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Elastic scattering by deterministic and random fractals: Self-affinity of the diffraction spectrum
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The diffraction spectrum of coherent waves scattered from fractal supports is calculated exactly. The fractals
considered are of the class generated iteratively by successive dilations and translations, and include generali-
zations of the Cantor set and Sierpinski carpet as special cases. Also randomized versions of these fractals are
treated. The general result is that the diffraction intensities obey a strict recursion relation, and become
self-affine in the limit of large iteration number, with a self-affinity exponent related directly to the fractal
dimension of the scattering object. Applications include neutron scattering, x rays, optical diffraction, magnetic
resonance imaging, electron diffraction, and He scattering, which all display the same universal scaling.
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I. INTRODUCTION The well-known result is that the intensityq) decays as a
power law of the momentum transfgr with the exponent
Scattering is one of the most important methods of obserrelated to the fractal dimensidd of the scatteref6,14—-1§.
vation of structural properties of mattgt—6]. Fractals, on Since they are naturally less abundant, much less attention
the other hand, have in recent years received enormous dias been devoted to the scattering from fractals which can be
tention as models for the structure of maftér10]. Thus the  constructed by a deterministic set of iterative rules. Scatter-
relation between the two is of very general interest, as iing from such fractals, as well as randomized versions of
provides an essential connection between physical obserthem, will be the subject of this paper. The few examples
ables and the highly intriguing fractal geometry of matter.include Berry’s[11] above-mentioned work; further, mainly
The first to consider this relation was probably Befiy], in optics, calculations on wave transmissipi®,2(0 and
who calculated some important averages for scattering by Braunhofer diffractiorf21—24, on Cantor bars, Koch frac-
random self-affine screen, coining the term “diffractal” for tals, or Sierpinski-carpet like media; in x rays, numerical
waves that have encountered fractals. In subsequent works,gélculations on scattering by a Menger sporig@g], and
was demonstrated that diffractals have properties that diffemeasurements on diffraction from Cantor latti¢@§]. The
significantly from “ordinary” scattered waves. The central most extensive treatment is probably due to Allain and Cloi-
feature that distinguishes diffractals from ordinary wavetre [27-29. In Ref.[28], these authors reported an optical
fields (where geometrical optics applies that they are scat- diffraction experiment on deterministically generated Cantor
tered by objects that have structure on all scales, in particuldsars and Vicsek fractals, and showed the resulting structure
near their wavelength. This fact gives rise to variouscal-  factor to be self-similar. In Refd27,29, they analytically
ing laws of the diffraction spectrum, reflecting the fractal solved and discussed properties such as band structure and
structure of the scattering object. In contrast, in scatteringcaling, for the diffraction problem in the case of scattering
from crystalline material, characteristic interferei8tagg from a class of fractals similar to those to be discussed here.
peaksare observed, which are related through their positionsdowever, their discussion is essentially limited to Fraun-
to the underlying crystal structure. hofer diffraction and does not include random fractals. Dif-
In a large variety of fields scattering processes can béractal scattering for probes such as He scattering or MRI
described by aFourier transform (FT), which relates the appears not to have been discussed in the literature. Thus,
scattering amplitude to some local density or potential. Exthere seems to have been no general treatment of the
amples(to be dealt with in some detail in Sec) ihclude diffractal-FT problem.
neutron and x-ray scatterinfp], optical diffraction [1], The purpose of the present contribution is to demonstrate
nuclear magnetic resonance imagifigRI) [12], electron that an exact solution for this problem is possible, in the case
scattering[3], and helium scatterinfl3]. In all these cases of scattering by objects on an iteratively generabesttal
the FT is an approximation, but its generality and simplicity support(see Fig. 2 for an illustration of the concgpThe
have rendered it by far the most widely used approach telass of fractal objects that will be considered here are those
scattering problems. The FT is applicable if multiple scatterthat can be generated by a combination of dilations and
ing and resonances can be neglected, which is typically thganslations. Well-known examples of such objects include
case under conditions of high incidence energy. A large bulKgeneralizations ofthe Cantor set, Vicsek fractal, and Sier-
of literature, theoretical as well as experimental, exists orpinski carpe{30]. An operator formalism will be introduced
scattering in the FT approximation fromandom fractals.  for this purpose in Sec. I, which will allow the treatment of
diverse scattering conditions. It will appear in Secs. IV-VII
that whereas some details of the diffraction spectrum are
“Electronic address: http://iwww.fh.huji.ac-lbani context sensitive(i.e., determined by a form factprthe
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observable diffraction spectrum, for various physical ex-
amples to which the FT is applicable. The ultimate goal is to
show that in spite of the apparently very different way in
which the interactionpotentia) between the wave and the

“H“ “H" ‘I‘“ “““ scattering object enters the formulation in each of the cases

considered, there are certain universal features in the scatter-
ing intensities, which reflect only the underlying fractal ge-
ometry of the scatterer. The different examples are presented
below in increasing order of computational probe-object in-

FIG. 1. Left: third and fourth iterations of a step on a ternary teraction complexity. Thus, whereas neutron scatte(8er.

Cantor set support. Middle and right: same, but with randomized! A) iUV0|V93 merely a discre_te Fourier sum over the nuclear
translations. coordinates, electron scatterifgec. Il B requires the FT of

a potential which is a functional of the local electron density,
overall structure is determined by a universal, contextand He scatteringSec. Il B necessitates the Fourier trans-
independent scaling relation. This conclusion is unalteredormation of a functional of the interaction potential itself.
(Sec. VI) by the introduction of a fractal dimension- Yet, it should be emphasized that the results presented in this
preserving randomness. Following this finding, Secs. VIlIwork, all pertain exclusively tdocal interaction potentials
and IX attempt to address the connection between the resultgs holds for all the examples considered belodonlocal
derived here for a somewhat artificial class of fractals, andotentials have been successfully considered in the literature
the standardpower-law expressions used to interpret scat- as well, mainly in low-energy nuclear problerf&2,33.
tering data from natural fractals, such as self-similarity dis- Notation and conventions: The momentum transfer is de-
playing porous materials, aggregates, or ramified structuresioted byq; the scattering amplitude biy(q); spatial vectors

The fractal scattering object can be generated in two esyy /—(x,y,7). Elastic scattering is assumed throughout. As
sentially different ways: from bottom-ughenceforth BU—  gmphasized in each of the subsections below, the FT is es-

iterative inflation or from top-down(TE_)—itera_tive _refine- sentially always the consequence of a high-energy approxi-
mend. In the former, the smallest unit remains fixed, andmation.

structure appears at ever larger scales, limited of course by a
natural upper cutoff. This structure is reflected at ever
smallerscales in momentum space. A fixed point is reached
where further spectral details are indiscernible, either due to Neutrons may couple by virtue of their spin to magnetic
experimental resolution constraints or when the wavelengtimoments. However, the interaction of interest in the present
becomes larger than the upper cutoff. To every iteration otontext, i.e, which gives rise to a Fourier integral, is with
the fractal support there corresponds a diffraction spectrutmonmagnetic material, where neutrons are scattered by the
Subsequent diffraction-spectrum iterations may be equateduclei. Due to the extremely short range of the strong force,
when the fixed point is reached. The BU description is apthis process is treated almost exactly in the Born approxima-
propriate, e.g., in the case of a fractal formed around a singléon. The neutron-nucleus interaction potenfisge Eq(2.7)]
nucleation center in a deposition process, as coverage is iiis essentially a function(the “Fermi pseudopotential5]),
creased. In the TD case, thg total system size is flxed angb that if the nuclear positions afe}, then
structure appears at progressively smaller scales, limited by a

natural lower cutoff. This description is probably more ap- - _igor
propriate for the physical formation of fractal structures by f(Q)_CZ e~
removal of material (pore fractals[31]). If the wavelength

A of the incident waves is fixed, there will necessarily beThe accuracy of this expression depends on the extent to
another fixed point, where structure develops belovwand \hich one may neglect incoherent scattering due to isotopes,
further fractal details are indiscernible. Another possibility is 31d inelastic diffraction due to variation of the structure with
that\ becomes smaller than the lower cutoff. In both casesime (thermal vibrations or atom diffusion

subsequent iterations of the diffraction spectrum can then
again be equated. Consequently, in both BU and TD cases,

A. Neutron scattering

(2.7

as will be shown here, the diffraction spectrum becofags B. X rays

proximately self-affine and the self-affinity(or Holder) ex- The well-known Laue derivatiof34] yields the relation

ponent is simply related to the fractal dimension of the scat-

tering object. The central result derived here is that this - :j S P\l T

conclusion is unaltered neither by the physical identity of f@ drn(re 2.2

many scattering probes, nor by the introduction of a fractal R

dimension-preserving randomness. between the local electron concentratiofr) and the x-ray

scattering amplitude. The assumptions underlying the Laue

Il. FOURIER-TRANSFORM RELATIONS derivation are essentially that the polarization and electric
FOR COHERENT WAVE SCATTERING field intensity are linearly and locally related by the dielectric

susceptibilityX(F), which itself is frequency independent.
The purpose of this section is to summarize the relatiorFurthermore, at the inherenthhigh x-ray frequencies
between the structural properties of the scattering set and the<1, which allows for a decoupling of the equations result-
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ing from the attempt to solve the electromagnetic wave equavalid at high energiesand assuming that the electrdof

tion in the crystal lattice, and yields ER.2). massm) sees a fixed electrostatic potential due to a charge
densityn(F),
C. Optical diffraction .
The FT arises in optics in the case of Fraunhofer diffrac- V(r)= _ef dr’ T(r:) . (2.9
tion. This holds when both source and observation point are [r—r’|

located very far from the aperture, although some more gen-
eral conditions exis{1]. The Fraunhofer formula results This expression neglects the possible polarization of the
from the small-wavelengthKirchhoff theory [35], which  atom by the incident electron, as well as exchange effects
solves the wave equation under Huygens-Fresnel boundafg].
conditions. The assumed smallness of the optical wavelength
in comparison with the dimensions of the diffracting ob-
stacles implies that in optical diffraction, the BU fractal con- )
struction is more natural. Essentially, Fraunhofer diffraction ~The He-surface scattering problem has been successfully
occurs when a coherent light wave is scattered by an objedfeated within the sudden approximatif#6,37, which as-
with transmission function(F), and the light amplitude is shumes digh perpﬁndlcular mI?Teml:]m cha;nge comp)lia\red to
obtained by a coherent superposition the momentum change parallel to the sur dessentially a
high energy approximationUnder the presence of an arbi-

F. He scattering

- TN trary He-surface potentiaU(Ii,z), the sudden approxima-
f(q)=C | dr t(r)e"". (23 tion yields the scattering amplitudes as
£ _l dRelR-Qg2i 7(R) 29
D. Magnetic resonance imaging (Q)= Ala e e ' 2.9

Suppose the local nuclear spin density in a sample is
p(r), and that an oscillating magnetic field with local Lar- Where the phase-shift function is given in the WKB approxi-

mor frequencyw(F) is applied to it. It is conventionally as- Mation by
sumed in MRI that the Larmor frequency is linear in the

nuclear spin coordinates: 7(R)= foc dz gl

12
(k?—?wfe,z)) —kz}—kzaﬁ).
- > - - &R)
o(r)=1y|Bg|+yG-r, (2.9 (2.10

where vy is the gyromagnetic ratio anfl, is the polarizing Here R=(xy), Q=(0x,qy), andk; is the vyave-n.umaber
field, much larger than the linearly varying gradient field, of ©©mPonent normal to the surface. The turning poif(t)

= . . . i luti h i
which G is the gradient. In practice, heterodyne mixing are obtained as solutions to the energy equation

eliminates the termy|By|, and the integrated MRI signal 52K2
amplitude can be written as U[R&R)]= 2mz‘ (2.11
f(t):f drp(r)€ 76 1t (2.5 with m the mass of the He atom. Effects such as resonances,
multiple collisions, and dynamic polarization are neglected.

For a hard-wall potential
A reciprocal space vectar= yGt is introduced 12], show-

ing thatq space may be traversed by moving either in time U(R 21— 0, z=¢&R)
or in gradient magnitude, so that (R2)= %, 7<£R)
f(a):f de(F)e“i'F. 2.6 so that from Eq(2.10 it follows that in this case:

7(R)=—k&(R), (212
Equation (2.6) assumesapid signal acquisition(after the
excitation pulsg so that spin relaxation, dipolar and scalar as in the eikonal approximation in optics.
coupling, or spin translation, do not distort the signal.

IIl. GENERATION OF FUNCTIONS ON FRACTAL SETS

E. Scattering of electrons from atoms BY DILATION AND TRANSLATION OPERATORS
Here one often applies the Born approximation, Having seen the generality of the FT in diffraction prob-
lems, the generation of the scattering fractal support is given
= m > g o next. The construction to be described below is in the spirit
_ q-r
f@ 277J dre V), @7 of the iterated function system formalism of Barns[&g].
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T, shifts the function it operates on by an amoant to the

left, andC stretches the function by a factor ofs1Mhen
applied in the inverse sense as required by the definition of
F', it is easily checked that & (x)=F"&(x)
=&o(x/s)+ &gl (x—aL)/s], and thaté,(x)=(F)"&x(X) is
indeed amth iteration stepped Cantor surface, as illustrated
in Fig. 1. Barnsley{38] and Vicsek[39] provide a general
theorem for the calculation of the fractal dimensibnof
such iteratively constructed fractald; is the solution of the

equation
n
> sP=1, (3.4)
i=1
wheres; are all the contraction factors. Thus in the present
case:
2
In(2)
D: = ——
2}1 sP=1=1D (15" (3.5

To derive the algebraic properties of the above operators, it
is convenient to express them in exponential fofiphas the
well-known momentum-operator representation

T,=e%, (3.6)

This can be used to find a similar representation(tar Let
p=In(s), y=In(x), and g(y)=h(x). The argument of
h(sx) can then be expressed in terms of a sum:
h(sx)=h[exply+uw)]=9(y+u). But this is exactly in the
form of a translation, so that using the representatio,of
one finds: g(y+u)=expud)g(y). Noting that
dy= din=Xdy, One obtains the desired representation:

Cs: eln(s)xaxl (37)

FIG. 2. Generator and first two iterations of the top-down Sier-From here, using,= —d, and d,x=1+Xxd,, it is easily
pinski carpet, supporting a harmonic potential wethntour lines. seen that
By expanding each iteration so that every square is of unit size, the
corresponding bottom-up fractal can be obtained. 7’;: T 2

A. Simple example + 1
. ' : . Cs==Cyss- (3.8
Consider first as an introductory example the construction S

of a characteristic function on the usugrnary Cantor set

(Fig. 1, lefy: One first contracts the generatrero-order B. General construction of functions on fractals

iteration), &y(x) =1 (0<x<L), by a factor 3, and then places i )

one copy of the contracted version at the origin, and another 1h€ above formalism for TD fractals can easily be ex-
translated by /3 from the origin. This can be generalized Eended to arbitrary dimension, as well as to BU fractals. Let
to contractions by a factor 4(0<s<1) and translations by = (X1,....Xq) be a vector ird dimensions. Then the gener-
aL. The corresponding THractal operatoris (the reason for ~ alization of the one-dimensionélD) translation and dilation

using the adjoint will become clear in Sec.)IV operators is
Fr=(1+T_)Cs, 3.0 T:h(r)=h(r+aL),
where thetranslation operatoris defined as Csh(F)zh(sF). (3.9
T.h(x)=h(x+alL), (3.2 In exponential representation, it is easily seen that
and thedilation operatoris defined as T:= eLa'V,

C.h(x)=h(sx). 3.3 C,=ener-v, (3.10
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A very wide class of fractals can be generated by using
single contraction factos [40]:

k
Fr=11+> T_g_)cl,s.
=1 !

(3.11

For example, the Vicsek fractfB9] results by choosing

s=1/3; {a}={(2/3,0,(1/3,1/3,(0,2/3,(2/3,2/3},

whereas the Sierpinski carpet is generated by

s=1/3;

{a;}={(1/3,0,(2/3,0,(0,1/3),
X (0,2/3,(1/3,2/3,(2/3,1/3,(2/3,2/3}

(Fig. 2. Equation(3.4) for the calculation of the fractal di-
mension applies again, and one obtains in the present cas

k+1

In(k+1)
sP=1= D=

In(1/s) ° (312
The BU fractal is most easily derived by employing the
general fractal operat¢Eg. (3.11)], and the observation that
repeatedlyexpandingthe TD fractal achieves the desired re-
sult. Thus the general BU fractal operator is

Ga=(CY"(FN". (3.13

Note that with this definition, it is guaranteed that the small-

est building block making up the fractal is of unit length.
Since the expansion is one-sided, the fractal thus obtained
semi-infinite.

For future reference it is convenient to note, using Eqgs
(3.8 for 7; andCg, that

IV. INTRODUCTORY EXAMPLE:
ONE-DIMENSIONAL HARD-WALL He SCATTERING
FROM A CANTOR SET

k
+> T
=1

F=s9C,

Ga=s"9NFCh.. (3.14

With the fractal operators defined, a simple but prototypi-

cal diffractal-FT problem can now be discussed. One may,,
e.g., consider 1D He scattering in the presence of a hard—wall?

potential[Egs.(2.9) and(2.12], with the shape function

I!
01

xeC,

fn(X) =

otherwise.

C,, denotes thanth approximation to the Cantor set.

A. Calculation of the intensity distribution

1. TD case

Denoting the phase shift of a He atom with perpendicular

wave numbek, and striking a step of heightby
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a d=—2Kk,l, (4.1)

one notes that expb&,(X)/I]=exp(P) for xe C,, and 1 oth-
erwise. This calls for a normalized characteristic function on
the Cantor set. Such a function is just QF")"&(x).
Therefore the scattering amplitude[EBq. (2.9) in 1D]

id

1t ] xe Tyn
fn(q)=[f0 dx € —=[(F)"éo(x)]

1t éqx 1 tyn
+EJ0 dx 1= 7LF)"&(0)]

e®—1
LI

[ axtewz

1L iax
+ EL dx €9%Eq(X). (4.2

e:

The last term is evidently just the specular contribution, and
will henceforth be assumed subtracted out. The penultimate
term contains the fractal operator, which in the present case
equals[Eq. (3.14)]

F=sC(1+T). 4.3

What remains is to calculatg"e'd*;

FelP=sCJ(1+e'98L)elX]=g(1+e'93L)eldsx,

}-Zeiqxzs(l_,_eiqaL)]_-eiqsx: SZ(1+eiqaL)(l_,_eiqsaL)eiqszx,
is (4.4)

from which the general pattern can be inferred:

n
Fhelax— Sneiqs”xl_[ (1+ eiqasz ’l)_
i=1

(4.5

This prototypical expression, or slight variants of it, will ap-
pear repeatedly when more complicated cases are treated in
later sections. Before the intensities are obtained, the ques-
tion of normalization must be addressed. Since the Cantor set
and its generalizations discussed here have measure zero, the
intensity is expected to vanish. This can be avoided if the
intensityis normalized to the relative length occupied by the
Cantor set support at theh iteration. There are™2steps in

the set, each of lengt'L, resulting in a normalization fac-

of (2s)".

The integration leading to the scattering amplityés.

(4.2)] can now be performed, yielding, after normalization:

n—1
(eiqsnL_ 1)]1:[() (1+ eiqaLSJ).

(4.6

e®-1

fa(q)= W iqL

The last result bears some resemblance to (tuenplex)
Weierstrass-Mandelbrot functid],

©

W) =(1-w?) 123 wie?msa_1)  (4.7)
j=—»
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which suggests that the off-specular amplitude, as well as the 1 2\?
intensity, ()= (25)( )[1 cog®)][1—cogqgs"L)]

In(a)=[fn(a)[%, (4.8

may beself-affinefunctions. Before this is investigated, con-
sider first the BU construction.

n—1

X 2“_1'[0 [1+cogqals)]|. (4.13
&

The recursion-scaling relation follows once it is recognized
2. BU case that the scale factdp from Eq. (4.12 is the dilation factor
Essentially, all that needs to be done is to replace the T in the present case:
operatorF" in the preceding section everywhere by the BU
operatorG, . From Eq.(3.14) this operator is in the 1D case: In+1(q)=sly(sg@[1+cogqal)]. (4.149

Ga=s "F'CI. 4.9 Clearly, due to the presence of the cosine factor, this is not in
the form of the self-affine scaling relation of E@.12),
When this is applied to the Fourier basis set one finds where aconstantfactor multiplies thenth iteration. How-
ever, in the TD case, successive fractal iterations will result
in successive diffraction spectra that differ at ever langer
scalesgmay, the largest possible, is fixed by energy con-
(4.10  servation, irrespective of the structure of the scattering frac-
tal set. Therefore, when the finest fractal detaik,, be-
where the last equality follows from the general result forcomes smaller than 2/qm.4, it becomes physically
F"e'%* [Eq. (4.5]. As for normalization, since the fractal reasonable to equate successive iterations. For these to match
grows indefinitely in the BU case, it is most convenient toin the sense of Eq4.12), the simplest criterion is to require
normalize the intensity by the number of elementary unitsequality of the intensities in the vicinity of the specular,

n

gneiqxzsfn]_—neis_"qx: H (1+eis
=1

j_”_lqaL) giax

This is 2 for the nth iteration. g—0 (at the price of mismatch increasing wif). Proceed-
In anticipation of the more general treatment ofing thus, Eq.(4.14 will be in the form of the self-affinity
Sec. VI, the scattering  amplitude f,(q)=  relation [Eq. (4.12] if cos(qal) is evaluated ag=0. For
(11L) f5dx explgx)exd —2ik,£,(x)] can now be written as  then one finds
1 ' lns2(0) =S “11(s0), (4.19
fo(a)=| g ]l (1€ F(a), e o
where
1L . =D—
:[f dx €% go(x). a;=D-1 (4.16
0
with D the fractal dimension of the Cantor séfq. (3.5).
ho(x)=e 2Kzt (4.1)  Thus, the self-affinity exponent of the intensity spectrum is

_ related to the fractal dimension of the object scattered from.
whereF(q) can be interpreted asfarm factorand the term  The reason for the specific form of the expressiondomwill

in square brackets assaructure factor §q) [41]. become clear in Sec. VI B. The accuracy with which Eq.
(4.15 produces the required scaling can be seen in Fig. 3.

B. Recursion relation and self-affinity Plotted there are the intensities for He scattering from a 1D

of the off-specular intensity distribution hard-wall step function arrangement on two different Cantor

Similarly to the fractal sets described above, self-affine® set supportgsee caption for detailsSignificantly, the inten-
functions can be constructed iteratively, for example, as de sities ofall maxima(not just the specular, corresponding to
terministic models of random walki31,39,42. At each g=0) are accurately reproduced. This situation can only be

stage, a function of this type satisfies the recursive scalin xpectgd_ to improve an is increased, demonstrating the
relation elf-affinity of the spectrum.

hy.1(X)=b™*h,(bx), (4.12 2. BU case
The scaling relation in this case is somewhat different

and becomes rigorously self-affine in the limit>. a is  fom the TD fractal. From the scattering amplitude calcu-
denoted the Hder, or self-affine, expone#2]. An analo-  |5ted for the BU fractal§EQs. (4.11)] one finds
gous recursion relation will now be derived for the off-

s_pecular amplitude; a}nd intensitig$q) of the previous sec- lhes(Q) A(a/s)
tions. In then—o limit, these are therefore also self-affine e =[1+cogs” qaL)] @s)’ (4.17
functions. old o(d

implying that scaling is obeyed to within the form factae,

only the structure factor, not the intensity, is fully scale in-
Using the result derived previously for the scattering am-variany. For a BU fractal, features in successive diffraction

plitude [Eq. (4.6)], the intensity satisfies spectra develop at evemaller gscales. Beyond the experi-

1. TD case
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ot s=1/3, a=2/3
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q

FIG. 3. Test of the scaling relation for TD fractdlEq. (4.15]: Superimposed intensitig@rbitrary unit$, from Eq. (4.13, for He
scattering by a hard-wall step function, built on the fifth and sixth iterations of a terapy and generalized TD Cantor set with
s=1/5, a=4/7 (bottom). The intensity from the fifth iteratiofdotted ling is rescaled according to EG}.15. Clearly, the rescaled intensity
serves as an accurate envelope. Inrthe limit, therefore, subsequent iterations become indistinguishable and the intensity is self-affine.
The insets show magnifications, in which a coarse-grained reproduction of the entire peak structure can be identified, illustrating the

self-similarity of the spectrum.

mentalg-space resolution, it is physically reasonable, as in lnea(@)  1n(als)

the TD case, to compare successive iterations, and to require Io(q) ~ “ZI a/s)’ (4.18
the intensities in the vicinity of the speculag--0) to be 0 0

equal. Substituting 1 for cogdl), it is now found that where
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s=1/3, a=2/3

T T T T T T T T

— =6

n=>5, rescaled

53.3 T T T T T .

427

32.0

structure factor

21.3

10.7
FIG. 4. Test of the scaling relation for BU
fractals[Eq. (4.18]: Superimposed structure fac-
tors(arbitrary unit$, from Eq.(4.11), for He scat-
tering by a hard-wall step function, built on the
@ q same Cantor sets as in Fig. 3. The intensity from
the fifth iteration(dashed lingis rescaled accord-

s=1/5, a=4/7 . . . .
63.9 ; , . . i : ing to Eq. (4.18. Again, the rescaled intensity
— =6 serves as an accurate envelope, although the
n=5, rescaled agreement worsens with increasipginsets as in
Fig. 3.
8
[5]
£
fod
3
Q
=
17
(b) q

a,=D, (4.19 2—1.59=0.41 are obtained, compare favorably with the pre-
diction of Eg. (4.19, yielding a,=In(2)/In(3)=0.631 and
a>=In(2)/In(5)=0.43. Significantly, the log-log plots are
éstraight over two orders of magnitude, and the higher-order
iteration (h=38) yields a more accurate exponent. Note fur-
ther that this experimental-like analysis yields the same self-
affinity exponent as the scaling analysis leading to Eq.
. - (4.19, without the g=0 approximation
3. Numerical check of the self-affinity In conclusion of this section, the analysis of both TD and

To further test the self-affinity, the Hier exponents of BU fractals suggests th&l) the scattering intensity from a
the structure factors for He scattering from hard-wall stepfractal surface is itself (approximately) self-affingnd (2)
functions on am=28 ternary anch=6, s=1/5,a=4/7 Can- the fractal dimension of the scattering surface manifests it-
tor set(Fig. 4) were calculated, using the reliable and accu-self simply through the Hder exponent of the scattering
rateepsilon-variationmethod[43,44]. The result is shown in intensity Hence an analysis of the scaling properties of the
Fig. 5. The respective regression slopes of 1.367 and 1.58cattering intensity should reveal if the scattering surface is
from which self-affinity exponents of 21.367=0.633 and fractal, and if so, what its fractal dimension is.

with D again the fractal dimension of the Cantor set, Eq
(3.5). This is demonstrated in Fig. 4, where the scaling recip
with a, is seen to hold with high accuracy.
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: : : , 3 ho(X) =hol #(x)]={al p(x) I} =f[g' () ]=f[(PY)(X)],

(5.9
O variation data (s=1/5, a=4/7, n=6)
regression: slope=1. i ic i i
o vediaton dath ot 22213, 1) which is identical to the RHS of Ed5.2), so that the com-
24 - —-— regression: slope=1.367 4 . mutation property holds.
EFB Note also that nothing in the above discussion restricted
the result to 1D: the commutation property holds in arbitrary
sl dimension. Thus a useful corollary follows immediately. Let
' 1 dG(x,2)/9z=g(x,z). Then by the commutation property:
_ ()
g Pf 9(x,2)dz=P{G[x,{(x) ]~ G[x,£(X) ]}
= 1.2 9 &(X)
- =G{d(x), L ()T}~ G{b(x),£[ S(x)]}
07 4 PL(X) {dLe(x)]
J Pg(x,Z)dZ=f 9(é(x),2)dz
PE(X) (%]
=G{(x). L[ d(X) ]}~ C{&(X), [ (X1},
0.1 f R
so that
¢(x) PL(X)
04 . 1 s ‘ s Pf g(x,z)dz:f Pa(x,z)dz (5.5
2.6 2.2 -1.9 -15 12 -0.8 £(X) PE(X)
10g,(€)

VI. GENERAL DETERMINISTIC

FIG. 5. Results ofe-variation analysid43] of the intensities DIFFRACTAL —FOURIER-TRANSFORM PROBLEM

displayed in Fig. 4. The slope of the log-log plots yields the self-

affinity exponent as 0.633 for the=8 ternary Cantor set and 0.41 The tools are now prepared to consider the general, deter-

for then=6, s=1/5, a=4/7 set. ministic, diffractal-FT problem. This will require the use of
the commutation property of change-of-variable operators to

In the following sections it will be shown that this con- treat the variety of scattering probes discussed in Sec. Il in a

clusion holds for the generaarbitrary local potential, any unified way.

dimension diffractal-FT problem. However, first a commu-

tation property of the operators under discussion must be A. Structure of the Fourier integral

established. This property will make it possible to demon- ) . )

strate that the scaling discussed above is indeed independent 1 N€ ingredients entering the general problem @jethe

of the nature of the scattering probe, and is instead exclE T relations from Sec. Il, an@) the realization that in every

sively determined by the geometry of the fractal scatteringUch instance, the fractal structure may be introduced into

object. he problem by the repeated application of fractal operators
toa generatoEO(F). The structure of the general scattering

V. COMMUTATION PROPERTY amplitude is therefore

OF CHANGE-OF-VARIABLE OPERATORS N I .
fn(q)=f dr e 9,(r), (6.7

The translation and dilation operatof§ and Cs can
clearly be regarded from their definitiofEgs. (3.2 and ) o )
(3.3)], aschange-of-variable operatoCOVO). Let P be a where quite generallyand similarly for the TD case with
general COVO, i.e., F replacingg),

Pp=p’, p'(X)=p[(x)]. (5.1) bn(N)=A[GE(N)], (6.2

aYvith A an operator to be specified next. For example, in the
relatively simplex-ray case[Eq. (2.2)], A is the identity;
go(F)=n0(F) is the zero-order local electron density; and

The purpose of this short technical section is to prove th
the following commutation relation holds for COVO:

P{f[g(x) ] =f[(Pg)(x)]. (5.2)  ¢n(r) is the electron density on theh iteration of the frac-
tal support. Theelectron scatteringcase[Egs. (2.7) and
To prove this, consider the left-hand sitleHS): Let (2.8)] is more complicated, since now is an integral op-
erator acting oG (no(r')/|r —r’'|). But the COVO commu-
flg(x)]=hg(x), (5.3 tation property, in particular Eq5.5 with constant integra-

tion limits, ensures tha§ can be taken out and put in front
and note that the LHS i®hy=h(. But, by Egs.(5.1) and  of the integral. Thede-scatteringcasg Egs.(2.9) and(2.10]
(5.3, is probably the most complicated, since there the fractal op-
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eratorG' acts at several places simultaneously ahds an . s K 2
integral operator with a functional limit. Nevertheless, the lhee(Q)= 1+E gla-ai | A(0s), (6.9
COVO commutation property and its corollary simplify the k+1

problem to the extent tha}, may be pulled out again:
and by employing the recipe used and justified in Sec. IV for
1 L .1 o ) 1D, of evaluating the exponential termsci\% 0, one obtains
f.(Q)= Kf dR e'R' Qe (R = KJ dR(G,eQR)e2 (R the approximate self-affinity relation
A A

6.3 e (@)~ (k+1)s% ,(Gs). 6.9

Indeed, it should now be evident that this is the generaExpressing this through the Hter exponent as in the 1D
structure of the(local-potential diffractal-FT problem: the case|l,.1(q)~s™ “1l,(sq), one find that the universal rela-
fractal operator can always be moved from the contexttion between the self-affinity of the intensity spectrum and
specific part £,) to operate on the Fourier basis set, so thathe fractal dimensiofEqg. (3.12)], for a TD fractal support, is
generically

a;=D—d, (6.10

fn(a):f dF(G.e™ %) do(T). (6.4  in agreement with the 1D case.

2. BU case

This is the general structure of the Fourier integral: a |4 strict analogy to the results in 1[Egs. (4.10 and
context- specmc part embodied in the integrand of the form(4 117, one finds in thed-dimensional BU case:

factor, qbo(r) and a generic part common to all

diffractal-FT problemsfound in the operation of the fractal G, el T =g dngngis "a:r

operator on the Fourier basis set. What remains, in order to

understand the universal scaling behavior, is to investigate n K j-n-1g

this latter part. =TI |1 Z Ch e, (611

B. Scaling of the Fourier integral . 1 n-1 K iz
— is
The fractal operators to be dealt with here are of the gen- fa(q)= (k+1)"2| L% 1+2‘1 € F(a),
eral form given in the TD and BU cas¢Egs. (3.11) and (6.12

(3.13, respectively. The ensuing analysis closely follows
along the lines of the simple 1D case treated in Sec. IV. . e
F(q)=J dr €9 "ey(r). (6.13
1. TD case
Repeating the 1D calculations of E@.4), one finds that The normalization reflects that there are nok#(@)" el-
now the application of the fractal operator yields ementary units at theth iteration. Consequently, the scaling
of the intensities is

n—1 k
FheidT=gndgis"a-r TT [ 1+ eislq.aiL)_ (6.5) In+1(d) 1 Ek: e 2|n(6|/S)
j=0 i=1 > ) Yl =
@ kLA lo(a/s)
The normalization in the general case is to the relative vol- In((i/s) . In((i/s)
ume occupied by the fractal, i.e.s"C)%(k+1)"/LY, since ~(k+ )I Gls) “ Gls)’ (6.14
there are K+ 1)" fractal elements at theth iteration, each old old
. n d .
with volume "L)°. Introducing a form factor, where again
CYZ:D, (615)

F(@)= | are g, 66
with D the fractal dimensiofEg. (3.12)] of the BU fractal
support. Interestingly, it thus appears that the embedding
the scattering amplitude assumes the following generic formSpace dimension does not enter the scaling in the BU case.
This fact remains to be explained on physical grounds. To
koo . visualize the features of the intensity distribution in this case,
1+2 e's'q'aiL) F(gs"). Fig. 6 displays 1D sections of the results of He-scattering
=1 calculations from Ag adatoms centered on a sixth-generation
6.7 Sierpinski carpet with an underlying (Bi1) surface (BU
version of Fig. 2. These results were obtained by employing
Thus the exact scaling relation for the intensities reads Eq. (6.12 for the structure factor, and E(.13 for the form

n—-1

- 1 N
@)= i Ty L
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FIG. 6. Top: Structure factor for He scattering
from Ag adatoms on a Pt11) surface, with the
Ag adatoms positioned on BU, sixth iteration Si-
o ‘ l ' . erpinski carpet. The generator is aHtl) unit
cell (L=2.77A). The self-similar structure can be
‘ noticed upon careful examination. Bottom: The
complete intensity spectrum, after multiplication
107° by the form factor(Fig. 7). The effect is mainly
4 an overall intensity decrease with increasigg
The rainbows are too broad to be noticed as in-
10 dividual peaks.
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factor. The latter was calculated in the sudden approximatiofegarding the scaling properties of the intensity distribution.

with a realistic He-Ag-Pt potential[45] for ¢o(R) In order to meaningfully introduce randomness, it is useful to
=exf2iy(R)]. preserve the fractal dimensions of the supp@therwise the

. . . ) fractal dimension is not a useful descriptor of the scattering

To summarize, it was shown that irrespectively of thegpiact This preservation of the fractal dimension can be

nature of the probe, for the scattering of a coherent wave by hieved by keeping the constant, single contraction factor,
a deterministic fractal support, the intensity spectrum is appt ajlowing for adistribution of translations The transla-

proximately self-affine, with a Hder exponent trivially re-  {i5ng will be chosen independently from a given, but arbi-

lated to the fractal dimension of the support. The next gen- e - . o
eralization, necessary to approach realistic situationst,rary’ probability distributiorP(a), with normalization

concerns the effect of randomness. ’

[ dapa)=1 (7.9)
VIl. SCATTERING FROM A RANDOMIZED FRACTAL =1
SUPPORT

Realistic fractals always contain some element of ranfor €achj. Here, as beforej is the iteration and the
domnes$46]. For example, in DLA47] the adsorbing par- translation-number |nde>§. The results will of course have to
ticles perform a random walk and the resulting fractal isP€ averaged over the disorder ensemble, denE)_ted by)
consequently random. Thus it is of major interest to intro-and defined as mean values over all possible {g&}s Care
duce some randomness into the fractals under consideratiomust be taken to apply this averaging to the observable
and to investigate its effect on the conclusions reached so fdensities(and not the amplitudessince physically, one mea-
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sures the intensities from a given realization of the disorderln general, no such simplification occurs, but the scaling is

and averages over the different measurements. Thus still tractable:
n-1 k .
In(@)=(|fa(a)|? fHHdalP(aJ)f()z . s 00
(@) =@ = () . (o a(@)=(10(@9) g | | TT aaPcap)

2
In order to visualize the resulting random fractal, it is

useful to return momentarily to the hard-wall, stepped sur-
face language of Sec. IV: The support with randomized
translations has steps of constant width as basic buildin . . .
blocks, but these are spaced randomly over an underlying-‘ order to express this most accurately in the approximate
“Cantor grid.” Due to the unequal translations, however, eneral self-affine form of Eq4.12), the average should be
overlaps of steps may now appear, as illustrated in Fig. 1. [performed aq 0. Using the normalization condition of the
will be shown next that in the present randomized case, agaiélistribution of translations, Ed7.1), one finds
the intensity spectrum is self-affine, with the same relations
between Hider exponent and fractal dimensions as for the -a
nonrandom situatign (Insa(@)=s""1n(qs)) 7.8

The change from the deterministic case is that now the
fractal operator is given by with ;=D —d, just as in the deterministic cafeq. (6.10]

[48].

k

=20

x|1+3 it
=1

(7.7)

k
1+ 2 T a,cl,s), (7.3

n
-11
=1

B. BU case

where the random shift&l} are chosen fronP(a). Since The scattering amplitude is now given by

one still has two identical contractions, the fractal dimension 1 N1 k ;
is unchangedEg. (3.12)], as required. fo(q)= (k+—1)n,§j]i[0 z gis a3y L) F(qg). (7.9
A. TD case

fractal. As for the calculations leading to the scattering am-

plitude in the deterministic cadéeq. (6.7)], the difference 1 k
arises in that every translatian is replaced byal, so that (In(a))= Wlo(ﬁ)ﬂ f {H dalP(a))
now ( ) =0 =
k 2
1 nt Ko isl~ngalL
3 islg-alL Zan +2 e i (7.10
(= iy pmres L | 1+ 2 )F(qs ). =
(7.9
The resulting scaling relation is
The resulting intensities have to be averaged over the disor-
der ensemble:
= k
Snd n-1 K 2 <|n+1(Q)> — ! <|n(q/3)> {H dé’inp(é_n)
(In(@)= WD 0(&sn)< [l |1+3 et > lo(@)  K+1 1g(ars) J [i=2 |
i=0 i=1
k 2
nd 1ok X1+, e ‘ol (7.11)
_ n | g i=1
o I [ |11 dae) '
k 2 . .
T Performing the average gt=0, one obtains
X|1+ >, elsa-alL 7.
2 (7.5
I I,(q/
Fork=1 (1D), since the shifts are chosen independently, the < ”+l£q)> < (4 S)> (7.12
last expression simplifies into a product, and one obtains for lo(q) lo(als)
the average intensity:
n—1 with a,=D, again as in the deterministic cadeg. (6.15].
<|n(Q)>=Sn|o(an)H [1+(cogsigal))] (1D) To conclude, translational randomness alone appears to
1) i .

have no effect on the scaling properties of the diffraction
(7.9 spectrum.
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FIG. 7. Top: Classical turning points for a
single Ag atom adsorbed on a flat(Pt1 sur-
3 face, for He at normal incidence witk,=6
2 A1 The inflexion points are indicatetl—3),
along with rays(guide for the eye only indicat-
ing the trajectories of classical particles scattered
6'6940_0 _20.0 0.0 20.0 400 from these pointgnote _the difference in scale_
(a) x[A between the axes, causing the apparently nonmir-

rorlike reflection). In the hard-wall approximation

[Eq. (2.12)], the inflexion points coincide with
107°° those of the phase-shift function, and approxi-
mately yield the positions of the rainbow peaks
through the stationary phase and singularity con-
ditions[Egs.(8.1) and(8.3)]. Using this, the scat-
tering angles are found to bd) 21.3° and(2)
2.4° with respect to the normal to the surface,
corresponding taq=2.2 and 0.25 A'!, which
are approximately the rainbow positions indi-
cated in the scattering intensitigottom).
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VIIl. FURTHER PROPERTIES tion between probe and scatterer, and through it the potential
OF THE DIFFRACTION SPECTRUM enters the intensity spectrum. The example of He scattering

will serve to illustrate the point. In this case, the He-surface
— | , X Mnteraction potential enters in a highly nontrivial wiq.
just its scaling properties. Such features are discussed neXE2_1@]_ One of the striking consequences is the appearance
of “rainbow” peaks in the diffraction spectruB87]. These
arise essentially whenever a He atom is scattered from an
) ) inflection point of the potential{corresponding to maximal
So far, most of the discussion has centered around th@yce applied to the atomtypically due to an adsorbed clus-
universal scaling properties of the diffraction spectrum.ter. Following is a brief discussion of the origin and physical
which were completely determined by the “kinematic” sjgnificance of rainbowgsee Ref[49] for a more extensive
structure factor. However, the role of the “dynamic” form treatment It is useful to employ a stationary phase, approxi-
factor cannot be ignored in discussing the properties of theyate evaluation of the sudden approximation scattering am-

spectrum. It is in this respect that the different physicalyjityde, Eq.(2.9). In 1D, the stationary phase condition is
probes discussed in Sec. Il differ, and that universality is

broken. The form factor embodies the details of the interac- ag=-27'(x), (8.0

A. Role of form factor
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which yieldsx(q). The scattering amplitude is then approxi- o 2t
mated by sq=-1, TD,
- X(a) g2i n[x(@)]
. 2wb
f(q)~ - 8.2 -ng= =%
(@ 17" |x(a) ®3 s"q=1-, BU. (8.6
The rainbow condition is the existence of an inflection pointConsidering first the TD case, the maxima occur for those
in the phase shift: g’s which, when multiplied bys®,st, ... s" %, are always
, integer multiples of Zr/La. For the ternary Cantor set
7"(x)=0. (8.3  (s=1/3,a=2/3), with L=1, theseq’s are all the integer

) o ) » ) multiples of 3'zr. For 1k equal to an arbitrarjnteger, these

The pointx, satisfying this condition dominates the scatter- 51 the integer multiples of (Y"~1(2x/La). For 15 non-
ing by contributing a large peak. In the classical limit of Eq. jnyteger, see Ref27]. Cast in the usual Bragg condition lan-
(_8.2), this shows up as a smgularlty in the intensity dlstnbu-guagej_asn—l would be an effective “lattice constant.” The
tion, at momentum transfey, satisfying the stationary phase meaning of this number in the present context is similar: it is
condition[Eq. (8.1)] together withx,. The singularity of this  the |ength of the elementary building block of the fractal at
crude classical evaluation is smoothed into a finite peak iRne nth jteration: the union of adjacent narrow black and
the more refined sudden approximation calculation. white bars in Fig. 1(left). However, larger structures also

Such sudden approximation calculations were performedepeat themselves in the fractal, with smaller frequency.
for a Ag/P(11]) BU Sierpinski-carpet system, with a realis- These give rise to the secondary maxima in Fig. 3, and math-
tic potential, described in detail in R¢#5]. The results are ematically correspond to thosgs which vield integer mul-
shown in Fig. 6&fractal systemand Fig. 7(rainbow analysis tiples of 2m/La for only a subset o&°,st, ... s" L. The
for a single adsorbatelt appears that, although for a single jncommensurability of these varying-scale repeating struc-
adatom the rainbow peaks are a dominant feaig 7), in  res is what yields the multitude of peaks in the spectrum,
the case of a fractal system, their role is rather negligible in,g opposed to just Bragg peaks in the case of a periodic
determining the structure of the spectrdfig. 6). The rea-  ¢rystal, and is ultimately responsible for the self-affinity of
son for this is that they are far too broad to appear as indig,e spectrum. The more general conditions, H&sd) and
vidual peaks, along with those due to the fractal support. Theg 5 ‘can be interpreted in a similar fashion.
rainbows, as well as all other features of the form factor, act Te distinction between the BU and TD cases is straight-
as very broadenvelopesto the detailed spectral structure. fgnward: the peak spacings in the former tend to Zevith
The main effect of the form factor is to provide an overall {,o peak nearest to the specular found abr/(2a)s"]

intensity. decrease, without in any way s.,ignifica.ntly altering\yhereas in the latter the spacing is unbounded. The only
the details of the structure factor. Since in practice one mea-

sures the full intensity distribution, this can have an effect on
its self-affinity properties, and for a BU fractal care should
be taken to divide by the form factor. Similar results are (m2/n3)
expected to be found in the diffraction spectra of other === N{n=r

probes, where dynamical factors play an important role, but 100 | n=7 temary Cantor set
cannot lead to very peaked spectral features.

B. “Bragg conditions” and band structure

Consider the conditions for maxima derived from the
scattering amplitudes for TD and BU fract@sgs.(6.7) and
(6.12]. For TD fractals, the condition is

.. 2mt 10|

qu.ai o

N(r) (cumulative mass)

(8.9

whereas for BU, it is

nz o2 27Tb|
s! q-ai=T. (8.5

Heret; andb,; are integers, and€9j<n—1. These are the
“Bragg conditions” for iteratively generated fractals. How- 1 10 100 1000
ever, since one cannot speak of a conventional unit cell with r (no. of black bars)
primitive lattice vectors in the fractal context, the present

conditions for maxima are rather different from those for FIG. 8. Log-log plots of the exact cumulative-mass relafigg.
periodic crystals. For 1D Cantor-like sets, E§8.4 and (9.5] for a seventh-iteration ternary Cantor set, and a power law
(8.5) reduce to with exponent equal to this set’s fractal dimensjd&uj. (9.1)].
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limitation on the position of the furthestbservablepeak in  Here|N()| is the length of the sequendt!) and lastN) is

the TD case is energy conservation. In both cases, howevaits last term. Indeed, the zeroth-iteration ternary Cantor set
the structure factors are invariant under a combination ofonsists of one black bar, the first iteration has a cumulative
translations and dilation@part from the reduction in inten- mass of{1,1,2 black bars, the second iteration has mass
sities, responsible for the self-affine propertiédne is thus  {1,1,2,2,2,2,3,3%4 etc. In Fig. 8N(") is displayed on a log-
led to define a new basis of primitive vectors for the recip-log plot, together with the power-lam(r) (as suggested
rocal space, from which a Brillouin zone can be constructedfrom Eg. (9.2), i.e., a line with slope In2/In3, the fractal
As seen in Fig. 3, the regions connected by these operatiortimension of the ternary Cantor set. It can be seen that this

do not overlap, and can be considered as sephatds A line serves as an accuragvelopédo the actuaN(r), which
detailed treatment of this point is given in REZ7], and will  is in fact a “Devil's staircase,” with a very ricHfractal)
not be repeated here. structure. This example illustrates the general situation: A
simple scaling law of the form of Eq9.1) is only anaver-
IX. SELF-AFEINE OR POWER-LAW? agerepresentation of the actual cumulative mass function of

a fractal, which may in fact not be self-averaging. Since in
As mentioned in the Introduction, the common wisdomthis work the exact properties of the fracfak., equivalent
relating to scattering byandomfractal objectse.g., porous to Eq.(9.5] were used to calculate the scattering intensities,
solids [16,17), amply confirmed experimentally, is that it should now come as no surprise that the resulting diffrac-
close to the specular the intensity satisfies a power law:  tion spectra themselves displayed the full, rich structure of
the scattering fractal object. Conversely, had the power-law
I(g)~q~7, (9.D)  form of Eq.(9.1) been used in the present scattering calcu-
lations, the result would have been a power-law decay of the
with y=D +const. This power-law decay is clearly very dif- jntensity.
ferent from the Self'aﬁine intensity Spectl’um predicted here Why then do experiments from natural fracta's y|e|d the
for iterative fractals. Considering the unquestionable experipOWer law? The preceding arguments strongly suggest that
mental evidence for the power law, this discrepancy calls fokhis is related to an averaging process which smoothes the
clarification. The following arguments may shed some lightfine structure of the intensity distributioA. priori, two types
on this issue. . of averages could be consideréti} over the position of the
In order to derive the power laj¥q. (9.1)], one typically  center point of the cumulative-mass calculation, &cbver
starts with the definition of a “mass fractal dimenSion,” de- the disorder ensemble. The first Wpe can be ruled out imme-
scribing the scaling of the mas(r) enclosed in a sphere of djately, however, since it is common to both the power-law

radiusr, centered at an arbitrary point in the fractal: and self-affine spectra derivations: The calculation ofran
b tensityinvolves a double integral in whicall pairs of points
N(r)~r=. (9.2 appear in the forny fdrdr’exdig(r’ —r)In(r)n(r’). This au-

tomatically performs the first type of average. Thus, by
elimination, the ensemble average appears to be responsible
for smoothing out the self-affine properties into a simple

If the fractal is self-averagingan assumption which is im-
plicit in the derivation of, e.g., Ref$§16,18)), then this mass

is related to the pair distribution functiag(r) by power-law decay. Indeed, in the deterministic iterative frac-
} tals considered here, there is of course no ensemble to aver-

N(r)=<p>J g(r)ddr’, (9.3 age over, in contrast to the typical expenmentalusnuatlon.

0 Interestingly, the random fractals of Sec. VIl are “not ran-

dom enough,” since they also display a self-affine spectrum.
with d the embedding space dimension gp) the average The type of randomness encountered in experiments yielding
density. From general scattering theory it is known that thehe power law must lead, in contrast, to self-averaging be-
structure factor is tween the physical cutoffs. There is a further difference be-
tween the randomness considered here and that encountered
- G 1 in experiments, namely, in the latter the randomness does not
S(Q):1+<P>f [g(r)—1]e"d". 94 preserve the fractal dimension above the upper cutoff. In
contrast, the type of randomness considered in this work pre-
From here one arrives at E(.1) (see Ref[6] for details. serves the fractal dimension on all scales. It is possible that
It is thus seen that the crucial assumption invoked in thighis difference plays a role in creating the discrepancy be-
derivation is the scaling la9.2). It must be realized, how- tween the experimental power-law results and the theory pre-
ever, that this expression is in many cases only tmeav-  Sented here.
erage This can be seen very clearly for the ternary Cantor
set(Fig. 1. Suppose the set has bars of unit height and one X. CONCLUSIONS
calculates its cumulative mas! in the jth iteration, start- In summary, the diffractal—Fourier-transform problem,
ing from the left, and in terms of the number of black bars.for scattering of coherent waves from a wide class of itera-
Then the following recursion formula may easily be verified: tively constructed fractals, was solved analytically, yielding
: . . . . the scaling properties of the diffraction spectrum. The class
NOTD=NDU{IND|timeg las(ND) T}U{N{ of fractals considered here is not that which is typically ob-
(NG| ©)_ served in scattering experiments, and is characterized by a
+[lastNU)JHZ, ', NP={1}. (9.5 self-affine intensity spectrum. A simple relation was found to
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exist between the self-affinity exponent of this spectrum andntensity spectrum as predicted here. Further theoretical
the fractal dimension of the scattering fractal support. In conwork will concentrate on generalizing the types of random-
trast, many experiments yield intensity distributions characness studied here, and on investigating the possible role of
terized by a power-law decay. It is argued here that this igutoffs in leading to the power-law decay of the intensity
predominantly the result of scattering froself-averaging observed in many experiments.

random fractals, which are more abundant in experimental

realizations of fractality. The results apply to a large variety
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