the Tutte polyno-
mial (under certain restrictions) and that the weight polynomial of a linear code is also
equivalent to the Tutte polynomial [32]. We also note that a relation similar to Eq. (15)
was established in [5] for the Ising spin glass partition function and so-called quadrati-
cally signed weight enumerators, along with a discussion of computational complexity.

2.3. Testing the graph for membership in the ICCCε class. We now have the tools to
address the issue of whether a graph should be accepted as input into the main algorithm,
i.e., whether a graph belongs to the ICCCε class. This is handled as follows:

- Input: A graph Γ with |E | edges and |V | vertices, the given Galois field of qk

elements and ε.
- Output: Accept or Reject. Let n = |E | and k = |E | − |V | + c(Γ ) as in the main
theorem.
- Overall Complexity: O(|E | · k2 log k log log k) due the ability to take the dis-
crete log |E | times efficiently with a quantum computer [1].

1. Compute θn,k as given in Definition 1.
2. Find CMM(Γ ). It is a (n − k) × n matrix of the form [In−k |X ], where X is a

(n−k)×k matrix. Form the k×n (transpose parity check) matrix H T = [−X T |Ik].
H T generates an [n, k] code C⊥(Γ ) that is dual to the cocycle code C(Γ ).

3. Determine if ε ≤ qθn,k−1

4
√

qk
and if k is the multiplicative order of q mod n (i.e., k is the

smallest integer such that qk = 1 mod n). If both are true then go to the next step.
Otherwise skip the next step and continue.
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4. Main Loop:
(a) Fix a basis of G F(qk) over G F(q) and consider the columns of H T as coor-

dinate vectors of some elements gi of G F(qk).
(b) Calculate the discrete logarithms log(gi ) of each gi with respect to a fixed

primitive element g (every element in the field can be written as gl for some l)
of G F(qk) using Shor’s algorithm [1] on a quantum computer.2

(c) Accept or Reject Γ based on the fact that C⊥ is (equivalent to) an irreducible
cyclic code if and only if the numbers log(gi ) are some permuted list of conse-
cutive integer multiples of N := (qk − 1)/n in some order. This is due to
the fact that by definition the generator matrix of an irreducible cyclic code is
equivalent to (1 gN j g2N j . . . g(n−1)N j ) where gcd(n, j) = 1 [31].

5. Step c failed. Using elementary row operations transform H T to a block diagonal
matrix if possible. If not possible then Reject. If possible then go to Step c and input
each sub-matrix and continue.

2.4. Proof of the Main Theorem.

2.4.1. Preliminaries We introduce Gauss sums as this is the vital link between the
Potts partition function and quantum computation. Appendix 9 contains a more detailed
exposition as well as an outline of a proof that there exists a polylog quantum algorithm
for estimating Gauss sums. Here however it is essential only to understand the following.
Given a field Fqk , there is a multiplicative and additive group associated with it. Namely,
the multiplicative group is F∗

qk = Fqk \0 and the additive group is Fqk itself. Associated
with each group are canonical homomorphisms from the group to the complex numbers,
named the additive and multiplicative characters. The multiplicative character χ is a
function of the elements of F∗

qk and the additive character is a function of Fqk and
is parameterized by β ∈ Fqk . A Gauss sum is then a function of the field Fqk , the
multiplicative character χ and the parameter β, and can always be written as

GFqk (χ, β) =
√

qkeiγ , (16)

where γ is a function of χ and β. It is in general quite difficult to find the angle γ . The
complexity of estimating this quantity via classical computation is not known but there
is evidence that it is hard [26].

We now introduce the trace function over finite fields.

Definition 9. Let q be prime, k a positive integer, and let Fqk be the finite field with

qk − 1 non-zero elements. The trace is a mapping Tr : Fqk �→ Fq and is defined as
follows. Let ξ ∈ Fqk . Then

Tr(ξ) =
k−1∑

j=0

ξq j
. (17)

2 For every non-zero x ∈ Fqr /{0} the discrete logarithm with respect to a primitive element (i.e., generator)

g of Fqr is given by logg(x) = logg(g j ) = j mod (qr − 1).
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Now let qk = 1 + nN , where n and N are both positive integers, and let γ generate
the multiplicative (cyclic) group F∗

qk = Fqk\{0}. Each of the qk words of an [n, k]
irreducible cyclic code may then be uniquely associated with an element x ∈ Fqk and
may be written as

(Tr(x), Tr(xγ N ), Tr(xγ 2N ), . . . , Tr(xγ (n−1)N )), (18)

where k is the smallest integer such that qk = 1 mod n. For a proof of this statement see
[33] or [34].

As stated in Theorem 1, we are essentially interested in obtaining the weight spectrum
of [n, k] irreducible cyclic codes. The number of words with different non-zero weight
is at most N , where N = (qk − 1)/n (for a proof see Proposition 1 in Appendix 8).
Now let w(x) be the Hamming weight of the code word associated with x ∈ F∗

qk . The
McEliece Theorem connects the weights of words of irreducible cyclic codes to Gauss
sums.

Theorem 3 (McEliece Formula). Let w(y) for y ∈ F∗
qk be the weight of the code word

given by Eq. (18), let qk = 1+nN, where q is prime and k, n and N are positive integers,
let d = gcd(N , (qk − 1)/(q − 1)), and let the multiplicative character χ̄ be given by
χ̄(γ ) = exp(2π i/d), where γ generates F∗

qk . (χ̄ is called the character of order d.)
Then the weight of each word in an irreducible cyclic code is given by

w(y) = qk(q − 1)

q N
− q − 1

q N

d−1∑

a=1

χ̄ (y)−aGFqk (χ̄
a, 1). (19)

For a proof of this see [33].
The important feature here is that if we had the ability to efficiently estimate

GFqk (χ, β), then we would be able to find the weights of the words in an irreducible
cyclic code efficiently under the restrictions mentioned in Theorem 1. This would in turn
allow us to find the weight spectrum {Ai } of the code. The following theorem reveals
that a quantum computer can efficiently approximate Gauss sums.

Theorem 4 (van Dam & Seroussi [26]). For any ε > 0, there is a quantum algorithm
that estimates the phase γ in GFqk (χ, β) = √

qkeiγ , with expected error E(|γ−γ̃ |) < ε.

The time complexity of this algorithm is bounded by O( 1
ε
· (log(qk))2) [26].

(For details see Appendix 9.)
The Gauss sum algorithm allows one to estimate γ in Eq. (16) to within any accuracy

ε, i.e., the algorithm returns γ ′ such that |γ ′ − γ | < ε. The hope is that if one can
approximate γ precisely enough then one would get an exact evaluation of the weight.
In fact an essential step here is to use a quantum computer to obtain a list of approximate
angles {γ ′t } for t = 1, . . . , d − 1 for d given above.

The next theorem gives some minimum distance between weights so that we can
choose an appropriate error that will allow one to be able to distinguish between weights,
which allows us to obtain accurate coefficients for A(1, y) and hence exact values for
the exponents.

Theorem 5 (McEliece [35]). All the weights of an [n, k] irreducible cyclic code are
divisible by qθn,k−1, where θn,k is given in Definition 1.
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2.4.2. The proof. We are now ready to prove Theorem 1.

Proof. Assume that a given graph Γ = (E, V ) is a member of ICCCε , where n = |E |
and k = |E | − |V | + c(Γ ). Hence it is given that ε ≤ qθn,k−1

4
√

qk
≡ ε0. We want to obtain

ZΓ for either the fully ferromagnetic or anti-ferromagnetic Potts model. It follows from
Definition 1 that the dual of the cocycle code of Γ is an irreducible [n, k] cyclic code.
We must demonstrate that we can obtain the weight enumerator A(1, y) of this dual
code within the claimed number of steps. As mentioned above, since nN = qk − 1
there are then at most N different weights, with at least n words of each weight (see the
Appendix). In order to find the spectrum {Ai }, we are faced with the computational task
of finding the range of

S(i) = qk(q − 1)

q N
− q − 1

q N

d−1∑

a=1

χ̄ (αi )−a
√

qkei γ̃a (20)

(where again d = gcd(N , qk − 1/q − 1) and i ∈ {0, . . . , N − 1}) and then performing
a tally.

The proof consists of five main parts:

1. Proof that with ε bounded by ε0 as given, it is possible to distinguish between weights
of the words of the code that corresponds to the given graph. This ability allows for
an exact evaluation of ZΓ .

2. We need to justify our asymptotic approach and show that for a fixed error ε there
are a countable number of graphs in ICCCε .

3. Proof that the success probability δ is as stated in the theorem.
4. Proof that the running time is as stated in the theorem.
5. A transformation from the dual (irreducible cyclic) code to the cocycle code of the

graph whose Potts partition function we are evaluating.

Let us now prove each of these five parts.
1. The first question we must address is the following: how small do we need to make

the error ε in the phases returned in the Gauss sum approximation algorithm so that we
will be able to distinguish between weights? We now show that ε ≤ ε0 is sufficient, and
hence that for every member of the class ICCCε it is possible to distinguish between
weights.

Let w̃(y) be the approximated weight returned by the quantum Gauss sum algorithm.
It follows from Theorem 5 that two consecutive weights are separated by a distance that
is an integer multiple of qθn,k−1. Hence, a sufficient condition for being able to associate
w̃(y) with the correct weight w(y) (and not another neighboring weight) is:

|w(y)− w̃(y)| < qθn,k−1

2
. (21)

Let the error between the actual phase γi and the approximated phase γ̃i be ε, i.e.,

|γi − γ̃i | < ε.

Let us derive a bound on ε. Taking w(y) given in Theorem 3 and the necessary bound
given in Eq. (21) we find that we need the inequality

∣∣∣∣∣
∑

a

χ̄(y)−aeiγa −
∑

a

χ̄(y)−aei γ̃a

∣∣∣∣∣ <
q N

(q − 1)

qθn,k−1

2

1√
qk

(22)
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to be satisfied. Now, we have
∣∣∣∣∣
∑

a

χ̄(y)−aeiγa −
∑

a

χ̄(y)−aei γ̃a

∣∣∣∣∣ ≤
∑

a

∣∣∣eiγa − ei γ̃a

∣∣∣

≤
∑

a

(|cos(γa)−cos(γ̃a))|+|(sin(γa)−sin(γ̃a))|)

≤ 2(d − 1) |γa − γ̃a | < 2(d − 1)ε,

where the last inequality follows from the Mean Value Theorem of elementary calculus.
Therefore, if we impose

ε <
q N

(q − 1)(d − 1)

qθn,k−1

4

1√
qk

, (23)

then inequality (22) is satisfied. Consider the factor q N
(q−1)(d−1)

. Noting from N ≤ αks

that d = gcd(N , (qk − 1)/(q − 1)) ≤ αks = N , it follows that 1 <
q N

(q−1)(d−1)
≤

q
q−1 N = O(ks(k)). Thus we can replace the bound (23) by the tighter bound

ε <
qθn,k−1−k/2

4
= ε0, (24)

and this ε is definitely small enough to satisfy the required bound given in Eq. (21).3

Hence, if ε < ε0 it is possible to resolve the weights w̃(y) for different words y. This, in
turn, gives us the ability to exactly reconstruct the weight enumerator A, and from there
the partition function ZΓ .

2. We prove the following lemma.

Lemma 1. Given a fixed ε < 1 there are countably many graphs in ICCCε , i.e., there are
infinitely many corresponding irreducible cyclic codes [ni , ki ] such that {θni ,ki } satisfies

1

4
qθni ,ki−1− ki

2 > ε. (25)

What this means is that there is at least one family of graphs for a given fixed ε for
which one will be able to obtain the exact Potts partition function. This also justifies the
complexity arguments used herein.

Proof. We shall construct one such family and show that it satisfies the required relations.
For simplicity take ε = 4ε. We must construct one family of graphs for which the
corresponding irreducible cyclic codes, [ni , ki ], satisfy

θni ,ki + logq(ε−1) > 1 +
ki

2
. (26)

3 Note, however, that when d = 2, we have in fact ε < ks(k)ε0, where ε0 = qθn,k−1

4
√

qk
, and in this

case the computational cost of the algorithm (see Theorem 1) is scaled down from O( 1
ε0

k2s(k)(log q)2) to

O( 1
ε0

ks(k)(log q)2), where the upper bound (24) still applies. This means that within the family ICCCε0 some

instances can be solved faster than others by a factor of ks(k), at fixed ε0.



Quantum Computer Evaluation of Some Instances of Potts Partition Function 749

Take q fixed and consider the following countable set of irreducible cyclic codes: {[qm−
1, km]}m=1,2,3,.... First we must note that

θqm−1,km = m. (27)

This follows from the properties of addition in base q: the k digits of qk − 1 in base q
are all (q − 1), and adding integer multiples of qk − 1 will not decrease the digit sum.
i.e.,

S′(η(qm − 1)) ≥ m(q − 1) ∀η ∈ N.

This is important to keep in mind when we consider extending this family later in this
proof. Now we must demonstrate that there is at least one km that satisfies Eq. (26).
Because we are dealing with irreducible cyclic codes we must have

qkm = 1modn = 1mod(qm − 1).

This is trivially satisfied by km = m and indeed Eq. (26) becomes m − m
2 > 1 + logq ε,

which is clearly true for any ε < 1. This family is computationally trivial, however,
being that N = 1.

Let us now extend this family to include many interesting instances. Let us first
consider a fixed code [qm − 1, km] (i.e., N = 1, m fixed). Let us next generate a family
of codes {[η j (qm − 1), kmj ]} j=1,2,...,M by taking integer multiples η j of qm − 1, and
picking kmj ≥ km such that η j (qm − 1)N = qkmj − 1 (this is just the irreducible cyclic
code condition nN = qk − 1). We obtain a finite set of codes (M < ∞) because it
follows from Eq. (25) that eventually the {kmj } j will become too large for the fixed error
ε, for each m. We then do this for every m ∈ N paying special attention to the integer
multiples η j . The η j are selected in this construction so that two conditions are satisfied:
(i) the corresponding {kmj } j are sufficiently small to ensure that Eq. (25) is satisfied, (ii)
that N is bounded by {O(ks

mj )}m, j .
Regarding (i), the steps above are conveniently summarized as the following loop:
Given ε:

1. For m = 1, 2, . . .

2. Repeat j = 1, 2, . . .

n := j (qm − 1)

calculate kmj =ordq(n)

if qθn,kmj−1−kmj /2
< ε then reject kmj , otherwise accept kmj and let η j ≡ j .

Until j = M

Note that we are guaranteed to find such a non-empty finite set {kmj } j due to the fact
that if gcd(q, η j (qm − 1)) = 1, then ∃ kmj ∈ N such that qkmj = 1 mod η j (qm − 1)

(see, e.g., Th. 7-1 of [36]).
Regarding (ii), we still need to show that there exist solutions Nmj to qkmj−1 = nNmj

that scale as O(ks
mj ). To see why such solutions exist consider solving qk − 1 = nN

with N = αks and n = η(qm − 1), where α ∈ R (we have dropped the subscripts for
simplicity). The solution is

m = logq [(qk − 1)/(αηks) + 1]. (28)
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In the loop above, only those m’s satisfying Eq. (28) are acceptable in terms of the
scaling of our algorithm. However, note that asymptotically Eq. (28) yields m = k −
s logq k − logq αη. This means that for every value of k and s it is possible to adjust α

such that m is an integer by letting s logq k = logq αη.
At this point we have constructed an infinite family of pairs [n, kmj ] [where n =

j (qm − 1) and where m satisfies Eq. (28)], each of which defines a graph which is a
member of the set ICCCε . ��

Finally, we should mention without proof, that one can “fill” this family of graphs
by considering the multitude of cases which do not conform to the restrictions in this
construction, but which do obey relation (26) and obey the asymptotic conditions given
in definition (1). Moreover, the graphs we have constructed are quite sparse but they are
only a subset of ICCCε . There are many more interesting graphs that can be handled by
this fixed error bound. For example, graphs which are the direct sum of many copies of
a smaller graph are excluded from this family. Further one may accept an error ε that
decreases polynomially in k for example and define a family of graphs in that way. We
do not pursue this here.

3. In the van Dam-Seroussi algorithm (Theorem 1 in [26]), a prepared state must must
go through a phase estimation. In [37] it is demonstrated that if the number of qubits
used in phase estimation is t = log 1/ε + log(2 + 1/(2δ)) then the probability of success
is at least 1−δ. Ref. [38, p. 7] states that for the Gauss sum algorithm t = 2 log(qk−1).
After some elementary algebra we obtain δ = [2((qk − 1)2ε − 2)]−1. By the Chernoff
bound, for fixed problem size k, we only need to pick ε such that the probability of
failure δ is less than 1/2.

4. (a) We have that if α is a generator for F∗
qk and if i = j mod n, then the code words

associated with αi and α j are cyclic permutations of each other, and therefore are of
the same weight. Let us denote by [αi ] the (equivalence) class of all words {α j } j with
i = j mod n. In this step we wish to find the weight of [αi ]. This weight is given by

S(i) = qk(q − 1)

q N
− q − 1

q N

d−1∑

a=1

χ̄ (αi )−a
√

qkei γ̃a . (29)

Hence (up to irrelevant classical computations) the computational cost of computing
S(i) is d − 1 times the cost of computing γ̃a . For any graph in ICCCε , obtaining these
d − 1 phases has a (quantum) cost of O(dk2(log q)2), where d is bounded above by N .
This comes from the complexity of computing the Gauss sum d times. (Recall that one
has to repeat this algorithm 1/ε times in order to ensure that we obtain a sufficiently
close approximation.)

(b) How many times must we compute S(i)? The number of times is the number
of different equivalence classes {[αi ]}. Each equivalence class [αi ] is clearly of size n,
and there are qk − 1 words. Recall that nN = qk − 1 for non-degenerate irreducible
cyclic codes, and hence N is the number of different equivalence classes. (Actually the
answer to “How many times must we compute S(i)?” is that one must only do this for
the number of cyclotomic cosets of N – see Subsect. 2.6).

(c) For given S(i) we must compute a sum over d terms. The cost of computing each
such term is constant once we have obtained the phases γ̃a [which we have, in Step
(a)]. Combining this with Step (b), we see that the total cost of computing all S(i)’s is
(d − 1)N .

At this point the total computational cost is therefore max[O(dk2(log q)2), O(d N )].
We choose N = O(ks(k)) so if one takes s(k) to be a constant, then the algorithm is
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polynomial in k. Thus, the overall time complexity is O(d · kmax[2,s(k)](log q)2). Being
that d ≤ N = O(ks(k)), the complexity is ultimately O(k2 max[1,s(k)](log q)2).

(d) We now have the list {S(i)}. Next, a tally of all the weights has to be done which
has complexity O(ks(k)/2) using quantum counting [39]. The tally will return all the
weights and counts of each weight (see Sect. 4) which are the exponents and coefficients
respectively, of the polynomial A(1, y) which is the weight enumerator of the dual of the
cocycle code. Note that this step does not effect the overall complexity of the algorithm
as it has a smaller running time than the previous steps.

5. Note that so far we have dealt with the [n, k] irreducible cyclic code that is the dual
of the cocycle code of Γ , i.e., we have used n = |E | and k = |E |−|V |+c(Γ ). However,
recall that Γ = Γ (E, V ), and hence corresponds to the [n, n − k] = [|E |, |V | − c(Γ )]
code, i.e., the cocycle code of the graph Γ as desired. (This correspondence means that
we can obtain information about interesting graphs by considering codes of smaller
dimension.) Thus, in order to complete the proof we need the weight enumerator of the
[n, n− k] cocycle code itself, so that we can apply Theorem 2. The relation between the
weight enumerator A of a code C over the field Fqk , and the weight enumerator A⊥ of
the dual code C⊥ is given by the MacWilliams Theorem [31]:

A⊥ (1, x) = qk(k−n)
(

1 + (qk − 1)x
)n

A(1, y), (30)

where

x ≡
(

1− y

1 + (qk − 1)y

)
. (31)

Applying the MacWilliams theorem and Barg’s theorem [specifically Eq. (15) to
A⊥ (1, x)], we arrive at the partition function

Z (x) = x−nqc(Γ ) A⊥ (1, x) . (32)

Recall that y = e−β J (where β = 1
kB T ); thus we have the following final expression for

the partition function as a function of β:

Z (x(β)) = qc(Γ )+k(k−n)
[
(qk − 1) + x(β)−1

]n
A(1, y(β)). (33)

It is simple to verify that given any temperature T ≥ 0, and for both positive and negative
J , Z (x(β)) is always positive, as it should be. ��

2.5. Proof of the corollary. We now give the proof of Corollary 1.

Proof. Assume that we are given a graph Γ (E, V ) whose CMM is the direct sum of the
CMMs of two graphs Γ1 and Γ2 in ICCCε (we call such a graph Γ a “composite graph”).
Let C be the code that corresponds to the graph Γ , i.e., C is the cocycle code of Γ . Let
C1 and C2 be the corresponding cocycle codes of Γ1 and Γ2. This means that we may
apply our algorithm to each of these sub-graphs and obtain their weight enumerators.
To do this we need to obtain the weight enumerators of C1 and C2 which we can do
efficiently. By definition C = C1 ⊕ C2. If the respective lengths and dimensions of C1
and C2 are [m, l] and [m′, l ′], then C is an [m + m′, l + l ′] linear code and its weight
enumerator will be W = W1W2 [31]. Thus, once one obtains the weight enumerators of
the sub-graphs, one has the weight enumerator of Γ and by using the arguments already
outlined one can see that we can efficiently compute ZΓ . ��
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The above corollary allows the scheme outlined in this paper to be efficiently applied
to many graphs because if one knows the generator matrices for C1 and C2 then one
can efficiently construct the generator matrix for C by just taking the direct sum of the
matrices. This gives a way of constructing examples of graphs for which the Potts par-
tition function can be efficiently approximated. On the other hand (recall Subsect. 2.3),
we can efficiently check if a generator matrix decomposes into a direct sum of smaller
matrices and we can efficiently check if these matrices generate codes whose duals are
irreducible cyclic.

2.6. Reducing the computational cost of the algorithm via permutation symmetry. We
now briefly review the concept of p-cyclotomic cosets. As an introduction see [31].
Consider the set of integers {0, 1, 2, . . . , N − 1} and take p a prime number such that
p does not divide N . The p-cyclotomic cosets of this set are given by the collection of
subsets

{0}, {1, p, p2, . . . , pr(1)}, . . . , { j, j p, j p2, . . . , j pr( j)}, . . . ,
where j is an integer and r( j) is the smallest integer such that j (pr( j)− 1) = 0 mod N ,
i.e., r( j) is the smallest integer before one begins to get repeats in the coset indexed by
j . The number of cosets is finite so j is finite. As an example consider N = 16 and
p = 3. One obtains

{0}, {1, 3, 9, 11}, {2, 6}, {4, 12}, {5, 15, 13, 7}, {8}, {10, 14}.
With regards to the scheme presented in this paper, we take q-cyclotomic cosets. We

are guaranteed that gcd(N , q) = 1, which ensures that in our case the cyclotomic cosets
are disjoint. That gcd(N , q) = 1 is due to the fact that there are solutions x, y ∈ Z

to N x + qy = 1 (Thm. 2-4 of [36]). For example, since N = qk−1
n , one can take

x = n(q − 1) and y = 1 + qk−1 − qk , which are both integers. The relevance of the
q-cyclotomic cosets of {0, . . . , N −1} is that each element in a given coset has the same
value of S(i). This is because of the fact that the mapping x �→ xq is a permutation of Fqk

and that the additive characters obey the identity exp(2π iTr(bq)/q) = exp(2π iTr(b)/q)

for all b ∈ Fqk . Hence S(i) is invariant under the mapping x �→ xq . (See Appendix 9.1
for details on additive characters and the trace function Tr.) Therefore we only have to
evaluate S(i) for one i in each coset. The computational cost of computing the coset
representatives and the number of elements in each coset is linear in N [40]. This has the
potential of significantly speeding up the algorithm, but how much will clearly depend
on the number of cosets generated by each instance. The number of cosets is given by
[41]

NC =
∑

f |N

φ( f )

ordq f
, (34)

where φ( f ) is the Euler totient (the number of positive integers which are relatively prime
to f and s = ordq f means that s is the smallest positive integer such that qs = 1mod f ).
Note that NC replaces N in the overall computational cost of our algorithm and NC ≤ N .
While this can lead to a significant speedup in some cases, for the sake of simplicity and
of having uniform bounds we will not pursue this further here.

As an illustration of the power of using cyclotomic cosets, consider the following
numerical example. Let q = 2, 1/ε ≥ 8192, and consider a binary [113, 85] code which
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is the dual to a binary [113, 28] irreducible cyclic code (i.e., 28 is the smallest integer
such that 228 = 1mod113). This corresponds to either the fully ferromagnetic or fully
anti-ferromagnetic Ising model on a graph with 113 edges and 86 vertices. Now note
that nN = 228 − 1, which implies that N = 2375535. Without the use of cyclotomic
cosets this value of N would set our computational cost in that it is the number of times
that S(i) must be queried. However, it turns out that there are NC = 85439 cyclotomic
cosets, and this is the actual number of queries to S(i).

Note that there are instances where N � n and cyclotomic cosets are not required.
For example consider the binary [13981, 20] irreducible cyclic code. Here n = 13981
and N = 75. Physically this corresponds to either the fully anti-ferromagnetic or fer-
romagnetic Ising model over a connected graph with 13981 edges and 13962 vertices
(considering the dual code).

3. Classical and Quantum Complexity of the Scheme

Assuming one knew that a given graph was a member of ICCCε , then classically one
could proceed as follows using a state of the art algorithm ZETA for the computation of
zeta functions of the family of curves Cα : yq− y = αx N [24]. Here N is as given in the
relation nN = qk−1 and the index α is in one-one correspondence with the code words
in the given cocycle code (specifically α ∈ Fqk ). The connection between the weights of
words of an irreducible cyclic code and the number of rational points on the curves Cα

is well known, as is the connection between the zeta functions of such curves and Gauss
sums [42]. The complexity of using ZETA to compute the N = αks(k) different weights

is O(k6s(k)+3+ε′ ( q
2

)5+ε′
) [24] and a tally of these weights will take O(ks(k)) operations

(ε′ is a small real number – unrelated to ε which parameterizes the class of graphs in
question). The overall complexity of finding the range of S(i) will therefore be

classical cost = O

(
k6s(k)+3+ε′

(q

2

)5+ε′)
, (35)

assuming that we know that a given graph is a member of ICCCε . As far as we know
this is the fastest classical algorithm for the problem we have considered here.

For a quantum computer we do not need to assume that testing for membership
is efficient: we know that this can be done efficiently using the discrete log algo-
rithm [1]. Above we showed that the overall complexity of finding Z is bounded by
O(k2 max[1,s(k)](log q)2). This should be contrasted with the best classical result avai-
lable, (35). For example if we take s = 2, (both classical and quantum methods are
polynomial when we take s(k) to be a constant) we obtain an O(k11) improvement
and an exponential speedup in q. One could imagine fixing a graph and calculating the
partition function for increasing values of q. In this situation we have an exponential
speedup over the best classical algorithm available.

Note that there is a quantum algorithm for finding zeta functions of curves which is
exponentially faster in q than the classical algorithm in [24] (as is ours). This is given
in [25]. The use of this algorithm instead of the Gauss sum approximation algorithm is
left for a future publication.

On a final note, the classification ICCCε we have chosen is meant to highlight the
boundary between B Q P and P by fixing the acceptable error in the Gauss sum phases.
One could opt for a perhaps more natural class of graphs by bounding the way that 1/ε
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grows instead. For example, one could restrict the class of graphs in such a way that

1/ε ∼ q
k
2−θn,k +1 grows polynomially in k, in particular such that

1

ε
< k5s(k)+1.

For this class of graphs one would also have a speedup in the quantum case.

4. Detailed Summary

For convenience we recollect our definitions and provide a diagram of our scheme. We
are considering the q-state Potts model (fully ferromagnetic or fully anti-ferromagnetic)
over a graph Γ = (E, V ), with q prime. This includes the Ising model (q = 2). Every
graph Γ has a cycle matroid M(Γ ) associated with it and every cycle matroid has a
(|V | − c(Γ )) × |E | matrix representation G (the CMM), where c(Γ ) is the number
of connected components of Γ . The columns of G encode the cycle structure of the
graph and the row space of G generates the cocycle code of length |E | and dimension
|V | − c(Γ ). The length and dimension of the dual code are respectively n = |E | and
k = |E | − |V | + c(Γ ).

Following is a detailed synopsis of the algorithm for computing the partition function.

1. Given a graph, efficiently determine if it belongs to ICCCε (Definition 1). This
step appears to be hard on a classical computer in general, since it is equivalent to
computing a discrete log.

2. If the CMM G = [I|V |−c(Γ )|X ] is the matrix representation over Fqk of the cycle
matroid of Γ , M(Γ ), then the row space of H = [−X T |I|E |−|V |+c(Γ )] will be the
code C(Γ ).

3. Let N = O(ks), where s is a constant integer that determines the complexity of

the algorithm. Take C(Γ ) as an irreducible cyclic code of length n = qk−1
N and

dimension k, i.e., we only consider graphs Γ , where C(Γ ) is an irreducible [n, k]
cyclic code.

4. If we can evaluate the weight enumerator of C(Γ ) we will have successfully approxi-
mated the Potts partition function over the corresponding graph Γ . To do so:

(a) Find the q-cyclotomic cosets of {0, 1, . . . , N − 1}. This step requires at most
linear time in N .

(b) Using the quantum algorithm for Gauss sums [26] we are be able to estimate
the weights of the words. The error in the Gauss sum algorithm can be high
in this setting, and therefore we have to restrict the class of graphs further in
order to obtain exact evaluations. Use the Gauss sum algorithm to return the
phases γ1, . . . , γd−1 [Eq. (16)] and then input these values into the function
S(i) [Eq. (20)]. According to the McEliece Theorem (Th. 3) we have to make

d − 1 (where d = gcd(N ,
qk−1
q−1 )) calls to the quantum oracle and we can

use these evaluations for each representative i of the q-cyclotomic cosets of
{0, 1, . . . , N − 1}. This step has time complexity O(dk2(log q)2).

(c) Let b1, b2, . . . , bNC be the coset representatives from the NC cosets. Now each
coset has cardinality vi , i.e., bi belongs to coset i which has vi elements. We
evaluate ωi = S(bi ) for each bi , remembering that each ωi occurs vi times.
We end up with a list (ω1, ω2, . . . , ωNC ) as well as a list (v1, v2, . . . , vNC ) of
multiplicities.
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Fig. 2. A diagrammatic overview of the algorithm. (Box shapes do not have a meaning.)

(d) Now perform a tally of repeats of the ωi for each i ∈ {1, . . . , NC }. This returns
a set of indices Λi ≡ { ji } ⊆ {1, . . . , NC }. We add the corresponding v ji which
yields ai =∑

j∈Λi
v j , the number of words of weight ωi up to cyclic permu-

tations. To account for cyclic permutations due to the fact that we are working
over cyclic codes, we have Ai = nai , which is the desired weight spectrum.

5. Now that we have determined the weight spectrum Ai in time O(k2s(log q)2), we
have the coefficients for A(1, y) and so via the MacWilliams identity (30) we finally
obtain the partition function (33).

5. Examples and Discussion

In this section we provide the reader with some simple examples for illustrative purposes.

5.1. Example. Consider the graph depicted in Fig. 3. This graph depicts three spins, one
of which has a self-interaction. It can be verified that this graph corresponds to the dual
of a [4, 2] irreducible cyclic code over G F(3), i.e., q = 3. The generator matrix for this
code is given by

(
0 1 1 1
1 0 1 2

)
.

We see that the corresponding graph must have 4 edges and 3 vertices (if the graph
is connected), and this is the reason for having the spin with the self-interaction. The
second, third, and fourth columns correspond to a triangle (as they sum to zero modulo
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Fig. 3. A graph corresponding to a [4, 2] linear code over G F(3)

3) and the first column is the loop at one of the vertices. The self-interaction can be
removed once the partition function has been obtained via a simple procedure described
below.

We need to find the weight spectrum for this code. After forming the weight enume-
rator using MacWilliams identity, we apply Barg’s theorem which will give the q = 3
Potts partition function for this graph.

1. Using a quantum computer we evaluate the necessary Gauss sums. From the identity
qk − 1 = nN (necessarily satisfied by irreducible cyclic codes) we see that N = 2.
This means that there can be at most two different weights (in fact the number of
non-zero cyclotomic cosets is one).

2. Compute the number of times that one must repeat the quantum algorithm for Gauss
sums in order to obtain an acceptable accuracy. We see that this number is given by

1

ε
= 4
√

32

3θn,k−1 .

Since 4 = 11 base 3 we have that θn,k = 1
2 [1 + 1] = 1 and so 1

ε
= 12. This means

that the algorithm must be repeated 13 times to ensure the desired accuracy.
3. After evaluating the Gauss sums and plugging them into Eq. (19), we obtain two

weights: 0 and 3.
4. As only one word can have zero weight, the remaining 32− 1 words have weight 3.

This means that we have the weight enumerator

A(1, y) = 1 + 8y3.

5. Using relation (33) derived earlier, we find that for this graph

Z(x(β)) = 1

27

[
8 + x(β)−1

]4 [1 + 8y3(β)],

where x(β) = 1−y(β)
1+8y(β)

, y = e−β J , and β = 1
kB T .

6. At this point we can remove the self-interaction by dividing Z(x(β)) by y. This is
due to the following theorems.

Theorem 6. Let T be the Tutte polynomial. If e is a loop then

T (M; x, y) = yT (M − e; x, y),

where M − e is the matroid (or graph) with the loop deleted [6].
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Theorem 7.

A(1, y) = yn−k(1− y)k T

(
M; 1 + (q − 1)y

1− y
,

1

y

)
.

This is known as Greene’s identity and one can see either [27] or [6] for details.

Putting these theorems together one finds that

AM−e(1, y) = yn−k(1− y)k T

(
M − e; 1 + q − 1y

1− y
,

1

y

)
(36)

= yn−k(1− y)k yT

(
M; 1 + (q − 1)y

1− y
,

1

y

)
(37)

= y AM (1, y), (38)

and therefore we find that the partition function for the triangle is then given by

Z(x(β)) = 1

27

[
8 + x(β)−1

]4
(

1− x

1 + (qk − 1)x

)
[1 + 8y3(β)].

One should note that due to Corollary (1), we could form a string of these triangle
graphs as shown in Fig. 4, and easily compute the partition function by multiplying the
above partition function with itself three times (the number of copies of the triangle in
the chain). This property is shared by all instances of the Tutte polynomial defined over
direct sums of matroids.

We can extend this to certain types of recursively defined graphs [46] by forming
chains made of multiple copies of different graphs. We note however that recursively
defined graphs [46] do not always fit into our construction because they may not be
members of ICCCε . For example, consider Fig. 5. This is known as a ladder graph and it
is an example of a recursively defined graph. This graph corresponds to a [8,17] binary
linear code which is not irreducible cyclic, nor dual to one [27].

Fig. 4. Chaining of the graph in Fig. 3

Fig. 5. A ladder graph illustrating a recursively defined graph. This graph corresponds to a [8,17] binary linear
code
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5.2. Degenerate cyclic codes. Here we introduce an approach to construct examples that
will help to classify the types of graphs that our scheme is tailored for. The motivation
for this is to clarify the relationship between graphs and codes in the sense used in our
scheme. The problem is the fact that many of the irreducible cyclic codes have duals that
are not graphic in the sense of cycle matroids. We ask the following question: Given an
irreducible cyclic code whose dual is not graphic (and hence does not correspond to a
physical Potts model), can we find another code whose dual has a weight spectrum that
is simply related to the original code, and which is graphic? We provide some arguments
in favor of this idea.

There exist codes whose words consist of several repetitions of a code of smaller
length. Of particular interest to us is a class of degenerate codes related to irreducible
cyclic codes in the following way. Lemma IV.2 in [45] states that a code of length n is
degenerate if w(x)|xr − 1 [i.e, w(x) divides xr − 1] for some r |n, where w(x) is the
check polynomial (see Appendix 8). In the case of irreducible cyclic codes the check
polynomial is the denominator of the generator polynomial introduced earlier, given by
g(x) = xr−1

w(x)
. This means that if we have an [r, k] irreducible cyclic code with check

polynomial w(x), we find some n such that w(x)|xn − 1 such that r |n. We then have
a degenerate linear [n, k] code generated by xn−1

w(x)
. The words in the degenerate code

will look like (c′, c′, . . . , c′), where c′ is a word in the non-degenerate code. This means
that once we know the weight distribution of the [r, k] code, we can easily construct the
weight enumerator of the [n, k] code since the weights of the words of length n will be
n/r times the weight of the corresponding word of length r . This construction allows
one to loosen the constraints on the dimension and length and therefore on the number
of vertices and edges of the corresponding graph. In other words, for many of the codes
whose corresponding cycle matroids are not graphic we may use this construction to
map these instances to graphic matroids. The definition for ICCCε can be easily tailored
to include these graphs as will be done in future work.

As an example consider the [4, 5] irreducible cyclic code whose check polynomial
is w(x) = 1 + x + x2 + x3 + x4. The dual of this code is non-graphic, because it requires
forming a cycle of five edges with only two vertices. Now notice that w(x)|x15 − 1 and

5|15. In this way we form the [4, 15] code generated by x15−1
w(x)

. The dual of this code is a
[11, 15] code and the corresponding graph is given by Fig. 6. The weight enumerator of
the [4, 5] code is A(1, y) = 1 + 10y2 + 5y4 and the weight enumerator of the degenerate
code is 1 + 10y6 + 5y12. Note that the exponents are just multiplied by n/r = 3. The
structure of this graph gives one a clue as to the structure of the types of graphs addressed
by our approach. They will be graphs which consist of several repetitions of simple cycles
of different lengths. In the example above all the simple cycles have length six, as can be
seen in Fig. 6. As one explores codes with higher n, one finds that there will be multiple
simple cycles of different lengths that will form the corresponding graph. The reason
to believe this to be true in general comes from the fact that the weights of the code C
correspond to the size of sets of linearly dependent columns of the generator matrix of
the code dual to C . For example, the minimum weight of a code C is the size of the
smallest set of linearly dependent columns of the code’s parity check matrix, which can
be used as the generator matrix of the code dual to C . On the other hand, the length of
the cycles (number of edges) are given by the weights or sums of the weights.

The relation between codes and graphs is not yet well understood and future work
in this regard based on our approach will hopefully reveal new results that will have
applications to both statistical mechanics and knot theory.
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Fig. 6. Example of a graph corresponding to a [11, 15] code related to the [4, 5] irreducible cyclic code

6. Conclusions and Future Directions

In this work we have given a quantum algorithm for the exact evaluation of the fully
ferromagnetic or anti-ferromagnetic Potts partition function Z under the restriction to
certain sparse graphs (with logarithmically more edges than vertices). The methods we
used exploit the connection between coding theory and statistical physics. The motivation
for this work is an ongoing effort to identify instances of classical statistical mechanics
for which quantum computers will have an advantage over classical machines.

The approach we described involves using the link between classical coding theory
and the Potts model via the weight enumerator polynomial A. One should note that A
is another instance of the Tutte polynomial and so this connection is not surprising. The
weight enumerator encodes information about all the different Hamming weights of the
code words in a linear code and the weight of a code word can be given by a formula
involving a sum of Gauss sums when dealing with a specific type of linear code. Since
there exists an efficient algorithm to approximate Gauss sums via quantum computation
[26] we were able to efficiently calculate the weights of code words for certain codes.
Much of this paper dealt with the necessary restrictions that one must impose in order
to achieve this last step. For example, once an error ε in the Gauss sum algorithm is
accepted, we demonstrated that there is a family of graphs for which one can find the exact
partition function, and therefore the error does not scale within this family. Given a graph
Γ , one can map the graph to a corresponding linear code via the incidence structure of Γ .
The Potts partition function of Γ (with either fully ferromagnetic or anti-ferromagnetic
interactions) is given by some easily computed function times the weight enumerator of
the corresponding code. Due to the symmetries inherent in the mathematical structure
of linear codes we were able to provide an efficient method to exactly determine Z for
a class of graphs (ICCCε) which has a well defined correspondence to a subset of linear
codes.

In [43] it was shown that the exact evaluation of weight enumerators for binary linear
codes is hard for the polynomial hierarchy. As our approach involved the exact evaluation
of weight enumerators, it is not surprising that we had to make restrictions on the class
of graphs so as to make our scheme efficient. The vantage that coding theory gives to
this particular problem, however, allows one to utilize the fact that certain graphs have
properties that a quantum computer can take advantage of to provide a speed up.
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Notice that the related results in [17,21] concern additive approximations; the methods
used in this paper can be extended to a wider class of graphs if one relaxes the require-
ment of exact evaluation and instead similarly considers additive approximations of Z .
An open question is what instances of the Potts partition function are amenable to an
fpras (fully polynomial random approximation scheme). The methods used in [17,21]
have proven to be quite powerful. There is hope to extend some of these methods to
non-planar graphs. One idea is to extend the algorithm in [17] to the Jones polynomial
for virtual knots and then use some correspondence between the virtual knots and non-
planar graphs. Another approach may involve seeing things in a new light. Note that the
Jones polynomial is the Euler characteristic of a certain chain complex [44]. One can
explore how effective quantum computers will be at approximating Euler characteristics
in general. Perhaps there is a way of exploiting this in order to obtain knowledge about
the Potts partition function.

One may also consider strengthening the results given here by exploiting theorems
about the minimal distance of cyclic codes. For example, there are theorems that guaran-
tee a lower bound for the weight between any two words. By enforcing that the generator
polynomial of the code be of a certain form, one would be guaranteed a certain distance
between words and therefore the error in the Gauss sum approximation will be of little
consequence for certain graphs [31]. As already mentioned in the Introduction, another
potentially promising approach is to consider the scheme we have presented here but to
replace the Gauss sum algorithm with the quantum algorithm for obtaining Zeta func-
tions [25]. Work has to be done on understanding the exact cost of this algorithm when
one is restricted to curves that are pertinent for the evaluation of the Potts model.

Corollary 1 deals with the combination of graphs via a direct sum of codes and gives
one a way of “tiling” graphs for which one knows the partition function. This gives a
quick way of obtaining the partition function of certain graphs that are made of many
repeats of a simpler graph. There are other ways of combining codes that may allow one
to study the partition function of new graphs, for example the concatenation or direct
product of two codes [31].

The coding theoretic approach does give us a way of evaluating the partition function
of instances of the Potts model at arbitrary temperatures but precisely the kinds of
graphs which are involved is a question for future research. Indeed, the identification
of the physical instances represented by the graphs for which our algorithm is efficient
will shed light on the question that motivated this work in the first place [5]: what is the
quantum computational complexity of classical statistical mechanics?
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Appendix

7. Matroids

Definition 10. A matroid M on a set E is the pair (E, I ), where I is a collection of
subsets of E with the following properties:

1. The empty set is in I .
2. Hereditary Property: If A ∈ I and B ⊂ A, then B ∈ I .
3. Exchange Property: If A and B are in I and A has more elements than B, then
∃a ∈ A such that a /∈ B but B ∪ {a} ∈ I .
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The collection of sets in I are called the independent sets and E is referred to as the
ground set.

Definition 11. A cycle matroid of a graph Γ is the set of all edges of Γ as the ground set
E together with I as the subsets of E which do not contain a cycle. So the independent
sets are collections of edges which do not have cycles.

Recall that in graph theory one refers to such an edge set (the above independent set)
as a forest.

In matroid theory a matrix representation is a matrix whose column vectors have the
same dependence relations as the matroid it is representing. More clearly, the column
vectors represent the matroid elements and the usual notion of linear dependency deter-
mines the dependent sets and therefore the independent sets as well. Thus, the matrix
can be said to generate the matroid.

As an example, imagine the triangle graph of three nodes with three edges A, B,
and C . The cycle matroid consists of each of the edges individually and any collection
of two edges. All three edges form a cycle so it cannot be included. We require our
matrix representation to encode this independence structure of the edges. One may work
over any field here because we are only concerned with graphic matroids, i.e., matroids
which can be represented as a cycle matroid of some graph. (Graphic matroids are
representable over any field [29].) Now, if we think of column 1,2 and 3 as edges A, B
and C respectively we can take the following matrix as a representation in F2:

(
1 0 1
0 1 1

)
.

Since addition is mod 2 here, a cycle is any collection of columns that sum to the
0-vector. We can take all collections where this does not happen and these collections
will form I . In this way, this matrix is a representation of the cycle matroid for the
triangle graph. In matroid theory one has the familiar notion of a base.

Definition 12. A base of a matroid M = (E, I ) is a maximal independent subset of E.

It is not a coincidence that the left part of the matrix is the 2 × 2 identity matrix.
In general one can form a representation (known as the standard matrix representation)
where one begins with an identity matrix which is r × r , where r is the size of the base
of M and append to it columns that capture the dependence structure of the matroid in
question. In this way, the columns of the identity matrix represent the chosen basis of
M . So M is isomorphic to the matroid induced on the columns of the matrix by linear
dependence. A more precise explanation can be found in [29]. What is important for us
is that such a matrix representation is possible.

8. Algebraic Approach to (Irreducible) Cyclic Codes

8.1. Irreducible cyclic codes as minimal ideals. Let us recall some definitions from
algebra. Take q to be prime or a power of a prime.

Definition 13. A ring is a set R which is an abelian group (R, +) with 0 as the iden-
tity, together with (R,×), which has an identity element with respect to × where × is
associative.
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Definition 14. An ideal I is a subset of a ring R which is itself an additive subgroup of
(R, +) and has the property that when x ∈ R and a ∈ I then xa and ax are also in I .

Definition 15. A principle ideal is an ideal where every element is of the form ar, where
r ∈ R.

Thus, a principle ideal is generated by the one element a and a principal ideal ring is
a ring in which every ideal is principle.

There is an important isomorphism between powers of finite fields Fn
q and a certain

ring of polynomials. Recall that the multiples of xn − 1 form a principal ideal in the
polynomial ring Fq [x].

Therefore the residue class ring Fq [x]/(xn − 1) is isomorphic to Fn
q since it consists

of the polynomials

{a0 + a1x + · · · + an−1xn−1|ai ∈ Fq , 0 ≤ i < n}.
Therefore, taking multiplication modulo xn − 1 we can make the following identifi-

cation:

(a0, a1, . . . , an−1) ∈ Fn
q ←→ a0 + a1x + · · · + an−1xn−1 ∈ Fq [x]/(xn − 1). (39)

This implies the following theorem.

Theorem 8. A linear code C in Fn
q is cylic ⇐⇒ C is an ideal in Fq [x]/(xn − 1) [31].

Proof. In one direction this is easy since if C is an ideal in Fq [x]/(xn − 1) and c(x) =
a0 + a1x + · · · + an−1xn−1 is a codeword, then by definition xc(x) ∈ C as well and so
(an−1, a0, a1, . . . , an−2) ∈ C . In the other direction, one just has to note that since C is
cyclic, xc(x) is in C for every c(x) ∈ C which means that xkc(x) is in C for every k.
But C is linear by assumption so if h(x) is any polynomial then h(x)c(x) is in C and
thus C is an ideal. ��

Note that Fq [x]/(xn−1) is a principal ideal ring and therefore the elements of every
cyclic code C are just multiples of g(x), the monic polynomial of lowest degree in
C ; g(x) is called the generator polynomial of C . Because of the correspondence (39)
above we know that given g(x) = g0 + g1x + · · · gn−k xn−k [g(x) divides xn − 1 since
otherwise g(x) could not be the monic polynomial of lowest degree in C], we have the
vector (g0, g1, . . . , gn−k). We then can write the k × n generator matrix of the code as

⎛

⎜⎝

g0 g1 · · · gn−k 0 0 · · · 0
0 g0 · · · gn−k−1 gn−k 0 · · · 0
0 0 · · · · · · 0
0 0 · · · g0 g1 · · · gn−k

⎞

⎟⎠ .

In this way, the row space generates C . If we can write xn−1 = w1(x)w2(x) · · ·wt (x)

as the decomposition of xn − 1 into irreducible factors, then the code generated by
xn−1
wi (x)

is called an irreducible cyclic code. In algebraic terms what this means is that
the code C is a minimal ideal of Fqk [x]/(xn − 1), i.e., C contains no subspace (other
than 0) which is closed under the cyclic shift operator [34]. The reason we are interested
in irreducible cyclic codes is that there is an established connection between the weights
of the code words and Gauss sums.

For convenience, we also introduce the check polynomial and parity check matrix.
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Definition 16. The polynomial h(x) = xn−1
g(x)

in an [n, k] cyclic code is called the check
polynomial.

It has earned this name due to the following fact. If a word (v0, v1, . . . , vn−1) ∈ C
then

(v0 + v1x + · · · + vn−1xn − 1)h(x) = 0 mod xn − 1.

This follows from the observation that every word in C is equal to a polynomial p(x)

multiplied by the generator polynomial g(x) and thus we have that

(v0 + v1x + · · · + vn−1xn − 1)h(x)= p(x)g(x)h(x)= p(x)(xn − 1)=0 mod xn − 1.

Definition 17. The parity check matrix H of a code C is the generator matrix for the
code dual to C. If c ∈ C then Hc = 0.

We now turn to the representation of irreducible cyclic codes, specifically 1) the form
that the generator matrix can take, 2) a description of the codewords in terms of the trace
function. Issue 1) relates back to the matrix representation of the cycle matroid of graphs
and issue 2) will allow us to make the connection to Gauss sums.

8.2. Generator matrix of a cyclic code and the cycle matroid matrix. There is an alter-
native (but equivalent) way of constructing the generator matrix of a cyclic code which
will immediately show its usefulness in its relationship with the cycle matroid matrix
representation. Let C be an [n, k] cyclic code and let g(x) be the generator polynomial.
Now, divide xn−k+i by g(x) for 0 ≤ i ≤ k − 1. We have

xn−k+i = qi (x)g(x) + ri (x),

where deg ri (x) < deg g(x) = n − k or ri (x) = 0. What this means is that we have a
set of linearly independent code words. Namely, we have the k code words given by

xn−k+i − ri (x) = qi (x)g(x)

in C . More explicitly, take the remainder polynomials ri (x) after applying the division
algorithm and using the correspondence (39) above, form the k × (n − k) matrix R and
append the k× k identity matrix to it. The rows of R are the coefficients of the ri (x) and
one then has the k × n generator matrix [Ik |R]. This is precisely the form of the matrix
representation for matroids discussed above. Thus, we have a correspondence between
the generator matrix for an irreducible cyclic code and the matrix representation for the
cycle matroid of a graph.

Proposition 1. In an [n, k] irreducible cyclic code there are at most N words of different
non-zero weight where N = (qk − 1)/n.

Proof. For any irreducible cyclic code we have the relation qk − 1 = nN over the field
Fq . The length of each word is n and any cyclic permutation of a word preserves the
Hamming weight. Therefore, for each word there are n−1 other words of equal weight.
As there are qk − 1 words of non-zero weight, if we assume that every word that does
not arise from the cyclic permutation of another word is of a different weight, then there
are (qk − 1)/n words of different weight. Being however that there is the possibility of
repeats in weight among words which are not cyclic permutations of each other, there
are at most N different weights. ��
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9. Gauss Sums and a Quantum Algorithm for the Estimation of Gauss Sums

Gauss sums are sums of products of group characters.

9.1. Characters. A character of a finite group (G, ∗) is a homomorphism Φ from G to
the group of the non-zero complex numbers C.

We are interested in two types of characters, namely the multiplicative and additive
characters. Let F ≡ Fqk (where k is a positive integer) be a finite field as defined pre-
viously, and let F∗ be the multiplicative group of F. Let g be a primitive element of F
(i.e., g generates F). Let

ζq = e2π i/q

denote the q th root of unity. Let x = gk ∈ F∗. A multiplicative character χ j (x) is a
mapping from the set of powers {m} in x = gm to powers of roots of unity. Specifically,
the group of multiplicative characters χ = {χ j } j consists of the elements

χ j (x) = χ j (g
m) = ζ

jm
qk−1

, m = 0, . . . , q − 2 ∈ Fq; j = 0, . . . , qk − 2 ∈ F.

Let a ∈ F. An additive character e j (a) is a mapping from F to powers of roots of unity
via the trace function. Specifically, the group of additive characters e = {eβ}β consists
of the elements

eβ(a) = ζTr(βa)
q ∀a, β = 0, . . . , qk − 1 ∈ F,

where the trace is defined in Eq. (17).

9.2. Discrete log. For every non-zero x ∈ F∗ the discrete logarithm with respect to a
primitive element g ∈ F is given by

logg(x) = logg(g
m) = m mod (qk − 1).

This means that every multiplicative character can be written

χ j (x) = χ j (g
m) = ζ

j logg(x)

qk−1
(40)

for x �= 0 and χ(0) = 0.

9.3. Gauss sums. Let eβ and χ j be an additive and multiplicative character respectively.
Then the Gauss sum G(χ j , eβ) is defined as:

G(χ j , eβ) =
∑

x∈F∗
χ j (x)eβ(x). (41)

Gauss sums are used extensively in number theory, e.g., in the study of quadratic residues
or Dirichlet L-functions.
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To compute a Gauss sum we need to specify the field F and the indices β ∈ F and
j ∈ F of the additive and multiplicative characters respectively. Thus the input size to a
Gauss sum computation is O(k log q) bits. We can now define the Gauss sum over F as

GF(χ j , β) =
∑

x∈F∗
χ j (x)ζTr(βx)

q .

It is well known that if χ j �= 1 then [33]:

GF(χ j , β) = √
qr eiγ , (42)

where γ = γF(χ j , β). This means that all we need to do is approximate the angle
γ mod (2π) in order to approximate the Gauss sum. This is precisely the Gauss sum
approximation problem for finite fields.

9.4. Quantum algorithm for Gauss sums. Van Dam and Seroussi devised an efficient
quantum algorithm to estimate Gauss sums [26]. The following is an outline of the
essentials of the proof; we refer the reader to [26] for a complete description as well as
a discussion of the complexity of estimating Gauss sums.

Theorem 9 {Quantum Amplitude Amplification}. Let f : S �→ {0, 1} be a function for
which we know the total weight ‖ f ‖l1 but not those values x ∈ S for which f (x) = 1.
Then the corresponding state

| f 〉 = 1

‖ f ‖l2
∑

x∈S

f (x)|x〉

can be efficiently and exactly prepared on a quantum computer where we have to make

a number of queries to f of the order O
(√ |S|
‖ f ‖l1

)
.

This is an essential ingredient in Grover’s quantum search algorithm. For a proof and
details see [2]. It follows from Eq. (40) and Shor’s discrete log algorithm [1] that given
g, qk and j , we can efficiently create the state |χ j 〉. The following lemma is essential in
this regard. First note that for any set S we define

|S〉 ≡ 1√|S|
∑

x∈S

|x〉.

Lemma 2. For a finite field Fqk and the triplet (qk, g, r) (the specification of a multi-
plicative character χr ), the state

|χr 〉 = 1√
qk − 1

∑

x∈Fqk

χr (x)|x〉

and its Fourier transform |χ̂r 〉 can be created in polylog(qk) time steps on a quantum
computer.
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Proof. We first create the state

|F∗qk 〉|1̂〉 = 1√
qk(qk − 1)

∑

x∈F∗
qk

|x〉
qk−2∑

j=0

ζ
j

qk−1
| j〉

by using Grover’s amplitude amplification on Fqk and the Fourier transform. Next, in
superposition over all x ∈ F∗

qk , we calculate logg(x) and subtract r logg(x).

|F∗qk 〉|1̂〉 −→ 1√
qk(qk − 1)

∑

x∈F∗
qk

|x〉
qk−2∑

j=0

ζ
j

qk−1
| j − r logg(x)〉 (43)

= 1√
qk(qk − 1)

∑

x∈F∗
qk

|x〉
qk−2∑

j=0

ζ
j

qk−1
ζ

r logg(x)

qk−1
|k〉 (44)

= 1√
qk − 1

∑

x∈F∗
qk

ζ
r logg(x)

qk−1
|x〉|1̂〉 (45)

= |χr 〉|1̂〉. (46)

To get |χ̂r 〉 we just need to apply the Fourier transform. ��
The technique used in the above proof is known as the phase kickback trick. Now we

are ready for the following.

Theorem 10. Algorithm for approximating Gauss sums. Consider Fqk , a nontrivial
multiplicative character χr and β ∈ F∗

qk . If we apply the quantum Fourier transform
over this field to |χr 〉, followed by a phase change

|y〉 −→ χ2
r (y)|y〉, (47)

then we generate an overall phase change given by

|χr 〉 = 1√
qk − 1

∑

x∈Fqk

χr (x)|x〉 −→
GFqk (χr , β)

√
qk

|χr 〉.

Proof. After a Fourier transform we have

|χ̂r 〉 = 1√
qk(qk − 1)

∑

y∈F∗
qk

⎛

⎜⎝
∑

x∈Fqk

χr (x)ζ
Tr(βxy)
q

⎞

⎟⎠ |y〉

= 1√
qk(qk − 1)

∑

y∈F∗
qk

GFqk (χr , βy)|y〉

= 1√
qk(qk − 1)

∑

y∈F∗
qk

χr (y−1)GFqk (χr , β)|y〉.
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Then

|χr 〉 =
GFqk (χr , β)
√

qk(qk − 1)

∑

y∈F∗
qk

χr (y−1)|y〉.

Now we know that we can efficiently (and exactly) create the phase change given by
(47). Doing so gives us

|χ̂〉 −→
GFqk (χr , β)
√

qk(qk − 1)

∑

y∈F∗
qk

χr (y−1)χ2
r (y)|y〉 =

GFqk (χr , β)
√

qk
|χr 〉,

since |χr 〉 = 1√
qk−1

∑
y∈F∗

qk
χr (y)|y〉 and χr (y−1)χr (y) = 1. Thus, the coefficient of

|χr 〉 is just eiγ . It is well known that one can efficiently estimate the phase of such a
function to within an expected error of O(1/n), where n is the number of copies of
eiγ |χr 〉 we sample. Therefore we arrive at an estimate of γ and hence of the Gauss sum
in question. ��

This gives way to the following theorem about the time complexity of the algorithm
and is the culmination of the first part of the paper [26].

Theorem 11. For any ε > 0, there is a quantum algorithm that estimates the phase γ

in GFqk (χr , β) = √
qkeiγ , with expected error E(|γ − γ̃ |) < ε. The time complexity of

this algorithm is bounded by O( 1
ε
· polylog(qk)) [26].

Note that the “poly” in polylog refers to a quadratic polynomial.
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