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Calculating the thermal rate constant with exponential speedup on a quantum computer

Daniel A. Lidar* and Haobin Wang†

Department of Chemistry, The University of California at Berkeley, Berkeley, California 94720
~Received 14 July 1998!

It is shown how to formulate the ubiquitous quantum chemistry problem of calculating the thermal rate
constant on a quantum computer. The resulting exact algorithm scales exponentially faster with the dimen-
sionality of the system than all known ‘‘classical’’ algorithms for this problem.@S1063-651X~99!07302-X#

PACS number~s!: 89.80.1h, 89.70.1c, 82.20.Pm, 82.90.1j
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I. INTRODUCTION

It is well known that an exact calculation of the therm
rate constant is a problem that scales exponentially with
number of degrees of freedom@1#. But what if we had a
quantum computer@2,3# ~QC! at our disposal? As we wil
show here, then the calculation can be speeded up expo
tially. Exponential speedups on QC’s have been dem
strated in a number of problems, the most famous of wh
are Shor’s algorithm for the factoring problem@4–6#, and
Grover’s algorithm for database search@7#. In the context of
physics problems, exponential speedup has been dem
strated mostly in the context of simulation of the many-bo
Schrödinger equation@8–10#. Other physics application
have also been proposed, such as studying quantum c
@11# and Ising spin glasses@12#. At the experimental leve
QC’s are still in a stage of infancy, although very impress
first steps toward implementation have been taken using
in ion traps@13#, atoms in high-finesse microwave cavitie
@14#, and molecular spins in NMR@15#. In particular,
Chuang, Gershenfeld, and Kubinec, using a chlorofo
NMR-QC, recently implemented for the first time a quantu
algorithm ~Grover’s! which outperforms any classical algo
rithm designed to solve the same task@16#. Another algo-
rithm for which QC’s offer an exponential speedup co
pared to classical computers, known as ‘‘Deutsc
problem’’ @17#, has also been implemented on a chlorofo
NMR-QC @18#, and by Jones and co-workers on a cytos
NMR-QC @19,20#. These impressive achievements sign
quite clearly, albeit for very simple applications at this poi
that QC’s may perhaps sooner than expected play an im
tant role in simulations. For a comprehensive introduction
quantum computation, we refer the interested reader t
number of recent reviews@21#.

The extensive body of work in quantum computation h
however, to date not addressed a computational problem
direct relevance to the field of quantum chemistry~apart, of
course, from the general simulation of the Schro¨dinger equa-
tion!. In this work we show how to formulate the ubiquitou
quantum chemistry problem of calculating the thermal r
constant on a QC, and, by doing so, how the calculation
be speeded up exponentially with the number of degree
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freedom. The rate constant is the single most important n
ber characterizing chemical reactions, and thus great eff
have been invested in designing efficient andexact ‘‘classi-
cal’’ computational ways to obtain it. Important progre
along this line has been made by Miller and co-workers@22#,
Light and co-workers@23#, and Manthe and co-workers@24#,
based on the efficient evaluation of the flux correlation fun
tion @25,26#. Approximate methods have also been dev
oped for obtaining the rate constants. For example, the po
lar mixed quantum-classical model@27,28# whereby one
integrates the time-dependent Schro¨dinger equation for~a
few! degrees of freedom that are treated quantum mech
cally, simultaneously with the classical equations of moti
for the ~many! degrees of freedom that are treated by clas
cal mechanics; the semiclassical initial value representa
@29# ~SC-IVR!, that has had a rebirth of interest@30–32# as a
way for including quantum effects in molecular dynami
simulations; and the~further! linearizing approximation to
the SC-IVR which leads to a much simpler form for the ra
expression@33#. While these methods enjoy favorable com
putational scaling properties, they are inherently approxim
and thus not in the context of the present paper.

In spite of these significant advances, exact classical
gorithms can at most achieve a polynomial speedup i
problem that inherently scales exponentially. Indeed, wh
classical algorithms are described asO(N3) instead of
O(N2), it should be remembered thatN is itself exponen-
tially large. The anticipated advance in quantum computat
would therefore have revolutionary consequences for qu
tum chemistry, rendering ‘‘classical’’ simulation methods e
sentially obsolete. Of course, QC’s are still at best ma
years away from reaching the point of replacing classi
computers. Nevertheless, it is of considerable interest to
hibit an explicit QC algorithm for a problem as central as t
computation of the rate constant, and this is the task
undertake here. The paper is organized as follows: In Se
we introduce some pertinent concepts of quantum comp
tion. In Sec. III we briefly rederive the exact quantum e
pression for the rate constant, and discuss the computati
difficulties associated with it. The next sections are the he
of the paper, where the QC algorithm for calculation of t
rate constant is described in detail. Section VI concludes

II. A BRIEF INTRODUCTION TO QUANTUM
COMPUTATION

Let us denote all the degrees of freedom of the problem
hand by the collective variableqW [(q1 , . . . ,qM), and let us

ic
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2430 PRE 59DANIEL A. LIDAR AND HAOBIN WANG
assume for simplicity that after discretization the number
points per degree of freedom is 2l . Then the Hilbert space
for a given HamiltonianH(qW ,pW ) is of dimension

N52n, n5 lM , ~1!

from which we obtain the exponential scaling. To set up
problem on a QC one introduces a ‘‘register’’ ofn ‘‘qubits’’
~two-level systems!, which can be in a superposition sta
uf i&5ai u0i&1bi u1i& ~with uai u21ubi u251). Each group ofl
qubits corresponds to one of the degrees of freedomqj .
Initially the quantum registeruF& is in a direct product state
with all qubits in theu0& state:

uF&5 ^
i 51

n

u0i&. ~2!

Allowed operations on the register are all theunitary trans-
formations ~corresponding to propagation of the registe!,
and allmeasurements, i.e., projections onto subspaces of t
full register Hilbert spaceH. However, by convention the
unitary transformations should be explicitly given in terms
operations on a single qubit and two qubits at the most, s
it is such one- and two-qubit ‘‘gates’’ that one can expect
construct in practice. Also, allowing arbitrarily large gat
would not constitute a general-purpose computer~this is
similar to the situation with classical computers, where
number of distinct logical elements is a small and finite s!.
Simplifying an early construction by Deutsch@3#, it has been
proven@34# that the set ofall single-qubit gates@the group
U~2!# with, in addition, the ‘‘controlled-not’’ ~CNOT!

ue1 ,e2&°ue1 ,~e11e2! mod2& ~e i50,1!, ~3!

form a universalset of gates: all unitary transformations,
arbitrary size, can be constructed using a polynomially la
set of one- and two-qubit gates. Therefore, the restriction
this set of gates is sufficient to simulateany computable
function. This, of course, includes~and potentially exceeds!
anything that is computable on a classical computer.

Now, let us see how to set up a superposition state on
quantum register corresponding to all possible initial clas
cal positions. In the basisu0&5(0

1) andu1&5(1
0), one applies

the one-qubit unitary ‘‘Hadamard transform’’

R5
1

A2
S 1 1

1 21D . ~4!

Thus

uF&°uF8&5 ^
i 51

n

Ru0i&5 ^
i 51

n ~ u0i&1u1i&)

A2

5
1

AN
(
j 50

N21

u j &, ~5!

wherej is the decimal representation of the register state w
the corresponding binary value, sou j & is a convenient short
hand notation for a tensor product ofn single-particle states
Equation~5! represents the desired superposition over all
f
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tial positions. For example, letl 52 ~so the number of grid
points per degree of freedom is 4) andM52 ~e.g., q15x
andq25y in a two-dimensional problem involving a linea
triatomic vibrating molecule!, so N516; how is qW

5(2Dx,3Dy) represented in the register? In binary,qW
5($1,0%Dx,$1,1%Dy), so that j 511, i.e., u j &5u1& ^ u0&
^ u1& ^ u1& corresponds tox52Dx andy53Dy. In this way
the quantum register supports a superposition over all
cretized values of the degrees of freedomqW . By linearity,
unitary evolution of the register amounts to parallel propa
tion on all of the exponentially many grid points. We wi
find it convenient to work from now on withj as the collec-
tive degrees of freedom variable, instead ofqW . The transfor-
mation between the two is straightforward. Note further th
the register statesu j & areposition eigenstates.

Suppose now that the initial wave functionuC(0)& in our
scattering problem has amplitudea j to be at positionj. As
explained below, it is in fact not essential to utilize this in
tial condition, and an equal superposition of all possible p
sition eigenstates will be sufficient in most cases. Nevert
less, as was shown by Zalka@9# ~and will not be repeated
here!, it is possible to initialize the register to the state

uF8&°uF9&5 (
j 50

N21

a j u j & ~6!

by means of a suitable unitary transformation. This then r
resentsuC(0)& on the QC. The dynamics in the scatterin
problem is determined by the unitary propagatorU
5e2 iHt/\: uC(t)&5UuC(0)&. The crucial advantage of
fered by a QC is that, as will be shown below, it is possib
to implement this propagatoreffficientlyon the quantum reg-
ister, so that

uF9&°uF-&5UuF9&. ~7!

In this way we have set up a one-to-one corresponde
between the QC (uF&) and the dynamics of the problem o
interest (uC&). All the relevant information can be extracte
from this simulation by observing the states of the qubits

III. THERMAL RATE CONSTANT VIA THE FLUX
CORRELATION FUNCTION FORMALISM

Let us now turn to the scattering problem, and define
flux operator

F5
i

\
@H,h„s~qW !…#, ~8!

where h is the Heaviside function and the conditions(qW )
50 defines the dividing surface.

The thermal rate constant is written as the time integra
the flux-flux autocorrelation function@25#:

k~T!5
1

Qr~T!
E

0

`

dt Cf~ t !, ~9!

whereQr(T) is the reactant partition function per unit vo
ume, and
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Cf~ t !5Tr@e2bH/2Fe2bH/2eiHt/\Fe2 iHt/\#

5Tr@FeiHt/\2bH/2Fe2 iHt/\2bH/2#

5Tr@FeiHt* /\Fe2 iHt/\#, ~10!

and where, for convenience, we have also defined the c
plex ‘‘time’’

t5t2 i\b/2. ~11!

Evaluating the trace in the energy eigenbasis$un&% ~with
Hun&5Enun&), we obtain

Cf~ t !5(
n

^nuFeiHt* /\Fe2 iHt/\un&

5(
n,m

^nuFeiHt* /\um&^muFe2 iHt/\un&

5(
n,m

eiEmt* /\e2 iEnt/\^nuFum&^muFun&

5(
n,m

e2b~Em1En!/2ei ~Em2En!t/\u^nuFum&u2. ~12!

Using the commutator form forF @Eq. ~8!#, we find:

^nuFum&5
i

\
^nu@Hh„s~qW !…2h„s~qW !#H…um&

5
i

\
~En2Em!^nuh„s~qW !…um&. ~13!

Recall from Eq.~5! that the quantum register naturally su
ports a superposition over position eigenstates. Accordin
let us representun& in the discretized position basis$u j &%,
which we from now on identify with the QC’s ‘‘computa
tional basis’’ $u j &% ~indeed, the correspondence is one
one!. Thus let us expand the energy eigenstates as

un&5 (
j 50

N21

aj~n!u j &. ~14!

Clearly, the Heaviside functionh„s(qW )… is diagonal in this
basis, so that, from Eq.~13!,

^nuFum&5
i

\
~En2Em! (

j 50

N21

aj* ~n!aj~m!h„s~ j !…. ~15!

Hence, finally,

Cf~ t !5
1

\2 (nÞm
e2b~Em1En!/2ei ~Em2En!t/\~En2Em!2

3U (
j 50

N21

aj* ~n!aj~m!h„s~ j !…U2

. ~16!

Equation~16! is the formal quantum-mechanical expressio
for obtaining the thermal rate constant. At first glance it m
seem that one has to sum over every eigenstate of the Ha
tonian operator within at least a certain energy range.
-

y,

y
il-
n

reality this is hardly the case, nor is it possible, with t
obvious reason being that for a scattering problem, one u
ally deals with a continuum in energy spectrum and th
could be an infinite number of such eigenstates. As a res
the summations in Eq.~16! are actually integrations over th
energy, which can be carried out by employing vario
quadrature schemes. The number of energy quadrature p
@the number of eigenstates in Eq.~16!# determines the accu
racy of the integral, which often can be kept rather small. F
example, in quantum scattering calculations for small g
phase chemical reactions, when obtaining a thermal rate
stant from microcanonical cumulative reaction probabilit
@analogous to Eq.~16!#, the integration over energy is usu
ally done by employing less than 100 quadrature points
treating more complex systems, one may need significa
more quadrature points. The lesson from such classical
culations is that the number of quadrature points in ma
cases of chemical interest does not scale exponentially
the size of the problem, and thus does not form a bottlen
for the computation on a QC. More specifically, for the pu
pose of achieving numerical convergence, one does not h
to include all the energy eigenstates, but only to obtain
reasonable resolution of the energy spectrum. This statem
is universal and is certainly valid also for the case of qu
tum computation.

Our task is therefore to find an algorithm that calcula
the spectrum$En%, and the position amplitudes$aj (n)% j 50

N21

for each of the eigenstatesu j &. With these in hand the rest o
the calculation@summations in Eq.~16!# can be efficiently
implemented on a classical computer. The summation o
energy eigenstates in Eq.~16! should only extend over a
polynomially large number of energies. There are two r
sons for this: first, from the discussion above one is o
interested in obtaining representative~quadrature! points of
the energy spectrum in order to perform this summation;
second, since the exponential decrease due to the Boltz
factors will effectively eliminate the higher end of the spe
trum E*kBT1 ~barrier height! even if there are many peak
in the spectrum. As for the summation over theposition
eigenstates in Eq.~16!, the point is again that one only need
to obtain a reasonable sample of the distribution. The nu
ber of position states required for numerical convergenc
polynomially related to the number of energy states~in the
optimal case, the relation is one to one!, and thus also scale
polynomially with the size of the problem. Some numeric
tricks can of course help to further improve the situation. F
example, if the distribution is badly behaved in positio
space, one could Fourier transform to momentum space
sample there. At any rate, once the problem of dealing w
exponentially many states has been eliminated, the prob
is essentially reduced to the one usually faced by any cla
cal simulation, where a variety of efficient methods are av
able. Note, however, that unlike the classical case where
tention has to be given to the issue of generating statistic
independentMonte Carlo samples, the quantum simulati
automatically generates truly independent samples by
projection postulate@35#.

We emphasize here that though the summations in
~16! are performed over a polynomial number of energy a
position states and quadrature points, the solution of
Schrödinger equation is still carried out in an exponentia
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2432 PRE 59DANIEL A. LIDAR AND HAOBIN WANG
large Hilbert space. Such exponential scaling is inheren
performing quantum mechanical simulations. It isthis prop-
erty that forms the computational bottleneck on a class
computer. At the same time, this is also the part of the sim
lation that can be solved efficiently on a quantum compu

How can we efficiently calculate the eigenstates and
spectrum? Solving the time-independent Schro¨dinger equa-
tion ~SE!

Huc&5Euc& ~17!

can be done on a QC by transforming the problem to
time-dependent SE and propagating the dynamics with
unitary time-evolution operatorU5e2 iHt. This can also be
understood from the relation between the time-depend
and independent pictures through the formal definition of
Green’s function,

G~E!5 lim
e→0

~E1 i e2H!21

5 lim
e→0

~ i\!21E
0

`

dt ei ~E1 i e2H!t/\, ~18!

wheree, a formal convergence factor, is the absorbing p
tential in practical calculations@1#. Once the problem is
transformed into the time-dependent picture, each energ
genvalue and eigenstate can be obtained via known quan
algorithms, to be detailed below, in polynomial time.

The procedure outlined above is suitable for perform
quantum rate constant calculations on a QC, becauseit casts
the problem in terms of a discrete Fourier transform, whi
is known to be efficiently implementable on a QC. Great
efforts and ingenuity have been applied in developing f
methods for calculating the rate constant on a classical c
puter, most of which use iterative techniques to exploit
low rank feature of certain operators. For completeness,
briefly summarize two representative such methods in
Appendix. We emphasize, however, that while such meth
are highly successful for computations on a classical co
puter, it is at present not clear how they can be implemen
with equal efficiency on a quantum computer. This is b
cause these low-rank methods, together with many o
similar approaches, rely on the efficient implementation
matrix algebra, for which no fast quantum algorithms a
currently available. It is fair to say that at this point, a
known efficient quantum algorithms@4–10# require the dis-
crete Fourier transform, or its generalizations@36#. At any
rate, the speedup achieved by the efficient classical meth
is, as mentioned above, polynomial in a problem that inh
ently scales exponentially.

IV. GENERAL OUTLINE OF THE ALGORITHM

We now give our algorithm in general terms, to be d
fined more precisely in Sec. V.

~1! Prepare a register as in Eq.~2!, and attach some ‘‘an
cilla’’ qubits to it, also in theu0& state. These will serve as
quantum scratch pad to record the results of intermed
measurements. From now on we will distinguish between
‘‘main’’ and ancillary registers.

~2! If a good guess for the initial wave function is know
to
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initialize the register to it as in Eq.~6!. Otherwise initialize
the register to an equal superposition. Since the comp
tional basis states areposition eigenstates, in all likelihood
they are not energy eigenstates, so will not be station
under the SE dynamics. Thus except if the equal superp
tion corresponds to some undesirable position—such as
high above the barrier, so that dissociation sets
immediately—this is as good a guess as any. In fact,
random~but reproducible! initial distribution will do.

~3! ‘‘Propagate’’ the register in parallel for a timet. This
corresponds to a parallel evolution of all the position eige
states. The propagation is done very much in analogy to
classical fast Fourier transform~FFT! method@37#, in par-
ticular the split time propagation scheme@38#. That is, the
potential part is diagonal and can be implemented direc
whereas for the kinetic part it is necessary to Fourier tra
form to and back from momentum space.

~4! Perform a ‘‘von Neumann’’ measurement~see Sec.
V D! on theancillary register using the Hamiltonian~energy!
as the observable. This accomplishes a double purpose:~a! It
allows one to obtain an energyEn by measuring the ancillas
~b! It provides a means to sample the energy-position am
tudesaj (n).

~5! Repeat steps~1!–~4! many times until the distribution
is converged to the desired accuracy for all relevant eig
states. The number of required repetitions is proportiona
this accuracy.

~6! Calculate~classically! the sums in Eq.~16!.

V. ALGORITHM IN DETAIL

A. Initialization

Here the register is initialized to the stateuF&5
^ i 51

2n u0i&, where the lastn qubits are ancillas. The physics o
this initialization step depends on the QC implementati
One conceivable way is cooling to the ground state.

B. Inputting the initial wave function

If necessary, one inputs the initial wavefunction by t
technique of Zalka@9#. Otherwise one employs the Had
amard rotations technique to create an equal superpos
over position states, as in Eq.~5!. In the former case the
register will be in the state:

uF9&5S (
j 50

N21

a j u j & D ^
i 5n

2n

u0i&. ~19!

In the latter case, alla j51.

C. Quantum propagation algorithm

This subsection is the heart of the algorithm. Assume
simplicity that we have a single particle of massm in an
external potentialV(qW ). The full Green’s function for arbi-
trary time t is

G~x1 ,x2 ;t !5^x1ue2 iHt/\ux2&. ~20!

For short time stepsDt!1/E(E is a typical energy of the
system!, this becomes approximately
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G~x1 ,x2 ;Dt !5k expF im
~x12x2!2

2Dt
2 iV~x1!Dt G , ~21!

wherek is a normalization factor. Applying this to the am
plitudes is equivalent to acting on the basis states with
inverse transformation. Thus the position eigenstates, p
erly normalized, transform as:

u j &°Uu j &5
1

AN
(

j 850

N21

expF2 im
~ j 2 j 8!2Dx2

2Dt

1 iV~ j Dx!Dt G u j 8&. ~22!

This is carried out in parallel on the entire superposit
( j 50

N21u j &. Suppose the time step and spatial resolution
adjusted so that

mDx2

Dt
5

2p

N
. ~23!

Then, by expanding the exponent, Eq.~22! can be written as
a succession of a diagonal transformation, Fourier transfo
and another diagonal transformation, all unitary:

Uu j &5exp@ iF 2~ j !#F~ j , j 8!exp@ iF 1~ j 8!#u j 8&, ~24!

where

F1~ j !52p
j 2

N
,

F2~ j !52p
j 2

N
1V~ j Dx!Dt,

F~ j , j 8!u j &5
1

AN
(

j 850

N21

expF2p i
j j 8

N G u j 8&. ~25!

Equation~23! tells us how many qubitsn5 log2N are needed
for given Dx andDt:

n5 log2

2pDt

mDx2
. ~26!

The special form of Eq.~24!, involving diagonal transforma
tions and a Fourier transform, is due to the structure of
Hamiltonian operator as a sum of operators diagonal in
ordinate and momentum space. As mentioned above, th
very similar to the situation that arises in the classical F
method for solving the SE@37#.

1. Diagonal transformations

Consider first executing the diagonal unitary transform
tions u j &°exp@iF(j)#uj&, which can be done as follows, usin
e
p-

re

,

e
-
is

T

-

the ancillary register@Eq. ~19!#, in the stateu0&[ ^ i 5n
2n u0i&.

The numbern of qubits in this register depends on the acc
racy with whichF needs to be evaluated~see immediately
below!. Then the following steps are applied.

~1! u j ,0&°u j ,F( j )&: evaluation ofF and storage of the
result in the ancillary register;

~2! u j ,F( j )&°exp@iF(j)#uj,F(j)&: introducing the phase
and

~3! exp@iF(j)#uj,F(j)&°exp@iF(j)#uj,0&: inversion of step
~1! in order to clear the ancillary register.

Step~1! requires that it is possible to evaluate an arbitra
function and store the result. This is very similar to t
equivalent classical problem, for which algorithms a
known using just the elementary classical gates. The s
can be done in the quantum case, by breaking up the ev
ation into elementary arithmetic operations, for which qua
tum algorithms have been designed@4,39#. We will not dwell
on this issue here. Step~3! is just the reverse of step~1!, and
can therefore be implemented by running the inverse uni
transformation.

Step~2! has no classical analog since it involves phases
can be implemented if one knows how to d
ux&°exp@iax#ux&. This can be done by simple single-qub
phase shifts. Letn52k. Using a binary expansionx
5( l 52k

k21 xl2
l , we haveux&5ux2k& ^ ux2k11& ^ •••^ uxk21&,

wherexl50,1. In the standard basisu0&5(0
1), u1&5(1

0), con-
sider the unitary operation

Q5 ^
l 52k

k21 S 1 0

0 ei2l D . ~27!

The l th 232 matrix is a unitary operation in the Hilber
space of qubit numberl. Thus

S 1 0

0 ei2l D uxl&5eixl2
l
uxl&. ~28!

Therefore the full result is

Qux&5 ^
l 52k

k21

eixl2
l
uxl&5ei ( l 52k

k21 xl2
l

^
l 52k

k21

uxl&5eixux&,

~29!

as required.

2. Quantum Fourier transform

The quantum Fourier transform~QFT! algorithm has been
discussed extensively@5,40–42#, and some beautiful connec
tions to group theory have been made@42#. In view of its
central importance in the algorithm for solving the SE~and
indeed inall efficient quantum algorithm found so far!, we
present a brief derivation here, using the approach of Cl
et al. @40#.

The QFT was defined in Eq.~25!. Using the binary nota-
tion j /N50.j 1 j 2 . . . j n ~recall that N52n) where j 150,1
etc., we note first that
e2p i j j 8/2n
u j 18 , j 28 , . . . ,j n8&5e2p i ~0.j n! j 18u j 18& ^ e2p i ~0.j n21 j n! j 28u j 28& ^ •••^ e2p i ~0.j 1 j 2 . . . j n! j n8u j n8&. ~30!

It follows that
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(
j 850

N21

expF2p i
j j 8

N G u j 8&5~ u0&1e2p i ~0.j n!u1&) ^ ~ u0&1e2p i ~0• j n21 j n!u1&) ^ •••^ ~ u0&1e2p i ~0• j 1 j 2••• j n!u1&), ~31!
d
e
.
.
ta

;
-
rt

red

ap-

rd

lds
by expanding out the product on the right-hand-side an
term-by-term comparison. Thus the Fourier-transform
state in Eq.~31! is in fact an ‘‘unentangled’’ direct product
This fact greatly simplifies the implementation of the QFT

To perform the QFT, one first applies a Hadamard ro
tion @Eq. ~4!# to u j 1& ~the first qubit ofu j &), with the result

Ru j 1&5„u0&1~21! j 1u1&…5~ u0&1e2p i ~0• j 1!u1&), ~32!

so u j &°(u0&1e2p i (0.j 1)u1&)u j 2 , . . . ,j n&. Let us now define a
new single-qubit operation, similar toQ from Eq. ~27!:

Ql5S 1 0

0 e2p i /2l D . ~33!

This operation is applied on the first qubitu j 1&, subject to a
control by a second qubitu j l& ~which itself does not change!:
a ‘‘controlled rotation.’’ That is, ifj l50, one does nothing
if it is 1, one appliesQl . This can be written as the follow
ing unitary transformation in the four-dimensional Hilbe
space of the two qubits, in the standard basisu j 1 j l&
5u00&5(1,0,0,0), u01&5(0,1,0,0), u10&5(0,0,1,0), u11&
5(0,0,0,1):

CQl5S 1 0

0 1

Ql

D . ~34!

After applyingCQ2 , one obtains
-
a
s

n

,
a

a
d

-

~ u0&1e2p i ~0.j 1 j 2!u1&). ~35!

Next a ‘‘controlled-Q3’’ is applied, yielding

~ u0&1e2p i ~0.j 1 j 2 j 3!u1&). ~36!

Clearly, this process will eventually generate the desi
phase in the superposition state of the first qubit@correspond-
ing to the last qubit in Eq.~31!#:

F S )
l 52

n

CQl DRG
1

u j 1&5~ u0&1e2p i ~0• j 1 j 2••• j n!u1&), ~37!

where the terms in the product from here onwards are
plied low index first.

Now we turn to the second qubit. Again, a Hadama
rotation on it has the effect of:Ru j 2&5(u0&1e2p i (0.j 2)u1&).
This is followed by a controlled-Q2 , conditioned upon
u j 3&: (u0&1e2p i (0.j 2)u1&)°(u0&1e2p i (0.j 2 j 3)u1&). After the
full operation onu j 2&, one obtains

F S )
l 52

n21

CQl D RG
2

u j 2&5~ u0&1e2p i ~0.j 2 j 3••• j n!u1&)u j 2&.

~38!

which corresponds to the one before last qubit in Eq.~31!.
The method to generate the entire product in Eq.~31!

should now be clear; collecting all the transformations yie
u j &° )
p51

n21 F S )
l 52

n2p

CQl D RG
p

u j 1 , . . . ,j n&5~ u0&1e2p i ~0.j 1 j 2••• j n!u1&) ^ •••^ ~ u0&1e2p i ~0• j n21 j n!u1&) ^ ~ u0&1e2p i ~0• j n!u1&).

~39!
en-
ting

can
Up to an unimportant bit reversal~which can easily be rec
tified by permuting the role of the qubits in the transform
tions above!, this is exactly the desired result. In other word
the QFT is simply

F5 )
p51

n21 F S )
l 52

n2p

CQl D RG
p

. ~40!

This will be applied in parallel, by virtue of the superpositio
principle, on all position eigenstatesu j &. Most importantly,
the number of operations~single- and two-qubit! needed to
implement the QFT is seen to be a meren(n21)/2. This is
to be compared to then2n operations required classically
and, as emphasized above, is the ‘‘secret’’ behind the qu
tum speedup.
-
,

n-

D. von Neuman measurements

Combining Eqs.~7! and ~22!, at this point the register is
in the state

uF-&5(
j

a jUu j &5(
j 8

c j 8~ t !u j 8&,

c j 8~ t !5(
j

a jG
21~ j , j 8;t !. ~41!

A parallel propagation has occurred on all the position eig
states. By measuring the qubits one by one, i.e., projec
onto a random position eigenstateu j 8&, and repeating this
process many times while collecting the statistics, one
sample the electronic density functionuc j 8(t)u

2. Our goal
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was to find theenergy-spectrum and energy-position amp
tudesaj (n), so these should be obtained from the simu
tion. This can be done using the so-called ‘‘von Neum
measurement’’ trick@9#. We will require an additional propa
gation step.

A ‘‘measurement apparatus’’ that can be made to inter
with the QC is introduced, and is assumed to be equivalen
a one-dimensional quantum mechanical particle. That is
Hilbert space is spanned by the basis vectorsux&, x real,
with Xux&5xux&. In practice this will be another ancillar
quantum register, consisting of, say,K qubits. Now, let us
expand the position eigenstatesu j 8& in terms of the complete
set of energy eigenstates@recall Eq.~14!#:

u j 8&5(
n

aj 8
* ~n!un&. ~42!

Consider next the joint evolution of an energy eigenstateun&
and the apparatus stateux& (x is arbitrary!, under the unitary
operatorŨ5exp(iHPt), where@X,P#5 i . HereH acts on the
main register, andX and P act on the apparatus, so@X,H#
5@P,H#50. We will shortly discuss the implementation o
Ũ. Consider first a formal Taylor expansion of exp(iHPt),
which yields

Ũun&ux&5(
l 50

`
1

l !
~ tEn! l un&

] l

]xl
ux&5un&ux1tEn&. ~43!

Thus Ũ does not change the energy eigenstate, but has
effect of ‘‘shifting the dialx’’ by an amount proportional to
the energyEn . The effect on the position eigenstateu j 8& will
be

Ũu j 8&ux&5(
n

aj 8
* ~n!un&ux1tEn&, ~44!

and the effect on the full superposition of Eq.~41! is

ŨuF-&ux&5(
j 8

c j 8~ t !(
n

aj 8
* ~n!un&ux1tEn&

5(
n

jn~ t !un&ux1tEn&, ~45!

jn~ t !5(
j 8

aj 8
* ~n!c j 8~ t !.

Now suppose weobservethe state of the apparatus. Fro
Eq. ~45! it is clear that the apparatus has become entan
with the QC, and by performing the observation the sup
position will collapse onto a particular stateum&ux1tEm&.
This happens with probability ujm(t)u2. Recall that
ux1tEm& is represented in binary by the qubits of the app
ratus. Sincet is a parameter of the simulation andx is
known, all that remains is to measure the apparatus qub
qubit, to obtain the energy eigenvalueEm . The accuracy
with which these numbers are obtained is proportional to
number of simulation steps@9#.
-
n

ct
to
ts

he

d
r-

-

by

e

To implementŨ it is necessary to Fourier transform th
ux& register, just as in the classical FFT case. Specifically,
us define the Fourier transform pair

Fux&5up&5
1

A2K (
x50

2K21

e2 ixpux&,

~46!

Fup&5ux&5
1

A2K (
p50

2K21

eixpup&.

Then starting from the initial apparatus stateux&, Ũ can be
implemented as follows:

un&ux& °
F~x!

un&up&

°
Ũ

eiEnptun&up&

°
F 21~p!

un&
1

A2K (
p50

2K21

ei ~x1Ent !pup&

5un&ux1Ent&, ~47!

in agreement with Eq.~43!.

E. Extracting the amplitudes from the measurements

Note further that after observation of the apparatus,
state of the main register has been projected ontoum&, an
energy eigenstate. TheŨ propagation had a remarkable ou
come: it transformed the information in the main regis
from a mixture over position eigenstatesu j 8& to one over
energy eigenstatesun&. The QC is consequently in an energ
eigenstate, which can in principle be used in a further pro
gation step. However, our next task is to obtain the am
tudesaj (n) needed to complete the calculation in Eq.~16!.
Note first that, by Eq.~45!,

(
n

jn~ t !aj~n!5c j~ t !. ~48!

Now, by performing the whole procedure a sufficient numb
of times, the simulation yields an estimate of theprobabili-
ties uc j (t)u2 @Eq. ~41!# and ujn(t)u2 @Eq. ~45!#. Thus, to
specify fully the complex numbersaj (n), it is necessary to
also know their phases, as well as those of thejn(t) and
c j (t).

To obtain the phases, we note first that it is sufficient
know only thesigns, since no generality is lost by employin
a real initial wave functionuC(0)&. The signs can then be
obtained with the help of a simple trick~new, as far as we
know!, which we will illustrate on a generic two-qubit reg
ister stateuc&5a0u00&1a1u01&1a2u10&1a3u11&. Given re-
peated preparations of thisuc&, we perform the following set
of measurements:

~i! Observation of the two qubits inuc&.
~ii ! A Hadamard transform on the first qubit, followed b

observation of the two qubits.
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~iii ! A Hadamard transform on the second qubit, follow
by observation of the two qubits.

Step~i! yields an estimate of theuai u. Step~ii ! yields an
estimate ofua06a1u and ua26a3u, since under the Had
amard transformuc&°(1/A2)@(a01a1)u00&1(a02a1)u01&
1(a21a3)u10&1(a22a3)u11&]. Similarly, step~iii ! yields
an estimate of ua06a2u and ua16a3u, since uc&
°(1/A2)@(a01a2)u00& 1 (a02a2)u01& 1 (a11a3)u10&
1(a12a3)u11&]. Clearly, this provides sufficient informa
tion for extraction of the signs of all amplitudes. The gen
alization to an-bit register is obvious: one performs Ha
amard rotations on all n qubits. This then yields
$ua06a1u,ua26a3u,ua46a5u, . . . % ~after Hadamard on firs
qubit!, $ua06a2u,ua16a3u,ua46a6u, . . . % ~after Hadamard
on second qubit!, etc. After each Hadamard rotation there a
2n coefficients to be estimated. This exponential ‘‘Mon
Carlo scaling’’ is the same as the one we encountered be
and is not considered a slowdown for the reasons deta
above. The additional computational cost is in the Hadam
rotations,n of which must be performed. This does therefo
not affect the efficiency of the algorithm. At the end of th
process, if the whole phase space has been sampled, o
left with n2n absolute values equations, which contain su
cient information to solve for the signs of all the amplitude
In practice one will of course sample only a small~polyno-
mial! portion of the phase space, and care must then be ta
to obtain sufficient equations of the type above to determ
uniquely the signs of the amplitudes of interest.

F. Repetition

The steps outlined above generate the energies$En% and
estimates of amplitudes$aj (n)% needed to perform the sum
in Eq. ~16!. The whole process must now be repeated m
times, on the order of the required accuracy, in order to co
plete the calculation. Due to the speedup in the impleme
tion of the propagation step, the algorithm performs ex
nentially faster than any exact classical algorithm desig
to solve the same task.

VI. DISCUSSION AND CONCLUSIONS

Quantum computers are still far from being a panac
and serious doubts have been raised whether they will
replace ordinary, classical computers@43#. Such worries are
invariably based on the immense difficulties associated w
maintaining phase coherence throughout the computa
i.e., the ‘‘decoherence problem.’’ However, a remarka
theory of quantum error correction codes has recently b
constructed@44#, in which a ‘‘logical qubit’’ is encoded in
the larger Hilbert space of several physical qubits@45#. It has
been shown that as long as the error rate is sufficiently sm
it is possible to performfault-tolerantquantum computation
i.e., the computation can be stabilized and be made f
robust to errors@46#. These advances greatly enhance
prospects of the eventual construction of useful QC’s,
yond the current highly rudimentary prototypes. Building
these hopes, here we have presented an algorithm for c
lating the thermal rate constant on a QC. The algorithm
volves an initialization step of the QC into an equal sup
position of position eigenstates; a propagation using
-
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adaptation to QC’s of the well-known FFT technique; a
finally, a sequence of measurements yielding the ene
spectrum and amplitudes. Under reasonable assump
about the distribution of energy eigenvalues the algorit
runs in polynomial time. The algorithm thus outperforms a
exact classical simulation, which is bound to be exponen
This clearly demonstrates the potential utility of QC’s
future applications to quantum chemistry problems.

Our approach was somewhat of a ‘‘brute force’’ one,
that we did not attempt to optimize the algorithm using su
fruitful concepts as ‘‘direct and correct’’ low-rank expre
sions for the rate constant@1# ~also see the Appendix!. Such
optimizations, while ineffectual in altering the essential e
ponential speedup achieved by use of a QC, may still
important in practice, especially in the early stages of
application on a small-scale QC of an algorithm such as
scribed here. Further work is hence desirable to optimize
algorithm.

Finally, it would be interesting to check the effect of noi
and other types of errors affecting the evolution of the QC
the present algorithm. It has been shown, e.g., in the cas
the ion trap QC, that factoring becomes impossible once r
dom phase fluctuations in the laser pulses exceed a ce
threshold@47#. We intend to study similar noise-related i
sues using numerical simulations in the context of
present algorithm.
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APPENDIX

Several efficient classical methods have been develo
to calculate the thermal rate constant. We briefly summa
two of the more popular ones here.

For the thermal rate constant calculation, the flux opera
set in Boltzmann form

F~b![e2bH/2Fe2bH/2, ~A1!

is of low rank, and a Lanczos iteration@48,49# can be used to
find the nonzero eigenvalues$ f m% and the corresponding
eigenvectors$uum&% @22–24#. ThusF(b) can be represente
in its eigenstate expansion as follows:

F~b!5(
m

f muum&^umu, ~A2!

and the trace in the flux correlation function expression
comes



e
e
i-
lc
uc

ac

a

for

en-
ity
e,
l

Eq.
n
e-
e-
usly
e-
ain,

lem

PRE 59 2437CALCULATING THE THERMAL RATE CONSTANT WITH . . .
Cf~ t !5(
m

f m^um~ t !uFuum~ t !&, ~A3a!

where$uum(t)&% are thetime-evolvedeigenvectors ofF(b):

uum~ t !&5e2 iHt/\uum&. ~A3b!

The number of Lanczos iterations required for the conv
gence of this procedure is essentially the number of nonz
eigenvalues ofF(b) and is usually several orders of magn
tude smaller than the size of the full basis used in the ca
lation. Thus the trace calculation can be carried out m
more efficiently than conventional methods.

Another way of obtaining the thermal rate constantk(T)
is through the Boltzmann integration of the cumulative re
tion probabilityN(E),

k~T!5@2p\Qr~T!#21E
2`

`

dE e2bEN~E!, ~A4!

whereN(E) is given by@25#

N~E!5 1
2 ~2p\!2 Tr@Fd~E2H!Fd~E2H!#. ~A5!

The microcanonical density operatord(E2H) can be related
to the Green’s function of Eq.~18! as

d~E2H!52
1

p
Im@G~E!#. ~A6!
.

on
r

o-

p,

.

r-
ro

u-
h

-

After some manipulations,N(E) can be re-expressed in
somewhat different form@50#

N~E!5Tr@P~E!#

5Tr@4e r
1/2G~E!1epG~E!e r

1/2#, ~A7!

wheree r(ep) denotes the absorbing boundary condition
reactant~product! region.

Equation~A7!, though formally equivalent to Eq.~A5!,
offers a significant numerical improvement over the conv
tional methods due to the fact that the ‘‘reaction probabil
operator’’P(E) is a low-rank Hermitian operator. Therefor
Hermitian Lanczos iteration method~here actually a specia
case of Arnoldi iteration method! @49# can be used to find the
nonzero eigenvalues which then constitute the trace in
~A7!. During the Lanczos-Arnoldi iteration, the applicatio
of the Green’s function can be achieved by either tim
dependent or time-independent methods. If a tim
independent method is used, as has been done previo
@50#, operating the Green’s function on a trial vector corr
sponds to solving linear equations for a large system. Ag
iterative methods for large~and sparse! linear systems, such
as the generalized minimal residual@51# and quasiminimal
residual@52# methods, can be used here to solve the prob
efficiently.
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