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Comment on ‘‘Conservative Quantum Computing’’

In [1], Ozawa considers the limitations imposed by
conservation laws on the possibility of accurately gener-
ating quantum logic gates. In particular, he argues that
conservation of angular momentum imposes a funda-
mental limit on how accurately the controlled-NOT

(CNOT) gate can be performed. His argument runs
roughly as follows. Since CNOT does not commute with
total angular momentum, it cannot be implemented di-
rectly in a system in which angular momentum is con-
served. Therefore one must enlarge the two-qubit Hilbert
space by attaching ancilla qubits, perform a unitary op-
eration on the resulting enlarged Hilbert space, then trace
out the ancillae. This defines a completely positive dy-
namical quantum map, which can only yield the CNOT

gate on the original two qubits probabilistically. Ozawa
calculates upper bounds on this probability of success,
and concludes that the accuracy of quantum logic gates
is fundamentally limited in the presence of conserva-
tion laws.

The purpose of this Comment is to point out that this is
an overly restrictive conclusion. Indeed, as Ozawa notes
at the end of his paper: ‘‘The present investigation sug-
gests that the current choice of the computational basis
should be modified so that the computational basis com-
mutes with the conserved quantity.’’ ‘‘. . . we may find
such a computational basis comprised of orthogonal en-
tangled states over a multiple-qubit system.’’ Such a
modification of the computational basis is already well
known. This is possible since, while it is true that the
CNOT gate sometimes does not commute with the total
angular momentum operator, it does not follow that CNOT

cannot be generated from an interaction that is rotation-
ally invariant. It can, by using an encoding into multi-
qubit states that define an invariant subspace with respect
to the interaction at hand. As first shown in [2], using an
encoding of a logical qubit into four physical qubits, the
isotropic Heisenberg exchange interaction HHeis �
J�XiXj � YiYj � ZiZj�, which commutes with total an-
gular momentum, is universal for quantum computing.
Here Xi is the Pauli �x matrix acting on qubit i, etc. This
means that Heisenberg exchange can be used to generate
the group U�2K� on K encoded qubits, and, in particular,
it can be used to generate an encoded CNOT gate, which
treats only two out of the 16 dimensions of the four-
physical-qubit Hilbert space as computational basis states
of an encoded qubit. This result was soon followed by a
general proof that the Heisenberg exchange interaction is
by itself universal over encodings into any number of
qubits n � 3 [3]. Specific gate sequences were then pro-
posed for the n � 3 qubit encoding [4]. Furthermore, by
supplementing Heisenberg exchange with a Zeeman split-
089801-1 0031-9007=03=91(8)=089801(1)$20.00 
ting "�Zi � Zj� (another interaction that commutes with
the total angular momentum operator), a simple encod-
ing into n � 2 qubits, j0Li � j0iij1ij and j1Li � j1iij0ij,
already suffices for universal quantum computation [5,6],
and thus to generate an encoded CNOT gate. In fact,
other exchange interactions that admit conserved quanti-
ties [e.g., the Hamiltonians HXY � J�XiXj � YiYj� and
HXXZ � J�XiXj � YiYj� � JzZiZj, that have axial sym-
metry] are also universal for quantum computation, with
[6] or without Zeeman splitting [7].

The reason that encoding helps is that it enables the
quantum logic gates to be executed on an invariant sub-
space of the full Hilbert space of the original qubits plus
ancillae. The exchange Hamiltonians, and, hence, the
encoded logic gates, preserve this subspace and, as is
evident from their universality, commute with all the
symmetries of the system. Thus, Ozawa’s result can be
seen as a confirmation of the advantage that may be had by
allowing a flexible definition of the computational basis:
Conservation laws do not impose fundamental limita-
tions on the accuracy of quantum logic operations, as
long as one uses Hamiltonians that act on an encoding
of logical qubits into subspaces that are invariant under
the symmetries generating the conservation laws.
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