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The diffraction spectrum of coherent waves scattered from fractal supports is calculated exactly. The fractals
considered are of the class generated iteratively by successive dilations and translations, and include generali-
zations of the Cantor set and Sierpinski carpet as special cases. Also randomized versions of these fractals are
treated. The general result is that the diffraction intensities obey a strict recursion relation, and become
self-affine in the limit of large iteration number, with a self-affinity exponent related directly to the fractal
dimension of the scattering object. Applications include neutron scattering, x rays, optical diffraction, magnetic
resonance imaging, electron diffraction, and He scattering, which all display the same universal scaling.
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I. INTRODUCTION

Scattering is one of the most important methods of obser-
vation of structural properties of matter@1–6#. Fractals, on
the other hand, have in recent years received enormous at-
tention as models for the structure of matter@7–10#. Thus the
relation between the two is of very general interest, as it
provides an essential connection between physical observ-
ables and the highly intriguing fractal geometry of matter.
The first to consider this relation was probably Berry@11#,
who calculated some important averages for scattering by a
random self-affine screen, coining the term ‘‘diffractal’’ for
waves that have encountered fractals. In subsequent works, it
was demonstrated that diffractals have properties that differ
significantly from ‘‘ordinary’’ scattered waves. The central
feature that distinguishes diffractals from ordinary wave
fields~where geometrical optics applies! is that they are scat-
tered by objects that have structure on all scales, in particular
near their wavelengthl. This fact gives rise to variousscal-
ing laws of the diffraction spectrum, reflecting the fractal
structure of the scattering object. In contrast, in scattering
from crystalline material, characteristic interference~Bragg!
peaksare observed, which are related through their positions
to the underlying crystal structure.

In a large variety of fields scattering processes can be
described by aFourier transform ~FT!, which relates the
scattering amplitude to some local density or potential. Ex-
amples~to be dealt with in some detail in Sec. II! include
neutron and x-ray scattering@5#, optical diffraction @1#,
nuclear magnetic resonance imaging~MRI! @12#, electron
scattering@3#, and helium scattering@13#. In all these cases
the FT is an approximation, but its generality and simplicity
have rendered it by far the most widely used approach to
scattering problems. The FT is applicable if multiple scatter-
ing and resonances can be neglected, which is typically the
case under conditions of high incidence energy. A large bulk
of literature, theoretical as well as experimental, exists on
scattering in the FT approximation fromrandom fractals.

The well-known result is that the intensityI (q) decays as a
power law of the momentum transferq, with the exponent
related to the fractal dimensionD of the scatterer@6,14–18#.
Since they are naturally less abundant, much less attention
has been devoted to the scattering from fractals which can be
constructed by a deterministic set of iterative rules. Scatter-
ing from such fractals, as well as randomized versions of
them, will be the subject of this paper. The few examples
include Berry’s@11# above-mentioned work; further, mainly
in optics, calculations on wave transmission@19,20# and
Fraunhofer diffraction@21–24#, on Cantor bars, Koch frac-
tals, or Sierpinski-carpet like media; in x rays, numerical
calculations on scattering by a Menger sponge@25#, and
measurements on diffraction from Cantor lattices@26#. The
most extensive treatment is probably due to Allain and Cloi-
tre @27–29#. In Ref. @28#, these authors reported an optical
diffraction experiment on deterministically generated Cantor
bars and Vicsek fractals, and showed the resulting structure
factor to be self-similar. In Refs.@27,29#, they analytically
solved and discussed properties such as band structure and
scaling, for the diffraction problem in the case of scattering
from a class of fractals similar to those to be discussed here.
However, their discussion is essentially limited to Fraun-
hofer diffraction and does not include random fractals. Dif-
fractal scattering for probes such as He scattering or MRI
appears not to have been discussed in the literature. Thus,
there seems to have been no general treatment of the
diffractal-FT problem.

The purpose of the present contribution is to demonstrate
that an exact solution for this problem is possible, in the case
of scattering by objects on an iteratively generatedfractal
support ~see Fig. 2 for an illustration of the concept!. The
class of fractal objects that will be considered here are those
that can be generated by a combination of dilations and
translations. Well-known examples of such objects include
~generalizations of! the Cantor set, Vicsek fractal, and Sier-
pinski carpet@30#. An operator formalism will be introduced
for this purpose in Sec. III, which will allow the treatment of
diverse scattering conditions. It will appear in Secs. IV–VII
that whereas some details of the diffraction spectrum are
context sensitive~i.e., determined by a form factor!, the*Electronic address: http://www.fh.huji.ac.il/;dani
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overall structure is determined by a universal, context-
independent scaling relation. This conclusion is unaltered
~Sec. VII! by the introduction of a fractal dimension-
preserving randomness. Following this finding, Secs. VIII
and IX attempt to address the connection between the results
derived here for a somewhat artificial class of fractals, and
the standard~power-law! expressions used to interpret scat-
tering data from natural fractals, such as self-similarity dis-
playing porous materials, aggregates, or ramified structures.

The fractal scattering object can be generated in two es-
sentially different ways: from bottom-up~henceforth BU—
iterative inflation! or from top-down~TD—iterative refine-
ment!. In the former, the smallest unit remains fixed, and
structure appears at ever larger scales, limited of course by a
natural upper cutoff. This structure is reflected at ever
smallerscales in momentum space. A fixed point is reached
where further spectral details are indiscernible, either due to
experimental resolution constraints or when the wavelength
becomes larger than the upper cutoff. To every iteration of
the fractal support there corresponds a diffraction spectrum.
Subsequent diffraction-spectrum iterations may be equated
when the fixed point is reached. The BU description is ap-
propriate, e.g., in the case of a fractal formed around a single
nucleation center in a deposition process, as coverage is in-
creased. In the TD case, the total system size is fixed and
structure appears at progressively smaller scales, limited by a
natural lower cutoff. This description is probably more ap-
propriate for the physical formation of fractal structures by
removalof material ~pore fractals@31#!. If the wavelength
l of the incident waves is fixed, there will necessarily be
another fixed point, where structure develops belowl, and
further fractal details are indiscernible. Another possibility is
that l becomes smaller than the lower cutoff. In both cases
subsequent iterations of the diffraction spectrum can then
again be equated. Consequently, in both BU and TD cases,
as will be shown here, the diffraction spectrum becomes~ap-
proximately! self-affine, and the self-affinity~or Hölder! ex-
ponent is simply related to the fractal dimension of the scat-
tering object. The central result derived here is that this
conclusion is unaltered neither by the physical identity of
many scattering probes, nor by the introduction of a fractal
dimension-preserving randomness.

II. FOURIER-TRANSFORM RELATIONS
FOR COHERENT WAVE SCATTERING

The purpose of this section is to summarize the relation
between the structural properties of the scattering set and the

observable diffraction spectrum, for various physical ex-
amples to which the FT is applicable. The ultimate goal is to
show that in spite of the apparently very different way in
which the interaction~potential! between the wave and the
scattering object enters the formulation in each of the cases
considered, there are certain universal features in the scatter-
ing intensities, which reflect only the underlying fractal ge-
ometry of the scatterer. The different examples are presented
below in increasing order of computational probe-object in-
teraction complexity. Thus, whereas neutron scattering~Sec.
II A ! involves merely a discrete Fourier sum over the nuclear
coordinates, electron scattering~Sec. II E! requires the FT of
a potential which is a functional of the local electron density,
and He scattering~Sec. II F! necessitates the Fourier trans-
formation of a functional of the interaction potential itself.
Yet, it should be emphasized that the results presented in this
work, all pertain exclusively tolocal interaction potentials
~as holds for all the examples considered below!. Nonlocal
potentials have been successfully considered in the literature
as well, mainly in low-energy nuclear problems@32,33#.

Notation and conventions: The momentum transfer is de-
noted byqW ; the scattering amplitude byf (qW ); spatial vectors
by rW5(x,y,z). Elastic scattering is assumed throughout. As
emphasized in each of the subsections below, the FT is es-
sentially always the consequence of a high-energy approxi-
mation.

A. Neutron scattering

Neutrons may couple by virtue of their spin to magnetic
moments. However, the interaction of interest in the present
context, i.e, which gives rise to a Fourier integral, is with
nonmagnetic material, where neutrons are scattered by the
nuclei. Due to the extremely short range of the strong force,
this process is treated almost exactly in the Born approxima-
tion. The neutron-nucleus interaction potential@see Eq.~2.7!#
is essentially ad function~the ‘‘Fermi pseudopotential’’@5#!,
so that if the nuclear positions are$rW i%, then

f ~qW !5C(
i
e2 iqW •rW i. ~2.1!

The accuracy of this expression depends on the extent to
which one may neglect incoherent scattering due to isotopes,
and inelastic diffraction due to variation of the structure with
time ~thermal vibrations or atom diffusion!.

B. X rays

The well-known Laue derivation@34# yields the relation

f ~qW !5E drW n~rW !eiq
W
•rW ~2.2!

between the local electron concentrationn(rW) and the x-ray
scattering amplitude. The assumptions underlying the Laue
derivation are essentially that the polarization and electric
field intensity are linearly and locally related by the dielectric
susceptibilityx(rW), which itself is frequency independent.
Furthermore, at the inherentlyhigh x-ray frequencies,
x!1, which allows for a decoupling of the equations result-

FIG. 1. Left: third and fourth iterations of a step on a ternary
Cantor set support. Middle and right: same, but with randomized
translations.
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ing from the attempt to solve the electromagnetic wave equa-
tion in the crystal lattice, and yields Eq.~2.2!.

C. Optical diffraction

The FT arises in optics in the case of Fraunhofer diffrac-
tion. This holds when both source and observation point are
located very far from the aperture, although some more gen-
eral conditions exist@1#. The Fraunhofer formula results
from the small-wavelengthKirchhoff theory @35#, which
solves the wave equation under Huygens-Fresnel boundary
conditions. The assumed smallness of the optical wavelength
in comparison with the dimensions of the diffracting ob-
stacles implies that in optical diffraction, the BU fractal con-
struction is more natural. Essentially, Fraunhofer diffraction
occurs when a coherent light wave is scattered by an object
with transmission functiont(rW), and the light amplitude is
obtained by a coherent superposition

f ~qW !5CE drW t~rW !eiq
W
•rW. ~2.3!

D. Magnetic resonance imaging

Suppose the local nuclear spin density in a sample is
r(rW), and that an oscillating magnetic field with local Lar-
mor frequencyv(rW) is applied to it. It is conventionally as-
sumed in MRI that the Larmor frequency is linear in the
nuclear spin coordinates:

v~rW !5guBW 0u1gGW •rW, ~2.4!

whereg is the gyromagnetic ratio andBW 0 is the polarizing
field, much larger than the linearly varying gradient field, of
which GW is the gradient. In practice, heterodyne mixing
eliminates the termguBW 0u, and the integrated MRI signal
amplitude can be written as

f ~ t !5E drWr~rW !eigG
W
•rWt. ~2.5!

A reciprocal space vectorqW 5gGW t is introduced@12#, show-
ing thatqW space may be traversed by moving either in time
or in gradient magnitude, so that

f ~qW !5E drWr~rW !eiq
W
•rW. ~2.6!

Equation ~2.6! assumesrapid signal acquisition~after the
excitation pulse!, so that spin relaxation, dipolar and scalar
coupling, or spin translation, do not distort the signal.

E. Scattering of electrons from atoms

Here one often applies the Born approximation,

f ~qW !52
m

2pE drWe2 iqW •rWV~rW !, ~2.7!

valid at high energiesand assuming that the electron~of
massm) sees a fixed electrostatic potential due to a charge
densityn(rW),

V~rW !52eE drW8
n~rW8!

urW2rW8u
. ~2.8!

This expression neglects the possible polarization of the
atom by the incident electron, as well as exchange effects
@3#.

F. He scattering

The He-surface scattering problem has been successfully
treated within the sudden approximation@36,37#, which as-
sumes ahigh perpendicular momentum change compared to
the momentum change parallel to the surface~essentially a
high energy approximation!. Under the presence of an arbi-
trary He-surface potentialU(RW ,z), the sudden approxima-
tion yields the scattering amplitudes as

f ~QW !5
1

AEAdRW eiRW •QW e2ih~RW !, ~2.9!

where the phase-shift function is given in the WKB approxi-
mation by

h~RW !5E
j~RW !

`

dzF S kz22 2m

\2 U~RW ,z! D 1/22kzG2kzj~RW !.

~2.10!

Here RW 5(x,y), QW 5(qx ,qy), and kz is the wave-number
component normal to the surface. The turning pointsj(RW )
are obtained as solutions to the energy equation

U@RW ,j~RW !#5
\2kz

2

2m
, ~2.11!

with m the mass of the He atom. Effects such as resonances,
multiple collisions, and dynamic polarization are neglected.
For a hard-wall potential

U~RW ,z!5H 0, z>j~RW !

`, z,j~RW !,

so that from Eq.~2.10! it follows that in this case:

h~RW !52kzj~RW !, ~2.12!

as in the eikonal approximation in optics.

III. GENERATION OF FUNCTIONS ON FRACTAL SETS
BY DILATION AND TRANSLATION OPERATORS

Having seen the generality of the FT in diffraction prob-
lems, the generation of the scattering fractal support is given
next. The construction to be described below is in the spirit
of the iterated function system formalism of Barnsley@38#.

356 54D. A. HAMBURGER-LIDAR



A. Simple example

Consider first as an introductory example the construction
of a characteristic function on the usual~ternary! Cantor set
~Fig. 1, left!: One first contracts the generator~zero-order
iteration!, j0(x)5 l (0,x,L), by a factor 3, and then places
one copy of the contracted version at the origin, and another
translated by 2L/3 from the origin. This can be generalized
to contractions by a factor 1/s (0,s,1) and translations by
aL. The corresponding TDfractal operatoris ~the reason for
using the adjoint will become clear in Sec. IV!

F†5~11T2a!C1/s , ~3.1!

where thetranslation operatoris defined as

Tah~x!5h~x1aL!, ~3.2!

and thedilation operatoris defined as

Csh~x!5h~sx!. ~3.3!

Ta shifts the function it operates on by an amountaL to the
left, andCs stretches the function by a factor of 1/s. When
applied in the inverse sense as required by the definition of
F†, it is easily checked that j1(x)[F†j0(x)
5j0(x/s)1j0@(x2aL)/s#, and thatjn(x)5(F†)nj0(x) is
indeed annth iteration stepped Cantor surface, as illustrated
in Fig. 1. Barnsley@38# and Vicsek@39# provide a general
theorem for the calculation of the fractal dimensionD of
such iteratively constructed fractals;D is the solution of the
equation

(
i51

n

si
D51, ~3.4!

wheresi are all the contraction factors. Thus in the present
case:

(
i51

2

sD51 ⇒ D5
ln~2!

ln~1/s!
. ~3.5!

To derive the algebraic properties of the above operators, it
is convenient to express them in exponential form.Ta has the
well-known momentum-operator representation

Ta5eaL]x. ~3.6!

This can be used to find a similar representation forCs : Let
m5 ln(s), y5 ln(x), and g(y)5h(x). The argument of
h(sx) can then be expressed in terms of a sum:
h(sx)5h@exp(y1m)#5g(y1m). But this is exactly in the
form of a translation, so that using the representation ofTa
one finds: g(y1m)5exp(m]y)g(y). Noting that
]y5] ln(x)5x]x , one obtains the desired representation:

Cs5eln~s!x]x. ~3.7!

From here, using]x
†52]x and ]xx511x]x , it is easily

seen that

T a†5T2a

Cs†5
1

s
C1/s . ~3.8!

B. General construction of functions on fractals

The above formalism for TD fractals can easily be ex-
tended to arbitrary dimension, as well as to BU fractals. Let
rW5(x1 ,...,xd) be a vector ind dimensions. Then the gener-
alization of the one-dimensional~1D! translation and dilation
operators is

TaWh~rW !5h~rW1aWL !,

Csh~rW !5h~srW !. ~3.9!

In exponential representation, it is easily seen that

TaW5eLa
W
•¹,

Cs5eln~s!rW•¹. ~3.10!

FIG. 2. Generator and first two iterations of the top-down Sier-
pinski carpet, supporting a harmonic potential well~contour lines!.
By expanding each iteration so that every square is of unit size, the
corresponding bottom-up fractal can be obtained.
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A very wide class of fractals can be generated by using a
single contraction factors @40#:

F†5S 11(
i51

k

T2aW i D C1/s . ~3.11!

For example, the Vicsek fractal@39# results by choosing

s51/3; $aW i%5$~2/3,0!,~1/3,1/3!,~0,2/3!,~2/3,2/3!%,

whereas the Sierpinski carpet is generated by

s51/3;

$aW i%5$~1/3,0!,~2/3,0!,~0,1/3!,

3~0,2/3!,~1/3,2/3!,~2/3,1/3!,~2/3,2/3!%

~Fig. 2!. Equation~3.4! for the calculation of the fractal di-
mension applies again, and one obtains in the present case:

(
i51

k11

sD51 ⇒ D5
ln~k11!

ln~1/s!
. ~3.12!

The BU fractal is most easily derived by employing the
general fractal operator@Eq. ~3.11!#, and the observation that
repeatedlyexpandingthe TD fractal achieves the desired re-
sult. Thus the general BU fractal operator is

Gn†5~Cs!n~F†!n. ~3.13!

Note that with this definition, it is guaranteed that the small-
est building block making up the fractal is of unit length.
Since the expansion is one-sided, the fractal thus obtained is
semi-infinite.

For future reference it is convenient to note, using Eqs.
~3.8! for TaW

† andCs , that

F5sdCsS 11(
i51

k

TaW i D ,
Gn5s2dnFnC1/sn . ~3.14!

IV. INTRODUCTORY EXAMPLE:
ONE-DIMENSIONAL HARD-WALL He SCATTERING

FROM A CANTOR SET

With the fractal operators defined, a simple but prototypi-
cal diffractal-FT problem can now be discussed. One may,
e.g., consider 1D He scattering in the presence of a hard-wall
potential@Eqs.~2.9! and ~2.12!#, with the shape function

jn~x!5H l , xPCn

0, otherwise.

Cn denotes thenth approximation to the Cantor set.

A. Calculation of the intensity distribution

1. TD case

Denoting the phase shift of a He atom with perpendicular
wave numberkz and striking a step of heightl by

F522kzl , ~4.1!

one notes that exp@iFjn(x)/l#5exp(iF) for xPCn and 1 oth-
erwise. This calls for a normalized characteristic function on
the Cantor set. Such a function is just (1/l )(F†)nj0(x).
Therefore the scattering amplitude is@Eq. ~2.9! in 1D#

f n~q!5
1

LE0
L

dx eiqx
eiF

l
@~F†!nj0~x!#

1
1

LE0
L

dx eiqxS 12
1

l
@~F†!nj0~x!# D

5
eiF21

Ll E
0

L

dx @Fneiqx#j0~x!

1
1

LE0
L

dx eiqxj0~x!. ~4.2!

The last term is evidently just the specular contribution, and
will henceforth be assumed subtracted out. The penultimate
term contains the fractal operator, which in the present case
equals@Eq. ~3.14!#

F5sCs~11Ta!. ~4.3!

What remains is to calculateFneiqx:

Feiqx5sCs@~11eiqaL!eiqx#5s~11eiqaL!eiqsx,

F2eiqx5s~11eiqaL!Feiqsx5s2~11eiqaL!~11eiqsaL!eiqs
2x,

~4.4!

from which the general pattern can be inferred:

F neiqx5sneiqs
nx)
j51

n

~11eiqaLs
j21

!. ~4.5!

This prototypical expression, or slight variants of it, will ap-
pear repeatedly when more complicated cases are treated in
later sections. Before the intensities are obtained, the ques-
tion of normalization must be addressed. Since the Cantor set
and its generalizations discussed here have measure zero, the
intensity is expected to vanish. This can be avoided if the
intensityis normalized to the relative length occupied by the
Cantor set support at thenth iteration. There are 2n steps in
the set, each of lengthsnL, resulting in a normalization fac-
tor of (2s)n.

The integration leading to the scattering amplitude@Eq.
~4.2!# can now be performed, yielding, after normalization:

f n~q!5
1

~2s!n/2
eiF21

iqL
~eiqs

nL21!)
j50

n21

~11eiqaLs
j
!.

~4.6!

The last result bears some resemblance to the~complex-!
Weierstrass-Mandelbrot function@7#,

W~q!5~12w2!21/2 (
j52`

`

wj~e2p isj q21!, ~4.7!
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which suggests that the off-specular amplitude, as well as the
intensity,

I n~q!5u f n~q!u2, ~4.8!

may beself-affinefunctions. Before this is investigated, con-
sider first the BU construction.

2. BU case

Essentially, all that needs to be done is to replace the TD
operatorF n in the preceding section everywhere by the BU
operatorGn . From Eq.~3.14! this operator is in the 1D case:

Gn5s2nFnC1/sn . ~4.9!

When this is applied to the Fourier basis set one finds

Gneiqx5s2nF neis
2nqx5F)

j51

n

~11eis
j2n21qaL!Geiqx,

~4.10!

where the last equality follows from the general result for
F neiqx @Eq. ~4.5!#. As for normalization, since the fractal
grows indefinitely in the BU case, it is most convenient to
normalize the intensity by the number of elementary units.
This is 2n for thenth iteration.

In anticipation of the more general treatment of
Sec. VI, the scattering amplitude f n(q)5
(1/L)*0

Ldx exp(iqx)exp@22ikzjn(x)# can now be written as

f n~q!5F 1

2n/2)j50

n21

~11eis
j2nqaL!GF~q!,

F~q!5
1

LE0
L

dx eiqxf0~x!,

f0~x![e22ikzj0~x!, ~4.11!

whereF(q) can be interpreted as aform factorand the term
in square brackets as astructure factor S(q) @41#.

B. Recursion relation and self-affinity
of the off-specular intensity distribution

Similarly to the fractal sets described above, self-affine
functions can be constructed iteratively, for example, as de-
terministic models of random walks@31,39,42#. At each
stage, a function of this type satisfies the recursive scaling
relation

hn11~x!5b2ahn~bx!, ~4.12!

and becomes rigorously self-affine in the limitn→`. a is
denoted the Ho¨lder, or self-affine, exponent@42#. An analo-
gous recursion relation will now be derived for the off-
specular amplitudes and intensitiesI n(q) of the previous sec-
tions. In then→` limit, these are therefore also self-affine
functions.

1. TD case

Using the result derived previously for the scattering am-
plitude @Eq. ~4.6!#, the intensity satisfies

I n~q!5
1

~2s!n S 2

qLD 2@12cos~F!#@12cos~qsnL !#

3F2n)
j50

n21

@11cos~qaLsj !#G . ~4.13!

The recursion-scaling relation follows once it is recognized
that the scale factorb from Eq. ~4.12! is the dilation factor
s in the present case:

I n11~q!5sIn~sq!@11cos~qaL!#. ~4.14!

Clearly, due to the presence of the cosine factor, this is not in
the form of the self-affine scaling relation of Eq.~4.12!,
where aconstantfactor multiplies thenth iteration. How-
ever, in the TD case, successive fractal iterations will result
in successive diffraction spectra that differ at ever largerq
scales.qmax, the largest possibleq, is fixed by energy con-
servation, irrespective of the structure of the scattering frac-
tal set. Therefore, when the finest fractal detail,Dxn , be-
comes smaller than 2p/qmax, it becomes physically
reasonable to equate successive iterations. For these to match
in the sense of Eq.~4.12!, the simplest criterion is to require
equality of the intensities in the vicinity of the specular,
q→0 ~at the price of mismatch increasing withq). Proceed-
ing thus, Eq.~4.14! will be in the form of the self-affinity
relation @Eq. ~4.12!# if cos(qaL) is evaluated atq50. For
then one finds

I n11~q!'s2a1I n~sq!, ~4.15!

where

a15D21 ~4.16!

with D the fractal dimension of the Cantor set, Eq. ~3.5!.
Thus, the self-affinity exponent of the intensity spectrum is
related to the fractal dimension of the object scattered from.
The reason for the specific form of the expression fora1 will
become clear in Sec. VI B. The accuracy with which Eq.
~4.15! produces the required scaling can be seen in Fig. 3.
Plotted there are the intensities for He scattering from a 1D
hard-wall step function arrangement on two different Cantor
set supports~see caption for details!. Significantly, the inten-
sities ofall maxima~not just the specular, corresponding to
q50) are accurately reproduced. This situation can only be
expected to improve asn is increased, demonstrating the
self-affinity of the spectrum.

2. BU case

The scaling relation in this case is somewhat different
from the TD fractal. From the scattering amplitude calcu-
lated for the BU fractals@Eqs.~4.11!# one finds

I n11~q!

I 0~q!
5@11cos~s21qaL!#

I n~q/s!

I 0~q/s!
, ~4.17!

implying that scaling is obeyed to within the form factor~i.e,
only the structure factor, not the intensity, is fully scale in-
variant!. For a BU fractal, features in successive diffraction
spectra develop at eversmaller qscales. Beyond the experi-
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mentalq-space resolution, it is physically reasonable, as in
the TD case, to compare successive iterations, and to require
the intensities in the vicinity of the specular (q→0) to be
equal. Substituting 1 for cos(qaL), it is now found that

I n11~q!

I 0~q!
's2a2

I n~q/s!

I 0~q/s!
, ~4.18!

where

FIG. 3. Test of the scaling relation for TD fractals@Eq. ~4.15!#: Superimposed intensities~arbitrary units!, from Eq. ~4.13!, for He
scattering by a hard-wall step function, built on the fifth and sixth iterations of a ternary~top! and generalized TD Cantor set with
s51/5, a54/7 ~bottom!. The intensity from the fifth iteration~dotted line! is rescaled according to Eq.~4.15!. Clearly, the rescaled intensity
serves as an accurate envelope. In then→` limit, therefore, subsequent iterations become indistinguishable and the intensity is self-affine.
The insets show magnifications, in which a coarse-grained reproduction of the entire peak structure can be identified, illustrating the
self-similarity of the spectrum.
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a25D, ~4.19!

with D again the fractal dimension of the Cantor set, Eq.
~3.5!. This is demonstrated in Fig. 4, where the scaling recipe
with a2 is seen to hold with high accuracy.

3. Numerical check of the self-affinity

To further test the self-affinity, the Ho¨lder exponents of
the structure factors for He scattering from hard-wall step
functions on ann58 ternary andn56, s51/5, a54/7 Can-
tor set~Fig. 4! were calculated, using the reliable and accu-
rateepsilon-variationmethod@43,44#. The result is shown in
Fig. 5. The respective regression slopes of 1.367 and 1.59,
from which self-affinity exponents of 221.36750.633 and

221.5950.41 are obtained, compare favorably with the pre-
diction of Eq. ~4.19!, yielding a25 ln(2)/ln(3)50.631 and
a25 ln(2)/ln(5)50.43. Significantly, the log-log plots are
straight over two orders of magnitude, and the higher-order
iteration (n58) yields a more accurate exponent. Note fur-
ther that this experimental-like analysis yields the same self-
affinity exponent as the scaling analysis leading to Eq.
~4.19!, without the q50 approximation.

In conclusion of this section, the analysis of both TD and
BU fractals suggests that~1! the scattering intensity from a
fractal surface is itself (approximately) self-affine,and ~2!
the fractal dimension of the scattering surface manifests it-
self simply through the Ho¨lder exponent of the scattering
intensity. Hence an analysis of the scaling properties of the
scattering intensity should reveal if the scattering surface is
fractal, and if so, what its fractal dimension is.

FIG. 4. Test of the scaling relation for BU
fractals@Eq. ~4.18!#: Superimposed structure fac-
tors~arbitrary units!, from Eq.~4.11!, for He scat-
tering by a hard-wall step function, built on the
same Cantor sets as in Fig. 3. The intensity from
the fifth iteration~dashed line! is rescaled accord-
ing to Eq. ~4.18!. Again, the rescaled intensity
serves as an accurate envelope, although the
agreement worsens with increasingq. Insets as in
Fig. 3.
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In the following sections it will be shown that this con-
clusion holds for the general~arbitrary local potential, any
dimension! diffractal-FT problem. However, first a commu-
tation property of the operators under discussion must be
established. This property will make it possible to demon-
strate that the scaling discussed above is indeed independent
of the nature of the scattering probe, and is instead exclu-
sively determined by the geometry of the fractal scattering
object.

V. COMMUTATION PROPERTY
OF CHANGE-OF-VARIABLE OPERATORS

The translation and dilation operatorsTa and Cs can
clearly be regarded from their definition@Eqs. ~3.2! and
~3.3!#, aschange-of-variable operators~COVO!. Let P be a
general COVO, i.e.,

Pp5p8, p8~x!5p@f~x!#. ~5.1!

The purpose of this short technical section is to prove that
the following commutation relation holds for COVO:

P$ f @g~x!#%5 f @~Pg!~x!#. ~5.2!

To prove this, consider the left-hand side~LHS!: Let

f @g~x!#5h0~x!, ~5.3!

and note that the LHS isPh05h08 . But, by Eqs.~5.1! and
~5.3!,

h08~x!5h0@f~x!#5 f $g@f~x!#%5 f @g8~x!#5 f @~Pg!~x!#,
~5.4!

which is identical to the RHS of Eq.~5.2!, so that the com-
mutation property holds.

Note also that nothing in the above discussion restricted
the result to 1D: the commutation property holds in arbitrary
dimension. Thus a useful corollary follows immediately. Let
]G(x,z)/]z5g(x,z). Then by the commutation property:

PE
j~x!

z~x!

g~x,z!dz5P$G@x,z~x!#2G@x,j~x!#%

5G$f~x!,z@f~x!#%2G$f~x!,j@f~x!#%,

E
Pj~x!

Pz~x!

Pg~x,z!dz5E
j@f~x!#

z@f~x!#

g~f~x!,z!dz

5G$f~x!,z@f~x!#%2G$f~x!,j@f~x!#%,

so that

PE
j~x!

z~x!

g~x,z!dz5E
Pj~x!

Pz~x!

Pg~x,z!dz. ~5.5!

VI. GENERAL DETERMINISTIC
DIFFRACTAL –FOURIER-TRANSFORM PROBLEM

The tools are now prepared to consider the general, deter-
ministic, diffractal-FT problem. This will require the use of
the commutation property of change-of-variable operators to
treat the variety of scattering probes discussed in Sec. II in a
unified way.

A. Structure of the Fourier integral

The ingredients entering the general problem are~1! the
FT relations from Sec. II, and~2! the realization that in every
such instance, the fractal structure may be introduced into
the problem by the repeated application of fractal operators
to a generatorj0(rW). The structure of the general scattering
amplitude is therefore

f n~qW !5E drW eir
W
•qWfn~rW !, ~6.1!

where quite generally~and similarly for the TD case with
F replacingG),

fn~rW !5A@Gn†j0~rW !#, ~6.2!

with A an operator to be specified next. For example, in the
relatively simplex-ray case@Eq. ~2.2!#, A is the identity;
j0(rW)5n0(rW) is the zero-order local electron density; and
fn(rW) is the electron density on thenth iteration of the frac-
tal support. Theelectron scatteringcase @Eqs. ~2.7! and
~2.8!# is more complicated, since nowA is an integral op-
erator acting onGn†„n0(rW8)/urW2rW8u…. But the COVO commu-
tation property, in particular Eq.~5.5! with constant integra-
tion limits, ensures thatGn† can be taken out and put in front
of the integral. TheHe-scatteringcase@Eqs.~2.9! and~2.10!#
is probably the most complicated, since there the fractal op-

FIG. 5. Results ofe-variation analysis@43# of the intensities
displayed in Fig. 4. The slope of the log-log plots yields the self-
affinity exponent as 0.633 for then58 ternary Cantor set and 0.41
for then56, s51/5, a54/7 set.
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eratorG† acts at several places simultaneously andA is an
integral operator with a functional limit. Nevertheless, the
COVO commutation property and its corollary simplify the
problem to the extent thatGn† may be pulled out again:

f n~QW !5
1

AEAdRW eiR
W
•QW e2ihn~RW !5

1

AEAdRW ~GneiQ
W
•RW !e2ih0~RW !.

~6.3!

Indeed, it should now be evident that this is the general
structure of the~local-potential! diffractal-FT problem: the
fractal operator can always be moved from the context-
specific part (j0) to operate on the Fourier basis set, so that
generically

f n~qW !5E drW~Gneir
W
•qW !f0~rW !. ~6.4!

This is the general structure of the Fourier integral: a
context-specific part embodied in the integrand of the form
factor, f0(rW), and a generic part common to all
diffractal-FT problems, found in the operation of the fractal
operator on the Fourier basis set. What remains, in order to
understand the universal scaling behavior, is to investigate
this latter part.

B. Scaling of the Fourier integral

The fractal operators to be dealt with here are of the gen-
eral form given in the TD and BU cases@Eqs. ~3.11! and
~3.13!, respectively#. The ensuing analysis closely follows
along the lines of the simple 1D case treated in Sec. IV.

1. TD case

Repeating the 1D calculations of Eq.~4.4!, one finds that
now the application of the fractal operator yields

F neiq
W
•rW5sndeis

nqW •rW )
j50

n21 S 11(
i51

k

eis
jqW •aW i LD . ~6.5!

The normalization in the general case is to the relative vol-
ume occupied by the fractal, i.e., (snL)d(k11)n/Ld, since
there are (k11)n fractal elements at thenth iteration, each
with volume (snL)d. Introducing a form factor,

F~qW ![E drWeiq
W
•rWf0~rW !, ~6.6!

the scattering amplitude assumes the following generic form:

f n~qW !5
1

@snd~k11!n#1/2
snd)

j50

n21 S 11(
i51

k

eis
jqW •aW i LDF~qWsn!.

~6.7!

Thus the exact scaling relation for the intensities reads

I n11~qW !5
sd

k11U11(
i51

k

eiq
W
•aW i LU2I n~qWs!, ~6.8!

and by employing the recipe used and justified in Sec. IV for
1D, of evaluating the exponential terms atqW 50, one obtains
the approximate self-affinity relation

I n11~qW !'~k11!sdI n~qWs!. ~6.9!

Expressing this through the Ho¨lder exponent as in the 1D
case,I n11(q)'s2a1I n(sq), one find that the universal rela-
tion between the self-affinity of the intensity spectrum and
the fractal dimension@Eq. ~3.12!#, for a TD fractal support, is

a15D2d, ~6.10!

in agreement with the 1D case.

2. BU case

In strict analogy to the results in 1D@Eqs. ~4.10! and
~4.11!#, one finds in thed-dimensional BU case:

Gneiq
W
•rW5s2dnF neis

2nqW •rW

5F)
j51

n S 11(
i51

k

eis
j2n21qW •aW i LD GeiqW •rW, ~6.11!

f n~qW !5
1

~k11!n/2F )j50

n21 S 11(
i51

k

eis
j2nqW •aW i LD GF~qW !,

~6.12!

F~qW !5E drW eiq
W
•rWf0~rW !. ~6.13!

The normalization reflects that there are now (k11)n el-
ementary units at thenth iteration. Consequently, the scaling
of the intensities is

I n11~qW !

I 0~qW !
5

1

k11U11(
i51

k

eis
21qW •aW i LU2 I n~qW /s!

I 0~qW /s!

'~k11!
I n~qW /s!

I 0~qW /s!
5s2a2

I n~qW /s!

I 0~qW /s!
, ~6.14!

where again

a25D, ~6.15!

with D the fractal dimension@Eq. ~3.12!# of the BU fractal
support. Interestingly, it thus appears that the embedding
space dimension does not enter the scaling in the BU case.
This fact remains to be explained on physical grounds. To
visualize the features of the intensity distribution in this case,
Fig. 6 displays 1D sections of the results of He-scattering
calculations from Ag adatoms centered on a sixth-generation
Sierpinski carpet with an underlying Pt~111! surface~BU
version of Fig. 2!. These results were obtained by employing
Eq. ~6.12! for the structure factor, and Eq.~6.13! for the form
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factor. The latter was calculated in the sudden approximation
with a realistic He-Ag-Pt potential@45# for f0(RW )
5exp@2ih(RW )#.

To summarize, it was shown that irrespectively of the
nature of the probe, for the scattering of a coherent wave by
a deterministic fractal support, the intensity spectrum is ap-
proximately self-affine, with a Ho¨lder exponent trivially re-
lated to the fractal dimension of the support. The next gen-
eralization, necessary to approach realistic situations,
concerns the effect of randomness.

VII. SCATTERING FROM A RANDOMIZED FRACTAL
SUPPORT

Realistic fractals always contain some element of ran-
domness@46#. For example, in DLA@47# the adsorbing par-
ticles perform a random walk and the resulting fractal is
consequently random. Thus it is of major interest to intro-
duce some randomness into the fractals under consideration,
and to investigate its effect on the conclusions reached so far

regarding the scaling properties of the intensity distribution.
In order to meaningfully introduce randomness, it is useful to
preserve the fractal dimensions of the support. Otherwise the
fractal dimension is not a useful descriptor of the scattering
object. This preservation of the fractal dimension can be
achieved by keeping the constant, single contraction factor,
but allowing for adistribution of translations. The transla-
tions will be chosen independently from a given, but arbi-
trary, probability distributionP(aW ), with normalization

E )
i51

k

daW i
j P~aW i

j !51 ~7.1!

for each j . Here, as before,j is the iteration andi the
translation-number index. The results will of course have to
be averaged over the disorder ensemble, denoted by^•••&
and defined as mean values over all possible sets$aW i

j%. Care
must be taken to apply this averaging to the observablein-
tensities~and not the amplitudes!, since physically, one mea-

FIG. 6. Top: Structure factor for He scattering
from Ag adatoms on a Pt~111! surface, with the
Ag adatoms positioned on BU, sixth iteration Si-
erpinski carpet. The generator is a Pt~111! unit
cell (L52.77Å!. The self-similar structure can be
noticed upon careful examination. Bottom: The
complete intensity spectrum, after multiplication
by the form factor~Fig. 7!. The effect is mainly
an overall intensity decrease with increasingq.
The rainbows are too broad to be noticed as in-
dividual peaks.
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sures the intensities from a given realization of the disorder,
and averages over the different measurements. Thus

^I n~qW !&5^u f n~qW !u2&5E )
j50

n21

)
i51

k

daW i
j P~aW i

j !u f n~qW !u2.

~7.2!

In order to visualize the resulting random fractal, it is
useful to return momentarily to the hard-wall, stepped sur-
face language of Sec. IV: The support with randomized
translations has steps of constant width as basic building
blocks, but these are spaced randomly over an underlying
‘‘Cantor grid.’’ Due to the unequal translations, however,
overlaps of steps may now appear, as illustrated in Fig. 1. It
will be shown next that in the present randomized case, again
the intensity spectrum is self-affine, with the same relations
between Ho¨lder exponent and fractal dimensions as for the
nonrandom situation.

The change from the deterministic case is that now the
fractal operator is given by

Fn†5)
j51

n S 11(
i51

k

T2aW
i
jC1/sD , ~7.3!

where the random shifts$aW i
j% are chosen fromP(aW ). Since

one still has two identical contractions, the fractal dimension
is unchanged@Eq. ~3.12!#, as required.

A. TD case

Suppose a measurement is performed on a given random
fractal. As for the calculations leading to the scattering am-
plitude in the deterministic case@Eq. ~6.7!#, the difference
arises in that every translationaW i is replaced byaW i

j , so that
now

f n~qW !5
1

@snd~k11!n#1/2
snd)

j50

n21 S 11(
i51

k

eis
jqW •aW i

j LDF~qWsn!.

~7.4!

The resulting intensities have to be averaged over the disor-
der ensemble:

^I n~qW !&5
snd

~k11!n
I 0~qWs

n!K )
j50

n21 U11(
i51

k

eis
jqWaW i

j LU2L
5

snd

~k11!n
I 0~qWs

n!)
j50

n21 E F)
i51

k

daW i
j P~aW i

j !G
3U11(

i51

k

eis
jqW •aW i

j LU2. ~7.5!

For k51 ~1D!, since the shifts are chosen independently, the
last expression simplifies into a product, and one obtains for
the average intensity:

^I n~q!&5snI 0~qs
n!)

j50

n21

@11^cos~sjqajL !&# ~1D!.

~7.6!

In general, no such simplification occurs, but the scaling is
still tractable:

^I n11~q!&5^I n~qWs!&
sd

k11E F)
i51

k

daW i
0P~aW i

0!G
3U11(

i51

k

eiq
W
•aW i

0LU2. ~7.7!

In order to express this most accurately in the approximate
general self-affine form of Eq.~4.12!, the average should be
performed atqW 50. Using the normalization condition of the
distribution of translations, Eq.~7.1!, one finds

^I n11~q!&5s2a1^I n~qs!&, ~7.8!

with a15D2d, just as in the deterministic case@Eq. ~6.10!#
@48#.

B. BU case

The scattering amplitude is now given by

f n~qW !5
1

~k11!n/2)j50

n21 S 11(
i51

k

eis
j2nqW •aW i

j LDF~qW !. ~7.9!

Averaging the intensities over the disorder ensemble:

^I n~qW !&5
1

~k11!n
I 0~qW !)

j50

n21 E F)
i51

k

daW i
j P~aW i

j !G
3U11(

i51

k

eis
j2nqWaW i

j LU2. ~7.10!

The resulting scaling relation is

^I n11~q!&

I 0~qW !
5

1

k11

^I n~qW /s!&

I 0~qW /s!
E F)

i51

k

daW i
nP~aW i

n!G
3U11(

i51

k

eis
21qW •aW i

nLU2. ~7.11!

Performing the average atq50, one obtains

^I n11~q!&

I 0~qW !
5s2a2

^I n~qW /s!&

I 0~qW /s!
, ~7.12!

with a25D, again as in the deterministic case@Eq. ~6.15!#.
To conclude, translational randomness alone appears to

have no effect on the scaling properties of the diffraction
spectrum.
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VIII. FURTHER PROPERTIES
OF THE DIFFRACTION SPECTRUM

The diffraction spectrum is characterized by more than
just its scaling properties. Such features are discussed next.

A. Role of form factor

So far, most of the discussion has centered around the
universal scaling properties of the diffraction spectrum,
which were completely determined by the ‘‘kinematic’’
structure factor. However, the role of the ‘‘dynamic’’ form
factor cannot be ignored in discussing the properties of the
spectrum. It is in this respect that the different physical
probes discussed in Sec. II differ, and that universality is
broken. The form factor embodies the details of the interac-

tion between probe and scatterer, and through it the potential
enters the intensity spectrum. The example of He scattering
will serve to illustrate the point. In this case, the He-surface
interaction potential enters in a highly nontrivial way@Eq.
~2.10!#. One of the striking consequences is the appearance
of ‘‘rainbow’’ peaks in the diffraction spectrum@37#. These
arise essentially whenever a He atom is scattered from an
inflection point of the potential~corresponding to maximal
force applied to the atom!, typically due to an adsorbed clus-
ter. Following is a brief discussion of the origin and physical
significance of rainbows~see Ref.@49# for a more extensive
treatment!. It is useful to employ a stationary phase, approxi-
mate evaluation of the sudden approximation scattering am-
plitude, Eq.~2.9!. In 1D, the stationary phase condition is

q522 h8~x!, ~8.1!

FIG. 7. Top: Classical turning points for a
single Ag atom adsorbed on a flat Pt~111! sur-
face, for He at normal incidence withkz56
Å21. The inflexion points are indicated~1–3!,
along with rays~guide for the eye only!, indicat-
ing the trajectories of classical particles scattered
from these points~note the difference in scale
between the axes, causing the apparently nonmir-
rorlike reflection!. In the hard-wall approximation
@Eq. ~2.12!#, the inflexion points coincide with
those of the phase-shift function, and approxi-
mately yield the positions of the rainbow peaks
through the stationary phase and singularity con-
ditions @Eqs.~8.1! and~8.3!#. Using this, the scat-
tering angles are found to be~1! 21.3° and~2!
2.4° with respect to the normal to the surface,
corresponding toq52.2 and 0.25 Å21, which
are approximately the rainbow positions indi-
cated in the scattering intensity~bottom!.
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which yieldsx(q). The scattering amplitude is then approxi-
mated by

f ~q!'
eiq•x~q!e2ih@x~q!#

uh9ux~q!
. ~8.2!

The rainbow condition is the existence of an inflection point
in the phase shift:

h9~x!50. ~8.3!

The pointx0 satisfying this condition dominates the scatter-
ing by contributing a large peak. In the classical limit of Eq.
~8.2!, this shows up as a singularity in the intensity distribu-
tion, at momentum transferq0 satisfying the stationary phase
condition@Eq. ~8.1!# together withx0 . The singularity of this
crude classical evaluation is smoothed into a finite peak in
the more refined sudden approximation calculation.

Such sudden approximation calculations were performed
for a Ag/Pt~111! BU Sierpinski-carpet system, with a realis-
tic potential, described in detail in Ref.@45#. The results are
shown in Fig. 6~fractal system! and Fig. 7~rainbow analysis
for a single adsorbate!. It appears that, although for a single
adatom the rainbow peaks are a dominant feature~Fig. 7!, in
the case of a fractal system, their role is rather negligible in
determining the structure of the spectrum~Fig. 6!. The rea-
son for this is that they are far too broad to appear as indi-
vidual peaks, along with those due to the fractal support. The
rainbows, as well as all other features of the form factor, act
as very broadenvelopesto the detailed spectral structure.
The main effect of the form factor is to provide an overall
intensity decrease, without in any way significantly altering
the details of the structure factor. Since in practice one mea-
sures the full intensity distribution, this can have an effect on
its self-affinity properties, and for a BU fractal care should
be taken to divide by the form factor. Similar results are
expected to be found in the diffraction spectra of other
probes, where dynamical factors play an important role, but
cannot lead to very peaked spectral features.

B. ‘‘Bragg conditions’’ and band structure

Consider the conditions for maxima derived from the
scattering amplitudes for TD and BU fractals@Eqs.~6.7! and
~6.12!#. For TD fractals, the condition is

sjqW •aW i5
2pt i
L

, ~8.4!

whereas for BU, it is

sj2nqW •aW i5
2pbi
L

. ~8.5!

Here t i andbi are integers, and 0< j<n21. These are the
‘‘Bragg conditions’’ for iteratively generated fractals. How-
ever, since one cannot speak of a conventional unit cell with
primitive lattice vectors in the fractal context, the present
conditions for maxima are rather different from those for
periodic crystals. For 1D Cantor-like sets, Eqs.~8.4! and
~8.5! reduce to

sjq5
2pt

La
, TD,

sj2nq5
2pb

La
, BU. ~8.6!

Considering first the TD case, the maxima occur for those
q’s which, when multiplied bys0,s1, . . . ,sn21, are always
integer multiples of 2p/La. For the ternary Cantor set
(s51/3,a52/3), with L51, theseq’s are all the integer
multiples of 3np. For 1/s equal to an arbitraryinteger, these
are the integer multiples of (1/s)n21(2p/La). For 1/s non-
integer, see Ref.@27#. Cast in the usual Bragg condition lan-
guage,Lasn21 would be an effective ‘‘lattice constant.’’ The
meaning of this number in the present context is similar: it is
the length of the elementary building block of the fractal at
the nth iteration: the union of adjacent narrow black and
white bars in Fig. 1~left!. However, larger structures also
repeat themselves in the fractal, with smaller frequency.
These give rise to the secondary maxima in Fig. 3, and math-
ematically correspond to thoseq’s which yield integer mul-
tiples of 2p/La for only a subset ofs0,s1, . . . ,sn21. The
incommensurability of these varying-scale repeating struc-
tures is what yields the multitude of peaks in the spectrum,
as opposed to just Bragg peaks in the case of a periodic
crystal, and is ultimately responsible for the self-affinity of
the spectrum. The more general conditions, Eqs.~8.4! and
~8.5!, can be interpreted in a similar fashion.

The distinction between the BU and TD cases is straight-
forward: the peak spacings in the former tend to zero@with
the peak nearest to the specular found at (2p/La)sn#,
whereas in the latter the spacing is unbounded. The only

FIG. 8. Log-log plots of the exact cumulative-mass relation@Eq.
~9.5!# for a seventh-iteration ternary Cantor set, and a power law
with exponent equal to this set’s fractal dimension@Eq. ~9.1!#.
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limitation on the position of the furthestobservablepeak in
the TD case is energy conservation. In both cases, however,
the structure factors are invariant under a combination of
translations and dilations~apart from the reduction in inten-
sities, responsible for the self-affine properties!. One is thus
led to define a new basis of primitive vectors for the recip-
rocal space, from which a Brillouin zone can be constructed.
As seen in Fig. 3, the regions connected by these operations
do not overlap, and can be considered as separatebands. A
detailed treatment of this point is given in Ref.@27#, and will
not be repeated here.

IX. SELF-AFFINE OR POWER-LAW?

As mentioned in the Introduction, the common wisdom
relating to scattering byrandomfractal objects~e.g., porous
solids @16,17#!, amply confirmed experimentally, is that
close to the specular the intensity satisfies a power law:

I ~q!'q2g, ~9.1!

with g5D1const. This power-law decay is clearly very dif-
ferent from the self-affine intensity spectrum predicted here
for iterative fractals. Considering the unquestionable experi-
mental evidence for the power law, this discrepancy calls for
clarification. The following arguments may shed some light
on this issue.

In order to derive the power law@Eq. ~9.1!#, one typically
starts with the definition of a ‘‘mass fractal dimension,’’ de-
scribing the scaling of the massN(r ) enclosed in a sphere of
radiusr , centered at an arbitrary point in the fractal:

N~r !'r D. ~9.2!

If the fractal is self-averaging~an assumption which is im-
plicit in the derivation of, e.g., Refs.@16,18#!, then this mass
is related to the pair distribution functiong(r ) by

N~r !5^r&E
0

r

g~r 8!ddr 8, ~9.3!

with d the embedding space dimension and^r& the average
density. From general scattering theory it is known that the
structure factor is

S~qW !511^r&E @g~r !21#eiq
W
•rWddr . ~9.4!

From here one arrives at Eq.~9.1! ~see Ref.@6# for details!.
It is thus seen that the crucial assumption invoked in this

derivation is the scaling law~9.2!. It must be realized, how-
ever, that this expression is in many cases only trueon av-
erage. This can be seen very clearly for the ternary Cantor
set ~Fig. 1!. Suppose the set has bars of unit height and one
calculates its cumulative massN( j ) in the j th iteration, start-
ing from the left, and in terms of the number of black bars.
Then the following recursion formula may easily be verified:

N~ j11!5N~ j !ø$uN~ j !utimes@ last~N~ j !!#%ø$Nl
~ j !

1@ last~N~ j !!#% l51
uN~ j !u , N~0!5$1%. ~9.5!

HereuN( j )u is the length of the sequenceN( j ) and last(N( j )) is
its last term. Indeed, the zeroth-iteration ternary Cantor set
consists of one black bar, the first iteration has a cumulative
mass of$1,1,2% black bars, the second iteration has mass
$1,1,2,2,2,2,3,3,4%, etc. In Fig. 8N(7) is displayed on a log-
log plot, together with the power-lawN(r ) ~as suggested
from Eq. ~9.2!, i.e., a line with slope ln2/ln3, the fractal
dimension of the ternary Cantor set. It can be seen that this
line serves as an accurateenvelopeto the actualN(r ), which
is in fact a ‘‘Devil’s staircase,’’ with a very rich~fractal!
structure. This example illustrates the general situation: A
simple scaling law of the form of Eq.~9.1! is only anaver-
agerepresentation of the actual cumulative mass function of
a fractal, which may in fact not be self-averaging. Since in
this work the exact properties of the fractal@i.e., equivalent
to Eq. ~9.5!# were used to calculate the scattering intensities,
it should now come as no surprise that the resulting diffrac-
tion spectra themselves displayed the full, rich structure of
the scattering fractal object. Conversely, had the power-law
form of Eq. ~9.1! been used in the present scattering calcu-
lations, the result would have been a power-law decay of the
intensity.

Why then do experiments from natural fractals yield the
power law? The preceding arguments strongly suggest that
this is related to an averaging process which smoothes the
fine structure of the intensity distribution.A priori, two types
of averages could be considered:~1! over the position of the
center point of the cumulative-mass calculation, and~2! over
the disorder ensemble. The first type can be ruled out imme-
diately, however, since it is common to both the power-law
and self-affine spectra derivations: The calculation of anin-
tensityinvolves a double integral in whichall pairs of points
appear in the form**drdr8exp@iq(r82r)#n(r)n(r8). This au-
tomatically performs the first type of average. Thus, by
elimination, the ensemble average appears to be responsible
for smoothing out the self-affine properties into a simple
power-law decay. Indeed, in the deterministic iterative frac-
tals considered here, there is of course no ensemble to aver-
age over, in contrast to the typical experimental situation.
Interestingly, the random fractals of Sec. VII are ‘‘not ran-
dom enough,’’ since they also display a self-affine spectrum.
The type of randomness encountered in experiments yielding
the power law must lead, in contrast, to self-averaging be-
tween the physical cutoffs. There is a further difference be-
tween the randomness considered here and that encountered
in experiments, namely, in the latter the randomness does not
preserve the fractal dimension above the upper cutoff. In
contrast, the type of randomness considered in this work pre-
serves the fractal dimension on all scales. It is possible that
this difference plays a role in creating the discrepancy be-
tween the experimental power-law results and the theory pre-
sented here.

X. CONCLUSIONS

In summary, the diffractal–Fourier-transform problem,
for scattering of coherent waves from a wide class of itera-
tively constructed fractals, was solved analytically, yielding
the scaling properties of the diffraction spectrum. The class
of fractals considered here is not that which is typically ob-
served in scattering experiments, and is characterized by a
self-affine intensity spectrum. A simple relation was found to
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exist between the self-affinity exponent of this spectrum and
the fractal dimension of the scattering fractal support. In con-
trast, many experiments yield intensity distributions charac-
terized by a power-law decay. It is argued here that this is
predominantly the result of scattering fromself-averaging
random fractals, which are more abundant in experimental
realizations of fractality. The results apply to a large variety
of scattering probes, from neutron to He scattering, the con-
dition being the applicability of the Fourier transform. The
differences among the probes are contained in a form factor,
which, however, does not seem to have an important role in
determining the details of the diffraction spectrum. It would
be of interest to see whether scattering from non-self-
averaging~random! fractal systems will yield a self-affine

intensity spectrum as predicted here. Further theoretical
work will concentrate on generalizing the types of random-
ness studied here, and on investigating the possible role of
cutoffs in leading to the power-law decay of the intensity
observed in many experiments.
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