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Quantum computing in the presence of spontaneous emission by a combined dynamical
decoupling and quantum-error-correction strategy
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A method for quantum computation in the presence of spontaneous emission is proposed. The method
combines strong and fagiynamical decouplingpulses and a quantum error correcting code that encodes
logical qubits into onlyn+1 physical qubits. Universal, fault-tolerant, quantum computation is shown to be
possible in this scheme using Hamiltonians relevant to a range of promising proposals for the physical imple-
mentation of quantum computers.
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I. INTRODUCTION jumps[4—8]. The first proposal along these lingY did not
consider QC. A simple, but non-fault-tolerant QC scheme,
Decoherencg 1] remains the most daunting obstacle toencoding a logical qubit into two physical qubitgour

the realization of quantum information processing, coherenatomic levels, tailored to SE of phonons in trapped-ion QC,
control, and other applications requiring a high degree ofvas subsequently presented in Ré&fl. A QECC correcting
quantum coherence. As quantum computati@C) moves one arbitrary single-qubit error and invariant undiey was
into the experimental realm, it becomes increasingly imporgiven in Ref.[6], using an encoding of one logical qubit into
tant to design methods for overcoming this main obstacle t@ight physical qubits. When one makes the assumption that
realization, which are tailored to particular systems and théhe qubit undergoing the quantum jump can be identified
resulting errors that afflict them. Here we show how to per<(“detected jump”), a more efficient encoding is possible. A
form universal, fault-tolerant QC in the presence of decoherfamily of such detected jump codéBJC) was first devel-
ence due tspontaneous emissidiSE). Since SE is a con- oped in Ref[7], using a DFS to construct a subspace invari-
sequence of the inevitable coupling to the vacuum figldit ~ ant underH.. In Ref.[8] we showed how to perform fault-
cannot be “engineered away” and must eventually be dealtolerant universal QC on a subclass of such codes encoding
with, in all QC proposals. Several methods have been dea—1 logical qubits into 2 physical qubits.
signed to this end, which may roughly be classified as Here we present a method for reducing and correcting SE
“hardware” and “software:” In the former category are pro- errors. Rather than constructing a code subspace invariant
posals to construct quantum computers in materials wherender H., we dynamically eliminateH, by applying dy-
SE is strongly suppressed, e.g., placing atomic qubits in aamical decouplindor “bang-bang” (BB)] pulses[18,19.
photonic band-gap structuf@]. In the latter category are We then construct a QECC that deals with the remaining
various error correction, avoidance, and suppression methogismp errors, under the detected-jump assumption. The ad-
[4-10]. With the exception of the 2 pulsing method of Ref. vantage of this method compared to the previous methods
[10], a unifying theme of these methods is to place the sysusing encoding is that it is significantly more economical in
tem under continuous observation. It is then well known thagubit and pulse timing resources: It uses a QECC in which
the Markovian quantum master equation can be unravelelbgical qubits are encoded into onty+ 1 physical qubits;
into a set of quantum trajectories, consisting of a conditionalnd, while in Ref[10] the pulse interval has to satisfy the
evolution (governed by a non-Hermitian conditional Hamil- standard BB condition of being shorter than the inverse of
tonianH,, defined below, randomly interrupted by quantum the bath high-frequency cutoffl8,19, in our case the re-
jumps(wave-function collapsénto different observed decay quirement is that the pulses are faster than the average time
channeld11-14. The time evolution conditional to given  between photon emission events, which can be orders of
set of time-ordered observations is called posterioridy- magnitude longer. Furthermore, our method is fully compat-
namics”[15], and isnot Markovian. The continuous obser- ible with universal QC using Hamiltonians that are naturally
vation can lead to a Zeno-effect type suppression of decoheavailable in a large variety of quantum computer proposals
ence, a fact that was exploited[i@)], in conjunction with an  [20], so unlike Ref.[3], it does not rely on one specific
encoding into a decoherence-free subsg@des) [16,17], in  architecture.
order to resist SE. Quantum error correcting co@@sCCs The idea of using a hybrid BB-encoding approach to sup-
can correct both the conditional evolution and the jufids  press decoherence was first proposed in R&f], where it
but more efficient constructions are possible when one conwas pointed out that BB is fully compatible with encoding
siders subspaces of the full system’s Hilbert spaces that aiato a QECC or DFS. In particular, it was observed there that
invariant under the conditional evolutiont is then neces- one could use BB to suppress phase-flip errors, thus leaving
sary to correct only the errors arising due to the quantunthe QECC with the need only to correct bit-flip errors. How-
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ever, no method specifically tailored for SE errors was given=—(i/2)2N ko, o, whereo;, = (o, )". In Ref. [8] we

An experimental nuclear-magnetic-resonaf®R) imple-  assumed that the environment effectively does not distin-
mentation of a hybrid BB-QECC was presented in R22],  guish among the qubits that undergo spontaneous emissions
where decoupling was used to remove coherent scalar codx;= «) and the conditional Hamiltonian would then become
pling between protongenvironment and carbon qubits, to-  —(i/2)x=;|1);(1|. This assumption isiot necessary in the
gether with QECC used to further correct for fast relaxationcurrent work. From here on, operatofs,Y; ,Z; refer to the

due to dipolar interactions modulated by random moleculagorresponding Pauli matrices acting on ftie qubit. Now
motion. suppose that we apply a collecti¥e=®]_,X; pulse to the

Clearly, correcting for SE errors is only a part of a generalsystem, at interval¥ /2< 1/y, wherey is the SE raté24].
procedure for offsetting decoherence, as additional decohegyder this condition and using; o X;=o;" we can write

ence sources will inevitably be present in any QC ir_nplementhe evolution after a fulll, period as
tation. The methods we present here therefore will have to

become part of this more general procedure, either as a first T, T,
level of defensdin the case where SE is dominanor at U=exp< =i 7HC Xex;{ —i ?HC)X

higher levels in a concatenated QECC schdi2@], after

other more dominant errors have been accounted for. The T, T,

importance of the results presented here lies in the fact that ~ =exp — > il1)i(1] |exp — T > «il0)(0]
SE isalwayspresent, and therefore can never be ignored. A ' '

code that is optimized with respect to this type of error can Te

potentially offer flexibility and significant savings in re- =ex _ZE Ki)l,

sources and overhead. !

hThehstrutcr;cure of dt.?';ng?zeg;stf{gﬁ IjO"r(')r\llva?Ié Iga?]egé Ié’livn\f'?_wherel is the identity operator. Therefore the decohering
show how the condit voluti uring effect of the conditional Hamiltoniar{that distinguishes

nated using a sequence of simple, global BB decouplina%

. . states with different numbers of 3's removed and replaced
pulses. In Sec. lll, we construct a simple and economic

QECC that corrects for the remaining quantum jump errorsinytﬁg %V?]r:rl:]ischsnr;';g]%tggrpﬁuvs\fthsg rtgr? ()Jrljga?isﬁla]rellgclsged
We address fault tolerance and various imperfections in Se Y ' '

IV We then show how to quantum compute in a universaﬁhis shrinking disappears. Note that we hana eliminated

aﬁd fault-tolerant manner o?/er our QEC(? using a variet OMarkovian decoherence using BB pulses, since we have con-
o . o 9 - 9%idered only a single trajectory. In fact, a comparison of the

model Hamiltonians pertinent to a wide class of promising

i ; coherencel=Tr(p?) (wherep is the qubit density matrix
quantum computing proposals. We conclude in Sec. V. shows that if the results are ensemble averaged ovea the

posterioridynamics(recovering the Markovian master equa-
Il. ELIMINATING THE CONDITIONAL EVOLUTION OF tion), and the jump errors are not corrected, then there is no
SPONTANEOUS EMISSION WITH BB PULSES advantage in using a BB sequence. More specifically, when
comparingC for the (1) free evolution and2) usingX pulses

ConsiderN qubits that can each undergo SE, under they; 1 /5> periods for a single qubit undergoing SE with rate
detected-jump assumption. This localizability of the SEq fing

events implies that the mean distance between qubits ex-

ceeds the wavelength of the emission. Note that dipiscal C1=1—yT(B?)+0(¥?),
distinguishability between qubits does not limit our ability to
couple the qubits via nonoptical interactions of the type we Cy=1—yT(a*+BY+0(1?)

consider in Sec. V below.

The ground and excited states of each qubit are denoteghere the initial qubit statg)) = «|0)+ 8|1) is normalized:
by [0) and |1), respectively. Leto; =[0);(1| denote the 42+ g2=1. Averaging over a random sample of initial states
spontaneous emission error generator acting ontthgubit  chosen from a uniform distributiofof « and B subject to
and letx; denote the corresponding error rate. We use theiormalization we have (C;)=(C,); so as expected for

quantum trajectories approa¢hl-14 to describe the dy- purely Markovian dynamics, there is no improvement after
namics of the decohering system. The evolution is decomgsingjust BB pulses.

posed into two parts: a conditionalbn-Hermitian Hamil-
tonian H., interrupted at random times by occurrence of
random jumps, each corresponding to an observation of de-
cay channels in a quantum optical setting. For errors such as
SE, where the jump can be detected by observation of the We now introduce a very simple QECC that corrects the
emission, the quantum trajectories approach also provides wemaining part of the decoherence process, the random
with a way to combine QECCs and BB, in analogy to thejumps. Since the error correction process by necessity takes
way this was done for QECC and DFS in Re[f8,8]. The place during the conditional evolutigthe jump is instanta-

BB pulses take care of the conditional evolution, whereas thaeous and the QECC takes time&e must ensure that the
QECC deals with the random jumps. The conditional Hamil-QECC keeps its error correcting properties under the condi-
tonian is given in the SE casqdl11-14 by H, tional Hamiltonian and BB pulses. A minimal example of

Ill. CORRECTING SPONTANEOUS EMISSION JUMPS
WITH A QECC
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such a “decoupled-detected jump corrected” code is giver(targed, i.e., CNjj|x;,x;)=|x;,x;®x;). The erred state is
by the subspaces of tHé=n+1 qubit Hilbert space that then transformed to U|e,)=a|000+b|011)+c|101)
have even Hamming weight, or parity, definedwa&)=  +d|110 =), .

&= %= (=L ,x))mod2, whergx)=|xy, ... X,) is a com-
putational basis statee {0,1}). We define a code subspace

. - : IV. FAULT-TOLERANT PREPARATION, MEASUREMENT,
C, with even parity as the linear span of the codewords,

AND RECOVERY

OL=X1s - X)L =[Xa, e X, W(X)). (1) So far we have assumed perfect error detection, recovery,
and gates. Of course, in reality these assumptions must be
relaxed. Here we discuss the implications of imperfections.
In general, a procedure is said to be fault tolerant if the
occurrence of an error in one location does not leaa the
applied procedupeto the catastrophic multiplication of er-

For example, fon=2, the code&’, is

00) =[000) |01, =|011)

|E)>L:|£)1> |1_1>L:|1_10>- (2)  rors in other locationg23], an event that the code cannot
correct.
As indicated by the underline, the first two qubits are the | et us first discusoreparation of the encoded qubits.
same in the physical and logical codewords, and the thir&ince the statd0), =[04, . ..,Qy41) is part of the code,

qubit is set equal to the parity of the first two qubits. T6at  preparation is as simple as preparing each physical qubit in
is a QECC against the jump errors follows from the fact thafits ground state, which can be done, e.g., via cooling, a
a spontaneous emission error always changes the parity ofsirong polarizing field, or repeated strong measurements of
given codeword, whic_h is then taken to an orthogonal statey| qubits. This step is manifestly fault tolerant. Oné,

and that by construction no two codewords can be taken tfas peen prepared, computation proceeds using the fault tol-
the same state. More specifically, the sufficient condition thagrant logical operations given in Sec. V below, so any other
a QECC must satisfy is that orthogonal codewords must bgtate can be reached fault tolerantReadoutis also very
mapped to orthogonal states after the occurrence of errors, SPmple: a measurement of the firsphysical qubits irC, is

that the errors can be resolved and undfit. Recall that,  easily seen to be equivalent to a direct measurement of the
here we are assuming that we know the location of the errofggical state. The measurement procedure must be tailored to
after recording the position of the spontaneous emissionne specific implementation, but our only assumption is that
Hence we need to only compare orthogonal codewords aftajingle-qubit measurements are possible, and that these mea-

the action of an error in &nownlocationi: surements do not couple qubits. The measurement procedure
, is then fault tolerant.
ot o X)L = Sy I Yi=X _ Next considerrecovery The_z code(C, is an espe_c_ially
LI THIME 0 i yi#x, simple example of CSS stabilizer code$], with stabilizer

generated by the single elememfillzj . It is well known
where the second line follows from the change in parity ofhow in general to perform fault-tolerant recovery from this
Ix) or|y), . Thus the QECC condition is satisfied. To seeclass of codef23] (see also Ref27]), so we will not repeat
that recovery from the errors is indeed possible, we describghe general construction here, which involves preparing and
a simple(non-fault-tolerantscheme. To recover from an SE measuring encoded ancilla qubitsote that this typically
error on qubif, we apply controlledvoT gates from all other  doubles the number of physical qubits required, even before
qubits (as control$ to qubitj (as target That this unitary  concatenation
operation fixes the SE error, can be seen as follows. The Finally, considerdetection of SE eventébove we as-
codewords in which qubjtwas in the stat¢0) before SE did  sumed that it is possible to perfectly identify the position of
not change after SE. In this case the number of remaining qubit that underwent SE. Note that this measurement is in
qubits in the stat¢l) was even, and the recovery operationtself fault tolerant, in the sense that observing an SE event
will flip the erred qubit an even number of times, thus havingon a specific qubit cannot cause errors to multiply. Clearly,
no effect. If qubitj was in the stat¢l) before the SE error detecting which qubit emitted a photon is very demanding
then it changed t¢0). In this case the number of remaining experimentally, and can in practice only be done to some
qubits in the stat¢l) was odd, and the recovery operation finite precision(though there is no fundamental limit, pro-
flips the erred qubit. To illustrate this we discuss in detail thevided the distance between the qubits is larger than the wave-
case ofC,. The conditional evolution, under the collective lengths of emitted photohsand at the cost of introducing a
BB pulse X=X;X,X3, has the sole effect of shrinking the potentially cumbersome detection apparatus. The same diffi-
norm of all codewords in Eq(2) equally Thus the BB- culty is shared by previous detected-jump schefiies).
modified conditional evolution does not change the orthogo- More specifically, in reality there is a finite probability
nality of the codewords. Now suppose SE from the first qubithat the emitted photon wilii) Go undetected(ii) be attrib-
has been observed. Then an arbitrary encoded $3te  uted to the wrong atortmisidentification. The latter possi-
=a|00), +b|01), +c|10), +d|11), changes into |¢e,)  bility applies also to other qubit measuremerts) in case
=a|000)+b|011) +c|001) +d|010). To reverse the error we (i), there is the additional possibility of an error by applying
use the unitary operato =CNj3;CN,;, where CN;; is  the correction step to the wrong qubit. In general, fault-
a controlledNoT gate with qubiti (j) as the control tolerance results again come to the rescue: provided that the
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probability of an undetected photon and/or misidentification B,o
can be kept sufficiently low, concatenated QECC guarantees A =g 1#BpAQ B
that the procedure will remain robul23,28,29. However,
several additional comments are in order. First, we note thathen for any three su(2) generatofs,,Jy,J,} (e.g.,
the performance of DJC codes in the presence of imperfedX/2,Y/2,2/2}):
tions such as detection inefficiencies and time delay between 3.0
error detection and recovery operations, has been a'nalyzed in Jy — J,c08p+J,sing. 3)
Ref.[30], with favorable conclusions regarding fidelity deg-
radation. We expect similar conclusions for our currentThis can be lifted to unitary evolutions using
method. Second, unlike the case of DJC cod&8,30, we N
. . UeAuT:eUAU (4)
do not require equal error ratas. Hence our qubits need ,

notdbe 'de;t'fr?k ?Ub'ts cgttn dbet' tungdh t8| d'ﬁﬁrim Ca\_/r':]Yvalid for any unitarylU. Hence where convenient we present
modes an erelore emit_distinguishable photons. Bur arguments in terms of transformed Hamiltonians. Equa-

zrgflgaﬁgaﬂﬁrg S\;\?Q'ggﬁntta:(id:g%(;gg ?%mﬁédﬁzgg?asr?ﬂions (3),(4) show that given two su(2) generators, one can
' ’ 9 Panty e nerate a unitary evolution about any axis. This is also the

g}rgpg\;te{a?r S;rritsogfeihﬁnclcj)ggt\i}grcé? I—?Enfgebr;f ;Véléiigagge asis for the W.eII—known_ Euler gngle construction, used to
more ancilla qubitinitalized into the/0) state that functions arxgue thazt all 5|_ngle_ qubit opera_t|ons can pe generated from
as a parity check bit, we can monitor for undetected SE. A and o Hamlltqnlans: an.arb!trary rotar'ilon by an angle
non-fault tolerant procedure for enforcing the parity check is?:)t:tri?rj]gd tzsosgg vetﬁt;)nz 1S ;)r:\éenxby ;Xreese_ SZE?EHS.,S,NG
to make the ancilla qubit the target of successive controlled- B0 00 i } :

NOT gates from the code qubits, and periodically checktosee € ™ € "= € [32]. Equations(3) and 54) show that

if it has changed t91). In such a case the computation hasthis is true also for “encoded Hamiltonians”, which we de-
to be restarted and the ancilla qubit has to be reset. Faulfi€ as Hamiltonians that have the same effect on encoded

tolerant procedures are known for parity check as welStates as do regular Hamiltonians on “batehencodefiqu-
[23,28,29. There is also the possibility of SE on the parity bits. We denote encoded Hamiltonians by a bar. For the code
qubit, but this can only be caused by two successive spont&iates(l), these are given by

neous emissiongone on the code qubits and one on the — —

parity qubiy, which has a lower probabilitp?, wherep is Xi=XiXne1  Zi=Z, ®)

the probability _of a si_ngle SE error oqcurring qluring the gng generate §@). Therefore controllableX;X,,,, and Z;
same observation period, before the first one is detecteqymiionians suffice to generate arbitrary single encoded-
Note that the parity bit also helps preventing the error ofq it transformations. To complete the set of universal logic
applying a correction step without an SE event having take@ates we requireomenontrivial (entangling gate[33], such
place. as controlled phas&CP), CP=diag(1,1,1>-1), in the com-
putational basis. CP can be generated from the Ising interac-
tion Z;Z; as follows: CR=e ("4(+Z)e 1374)ZiZ; ~An
V. FAULT-TOLERANT COMPUTATION entangling gate can also be generated from the Hamiltonian

So far we have described a fault-tolerant implementatio iXj [Of‘e way to see this is to note that it can be rotated to
of quantummemoryin the presence of SE. Now we describe £iZi UsingYi andY; in Egs.(3) and (4)]. Encoded CP can
how to perform universal quantueomputationfault toler- ~ thus be generated from the encoded Hamiltonians;
antly on our code. Formally, one can use the formalism of=2Z;Z; or X;X;=X;X;. Note that in both cases the physical
normalizer group operations, together with a non-normalizeinteraction is also the corresponding encoded Hamiltonian.
element such as the/8 or Toffoli gate[23]. However, here  Thus the sets of controllable Hamiltoniag&;,X;X;} or
we are interested in how to carry this out from the perspec{Z;,X;X.,Z;iZ;} suffice for encoded universal QC on our
tive of the naturally available interactions for a given physi- code. Importantly, these sets moreover exhibit “natural fault
cal systemSimilar questions have been raised recently undetolerance”[17]: they preserve the code subspaaed hence
the heading of “encoded universality:” the ability to quan- will not expose the code to uncorrectable errors. aaeur-
tum compute universally directly in terms of a given andracy error in the time over which the Hamiltonians are
limited set of Hamiltonians, possibly by use of encoded qu-turned on can be dealt with using the technique of concat-
bits (see, e.g., Refs[20,31 and references therginThe enated QECC$23]. The question now is how to generate
problem then translates into finding sets of Hamiltonians thathese sets, or an equivalent fault-tolerant universal set, from
generate a universal set of logic gates on the code. There atige given, naturally available interactions. We will consider
many options, depending on the set of naturally availabldhere the most important cases, extending methods developed
interactions. Nevertheless, all encoded universality construdn Refs.[20,34,35. Note that the decoupling procedure re-
tions rely on showing that the well-known universal set of allquires us to assume in any case the ability to appijyoaal
single-qubit operations and a single entangling gate can b@onselective X pulse, and the recovery procedure requires
generated on the encoded qubits. Underlying this are a fewhe ability to apply a controlledioT gate. We comment on
elementary identities. Let us defigenjugationas: these requirements in each of the cases we next analyze.
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A. Case 1: Natural{Z; ,X;X} model, sinceH}{®* also preserves the total number of 1’s in

The HamiltonianZ; ,X;X; are naturally available, e.g., in the computational basis states. Therefore, as irktriease,
the Sgrensen-Mglmer scheme for trapped-ion[Q6), and  we must assume the ability to generateXai; pulse Then,
in proposals using Josephson charge qui8#@. This is a xixj(Hﬁ(e'S)xixj:ij(xjxk—vjvk—z,-zk), which  com-
universal set for our code, so that encoded computation is, 1o with H™  so that X.X.e— M X X e~ itHc®
automatically compatible with these proposals. Regarding. _—%it;x;x, kd ’ back It JC 1 lTr]1 ,
decoupling, there are at least two ways to obtairKaulse: € » and we are back 1o L.ase 1. ere_ IS now
(i) to generate it by simultaneously turning on all interactionsano'[her option for generat!ng an entangling gate: we can
{XZi—1X2i}iN:/21 for a time /(2J;), whereJ; is the coupling generate a purtZZ interaction usngI(HHeis)le — XX
between spinsi2-1,2. However,{Z;,X;X;} alone is insuf- _IFTJF_Z%;(WIZ‘,’)VZT'CJ‘HH CQ”EET(‘E"Z?S_ With Hiieis, SO that
ficient for generating a controlledeT gate and hence we € ~ "%® e 7 e =€ - This is a
must (i) assume the ability to turn on spin-selecti¥e four-step, naturally fault-tolerant procedure. The decoupling
Hamiltonians. In caséii) it is clear that controlledéoT can ~ Pulse and recovery are now the same as in Case 1.

be generated, sinde; ,Z; ,xixj} is a universal set of Hamil- Finally, there remains _the issue of compatipility between
tonians. the encoded logic operations and the decoupling pulses that

are being constantly applied to the system. All three interac-

B. Case 2:{Z;, XY Model} tion Hamiltonians we have considered commute with the

global X BB pulse, so are fully compatible with the BB op-
erations. On the other hand, the single-qutfit=Z; terms
anti-commute with theX pulse. Hence when using; , one
must be extra careful only to apply it after an even number of
X BB pulses, so that the effect of the BB pulse is neutralized,
before and after th&; Hamiltonian is used.

Members of a relatively large class of promising QC pro-
posals(quantum dot$38,39, atoms in a cavityf40], quan-
tum Hall qubits[41], subradiant dimers in a solid hd<t2],
and capacitively coupled superconducting qupi]) have a
controllable Hamiltonian of the XY formH}¥=J;;(X;X;

T

12
+Y|Y]) LetT”E%(X,XJ-i-YlY]) Then|ol>H|10>, and an-
nihilates|00),|11); i.e., theXY Hamiltonian cannot change VI. CONCLUSIONS
the total number of 1's in a computational basis sfa#35. We have proposed a method for performing universal,

Thgreforg by itself, or even if supplemented WKhH‘fim”' fault-tolerant quantum computation in the presence of spon-
tonians, it cannot generate su(2) on our code. This conclut

S ) ) _ ) faneous emission. The method combines dynamic decou-
sion is unchanged even if one considers conjugatifjg pling pulses with a particularly simple and efficient quantum

with HL": then {T;,,T13,~ 717, close as si®), and  error correcting code, encodiny logical qubits inton-+ 1

we must assume the ability to tuixe Hamiltonians as well,  sjngle-qubite* and o terms together with any of three ma-
to obtain universality. However, in order to preserve the cod§or examples of qubit-qubit interaction Hamiltonians, appli-
space we must ensure that only thalses(unitary transfor-  caple to a wide range of quantum computing proposals. The
mationg X;X;=e'("AXi*X) are applied using these proposed method offers an improvement over previous
Hamiltonians, since such pulses preserve parity. Nowschemes for protecting quantum information against sponta-
XiXj(T) XiX;=z (X Xk—Y;Y\), which commutes with neous emission in that the code is at least twice as efficient in
Ti. Therefore, using ~Eq. (4, we have terms of qubit resources, and the method is fully compatible
XiX;e™ Tikx;Xje~ "Tik=e !Xk, showing that theHamil-  with computation using physically reasonable resources and
tonian XX, can be generated in four steps. At this point wejnteractions.

have the same set of Hamiltonians as in Case 1, so that

universal encoded computation is possible, as are the global
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