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Calculating the thermal rate constant with exponential speedup on a quantum computer
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It is shown how to formulate the ubiquitous quantum chemistry problem of calculating the thermal rate
constant on a quantum computer. The resulting exact algorithm scales exponentially faster with the dimen-
sionality of the system than all known “classical” algorithms for this probl¢81063-651X99)07302-X]

PACS numbgs): 89.80:+h, 89.70+c, 82.20.Pm, 82.96:]

[. INTRODUCTION freedom. The rate constant is the single most important num-
ber characterizing chemical reactions, and thus great efforts
It is well known that an exact calculation of the thermal have been invested in designing efficient aact*classi-
rate constant is a problem that scales exponentially with th€a!" computational ways to obtain it. Important progress
number of degrees of freedofil]. But what if we had a &0ng this line has been made by Miller and co-worked,
quantum computef2,3] (QC) at our disposal? As we will Light and co-worker$23], and Manthe and co-workef24],

show here, then the calculation can be speeded up exponelﬁqsed on the efficient evaluation of the flux correlation func-

. . ) tion [25,26]. Approximate methods have also been devel-
tially. Exponentlal speedups on QC's have been dem(.moped for obtaining the rate constants. For example, the popu-
strated in a number of problems, the most famous of wh|cq

are Shor's algorithm for the factoring problef—6], and

Grover's algorithm for database seafdf}. In the context of few) degrees of freedom that are treated quantum mechani-

physics problems, exponential speedup has been demogy . “simyitaneously with the classical equations of motion

strated mostly in the context of simulation of the many-bodyfOr the (many dearees of freedom that are treated by classi-
Schralinger equation[8—10]. Other physics applications ( y deg y I

cal mechanics; the semiclassical initial value representation

have also been proposed, such as studying quantum cha&@] (SC-IVR), that has had a rebirth of interd80—3 as a
[11] and Ising spin glasses.2]. At the experimental level way for incluaing quantum effects in molecular dynamics
QC's are still in a stage of infancy, although very impressive

) ; : 22" =simulations; and thefurthen linearizing approximation to
first steps toward implementation have been taken using IONfe SC-IVR which leads to a much simpler form for the rate

in ion traps[13], atoms in high-finesse microwave cavities expressior[33]. While these methods enjoy favorable com-

[clr?]' and Gmoltra]culfarldspinz iE DMF{B]' .In partiﬁlular% utational scaling properties, they are inherently approximate
uang, ershenteld, an ubinec, -using a chiorolormy g ths not in the context of the present paper.

NlMR.' ﬁC' (rsecentl,y im[r)]I_eLnented ffor the first tilme a qra?tum In spite of these significant advances, exact classical al-
?go“tdm_( ro(\j/ers)vvl Ic houtper ormzlgn);\c aShS|ca lago- gorithms can at most achieve a polynomial speedup in a
rithm designed to solve the same tgdl6]. Another algo- problem that inherently scales exponentially. Indeed, when

rithm for which QC'S offer an exponential spe(?fjup Com,'classical algorithms are described @{N?®) instead of
pared to classical computers, known as “Deutsch’s

problem” [17], has also been implemented on a chIoroformo(Nz)’ it should be remembered thél is itself exponen-
NMR-QC [18], and by Jones and co-workers on a cytosin tially large. The anticipated advance in quantum computation

) ) ) OSINSyould therefore have revolutionary consequences for quan-
NMR-QC [19,20. These impressive achievements Slgnaltum chemistry, rendering “classical” simulation methods es-

?hu'ie cgarly, albelthfor very smp;lhe apphcatltorljs ellt this p_omt, sentially obsolete. Of course, QC’s are still at best many
at QC's may perhaps sooner than expected play an impo jears away from reaching the point of replacing classical

tant rtole n S|mul?t[[9ns. Fora ?omtr;rehetnswetn:jtrodudctlort] t computers. Nevertheless, it is of considerable interest to ex-
quanbum fcomputa lon, Wgel reter the interested reader 10 ginit an explicit QC algorithm for a problem as central as the
number of recent review21]. computation of the rate constant, and this is the task we

The extensive body of work in quantum computation h":lsl#ndertake here. The paper is organized as follows: In Sec. Il

hpwever, to date not addressed a computa‘uo_nal problem e introduce some pertinent concepts of quantum computa-
direct relevance to the f|elq of quantum chemls(apart, of  fion. In Sec. Il we briefly rederive the exact quantum ex-
course, from the general simulation of the Safinger equa- pression for the rate constant, and discuss the computational

tlon).tln thlshwo_rktwe shglw hov¥ to IforlrntL_jlatetr'iheﬂL]JblqurTou? difficulties associated with it. The next sections are the heart
quantum chemistry problem ot calcuiating the thermal rat€¢ o paper, where the QC algorithm for calculation of the
constant on a QC, and, by doing so, how the calculation ca

) . te constant is described in detail. Section VI concludes.
be speeded up exponentially with the number of degrees o

ar mixed quantum-classical mod¢R7,28 whereby one
integrates the time-dependent Salinger equation for(a

II. A BRIEF INTRODUCTION TO QUANTUM

COMPUTATION
* Author to whom correspondence should be addressed. Electronic
address: dani@holmium.cchem.berkeley.edu Let us denote all the degrees of freedom of the problem at
"Electronic address: whb@neon.cchem.berkeley.edu hand by the collective variabléz(ql, ...,Owm), and let us
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assume for simplicity that after discretization the number oftial positions. For example, ldt=2 (so the number of grid

points per degree of freedom i$. 2Then the Hilbert space
for a given Hamiltoniari—|((i,|5) is of dimension

N:2V| vlel (1)

from which we obtain the exponential scaling. To set up the_

problem on a QC one introduces a “register” nf‘qubits”
(two-level systemis which can be in a superposition state
|#iy=a;|0;)+Db;|1;) (with |a|?+ |b;|?>=1). Each group of
qubits corresponds to one of the degrees of freedpm
Initially the quantum registeld) is in a direct product state
with all qubits in the|0) state:

)= &)lo). @

Allowed operations on the register are all tineitary trans-

formations (corresponding to propagation of the regigter
and allmeasurements.e., projections onto subspaces of the
full register Hilbert spacé¢{. However, by convention the
unitary transformations should be explicitly given in terms o

operations on a single qubit and two qubits at the most, sinc@ere'
it is such one- and two-qubit “gates” that one can expect to

construct in practice. Also, allowing arbitrarily large gates
would not constitute a general-purpose computéis is

points per degree of freedom is 4) aMl=2 (e.g.,q;=X
andqg,=Yy in a two-dimensional problem involving a linear
triatomic vibrating molecule so N=16; how is &

=(2Ax,3Ay) represented in the register? In binarg?,
({1,0A%,{1,3Ay), so thatj=11, i.e., |j)=|1)®|0)
®|1)®]|1) corresponds ta=2Ax andy=3Ay. In this way
the quantum register supports a superposition over all dis-

cretized values of the degrees of freed(im By linearity,
unitary evolution of the register amounts to parallel propaga-
tion on all of the exponentially many grid points. We will
find it convenient to work from now on withas the collec-

tive degrees of freedom variable, insteadjofThe transfor-
mation between the two is straightforward. Note further that
the register statel§) are position eigenstates

Suppose now that the initial wave functip#r(0)) in our
scattering problem has amplitudg to be at positiorj. As
explained below, it is in fact not essential to utilize this ini-
tial condition, and an equal superposition of all possible po-
sition eigenstates will be sufficient in most cases. Neverthe-

fless, as was shown by Zalk8] (and will not be repeated

it is possible to initialize the register to the state
N—1

|<I>'>~>|<I>">=j§0 ajli) (6)

similar to the situation with classical computers, where the

number of distinct logical elements is a small and finitg.set
Simplifying an early construction by Deutsg8, it has been
proven[34] that the set ofll single-qubit gategthe group
U(2)] with, in addition, the ‘tontrolled-not (CNOT)

)

form auniversalset of gates: all unitary transformations, of

l€1,€2)—€1,(€1+€) mod2)  (=0,1),

arbitrary size, can be constructed using a polynomially large

by means of a suitable unitary transformation. This then rep-
resents| ¥ (0)) on the QC. The dynamics in the scattering
problem is determined by the unitary propagatbr

=e HVA W (t))=U|¥(0)). The crucial advantage of-
fered by a QC is that, as will be shown below, it is possible
to implement this propagateffficientlyon the quantum reg-
ister, so that

|‘D”>H|(D”’>:U|(D”>. (7)

set of one- and two-qubit gates. Therefore, the restriction to

this set of gates is sufficient to simulagmy computable
function. This, of course, includdand potentially exceegls
anything that is computable on a classical computer.

In this way we have set up a one-to-one correspondence
between the QC|®)) and the dynamics of the problem of
interest (¥)). All the relevant information can be extracted

Now, let us see how to set up a superposition state on thigom this simulation by observing the states of the qubits.
guantum register corresponding to all possible initial classi-

cal positions. In the bas|®)=(3) and|1)=(%), one applies
the one-qubit unitary “Hadamard transform”

1 /1 1
R=E . —1)' (4)
Thus
v v (10 +115))
P)— |0 Y= QR|0)= R —L "2~
|D)—[D") .@ 0;) 5
1 N—-1
N ®)

wherej is the decimal representation of the register state with

the corresponding binary value, §o is a convenient short-
hand notation for a tensor product ofsingle-particle states.

IIl. THERMAL RATE CONSTANT VIA THE FLUX
CORRELATION FUNCTION FORMALISM

Let us now turn to the scattering problem, and define a
flux operator

F=[H.h(s(d)], ®

where h is the Heaviside function and the conditiex(ﬁ)
=0 defines the dividing surface.

The thermal rate constant is written as the time integral of
the flux-flux autocorrelation functiof25]:

1
Qr(T)

K(T)= f:dtcfm, ©

whereQ,(T) is the reactant partition function per unit vol-

Equation(5) represents the desired superposition over all ini-ume, and
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Ci(t)=Tr[ e PHPFe AHIZgiHUIEg—THUA] reality this is hardly the case, nor is it possible, with the
obvious reason being that for a scattering problem, one usu-
ally deals with a continuum in energy spectrum and there
could be an infinite number of such eigenstates. As a result,
the summations in Eq16) are actually integrations over the
and where, for convenience, we have also defined the con@nergy, which can be carried out by employing various
plex “time” quadrature schemes. The number of energy quadrature points
[the number of eigenstates in E3.6)] determines the accu-
T=t—ihpl2. (1) racy of the integral, which often can be kept rather small. For
) . . . . example, in quantum scattering calculations for small gas-
Evaluating the trace in the energy eigenba§is)} (With  ;hase chemical reactions, when obtaining a thermal rate con-

= Tr[ Fel M/~ BHI2Eg=iHUA~ BHI2]

:Tr[FeiHT*/ﬁFefiHT/ﬁ], (10)

Hn)=Eqy[n)), we obtain stant from microcanonical cumulative reaction probabilities
[analogous to Eq(16)], the integration over energy is usu-
Cit) =2, <n||:eiHT*/ﬁ|:e—iHT/ﬁ|n> ally done by employing less than 100 quadrature points. In
n

treating more complex systems, one may need significantly
more quadrature points. The lesson from such classical cal-
:2 <n|FeiHT*/ﬁ|m><m|Fe—iHT/ﬁ|n> culations is that the number of quadrature points in many
n.m cases of chemical interest does not scale exponentially with
the size of the problem, and thus does not form a bottleneck
=> eiEmf*/ﬁe*iEnf/ﬁ<n||:|m><m||:|n> for the computation on a QC. More specifically, for the pur-
n,m pose of achieving numerical convergence, one does not have
to include all the energy eigenstates, but only to obtain a
=, e AEmtEN Em—EA|(n|F|m)|2. (12)  reasonable resolution of the energy spectrum. This statement
n.m is universal and is certainly valid also for the case of quan-
tum computation.
Our task is therefore to find an algorithm that calculates
i R ) the spectrun{E,}, and the position amplitudes;(n)}} g
(n[Fm)= = (n|[Hh(s(q))—h(s(q) JH)|m) for each of the eigenstatgy. With these in hand the rest of
the calculation[summations in Eq(16)] can be efficiently
i R implemented on a classical computer. The summation over
:%(En_Em)<n|h(S(Q))|m>- (13  energyeigenstates in Eq(16) should only extend over a
polynomially large number of energies. There are two rea-
Recall from Eq.(5) that the quantum register naturally sup- sons for this: first, from the discussion above one is only
ports a superposition over position eigenstates. Accordinglyinterested in obtaining representatifguadraturg points of
let us representn) in the discretized position basisj)}, the energy spectrum in order to perform this summation; and
which we from now on identify with the QC’s “computa- Second, since the exponential decrease due to the Boltzman
tional basis” {|j)} (indeed, the correspondence is one tofactors will effectively eliminate the higher end of the spec-

one. Thus let us expand the energy eigenstates as trum ExkgT + (barrier heighteven if there are many peaks
in the spectrum. As for the summation over tpesition

) eigenstates in Eq16), the point is again that one only needs
Iny= ZO aj(n)|j). (149 to obtain a reasonable sample of the distribution. The num-
= ber of position states required for numerical convergence is
polynomially related to the number of energy stafiesthe
optimal case, the relation is one to gnand thus also scales
polynomially with the size of the problem. Some numerical
i N-1 tricks can of course help to further improve the situation. For
(n|F|m)= %(En— Em) Z aj (n)a;(mh(s(j)). (15  example, if the dlstrlb_utlon is badly behaved in position
=0 space, one could Fourier transform to momentum space and
sample there. At any rate, once the problem of dealing with
exponentially many states has been eliminated, the problem
is essentially reduced to the one usually faced by any classi-
> e AEm+EN2l Em—E)Uh(E _E 2 cal simulation, where a variety of efficient methods are avail-
n#m able. Note, however, that unlike the classical case where at-
tention has to be given to the issue of generating statistically
independentMonte Carlo samples, the quantum simulation
automatically generates truly independent samples by the
projection postulat¢35].
Equation(16) is the formal quantum-mechanical expression = We emphasize here that though the summations in Eg.
for obtaining the thermal rate constant. At first glance it may(16) are performed over a polynomial number of energy and
seem that one has to sum over every eigenstate of the Hamjposition states and quadrature points, the solution of the
tonian operator within at least a certain energy range. IrSchralinger equation is still carried out in an exponentially

Using the commutator form fdf [Eqg. (8)], we find:

N—-1

Clearly, the Heaviside functioh(s(q)) is diagonal in this
basis, so that, from Eq13),

Hence, finally,
1
Ci(t)= e

N—-1 2
X JZO ar(nya;(mh(s(j))| . (16)
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large Hilbert space. Such exponential scaling is inherent tinitialize the register to it as in Ed6). Otherwise initialize
performing quantum mechanical simulations. Ithés prop-  the register to an equal superposition. Since the computa-
erty that forms the computational bottleneck on a classicational basis states angosition eigenstates, in all likelihood
computer. At the same time, this is also the part of the simuthey are not energy eigenstates, so will not be stationary
lation that can be solved efficiently on a quantum computerunder the SE dynamics. Thus except if the equal superposi-
How can we efficiently calculate the eigenstates and théion corresponds to some undesirable position—such as very
spectrum? Solving the timedependent Schdinger equa- high above the barrier, so that dissociation sets in
tion (SE) immediately—this is as good a guess as any. In fact, any
random(but reproduciblginitial distribution will do.
Hly) =E[4) (17 (3) “Propagate” the register in parallel for a tinte This
) corresponds to a parallel evolution of all the position eigen-
can be done on a QC by transforming the problem to theyates. The propagation is done very much in analogy to the
time-dependent SE and propagating the dynamics with thgjassical fast Fourier transforiFFT) method[37], in par-
unitary time-evolution operatdd=e~'""". This can also be tjcular the split time propagation scherf@g]. That is, the
and independent pictures through the formal definition of thgyhereas for the kinetic part it is necessary to Fourier trans-
Green'’s function, form to and back from momentum space.
L ) 1 (4) Perform a “von Neumann” measuremefgee Sec.
G(E)=Ilm(E+ie—H) V D) on theancillary register using the Hamiltoniai@nergy

<0 as the observable. This accomplishes a double purgask:
o [ B tiem allows one to obtain an enerdgy, by measuring the ancillas.
= ||mo(|ﬁ) fo dte g (18)  (p) It provides a means to sample the energy-position ampli-

tudesa;(n).
where e, a formal convergence factor, is the absorbing po-. (5) Repeat stepél)—(4) many times until the distribution

tential in practical calculation§1]. Once the problem is is converged to the desired_ accuracy .for a!l reIevant_ eigen-
. . ) ; states. The number of required repetitions is proportional to
transformed into the time-dependent picture, each energy This accuracy
genvalue and eigenstate can be obtained via known quantum ' . .
; i . L (6) Calculate(classically the sums in Eq(16).
algorithms, to be detailed below, in polynomial time.

The procedure outlined above is suitable for performing
quantum rate constant calculations on a QC, bechusests V. ALGORITHM IN DETAIL
the problem in terms of a discrete Fourier transform, which
is known to be efficiently implementable on a .Q&reat ) o
efforts and ingenuity have been applied in developing fast zHere the register is initialized to the stateb)=
methods for calculating the rate constant on a classical conf®;~1/0;), where the last qubits are ancillas. The physics of
puter, most of which use iterative techniques to exploit thethis initialization step depends on the QC implementation.
low rank feature of certain operators. For completeness, w@ne conceivable way is cooling to the ground state.
briefly summarize two representative such methods in the
Appendix. We emphasize, however, that while such methods B. Inputting the initial wave function
are highly successful for computations on a classical com-

2 ; If necessary, one inputs the initial wavefunction by the
puter, it is at present not clear how they can be 'mplementefjechnique of Zalkg9]. Otherwise one employs the Had-
with equal efficiency on a quantum computer. This is be-

: amard rotations technique to create an equal superposition
cause these low-rank methods, together with many othe d q PeTp

o 9 _ g dver position states, as in E¢). In the former case the

similar approaches, rely on the efficient implementation of, _ . : ; )
) ; _ register will be in the state:

matrix algebra, for which no fast quantum algorithms are

currently available. It is fair to say that at this point, all N-1 20

known efficient quantum algorithnig—10 require the dis- |my=| X ali)| Q|0)). (19

crete Fourier transform, or its generalizatidi¥§]. At any =0

rate, the speedup achieved by the efficient classical methods

is, as mentioned above, polynomial in a problem that inherin the latter case, all;=1.

ently scales exponentially.

A. Initialization

i=v

C. Quantum propagation algorithm

IV. GENERAL OUTLINE OF THE ALGORITHM . L .
This subsection is the heart of the algorithm. Assume for

We now give our algorithm in general terms, to be de-simplicity that we have a single particle of massin an
fined more precisely in Sec. V. external potentiaV(q). The full Green’s function for arbi-
(1) Prepare a register as in E@), and attach some “an- trary timet is
cilla” qubits to it, also in the|0) state. These will serve as a

quantum scratch pad to record the results of intermediate G(X1,Xz;1)=(X,]e /A |x,). (20
measurements. From now on we will distinguish between the
“main” and ancillary registers. For short time stepat<1/E(E is a typical energy of the

(2) If a good guess for the initial wave function is known, system, this becomes approximately
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(X %)? the ancillary registefEq. (19)], in the statd0)=®2* |0;).
G(x1,Xz;A) =k €x |m2—At—|V(xl)At . (2D The numbemw of qubits in this register depends on the accu-
racy with whichF needs to be evaluatgdee immediately
where x is a normalization factor. Applying this to the am- below). Then the following steps are applied.
plitudes is equivalent to acting on the basis states with the (1) |j,0)—|j,F(j)): evaluation ofF and storage of the
inverse transformation. Thus the position eigenstates, progesult in the ancillary register;

erly normalized, transform as: ((12) i,F(j))—~exdiF()]li,F(i)): introducing the phase;
an
_ . 1 N1 C(j—j)2Ax? (3) exdiF()1lj,F())y—exdiF(j)])j,0): inversion of step
liYy—=Ulj)=—= > ex;{—lmT (1) in order to clear the ancillary register.
N j’=0 t Step(1) requires that it is possible to evaluate an arbitrary
function and store the result. This is very similar to the
+iV(jAX)At|]j"). (220  equivalent classical problem, for which algorithms are
known using just the elementary classical gates. The same

. . . . ...__can be done in the quantum case, by breaking up the evalu-
This is carried out in paraliel on the entire Superpositiongtion into elementary arithmetic operations, for which quan-
SiZg1i). Suppose the time step and spatial resolution areum algorithms have been desigrfdd3d]. We will not dwell

adjusted so that on this issue here. Stdp) is just the reverse of stei), and
5 can therefore be implemented by running the inverse unitary
mAX® _ 27 (29 transformation.
At N - Step(2) has no classical analog since it involves phases. It

can be implemented if one knows how to do
Then, by expanding the exponent, E82) can be written as |x)—exgdiax]|x). This can be done by simple single-qubit
a succession of a diagonal transformation, Fourier transfornphase shifts. Lety=2k. Using a binary expansiorx
and another diagonal transformation, all unitary: IE::EMZ', we have|x)=|X_,)®|X_x11)® - ®|X_1),

. o o wherex,;=0,1. In the standard bagig)=(3), |1)= (%), con-

where k-1/1 0
j2 Q=®<O ei2|)- (27)
Fi(i)=-my, o
The Ith 2X2 matrix is a unitary operation in the Hilbert
2 space of qubit numbdr Thus
Fo(j)=—a—+V(jAX)At,
o)==y ViAx) 10 -
N-1 0 e? [xi)=€"]x;). (28)
N . i
F.01= _Njgo ex;{Zm N [i7)- (25 Therefore the full result is
k-1 k-1
Equation(23) tells us how many qubits=log,N are needed Qx)= & eiX|2'|x|>:ei2|k§ka|2' Q) |x)=e¥|x),
for given Ax and At: I=—k I=—k
(29)
2wAt )
v=log, . (26)  as required.
Ax?

2. Quantum Fourier transform
T_he special form_of Eqi24), |nvo.IV|ng diagonal transforma- The quantum Fourier transfor(@FT) algorithm has been
tions and a Fourier transform, is due to the structure of th%iscussed extensive[,40—43, and some beautiful connec-
Hamiltonian operator as a sum of operators diagonal in COggps to group theory 'have b,een made?]. In view of its

ordinate and momentum space. As mentioned above, this {gntral importance in the algorithm for solving the Sd
very similar to the situation that arises in the classical FFTyqeed inall efficient quantum algorithm found so jamwe

method for solving the SE37]. present a brief derivation here, using the approach of Cleve
) . et al. [40].
1. Diagonal transformations The QFT was defined in E¢25). Using the binary nota-

Consider first executing the diagonal unitary transformation j/N=0.j4j, ..., (recall thatN=2") where j;=0,1
tions|jy—exdiF(j)]|j), which can be done as follows, using etc., we note first that

e2mill 21 jr iy = @2mi(0i)ii]j1) @ €27 01u-1id) D)o - - - o @2 (Odaiz TN, (30)

It follows that
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N-1 .,
exp{hiHlj'>=<|0>+e2”“°-1v>|1>)®<|0>+e2”“°'“W|1>)®-~-®<|0>+e2““°'“"2“'iv>|1>), (30)
j’=0

by expanding out the product on the right-hand-side and a (|0)+e2(0i12)|1)), (35
term-by-term comparison. Thus the Fourier-transformed
state in Eq(31) is in fact an “unentangled” direct product. Next a “controlledQ” is applied, yielding
This fact greatly simplifies the implementation of the QFT.

To perform the QFT, one first applies a Hadamard rota- (|0)+ e?™(0l2i3)| 1)), (36)
tion [Eq. (4)] to |j4) (the first qubit of{j)), with the result

, o Clearly, this process will eventually generate the desired
Rlj1)=(0)+(—1)l11))=(|0)+e*™®IV[1)), (32)  phase in the superposition state of the first qldstrespond-

. ing to the last qubit in Eq(31)]:
so|j)—(]0)+e2™©iD|1))|j,, ... ,j,). Let us now define a g g a3D]

new single-qubit operation, similar @ from Eq. (27): -
|i2)=(]0)+ ¥ Iu21[1)), (37)

10 (II_IZ CQ R

Q|=< 0 m)- (33) !

e
where the terms in the product from here onwards are ap-

This operation is applied on the first qubjt), subject to a  Plied low index first _ _
control by a second qubitj,) (which itself does not change Now we turn to the second qubit. Again, a Hadamard
a “controlled rotation.” That is, ifj,=0, one does nothing; rotation on it has the effect oR|j,)=(|0)+e>"(%12)|1)).
if it is 1, one appliesQ,. This can be written as the follow- This is followed by a controlle®,, conditioned upon
ing unitary transformation in the four-dimensional Hilbert |jz): (|0)+e*™(®12]1))—(|0)+e*"(®I213)|1)). After the
space of the two qubits, in the standard bakigj,)  full operation onlj,), one obtains

=|00y=(1,0,0,0), |01)=(0,1,0,0), |10)=(0,0,1,0), |11 .
=(0,0,0,1): - ) o )
( | (H CQ |R| [j2)=(|0)+e*™ (%= 1]1))[j5).
10 =2 2
(38)
Q which corresponds to the one before last qubit in B4).
The method to generate the entire product in E31)
After applyingCQ,, one obtains should now be clear; collecting all the transformations yields
v—1 v—p
11 H CQ|)R iz, - ) =(0)+ T2 1))@ - @ (|0)+e2m -] 1)) @ (]0)+ €2 (O 1]1)).
p=1 =2
p
(39
|
Up to an unimportant bit reversélvhich can easily be rec- D. von Neuman measurements

tified by permuting the role of the qubits in the transforma-
tions abovg this is exactly the desired result. In other words
the QFT is simply

Combining Egs(7) and (22), at this point the register is
'in the state

v—1

=11 [(ECQ)R} . (40)

=1
P p

[©7)=2 auliy=2 vy (li"),
J

w,-r<t>=; a;G7Y(j.j"t). (42)

This will be applied in parallel, by virtue of the superposition
principle, on all position eigenstatéf). Most importantly,
the number of operationingle- and two-qubjtneeded to A parallel propagation has occurred on all the position eigen-
implement the QFT is seen to be a mefgr—1)/2. Thisis  states. By measuring the qubits one by one, i.e., projecting
to be compared to the2” operations required classically, onto a random position eigenstdte), and repeating this
and, as emphasized above, is the “secret” behind the quarprocess many times while collecting the statistics, one can
tum speedup. sample the electronic density functidy;.(t)|%. Our goal
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To implementU it is necessary to Fourier transform the

tudesa;(n), so these should be obtained from the simulax) register, just as in the classical FFT case. Specifically, let
tion. This can be done using the so-called “von Neumanys define the Fourier transform pair

measurement” trick9]. We will require an additional propa-
gation step.

A “measurement apparatus” that can be made to interact
with the QC is introduced, and is assumed to be equivalent to
a one-dimensional quantum mechanical particle. That is, its

Hilbert space is spanned by the basis vectals x real,
with X|x)=x|x). In practice this will be another ancillary
guantum register, consisting of, s&¢,qubits. Now, let us
expand the position eigenstaigs) in terms of the complete
set of energy eigenstatgecall Eq.(14)]:

[i")=2 af\(m]n). (42

Consider next the joint evolution of an energy eigensfaje
and the apparatus stdte (x is arbitrary, under the unitary
operatoiU=exp(HPt), where[ X,P]=i. HereH acts on the
main register, anX andP act on the apparatus, $&,H]
=[P,H]=0. We will shortly discuss the implementation of
U. Consider first a formal Taylor expansion of ebipt),
which yields

Oln)|x)= E (tEn>|n>—|x>—|n>|x+tEn> (43)

oK

Flx)=|p)= —E e "P|x),
V2K <=0
" (46)
= = —_— |Xp
Flp)=1x) R © |p)-
Then starting from the initial apparatus statg, U can be
implemented as follows:
F(X)
(M%) = [n)[p)
D .
—e'=Pn)|p)
1(p> 261
= n) = E e/ EalP|p)
\/_
=[n)|x+E,t), (47)

in agreement with Eq43).

E. Extracting the amplitudes from the measurements

Thus U does not change the energy eigenstate, but has the Note further that after observation of the apparatus, the

effect of “shifting the dialx” by an amount proportional to
the energ)E, . The effect on the position eigenstaié) will
be

01)1x) =2 & (m)[m)|x-+tE), (44)
and the effect on the full superposition of E41l) is
U|<I>"’>|x>=§ 9 (D2 & (m)]m) X+ tEy)

=2, &(DIn)|x+Ey), (45)

&) =2 al (g (b).
JI

Now suppose weabservethe state of the apparatus. From

state of the main register has been projected ¢mtp an

energy eigenstate. THe propagation had a remarkable out-
come: it transformed the information in the main register
from a mixture over position eigenstatgs) to one over
energy eigenstatds). The QC is consequently in an energy
eigenstate, which can in principle be used in a further propa-
gation step. However, our next task is to obtain the ampli-
tudesa;(n) needed to complete the calculation in EH6).
Note first that, by Eq(45),

; En(Da;(n)=;(1). (48)

Now, by performing the whole procedure a sufficient number
of times, the simulation yields an estimate of fr@babili-
ties [;(t)|* [Eq. (41)] and |&,(t)]? [Eq. (45)]. Thus, to
specify fully the complex numbers;(n), it is necessary to
also know their phases, as well as those of £&h&) and
Pi(t).

To obtain the phases, we note first that it is sufficient to

Eq. (45) it is clear that the apparatus has become entanglekinow only thesigns since no generality is lost by employing
with the QC, and by performing the observation the supera real initial wave function|¥(0)). The signs can then be

position will collapse onto a particular stapm)|x+tE.,).
This happens with probability|£,(t)|?>. Recall that

obtained with the help of a simple trigdkew, as far as we
know), which we will illustrate on a generic two-qubit reg-

|x+1tE.,) is represented in binary by the qubits of the appa-ster state ¢)=ay|00)+a;|01)+a,|10)+as3/11). Given re-

ratus. Sincet is a parameter of the simulation andis

peated preparations of tHig), we perform the following set

known, all that remains is to measure the apparatus qubit bgf measurements:

qubit, to obtain the energy eigenvallks,,. The accuracy

(i) Observation of the two qubits iy).

with which these numbers are obtained is proportional to the (ii) A Hadamard transform on the first qubit, followed by

number of simulation sted®].

observation of the two qubits.
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(iii) A Hadamard transform on the second qubit, followedadaptation to QC's of the well-known FFT technique; and
by observation of the two qubits. finally, a sequence of measurements yielding the energy

Step(i) yields an estimate of thg;|. Step(ii) yields an  spectrum and amplitudes. Under reasonable assumptions
estimate of|ag+a,| and|a,*as|, since under the Had- about the distribution of energy eigenvalues the algorithm
amard transform)— (1/2)[ (ag+a,;)|00) + (ag—a4)|01)  runs in polynomial time. The algorithm thus outperforms any
+(a,+a3)|10)+ (a,—ag)|11)]. Similarly, step(iii) yields  exact classical simulation, which is bound to be exponential.
an estimate of |[ap+a,| and |a;*as|, since |¢) This clearly demonstrates the potential utility of QC'’s in
—(12)[(ag+ a,)|00) + (ag—ay)|01) + (a;+as)|10) future applications to quantum chemistry problems. .
+(a,;—a3)|11)]. Clearly, this provides sufficient informa-  Our approach was somewhat of a “brute force” one, in
tion for extraction of the signs of all amplitudes. The gener-that we did not attempt to optimize the algorithm using such
alization to av-bit register is obvious: one performs Had- fruitful concepts as “direct and correct” low-rank expres-
amard rotatons on allv qubits. This then yields Sions for the rate constafit] (also see the AppendixSuch
{lap=ay|,|]a,*as|,|]as*ag|, ...} (after Hadamard on first OPtimizations, while me_ffectual in altering the essenuall ex-
qubit, {|ap*a,|,|a;*as|,|as*agl, ...} (after Hadamard _ponentlal _speedup achleved. by use of a QC, may still be
on second qubjf etc. After each Hadamard rotation there areiMmportant in practice, especially in the early stages of the
2" coefficients to be estimated. This exponential “Monte @Pplication on a small-scale QC of an algorithm such as de-
Carlo scaling” is the same as the one we encountered beforgcnbgd here. Further work is hence desirable to optimize the
and is not considered a slowdown for the reasons detaile@lgorithm. . _ .
above. The additional computational cost is in the Hadamard Finally, it would be interesting to check the effect of noise
rotations,» of which must be performed. This does therefore@nd other types of errors affecting the evolution of the QC on
not affect the efficiency of the algorithm. At the end of the the present algorithm. It has been shown, e.g., in the case of
process, if the whole phase space has been sampled, onefi€ ion trap QC, that factoring becomes impossible once ran-
left with »2” absolute values equations, which contain suffi-d0m phase fluctuations in the laser pulses exceed a certain
cient information to solve for the signs of all the amplitudes.threshold[47]. We intend to study similar noise-related is-
In practice one will of course sample only a smablyno- ~ SUés using numerlcal simulations in the context of the
mial) portion of the phase space, and care must then be takdesent algorithm.
to obtain sufficient equations of the type above to determine
uniquely the signs of the amplitudes of interest. ACKNOWLEDGMENTS
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VI. DISCUSSION AND CONCLUSIONS APPENDIX

Quantum computers are still far from being a panacea, Several efficient classical methods have been developed

and Serious doubts haye been raised whether the_y wil EV&D calculate the thermal rate constant. We briefly summarize
replace ordinary, classical comput¢ds]. Such worries are Wo of the more popular ones here

invariably based on the immense difficulties associated witﬁ = .

o . or the thermal rate constant calculation, the flux operator
maintaining phase coherence throughout the computation, . .
: o " set in Boltzmann form
i.e., the “decoherence problem.” However, a remarkable
theory of quantum error correction codes has recently been
constructed44], in which a “logical qubit” is encoded in
the larger Hilbert space of several physical qup#s]. It has
been shown that as long as the error rate is sufficiently smal
it is possible to perfornfiault-tolerantquantum computation,
i.e., the computation can be stabilized and be made full
robust to errord46]. These advances greatly enhance th
prospects of the eventual construction of useful QC'’s, be-
yond the current highly rudimentary prototypes. Building on F(B)ZE fonl Und(Up] (A2)
these hopes, here we have presented an algorithm for calcu- m
lating the thermal rate constant on a QC. The algorithm in-
volves an initialization step of the QC into an equal super-and the trace in the flux correlation function expression be-
position of position eigenstates; a propagation using amomes

F(B)EG_BH/ZFE_BH/Z, (Al)

is of low rank, and a Lanczos iterati¢#8,49 can be used to
ind the nonzero eigenvaludd,,} and the corresponding
igenvectorg|uy,)} [22—24. ThusF(B) can be represented
n its eigenstate expansion as follows:
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After some manipulationsN(E) can be re-expressed in a
Cf(t):% fn(Um(D[Flum(1)), (A33)  somewnhat different forni50]

where{|uny(t))} are thetime-evolveceigenvectors of-(3):
. N(E)=Tr[P(E)]
um(H)=e""""up). (A3Db)
=Tr[4€/"G(E) " €,G(E) e}?], (A7)
The number of Lanczos iterations required for the conver-
gence of this procedure is essentially the number of nonzero
eigenvalues oF(f5) and is usually several orders of magni- yhere ¢, (e,) denotes the absorbing boundary condition for
tude smaller than the size of the full basis used in the Calcur'eactar(uoroduc) region.
lation. T_hL_JS the trace calculgtlon can be carried out much Equation (A7), though formally equivalent to EAS5),
more efficiently than co_n\_/ent|ona| methods. offers a significant numerical improvement over the conven-
. Another way of Obta'””_‘g the t_hermal rate CO”St?“f‘T) tional methods due to the fact that the “reaction probability
IS through th.e Boltzmann integration of the cumulative reac'operator”P(E) is a low-rank Hermitian operator. Therefore,
tion probability N(E), Hermitian Lanczos iteration methatiere actually a special
o case of Arnoldi iteration meth9d49] can be used to find the
k(T)z[thQr(T)]*lf dEe PEN(E), (A4)  nonzero eigenvalues which then constitute the trace in Eq.
- (A7). During the Lanczos-Arnoldi iteration, the application
of the Green’s function can be achieved by either time-
dependent or time-independent methods. If a time-
N(E)=%(27%)2T{FS(E—H)FS(E—H)]. (A5)  independent method is used, as has been done previously
[50], operating the Green'’s function on a trial vector corre-
The microcanonical density operaté(E —H) can be related sponds to solving linear equations for a large system. Again,
to the Green'’s function of Eq18) as iterative methods for largéand sparselinear systems, such
as the generalized minimal residJ&ll] and quasiminimal

whereN(E) is given by[25]

S(E—H)=— ilm[G(E)]. (A6) re§iQUaI[52] methods, can be used here to solve the problem
T efficiently.
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