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Channel-Optimized Quantum Error Correction
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Abstract—We develop a theory for finding quantum error
correction (QEC) procedures which are optimized for given
noise channels. Our theory accounts for uncertainties in the
noise channel, against which our QEC procedures are robust.
We demonstrate, via numerical examples, that our optimized
QEC procedures always achieve a higher channel fidelity than
the standard error correction method, which is agnostic about
the specifics of the channel. This demonstrates the importance of
channel characterization before QEC procedures are applied. Our
main novel finding is that in the setting of a known noise channel
the recovery ancillas are redundant for optimized quantum error
correction. We show this using a general rank minimization
heuristic and supporting numerical calculations. Therefore, one
can further improve the fidelity by utilizing all the available
ancillas in the encoding block.

Index Terms—Convex optimization, quantum error correction.

I. INTRODUCTION

Q UANTUM error correction (QEC) is often considered
the backbone of quantum information processing, since
it converts an unmanageable continuum of errors into a

manageable discrete set. The theory of quantum error correc-
tion was developed in analogy to classical coding for noisy
channels [1]–[6]. These initial efforts focused on finding con-
ditions and procedures for perfect recovery of quantum states
passing through noisy channels. Recently, several authors con-
sidered error correction design as an optimization problem, with
fidelity as the optimization target [7]–[10]. In this work we fur-
ther develop the theory of optimal quantum error correction. As
in [7]–[10], we consider the scenario where one has knowledge
of the noise channel, and find correspondingly optimal codes
with respect to the average channel fidelity. That is, we assume
that one has already performed a channel identification proce-
dure, e.g., via quantum process tomography [11], [31]–[34]. We
show how, armed with a knowledge of the type of channel, one
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can design highly robust error correction procedures, whose fi-
delity is always at least as good as that of the “agnostic” codes
of standard error correction [1]–[6].

Our optimization procedure is directly applicable in a set-
ting where one knows the type of channel (say phase flip), but
one does not know the strength of the channel (say what the
probability of a phase flip is). This is a physically relevant set-
ting, since one can often guess the type of channel on the basis
of physical considerations (e.g., if only elastic scattering is in-
volved without energy relaxation then the phase flip channel is
a strong suspect), but it is much harder to know the strength of
the channel as this involves detailed knowledge of the parame-
ters of the physical process. In such a setting our average fidelity
approach is appropriate.

More specifically, we present an indirect approach to fidelity
maximization based on minimizing the error between the
actual channel and the desired channel. This approach, like the
previously developed approach to direct fidelity optimization,
leads naturally to biconvex optimization problems, namely,
two semidefinite programs (SDPs) [12] which can be iterated
between the recovery and encoding. For a given encoding the
problem is convex in the recovery. For a given recovery, the
problem is convex in the encoding. An important advantage
of this approach is that noisy channels, which do not satisfy
the standard assumptions for perfect correction [1]–[6], can be
optimized for the best possible encoding and recovery.

The conventional fidelity optimization targets are the en-
coding and recovery operators. An important way in which the
present work differs from previous studies is in the fact that
we further add the distribution of the ancillas in the encoding
and recovery to the optimization problem. This way, we utilize
all possible degrees of freedom for optimization. As a conse-
quence, we find a rather surprising result: in the optimized error
correction procedure the fidelity is indifferent to the existence
of the recovery ancillas. This result paves the way toward a
more efficient utilization of the ancillas. Namely, we can use
all the available ancilla qubits in the encoding to increase the
fidelity.

Standard error correction schemes, as well as those produced
by the aforementioned optimization methods, which are tuned
to specific errors, are often not robust to even small changes in
the error channel. These errors can be mitigated by fault-tolerant
methods which rely on several levels of code concatenation [13].
However, our method naturally enjoys a desirable robustness
against error variations. We show a means to incorporate spe-
cific models of error channel uncertainty, resulting in highly ro-
bust error correction. Nevertheless, concatenated fault tolerant
quantum error correction still enjoys a certain important advan-
tage over the procedures we derive in this work, namely, it is
robust also against imperfections in the encoding and recovery
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procedures, while here, as is the case for standard quantum error
correction formulations, we assume these to be perfectly exe-
cuted.

Since the number of optimization variables scales exponen-
tially with the number of qubits used in the encoding and re-
covery operations, the computational effort required to solve
any of the semidefinite program optimization (SDP) problems
is similarly burdened. In order to reduce this effort we propose
an approach based on optimization via the constrained least
squares method. This alternative approach for solving the in-
direct optimization problem does not utilize semidefinite pro-
gramming, and is significantly faster in our numerical simula-
tions. Surprisingly, this method returns the exact same result as
the SDP approach.

The organization of the paper is as follows. In Section II, we
explain the problem formulation including the standard error
correction model and state the direct and indirect optimization
problems to be addressed. The indirect approach is explored in
Section III. In Section IV, we investigate the optimal distribution
of the ancillas between the recovery and encoding. Examples of
the methods presented are given in Section V. Appendix A–E
provide proofs and supporting material.

II. PROBLEM FORMULATION

A. Standard Error Correction Model

Subject to the assumption that the initial system-bath state is
classically correlated [14], the dynamics of an open quantum
system can be represented in an elegant form known as the
Kraus operator sum representation (OSR). In this representa-
tion, the noise is described in terms of a completely positive
(CP) map: [6]. Here is the initial system
density matrix and the operators , known as Kraus opera-
tors, or operation elements, satisfy the normalization relation

(identity). The standard error correction proce-
dure involves CP encoding , error , and recovery

maps (or channels): , as shown picto-
rially in the block diagram of Fig. 1.
Here is the system state, is the encoded
state, is the perturbed encoded state, and is the

recovered system state. Using the OSR

(1)

The encoding and recovery operation ele-
ments are rectangular matrices, respectively and

, since they map between the system Hilbert space of dimen-
sion and the system/ancillas Hilbert space, the codespace,
of dimension . The error operation elements are
square matrices, and represent the effects of noise
on the codespace. The number of elements, de-
pend on the manner of implementation and basis representation
[6]. More specifically, any OSR can be equivalently expressed,
and consequently physically implemented, as a unitary with an-
cilla states [6, Section 8.23]. An example of this representation
of the standard error correction model of Fig. 1 is shown in the
block diagram of Fig. 2.

Fig. 1. Standard representation of error correction.

Fig. 2. System-ancilla-bath representation of standard encoding-error-re-
covery model of error correction.

In this case the encoding operation is implemented by a
unitary operator acting on the (tensor) product of the system
state, , and the encoding ancillas’ state, , producing the
encoded state . (The tensor
ordering is arbitrary, but once established must remain fixed for
consistency). If the encoding ancillas’ state has dimension ,
then the resulting codespace has dimension . If,
as is customary, we take as the -column vector with
a one in the first element and zeros elsewhere (i.e., it is a tensor
product of encoding ancillas, each in the state

), then the OSR for has the single
matrix element whose columns are the first columns of

, thus forming a set of orthonormal codewords, i.e.

is (2)

For the errors, , the ancillas’ states are not implemented by
design, but rather, engendered by interaction with the bath, a
term used to generically describe the physical environment. The
error operation is thus equivalent to the unitary operating
on the tensor product of , the encoded state, and , the bath
state. The number of bath states may be very large, in principle
infinite dimensional. However, it is always possible to represent

with a finite number of OSR elements with [6, Th.
8.3].

Finally, the recovery operation can be implemented via the
unitary operating on the (tensor) product of the perturbed
encoded state, , and the (additional) recovery ancillas’ state

. If is an -column vector with a one in the first
element and zeros elsewhere, then the OSR for has

elements which consist of the first columns
of , i.e.,

... is (3)

The model represented in Figs. 1 and 2 assumes that the en-
coding and recovery operations can be implemented much faster
than relevant time-scales associated with the bath. For a detailed
discussion of the validity of such a Markovian model see [18].
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TABLE I
DEFINITIONS OF SOME FREQUENTLY USED SYMBOLS

Nevertheless, we will assume the model of Figs. 1 and 2 for
the remainder of this work, as complications associated with the
bath being “on” during encoding and recovery are likely to be
dealt with via fault tolerance methods [19], which require a base
level of encoding of the type we find here.

Table I provides definitions of some frequently used symbols.

B. Performance Measures

Assume that we are given the OSR elements of the error
channel . This could be obtained, for example, from the output
of a quantum process tomography experiment [11], [31]–[34].
The error correction objective considered here is to design the
encoding and the recovery so that, for a given error oper-
ation , the map is as close as possible to a desired

unitary logic gate . Common measures of perfor-
mance between two quantum channels are typically based on
fidelity or distance [6], [20], [21], [22]. Here we will use the
channel fidelity [7] between the error correction operation
and the desired operation

(4)

where and from [5], [6, Th. 8.2], if and only
if there are constants such that,

(5)

This suggests the indirect measure of fidelity, the “distance-like”
error (using the Frobenius norm, )

(6)

where

(7)

and is the rectangular “error matrix,”

(8)

is the matrix obtained by stacking the ma-
trices as in (3), and is the identity. Hence,
we have , and

.

We show in Appendix A that there exists a recovery and
encoding pair, , which achieves perfect error correction
(equivalently ), iff for

(9)

This is a generalization to nonunitary CP encoding of the
Knill–Laflamme condition for perfect error correction with
unitary encoding [5]. In this latter case, has only a single

matrix element , whose columns
are the codewords. As and are explicitly dependent on
the channel elements, they are convenient for optimization.
Consider then the following optimization problems:

maximize

subject to (10)

minimize

subject to

(11)

Here is the matrix obtained in (2). The direct ap-
proach was used in [7], [15]–[17], [9], and [10]. As shown in
Appendix B, and are related as follows:

(12)

This shows that minimizing the distance (11) is equivalent to
maximizing fidelity (10).

C. Robust Error Correction

An important advantage of the method presented here is that
unlike the standard error correction model, it accounts for un-
certainty in knowledge of the channel. Such uncertainty may
exist for many reasons. For example, different runs of a tomog-
raphy experiment can yield different error channels .
Or, a physical model of the error channel might be generated by
a Hamiltonian dependent upon an uncertain set of param-
eters . In any case, not accounting for the uncertainties typ-
ically leads to nonrobust error correction, in the sense that a
small change in the error model can lead to poor performance
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of the error correction procedure. One way to account for these
Hamiltonian parametric uncertainties is to take a sample from
the set of Hamiltonians, say, . Tracing out the
bath states will result in a set of error channels where
each error channel has OSR elements , where is the
largest of the number of OSR elements in each sample. In those
samples with a smaller number we can set the corresponding
OSR elements to zero.

Two standard measures of robustness are the average-case
and worst-case. For the average-case, suppose that each OSR
set is known to occur with probability . Then define the
average error channel by the OSR

(13)

The average error channel in this form has OSR elements, po-
tentially a very large number. However, this number is readily
reduced to no more than using a singular value de-
composition [6, Th. 8.3]. Associated with is the average
channel fidelity

(14)

where are the OSR elements of in
(13).

For average-case robust error correction we replace in (10)
with in (14), and using the relationship (12), replace in
(11) with

(15)

A similar formulation exists for worst-case error correction
which was considered in [10]; we do not consider it any
further here. The remainder of the paper concentrates on the
average-case objective and development of the associated
optimization algorithms. The examples presented in Section V
show that this approach yields a high degree of robustness to
uncertainty in the optimal codes. We now discuss methods
to approximately solve (obtain local solutions to) the indirect
optimization problem (11).

III. INDIRECT FIDELITY MAXIMIZATION

We consider the encoding operator as a unitary operator
acting on both the encoding ancillas and the input qubit. Using
the constraints in (11), we can express the distance measure (6)
as

(16)

where is the single matrix in (7) with
(note that in this case, since there is only a single

matrix, we drop the subscript ).

A. Optimal Recovery

Since only the last term in (16) depends on the recovery ma-
trix , minimizing with respect to is equivalent
to maximizing the last term. In Appendix A, we show that this
maximization results in

(17)

where the matrix is defined as

(18)

and the associated optimal recovery matrix is

(19)

where are, respectively, the right and left
singular vectors in the singular value decomposition of the

matrix , with the singular values, as usual,
in descending order. Thus, to obtain the optimal recovery, we
need first to find which maximizes (17)—this is equivalent to
minimizing over . Following this we need to determine
satisfying (18).

To find , observe that by definition (18), and the
constraint from (11) is equivalent to .
Hence, optimal recovery can be obtained by first solving for
from

maximize

subject to (20)

In Appendix D, it is shown that the optimal is the solution of
an equivalent SDP.

The next step is to use (18) to obtain from . The following
choice adheres to the given dimensions:

is tall

is unitary
(21)

Clearly the choice of is not unique. In fact, the result does
not change if is multiplied by a unitary, i.e., . This
is exactly the unitary freedom in choosing the OSR elements
[6]. Interestingly, however, from many numerical calculations
we observe that the following holds

if
if

(22)

Since the matrix is Hermitian , and is
with , it follows that if (22) is true

then

(23)
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TABLE II
ITERATIVE ALGORITHMS FOR OPTIMAL QEC

If, in the optimized error correction, the dimension of the re-
covery ancillas space is one, then the optimal recovery matrix

is always a unitary—recovery ancillas are redundant in max-
imizing the fidelity. Note that we started with a generic pa-
rameter, and the properties of the optimal solution led us to the
above conclusion. Although we do not have a rigorous proof
that the recovery ancillas are redundant, a compelling heuristic
argument is offered in Section IV along with supporting numer-
ical results.

B. Optimal Encoding

For a given and , the optimal encoding can be found
by solving (11) for , that is

minimize

subject to (24)

As shown in Appendix E, the optimal encoding is given by

(25)

where are obtained from the SVD

with an matrix with orthonormal columns, i.e.,
an unitary, and a diagonal matrix

of the singular values. The matrix is the unconstrained
(least-squares) solution to (24), i.e., .

The left-hand column of Table II, labeled Algorithm-1, sum-
marizes the preceding method for recovery and encoding op-
timization. For optimal recovery alone, solve (20) for , then
determine via (21), and finally from (19). For optimal en-
coding alone, solve (24) for . To find a combined optimal en-
coding and recovery repeat steps 1 and 2 in Table II until
stops decreasing. (By virtue of (12), fidelity increases in every
step). Since in each step the distance measure, , can only de-
crease, never increase, the converged solution to the combined

optimization is only guaranteed to be a local optimal solution to
(11).

C. Alternative Iterative Algorithm for Recovery Optimization

An alternative to the above optimal recovery procedure (Step
1 in Algorithm-1 of Table II), is to iterate between solving (11)
directly by minimizing over and then using (19) to find .
Specifically, for a given and , Step 2a in Algorithm-2 of
Table II requires solving the following constrained least-squares
problem for

minimize

subject to (26)

As shown in Appendix B, the solution is

(27)

where is the unconstrained (least squares) solution to .
This solution is then used in (19) to find (Step 1b), then back
to (27) (Step 1a), and so on until stops decreasing (Step 1c).

The difference between the two algorithms is in computing
the optimal recovery (Steps 1). In Step 1 of Algorithm-1, no iter-
ations are required; the optimal recovery is achieved by solving
the SDP (20). For Step 1 of Algorithm-2, an optimal recovery
is the result of some number of iterations involving the con-
strained least-squares problem (26). Although at present a proof
is not available, in every case we have tried the optimal fidelity
in both recovery algorithms converges to the same result. Ad-
ditionally, the total CPU-time in MATLAB to compute the op-
timal recovery in Algorithm-2 (including the iterations) is sig-
nificantly less than the CPU-time for the recovery step in Algo-
rithm-1 using YALMIP [28] to call the solver SDPT3 [29].

IV. DIMENSION OF THE RECOVERY ANCILLAS SPACE

In our formalism, the dimension of the Recovery ancillas’
space, i.e., the required number of recovery ancilla qubits, is
determined by the rank of the matrix .
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A. Rank Minimization of

In this section, we study the rank of through a heuristic
argument by noting the similarity between our problem and the
so called “Rank Minimization Problem” (RMP) [24]

minimize

subject to (28)

The matrix is the optimization variable and is a convex set
denoting the constraints.

Although several special cases of the RMP have well-known
solutions, in general the RMP is known to be computationally
intractable. However, there are a number of heuristic approaches
to solving this problem. Restate (20) as follows:

minimize

subject to const. (29)

where the constant is the maximum which arose in (20). A
well known heuristic for RMP when is positive semidefinite
[25]–[27] is to replace the rank objective with and solve

minimize

subject to (30)

By comparing (29) with (30), we can view our problem in (20)
as an RMP that minimizes the rank of . Thus, the rank of the
optimal is the smallest possible consistent with not changing
the rank of our objective matrix, . Noting that
rank and rank and with a straightfor-
ward linear algebra analysis we find that this property holds if

if
if

(31)

That is, in the first case, if
decreases by de-

creasing the rank of . But if
, and it does not depend on

. In the second case, should be full rank. Therefore
the rank of the optimal is

if
if

(32)

which agrees with (22). Note that the same argument also ap-
plies in the average case (15) with replaced by .

B. Numerical Result for Randomly Generated Error Maps

Here, we examine the result above for randomly generated
error maps. Namely, we find the rank of the optimal for each
random map by applying the indirect optimization method. The
error map is modeled as shown in Fig. 2 as a unitary acting
on the joint codespace-bath Hilbert space. The unitary arises
from a randomly selected time-independent
Hamiltonian , i.e., (we work in units where

). To generate , we first generate a pair of real-valued
random matrices and with the same dimensions as ,
and then construct as . The matrix

elements of and are drawn from a uniform distribution over
the interval . The unitary evolution operator generated by
this Hamiltonian at time is

...
(33)

That is, we pick the first columns of the matrix . Here,
are the OSR elements of the error operation,

and from (8), .
Fig. 3 presents the channel fidelity versus the number of it-

erations in Algorithm 1 for 100 random error maps. In this ex-
periment, the system is a single qubit and one qubit is used as
an encoding ancilla, i.e., . Each error map
has four OSR elements, i.e., , and is generated using a

random Hamiltonian matrix according to (33). There-
fore, the matrix in (20) is . Fig. 4 shows the histogram of
the rank of versus the number of iterations. This histogram in-
dicates that after 20 iterations in the optimization algorithm, the
rank of is always two, which is equal to . In fact, those
that are not rank after 10 iterations are associated to the error
maps with lower rate of fidelity convergence.

Fig. 5, which shows the singular values of the same ma-
trices, is included for comparison of the magnitude of the sin-
gular values. In all cases, the nonzero singular values are of the
order of . The numerical precision of all the results is .
We repeated the experiment for more than 1000 random maps
with different dimensions (only 100 are shown), and the result
holds for all of them. Namely, after sufficiently many iterations
in Algorithm 1, the rank of the optimal is the same as the
dimension of the encoding ancillas space, i.e., rank

.

V. EXAMPLES

We now apply the methods developed above to the goal of
preserving a single qubit using a -qubit

codespace. In these examples, the error channel con-
sists of single-qubit errors occurring independently on all qubits
with probability . We examine two cases of bit-flip and bit-
phase-flip errors.

A. 3-Qubit Bit-Flip Errors

In this example, we consider the independently occurring
bit-flip error as the noise channel, where the bit-flip operator is

. We used encoding ancilla qubits. There

are OSR error elements for 3-qubit encoding

no error

bit-flip error (34)

Fig. 6 shows versus bit-flip probability in the range
for the standard 3-qubit code, optimal recovery at each , av-
erage-case recovery over the range, and no recovery. For the
average case, we computed an optimized encoding and recovery
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Fig. 3. Channel fidelity � for random error maps on two-qubit codes. One hundred maps were generated at random as described in the text. Vertical error bars
denote the range of fidelities obtained for this number of maps.

Fig. 4. Rank of the optimal � for 100 random error maps on two-qubit codes (see text for details).

for the single channel obtained by averaging over the error chan-
nels corresponding to as defined in (15).
We then applied this encoding and recovery to each of these 10
channels, thus producing the 10 fidelity values shown. Note that
the optimal recovery can be achieved equivalently by either the
constrained least squares method (Algorithm-2) or the convex
optimization method (Algorithm-1). Interestingly, the standard

3-qubit code not only provides optimal recovery for the range
, it is optimal for both recovery and encoding in this

range. For the standard code is clearly no longer op-
timal, though this is of course easy to fix by flipping all the
qubits, using the duality between the bit-flip channels with error
probabilities and . However, this assumes knowledge of
the parameter. Indeed, the optimal recovery outperforms the
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Fig. 5. Singular values of the optimal � for 100 random error maps on two-qubit codes. For all cases tested only two of the singular values are significantly
different from zero, meaning that the rank of the � matrices is �.

Fig. 6. Channel fidelity � versus bit-flip probability � for 3-qubit encoding.

standard code in the range, a phenomenon similar to
what was reported for amplitude-damping errors in [7]. Anal-
ysis of our optimal encoding recovery results reveals that the
intuitive duality picture mentioned above is “discovered” by the
optimal code. Namely, the optimal code is the standard 3-qubit
code for the entire range, i.e., and .

The optimal recovery is the standard recovery [6] in the range
. In the range the optimal recovery

is a bit-flip on all qubits followed by the standard recovery.
Fig. 7 shows channel fidelity in two ranges: and

. Unlike the previous case, here we compute the
optimization twice, once for each range. For the average case,
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Fig. 7. Channel fidelity � versus bit-flip probability � for 3-qubit encoding in two ranges: � � ��� and ��� � � � ���.

we computed an optimized encoding and recovery for the single
channel obtained by averaging over the error channels corre-
sponding to . We then applied this encoding
and recovery to each of these five channels, thus producing the
five fidelity values shown in the range . We then
repeated this procedure for . For ,
the standard, optimal, average case, all coincide. For ,
the optimal and average case codes coincide and divert again
from the standard. The optimal encoding and recovery are the
same as in Fig. 6, i.e., the standard 3-qubit code, with standard
recovery in the range , and bit-flips preceding
standard recovery in the range . We conclude
from the examples in Figs. 6 and 7 that optimal encoding and
recovery has no advantage over standard encoding and recovery
for low bit-flip probabilities , and thus increasing the
codespace would be required to improve fidelity. For large er-
rors , optimization is more effective in that it identifies
an optimal recovery. In both cases the achieved optimal fidelity
is independent of the number of recovery ancillas used, hence,
in all examples shown in Figs. 6 and 7 there are no additional
recovery ancillas required. It is striking that the average case fi-
delity matches the optimal in Fig. 7, but not in Fig. 6. This is
entirely due to the range of values over which the average is
performed. The lesson is that the more information is available
about the noise channel, the more robust the encoding and re-
covery will be: in Fig. 7 we know that the probability is in the
range or , while in Fig. 6 we only know that it is
in the range . Absent such information, robustness may
still be attainable by experimenting with tuning the encoding
and recovery over a range of channels.

B. Bit-Phase Flip Error

In this example, the noise channel consists of bit-phase flip

errors occurring independently with probability

. We do not allow for more than three to occur simultaneously
(i.e., we consider weight-3 errors). We examine two cases: 1)

Considering a fixed number of encoding ancillas, we compare
the fidelity using different numbers of recovery ancillas. 2) We
fix the total number of available ancilla qubits, and compare
the fidelity for various distributions of encoding and recovery
ancillas.

1) 5-Qubit Bit-Phase Flip Error: In this example, the bit-
phase flip errors occur independently on the input qubit and four
ancillas. There are 26 error OSR elements: 1 for no error, 5 for a
single error, 10 for double errors, and 10 for triple errors. Thus,
the matrix in (20) is and the rank of is equal to

, meaning that the optimal distribution of ancillas is
having all four in the encoding block and none in the recovery
block.

Fig. 8 shows verus bit-phase flip error probability for
the optimal encoding/recovery in the case of zero, one and two
recovery ancillas. The result shows that all cases yield the same
fidelity. Therefore, the fidelity of the system is independent of
the number of recovery ancillas.

2) Bit-Phase Flip Errors With a Fixed Number of Ancillas: In
this example, we consider five ancilla qubits that can be used ei-
ther in the encoding block or in the recovery block. We compare
the fidelity for the following distributions: three encoding an-
cillas and two recovery ancillas, four encoding ancillas and one
recovery ancilla, and five encoding ancillas with no recovery
ancilla. Fig. 9 shows that the channel fidelity increases signif-
icantly by using the ancillas in the encoding instead of the re-
covery. Thus, the most efficient use of ancillas is achieved when
they are all used for encoding.

VI. CONCLUSION

We have presented an optimization approach to quantum
error correction that yields codes which achieve robust perfor-
mance, when tuned to a specific noise channel. An important
aspect of developing optimal codes which are tuned to a class
of errors, or are robust over a range of errors, is that the opti-
mized performance levels may be sufficient for the intended
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Fig. 8. Channel fidelity � versus bit-phase flip probability � for 5 qubit code and �� �� or � recovery ancillas, with optimal encoding and recovery.

Fig. 9. Channel fidelity � versus bit-phase flip probability � with a fixed total of six ancillas, and optimal encoding and recovery.

purposes. Hence, no further increases in codespace dimension
may be necessary. This cannot be known without performing
the optimization.

We have also shown that the fidelity of such a system is inde-
pendent of the number of the recovery ancillas. We stress that
this is surprising, for the following reason. A syndrome mea-
surement equals a projection of the output of the noisy channel

onto one of the code subspaces, followed by a recovery unitary
conditioned on the measurement outcome. As should be clear
from Fig. 2, we do not consider projections. Instead we intro-
duce the recovery ancillas and apply a unitary on the channel
output and the recovery ancillas. Thus, our setting is one of fully
unitary recovery. This is of course equivalent to a CP map on
the channel output (via the Stinespring dilation theorem), and in
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that sense Fig. 2 describes a standard syndrome measurement.
However, our analysis reveals that in fact the recovery ancillas
are not needed, so that optimal recovery is always described by
a unitary on the channel output alone. This removes the possi-
bility of a projection of the output of the noisy channel onto one
of the code subspaces.

The finding that the recovery ancillas are redundant is en-
tirely due to the structure of the error correction optimization
problem, for which we found that a unitary recovery operator
maximizes the fidelity of the system. However, the fidelity
increases significantly by increasing the dimension of the
encoding ancillas space. Therefore, in the optimal quantum
error correction scheme, one should use all the available ancilla
qubits in the encoding block.

Although not further developed here, the resulting codes, un-
like standard codes, have support over all basis states. Some of
the recovery structure is revealed via the indirect approach. This
in turn leads to a method for approximating optimal recovery in-
volving only a singular value decomposition, making it poten-
tially useful in evaluating very large blocks of encoding to see
if further performance improvement is possible.

We stress that there is an important difference between the
standard error correction schemes [1]–[6] and the approach pre-
sented here. While in the standard case, only the class of errors
should be known, in our method the exact form of the noise map
is required for optimization. In general, the noise map can be
identified using quantum process tomography [11], [31]–[34].
In most cases this extra knowledge is equivalent to identifying
the probability of the error, which can also be found using our
method. In order to identify the probability in a particular error
model, one should calibrate the fidelity of the system using a
fixed pair of recovery and encoding operators. Once the relation
between the fidelity associated to this pair and the error proba-
bility is known, a measurement of the fidelity yields the proba-
bility.

It thus appears that the effectiveness of optimization is depen-
dent upon the structure of the error operation, a result seemingly
heralded by Feynman [30]:

“In a machine such as this there are very many other
problems due to imperfections. there may be small
terms in the Hamiltonian besides the ones we’ve written.

At least some of these problems can be remedied
in the usual way by techniques such as error correcting
codes But until we find a specific implementation for
this computer, I do not know how to proceed to analyze
these effects. However, it appears that they would be very
important in practice. This computer seems to be very del-
icate and these imperfections may produce considerable
havoc.”

Determining the “specific implementation” is currently an
ongoing research effort. Analyzing the “effects” however, will
undoubtedly be accomplished by a combination of physical
modeling and/or system identification (e.g., process tomog-
raphy and parameter estimation). This leads to an intriguing
prospect: to integrate the results found here within a complete
“black-box” error correction scheme, that takes quantum state

or process tomography as input and iterates until it finds an
optimal error correcting encoding and recovery.

APPENDIX A
PROOF OF (9), (17), AND (19)

The matrix has a maximum
rank of . Hence, a singular value decomposition is of the
form , with an diagonal matrix
containing the singular values ordered from large to small
down the diagonal. If is partitioned as with
being then the objective function in (17) becomes

(35)
Observe that is part of a unitary, is a unitary, and

. Hence, each of these matrices which form has a max-
imum singular value of at most . Specifically,

, and where is the maximum sin-
gular value of the matrix argument. Since this is an induced
norm, it has the submultiplicative property. Hence, it follows
that . From standard relationships for
matrix norms, . Hence, the maximum ab-
solute value of any element of is . From this it follows that
setting in (35) yields the maximum objective as

. An obvious choice for is then simply , or
equivalently, , which is precisely the result in (19).
The optimal objective function, , thus

(36)

which establishes (17). Observe that the choice is nec-
essary and sufficient when , i.e., the recovery is unitary.

Condition (9) follows directly from (5) by multiplying both
sides by their respective conjugate (with indices and ) which
also eliminates because . This immediately estab-
lishes that (9) is a necessary condition for (5). To prove suffi-
ciency, first expand (6) to get

(37)

From (36), we get

(38)

Using (9) we get, . This,
together with repeated uses of (9) shows that .

Authorized licensed use limited to: University of Southern California. Downloaded on April 12,2010 at 09:42:55 UTC from IEEE Xplore.  Restrictions apply. 



1472 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 3, MARCH 2010

Since is a norm, and is zero, then so is its argument, which by
definition establishes (5) and thus shows sufficiency of (9).

APPENDIX B
RELATION BETWEEN FIDELITY AND DISTANCE

The problem is

minimize

subject to (39)

Form the Lagrangian

(40)

with the Lagrange multiplier. Then,
when . To enforce the
constraint requires that

. Hence

(41)

Observe that . This together with
gives the optimal distance as given implic-

itly by (12). Note also that with no constraint, , the are
the optimal least-squares (unconstrained) solution.

APPENDIX C
UNITARY FREEDOM IN (17)

In (17), remains unchanged if is multiplied by a
unitary. This unitary freedom is exactly the unitary freedom in
describing the error map OSR. To see this, recall again from
[6, Thm.8.2] that two error maps with OSR elements

and are equivalent if and only
if where the matrix is unitary.
Equivalently from (37), . Substituting this for

into the left hand side of (17) gives

(42)

with . Hence, , which
establishes the claim.

APPENDIX D
SOLVING (20) VIA AN SDP

Problem (20) is of the form

maximize

subject to (43)

where is linear in . Consider the relaxed problem

maximize

subject to (44)

This is an SDP in and with Lagrangian

(45)

The dual function is

otherwise
(46)

with , which is not dependent on be-
cause is linear in . Performing the indicated gives

and . The dual opti-
mization associated with (44) is to maximize , or equivalently,
minimize its negative, i.e.

minimize

subject to (47)

This is an SDP in the dual variables . For this problem
strong duality holds [12]. Consequently, at optimality of
(44) and (47) the complementary slackness condition is

. Since , we have
. This establishes that solving the SDP (44)

is equivalent to solving the original problem (43).

APPENDIX E
SOLVING FOR IN (24)

The problem is

minimize

subject to (48)

Form the Lagrangian

(49)

with the Lagrange multiplier. Then, when
with as defined in (24). To enforce the constraint
requires that . Hence,
. The actual computation of is done using the

SVD (25)–(26). Note that with no constraint, , and is
the optimal least-squares (unconstrained) solution.
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