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Qubits are neither fermions nor bosons. A Fock space description of qubits leads to
a mapping from qubits to parafermions: particles with a hybrid boson-fermion
quantum statistics. We study this mapping in detail, and use it to provide a classi-
fication of the algebras of operators acting on qubits. These algebras in turn classify
the universality of different classes of physically relevant qubit-qubit interaction
Hamiltonians. The mapping is further used to elucidate the connections between
qubits, bosons, and fermions. These connections allow us to share universality
results between the different particle types. Finally, we use the mapping to study the
quantum computational power of certain anisotropic exchange Hamiltonians. In
particular, we prove that the XY model with nearest-neighbor interactions only is
not computationally universal. We also generalize previous results about universal
quantum computation with encoded qubits to codes with higher rates. ©2002
American Institute of Physics.@DOI: 10.1063/1.1499208#

I. INTRODUCTION

It is an experimental fact that there are only two types offundamentalparticles in nature:
bosons and fermions. Bosons are particles whose wavefunction is unchanged under permut
two identical particles. The wavefunction of fermions is multiplied by21 under the same opera
tion. An equivalent statement is that bosons transform according to the one-dimensional, sy
ric, irreducible representation~irrep! of the permutation group, while fermions belong to t
one-dimensional antisymmetric irrep. The permutation group has only these two one-dimen
irreps. What about particles transforming according to higher-dimensional irreps of the sym
group? Much research went into studying this possibility, in the early days of the quark m
before the concept of ‘‘colored’’ quarks gained widespread acceptance.1,2 However, there are now
good reasons to believe that particles obeying such ‘‘parastatistics’’ do not exist~Ref. 3, p. 137!.
Nevertheless, as we will show below, the traditional definition of a Hilbert space of qub
inconsistent with the properties of either bosons or fermions.

The description of bosons and fermions in terms of their properties under particle per
tions uses the language of first quantization. A useful alternative description is the se
quantized formalism of Fock space.3,4 A basis state in the boson or fermion Hilbert–Fock spa
can be written asun1

a ,n2
a , . . . &, where ni

a counts how many bosons (a5b) or fermions (a
5 f ) occupy a given mode, or sitei . Note that the total number of modes does not need to
specified in the Fock-basis. Ignoring normalization, raising,a i

† ~lowering, a i! operators increase
~decrease! ni

a by 1. A consequence of the permutation properties of bosons and fermions i
their corresponding raising and lowering operators satisfy commutation and anticommutati
lations:

@bi
† ,bj

†#50, @bi ,bj
†#5d i j bosons,

$ f i
† , f j

†%50, $ f i , f j
†%5d i j fermions.

a!Electronic mail: dlidar@chem.utoronto.ca
45060022-2488/2002/43(9)/4506/20/$19.00 © 2002 American Institute of Physics
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From this follow a number of well-known facts.3,4 Let n̂i
a5a i

†a i ; this is the number operator
which is diagonal in the Fock-basisun1

a ,n2
a , . . . &, and has eigenvaluesni

a . Then we have the
following.

~i! @bi
† ,bj

†#50⇒ an arbitrary number of bosonsni
a can occupy a given modei . On the other

hand,$ f i
† , f j

†%50⇒ only ni
f50,1 is possible for fermions.

~ii ! @bi ,bj
†#5d i j ⇒ the Hilbert space of bosons has a natural tensor product structure

un1
b ,n2

b , . . . &5un1
b& ^ un2

b& ^¯ . More specifically, it is possible toindependentlyoperate on
each factor of the Hilbert space. However,

$ f i , f j
†%5d i j ⇒ f j un1

f , . . . ,nj 21
f ,1,nj 11

f , . . . &5~21!(
k51

j 21

nk
f
un1

f , . . . ,nj 21
f ,0,nj 11

f , . . . &,

which means that the outcome of operating on a mode of a multi-fermion state depends
previous modes~the order of modes is actually arbitrary!. This nonlocal property means that th
fermionic Fock space does not have a natural tensor product structure, although it can be m
onto one that does using the Jordan–Wigner transformation5 ~see Ref. 6 for a more detaile
discussion!.

What about qubits? The standard notion of what a qubit is, is the following:7

Qubit:

~i! A qubit is a vector in a two-dimensional Hilbert spaceHi5span$u0& i ,u1& i% ~like a fer-
mion!.

~ii ! An N-qubit Hilbert space has a tensor product structure:H5 ^ i 51
N Hi ~like bosons!.

It appears that a qubit is a hybrid fermion-boson particle! We conclude thatqubits do not exist
as fundamental particles. This motivates us to consider an intermediate statistics of ‘‘parafe
ons’’ in order to have a Fock space description of a qubit. We define the parafermionic co
tation relations by8,9

$ai ,ai
†%51,

~1!
@ai ,aj

†#50 if iÞ j .

Here i , j are different modes, or different qubits. The relation@ai ,aj
†#50 for iÞ j immediately

implies a tensor product structure, while$ai ,ai
†%51, which together withai u0&50 (u0& is the

vacuum state! implies

aiai5ai
†ai

†50 ~2!

in the standard~irreducible! two-dimensional representation. Therefore a double-occupation
cannot be realized, i.e., the single-particle Hilbert space is two-dimensional. These are exa
requirements for a qubit.

In fact, the notion of particles with ‘‘intermediate’’ statistics such as parafermions is
known and established in condensed matter physics, e.g., hard-core bosons, excitons, or t
per pairs of superconductivity10 ~see also Sec. VI!. Such particles are alwayscomposite, i.e., they
are not fundamental. Another way of obtaining a particle that is neither a boson nor a ferm
to simply ignore one or more degrees of freedom. This is by and large the approach ta
current proposals for the physical implementation of quantum computers. For example, a
spin-12, without the orbital component of its wavefunction, behaves exactly like a qubit. This i
case of the electron-spin qubit in quantum dots.11 Related to this, a truncated multi-level atom c
also approximate a qubit, as in the ion-trap proposal.12 What are the implications of this fo
quantum computing~QC!? In a nutshell, ‘‘ideal’’ qubits are hard to come by. If a qubit is to ex
as an approximate two-level system, or as a composite particle, or as a partial description
object with additional degrees of freedom, this means that some robustness is lost and the
21 Aug 2002 to 142.150.225.172. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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opened to decoherence. For example, the additional levels in a multi-level Hilbert space can
‘‘leakage,’’ the orbital degrees of freedom act as a bath coupled to the spin-qubit, and a com
particle may decay~e.g., the exciton-qubit13!.

The advantages of the parafermionic formalism for qubits, however, are not necessa
understanding these sources of decoherence, because this formalism ‘‘accepts’’ qubits as p
Instead, the parafermionic formalism allows us to naturally establish mappings between q
fermions, and bosons. This mapping serves to transport well-known results about one t
particle to another, which, as we show below, clarifies questions regarding the ability of sets
type of particle to act as universal simulators14 of sets of another type of particle. It also helps
connecting the Hamiltonians of condensed matter physics to standard tools of quantum co
tion.

The structure of the article is as follows. In the next section we formally introduce the se
quantization of qubits. We then classify the algebraic structure of parafemionic operators i
III. This classification, into subalgebras with different conservation properties, is very usefu
establishing which subsets of qubit operators are universal, either on the full Hilbert space, o
on a subspace. This is taken up in the next two sections, where we establish the con
between parafermions and fermions~Sec. IV! and bosons~Sec. V!. The connection to fermions
and bosons also works in the opposite direction: we are able to classify which fermioni
bosonic operator sets are universal. This has implications, e.g., for the linear optics qu
computing proposals.15,16Section VI shows how to construct parafermions out of paired fermi
and bosons, emphasizing the compound-particle aspect of qubits. With the connections b
fermions, bosons, and parafermions clarified, we explain in Sec. VII a remarkable diffe
between parafermions and the other particle types: bilinear parafermionic Hamiltonians are
cient for universal quantum computation, whereas fermionic and bosonic Hamiltonians are
Sec. VIII we briefly use the mapping to fermions to derive the thermal fluctuations of noni
acting parafermions at finite temperature. In Sec. IX we apply the classification of the va
parafermionic operator subalgebras to the problem of establishing universality of typical H
tonians encountered in solid state physics. We generalize a number of our previous results17,18 In
particular, we establish that the XY model is not universal with nearest-neighbor interactions
and, we prove universality of the XXZ model for codes with arbitrarily high rates. We conclud
Sec. X.

II. SECOND QUANTIZATION OF QUBITS

As in the cases of bosons and fermions, a parafermion number operator in modei can be
defined as

n̂i5ai
†ai ,

with eigenvaluesni50,1. The total number operator isn̂5( i n̂i . A normalized basis state in th
parafermionic Fock space is

u¯ni¯&5)
i

~ai
†!niu0&,

which we think of as representing a state with thei th qubit in the ‘‘up’’ ~‘‘down’’ ! state if thei th
parafermion is present~absent!, i.e.,ni51 ~0!. Qubit computational basis states are thus mapp
to parafermionic Fock states. Equivalently, consider the following mapping from qubits to pa
fermions:

u01¯0i 210i0i 11¯&→u0&,

u01¯0i 211i0i 11¯&→ai
†u0&,
21 Aug 2002 to 142.150.225.172. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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where on the left 0 and 1 represent the standard~first-quantized! logical states of a qubit.Qubits
can thus be identified with parafermionic operators.

The mapping of qubits to parafermions is completed by mapping the Pauli matricess i
a to

parafermionic operators:

s i
1→ai

† , s i
2→ai , s i

z→2ni21. ~3!

It is then straightforward to check that the standard sl~2! commutation relations of the Pau
matrices,

@s i
1 ,s j

2#5d i j s i
z ,

@s i
z ,s j

6#56d i j s i
6 ,

are preserved, so that we have a faithful second-quantized representation of the qubit
Hilbert space and algebra.@Of course we could also have mapped su(2)5$sx,sy,sz% to the
parafermionic operators, by appropriate linear combinations.# To illustrate the multi-qubit Hilbert–
Fock space representation, consider the case of two modes, i.e.,i , j 51,2. The space splits into
vacuum stateu00&5u0&, single-particle statesu01&5a1

†u0& and u10&5a2
†u0&, and a two-particle

stateu11&5a1
†a2

†u0&. It is important to emphasize that the parafermionic formalism is mathem
cally equivalent to the standard Pauli matrix formalism. We will be using both in the sections
follow, starting with the parafermionic, as it makes particularly transparent the translatio
known results about fermions to qubits.

III. GENERAL PROPERTIES OF PARAFERMIONIC OPERATORS

N-qubit operators in QC are elements of the group U(2N). We will begin our discussion by
identifying a set of infinitesimal parafermionic generators for U(2N). Recall that with any
r -parameter Lie group there are associatedr infinitesimal generators,19 e.g., in the case of su~2!
these are, in the two-dimensional irreducible representation, the Pauli matrices$sx ,sy ,sz%. Now,
let a5$a i%,b5$b j%, wherea i , b j can be 0 or 1. In terms of parafermionic operations, a
element of U(2N) can be written as U(b)5exp(2i(a,bbabQa,b(N)), wherebab are continuous
parameters~generalized Euler angles! and the 2N32N infinitesimal group generators Qa,b(N) are
defined as follows: LetNa5( i 51

N a i , and

qa
†~Na!5~aN

† !aN
¯~a1

†!a1, qb~N2Na!5aN
bN
¯a1

b1 . ~4!

Then,

Qa,b~N!5qa
†~Na!qb~N2Na!. ~5!

The Qa,b(N) will be recognized as all possible transformations betweenN-qubit computational
basis states, e.g., forN52 the set of 16 operators is

$I ,a1
† ,a2

† ,a1 ,a2 ,a2
†a1

† ,a1a2 ,a1
†a1 ,a1

†a2 ,a2
†a1 ,a2

†a2 ,a2
†a1

†a1 ,a2
†a1

†a2 ,a1
†a1a2 ,a2

†a2a1 ,a2
†a1

†a2a1%,

where I is the identity operator. The setQa,0(N) generates all possible basis states from
vacuum state. Hermitian forms areQ1Q† and i (Q2Q†). We will turn to the Hermitian set of
generators in the discussion of applications, in Sec. IX.

Note that infinitesimal generators are not the generators one usually considers in QC. R
in QC, a gate operation is obtained by the unitary evolution generated through the turning
of a set of physically availableHamiltonians$Hm%, which are generally a small subset of th
2N32N infinitesimal generatorsQa,b(N). ‘‘Generated’’ here has the usual meaning of allowi
linear combinations and commutation of Hamiltonians. We will say thata set of Hamiltonians
$Hm% is universal with respect to a Lie groupG if it generates the Lie algebra of that group. T
21 Aug 2002 to 142.150.225.172. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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question of the dimension of the universal set of Hamiltonians with respect to U(2N) is somewhat
subtle, since it is context dependent. Lloyd showed that given two noncommuting operatorsA, B,
represented byn3n matrices, one can almost always generate U(n).20 However, it is not neces-
sarily clear how this result is related tophysically availableHamiltonians, since in practice on
may have only limited control over terms in a Hamiltonian, e.g., the standard Hamiltonian
erators for SU~4! ~two qubits! is the five-element set$s1

z ,s2
z ,s1

x ,s2
x ,s1

zs2
z%. However, the four-

element set $s1
z ,s2

z ,s1
zs2

x2s1
xs2

z ,sW 1•sW 2% also generates SU~4!, and may be physically
available.17 Another example are the following sets of, respectively, five, four, and three ge
tors: $s1

x ,s2
x ,s1

z ,s2
z ,s1

zs2
z%, $s1

x ,s2
x ,c1s1

z1c2s2
z ,s1

zs2
z%, and $s1

x ,s2
x ,c1s1

z1c2s2
z1c3s1

zs2
z%

~whereci are constants!. Which set of generators is physically available~i.e., directly controllable!
depends on the specific system used to implement the quantum computer. As we will show
this work, it is sometimes the case that a given, physically available, set of Hamiltonia
universal with respect to asubgroupof U(2N), which may be quite useful, provided the subgro
is sufficiently large~typically, still exponential inN!. This notion of universality with respect to
subgroup is what gives rise to the idea ofencoded universality:17,18,21–24,52one encodes a logica
qubit into two or more physical qubits, and studies the universality of the subgroup-gene
Hamiltonians with respect to these encoded/logical qubits.

The infinitesimal parafermionic generatorsQa,b(N) can be rearranged into certain subsets
operators with clear physical meaning, which we now detail.

~1! Local subalgebras: The tensor product structure of qubits is naturally enforce
@ai ,aj

†#50 for iÞ j . This induces a tensor product structurêi 51
N sli(2) on the subalgebra

formed by the grouping sli(2)5$ai ,ai
†,122ni%. Each sli(2) can only change states within th

same mode.
~2! SAp—Subalgebra withconserved parity: Define aparity operator as

p̂5~21! n̂.

It has eigenvalues 1 (21) for even~odd! total particle number. The operators that commute w
the parity operator form a subalgebra, which we denote by SAp. Let k ( l ) be the number ofai

†

(ai) factors inQa,b(N), i.e.,

k5( a i , l 5( b i .

SAp consists of those operators havingk2 l even, so its dimension~i.e., number of generators! is
22N/2. To see this, letQI be in SAp, and consider its action on a state with an even numbe
particles un&. Since k2 l is even, QI un&5un8& where n8 is also even. Now,p̂QI un&5 p̂un8&
51un8&, but alsoQIp̂un&5QI(1un&)5un8& so @ p̂,Q#50. For example, forN52 SAp consists
of $I ,a2

†a1
† ,a1a2 ,a1

†a1 ,a1
†a2 ,a2

†a1 ,a2
†a2 ,a2

†a1
†a2a1%.

~3! SAn—subalgebra withconserved particle number. This subalgebra, which we deno
SAn, is formed by all operators commuting with the number operatorn̂. These are the operator
for which k5 l , so its dimension is(k50

N (k
N)25(2N)!/N!N!. To see this, letQII be in SAn, and

consider its action on a stateun& with n particles.QII cannot change this number sincek5 l , but
it can transformun&: n̂QII un&5n̂un&85nun&8. However,QII n̂un&5nQII un&5nun&8, so @QII ,n̂#
50. For example, forN52 SAn consists of $I ,a1

†a1 ,a1
†a2 ,a2

†a1 ,a2
†a2 ,a2

†a1
†a2a1%. Clearly,

SAn,SAp.
~4! Subsets of bilinear operators: There are two types of bilinear operators foriÞ j : ai

†aj

~which conserve the particle number! andaiaj ,ai
†aj

† ~which conserve parity!. Let m5( i j ). Then
first

Tm
x 5aj

†ai1ai
†aj ,

~6!
Tm

z 5ni2nj ,

and Tm
y 5 i @Tm

x ,Tm
z # form an su~2! subalgebra, that we denote sum

t (2). Clearly, sum
t (2)PSAn.

Second,
21 Aug 2002 to 142.150.225.172. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Rm
x 5aiaj1ai

†aj
† ,

~7!
Rm

z 5ni1nj21,

and Rm
y form another su~2! subalgebra, that we denote sum

r (2)PSAp. Note that
@sum

t (2),sum
r (2)#50 since any product of raising/lowering operators from these algebras con

a factor ofaiai or ai
†ai

† . Consider as an example the case ofN52 modes. Whereas the direc
product group SU1(2)^ SU2(2) yields all product states, the group SUt(2)% SUr(2) can trans-
form between states with equal particle number and states differing by two particle numbe

~5! Generators of SAn(N): The set of Hamiltonians$ai
†aj% i , j 51

N11 generates SAn(N), i.e., the
subalgebra of conserved particle number onN modes~qubits!. Proof: this set maps to the XY
model ~see Sec. IX B!. The rest follows using the method of Ref. 18. Note that$ai

†aj% i , j 51
N11 does

not generate SAn(N11), since this set cannot generaten̂1n̂2¯n̂N .
~6! Generators of SAp(N): The set of Hamiltonians$ai

†aj ,aiaj1ai
†aj

† ,i (aiaj2ai
†aj

†)% i , j 51
N

yields all states with even particle number onN modes from the vacuum state.~Proof is trivial.!
~7! Generators of SU(2N): In order to transform between states differing by an odd numbe

particles it is necessary to include the operators$ai ,ai
†% as well. The corresponding se

$ai
†aj ,aiaj ,ai

†aj
† ,ai ,ai

†% i , j 51
N generates a set of universal gates~proof is trivial!, and then by

standard universality results25,26 the entire SU(2N).
Additional structure emerges from a mapping between fermions and parafermions. This

ture helps both in simulating fermionic system using qubits, and in understanding the unive
of qubit systems.

IV. FERMIONS AND PARAFERMIONS

A general fermionic Fock state is

un1 ,n2 ,¯&F , ~8!

where ni50,1 is the occupation number of modei . As is well known,27 the fermionic
~‘‘supergroup’’19! U(2N) has infinitesimal generators

Q̃a,b
f ~N!5~ f N

† !aN
¯~ f 1

†!a1A fN
bN
¯ f 1

b1,

where

A5 ^
i 51

N

~12ni !.

This basis is equivalent by a linear transformation to the more familiar set

Qa,b
f ~N!5~ f N

† !aN
¯~ f 1

†!a1f N
bN
¯ f 1

b1,

which transforms between all possible fermionic Fock states~‘‘fermionic computational basis
state’’!. There is a group chain of this group,

U~2N!.SO~2N11!.SO~2N!.U~N! ~9!

and the generators of the subgroups are known.19

The Jordan–Wigner~JW! transformation,5 recently generalized in Ref. 28, allows one
establish an isomorphism between fermions and parafermions. Defining

Si
f[ ^

k51

i 21

~122nk
f !, Si[ ^

k51

i 21

~122nk!, ~10!
21 Aug 2002 to 142.150.225.172. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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the mapping is

ni
f→ni ,

f i→aiSi , ~11!

f i
†→ai

†Si .

The action of the fermionic operators on the state~8! is equivalent to that of the correspondin
parafermionic operators on the stateun1 ,n2 ,...&. To see this, note that@ai ,Si #50. Therefore the
effect of the JW transformation is quite simple: by commuting allSi to the left when mapping a
fermionic infinitesimal generator to a parafermionic one, we see that (i ) the parafermionicai ,ai

†

operators will yield a state with the same parafermionic occupation numbers as the corresp
fermionic state and (i i ) the action of the product ofSi ’s is to produce a phase61. ~This may
become a relative phase when acting on a state that is a superposition of computationa
states.! This allows us to study algebraic properties of one set of particles in terms of the o

Using the JW transformation we find that the same subgroup chain~9! holds for parafermions,
and we can immediately write down also the infinitesimal generators for the corresponding
fermionic subgroups. The result is given in Table I.

The significance of these subgroups for QC is in the classification of the universality pr
ties of fermionic and parafermionic Hamiltonians. For example, a Hamiltonian of nonintera
fermions, i.e., one including only bilinear terms$ f i

†f j , f i f j , f j
†f i

†%, is not by itself universal since i
merely generates SO(2N). Recent work has clarified what needs to be added to such a Ha
tonian in order to establish universality.6,29,30Regarding SO(2N11), note that one must carefull
discuss the Hermitian termsf i1 f i

† and i ( f i2 f i
†) if one wants to consider them as Hamiltonian

since it is unclear which physical process can be described by such Hamiltonians~a single fermion
creation/annihilation operator can turn an isolated fermion into a boson, a process that do
seem to occur in nature!.

A more powerful classification, from the QC viewpoint, is in terms of physically availa
Hamiltonian generators of the subgroups. An interesting restriction of the set of infinite
generators to a physically reasonable set of Hamiltonians is to consider only nearest-ne
interactions, where possible. The results known to us in this case are presented in Table I

A couple of comments are in order regarding Table II: First, note the group SO(2N11) may
be unphysical not just for fermions since its generators must contain terms likef i1 f i

† in its
Hamiltonian, but also for parafermions: it requires a nonlocal Hamiltonian due to theSi term.
Second, the corresponding fermionic generators for U(2N) given here is unphysical because

TABLE I. Infinitesimal generators~h.c.5Hermitian conjugate!.

Group Fermions Parafermions

U(2N) Qa,b
f (N) Qa,b(N)

SO(2N11) f i
†f j , f i f j , f i ,h.c. ai

†SiSjaj ,aiSiSjaj ,aiSi ,h.c.
SO(2N) f i

†f j , f i f j ,h.c. ai
†SiSjaj ,aiSiSjaj ,h.c.

U(N) f i
†f j ai

†SiSjaj

TABLE II. Hamiltonian generators.

Group Fermions Parafermions

U(2N) f iSi
f , f i

†f i 11 ,h.c. ai ,ai
†ai 11 ,h.c.

SO(2N11) f i ,h.c. aiSi ,h.c.
SO(2N) f i

†f i 11 , f i f i 11 ,h.c. ai
†ai 11 ,aiai 11 ,h.c.

SU(N) f i
†f i 11 ,h.c. ai

†ai 11 ,h.c.
21 Aug 2002 to 142.150.225.172. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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includes terms that are linear inf i and furthermore nonlocal. A physically acceptable set
$ f i

†f i 11 , f i f i 11 , f i
†f i 11

† f i f i 11 , h.c.%, but this set is not universal over the full 2N-dimensional
Hilbert space~since it conserves parity!. This means that a qubit needs to be encoded into
fermions in this case, a situation we explore further in Sec. VI. Now let us verify the claim
Table II. Our strategy is to show that in each case, we can use the Hamiltonians for genera
infinitesimal generators of the corresponding subgroup in Table I.

Consider first the subgroup SU(N): In the fermionic case, we claim that this subgroup h
nearest-neighbor Hamiltonian generatorsf i

†f i 11 and their Hermitian conjugates. For example, f
N53, if we have the four operatorsf 1

†f 2 , f 2
†f 3 and h.c., then we can generatef 1

†f 3

5@ f 1
†f 2 , f 2

†f 3# and h.c., as well asn̂i
f2n̂ j

f5@ f i
†f j , f j

†f i #. This yields a total of nine operators, eig
of which are linearly independent, that generate SU~3!. As for parafermions, we can use the J
transformation to getf i 11

† f i→ai 11
† Si 11aiSi5ai 11

† (122n̂i)ai5ai 11
† ai ~where we have used

@ai ,Si #50 and n̂iai5ai
†aiai50!. This establishes an isomorphism between the fermionic

parafermionic generators for SU(N). Hence the parafermionic subgroup SU(N) is generated by
ai

†ai 11 and h.c.
Now consider SO(2N): In the fermionic case we havef 1

†f 2
† , and using the result for U(N) we

also havef 4
†f 1 ; therefore we have@ f 4

†f 1 , f 1
†f 2

†#5 f 4
†f 2

† . Clearly, the interaction range can be e
tended to cover all generators. For the parafermionic case, using the JW transformation w
f i 11

† f i
†→ai 11

† Si 11ai
†Si5ai 11

† (122n̂i)ai
†5ai 11

† ai
† , so that we again have an isomorphism w

the fermionic case.
Next consider the~unphysical! subgroup SO(2N11): In the fermionic case it suffices to not

that 1
2@ f i , f j #5 f i f j and 1

2@ f i
† , f j #5 f i

†f j , i< j so that we can generate all infinitesimal generat
by the linear termsf i and f i

† . The parafermionic case follows by the JW transformation.
Finally, in the U(2N) case the universality of the parafermionic set$ai ,ai

†ai 11 , h.c.% follows
from that of the set of all single qubit operations together with the Hamiltonian of the nea
neighbor XY model@Eq. ~17! below#, proved in Ref. 31. The fermionic case follows by the J
transformation.

Let us recapitulate the meaning of the results presented in this section: we have shown
classify subalgebras of fermionic/parafermionic operators in terms of the groups they gen
This therefore classifies their universality properties with respect to these groups. This is p
larly important in the context of a given set of physically available Hamiltonians. Our me
employed a mapping between fermions and parafermions, which allowed us to easily tra
known results about one type of particle to the other.

V. BOSONS FROM PARAFERMIONS

A linear combination of different-mode parafermions can approximately form a boson. D

B5
1

AN
(
i 51

N

ai .

Then using Eq.~1! we have

@B,B†#5
1

N (
i 51

N

122n̂i512
2n̂

N
.

If the parafermion number is much smaller than the available number of sites/modes, i.e.,
n!N, then@B,B†#'1, which is an approximate single-mode boson commutation relation.

To get K boson modes, we can divideN into K approximately equal parts. Each part h
Na5N/K qubits and approximately represents a boson. Thekth boson isBa5(1/ANa) ( i 51

Na ai .
Then

@Ba ,Bb
† #5dabS 12

2n̂a

Na
D na!Na

'dab .
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Physically, this means that a low-energy qubit system~with most qubits in their ground state!
can macroscopically behave like a boson, or a collection of bosons. If the Hamiltonian is
bilinear form H52B†B52(1/N) (n̂1( iÞ j

N ai
†aj ), the ground state withn!N parafermions is

(B†)nu0&, i.e., n̂@(B†)nu0&]'n@(B†)nu0&].
A separate conclusion that follows from this result is that a low-energy noninteracting

system cannaturally simulate the dynamics of bosons.

VI. PARAFERMIONS FROM FERMIONS AND BOSONS

As stated in the Introduction, qubits do not exist as fundamental particles. This mean
they are either approximate descriptions~e.g., a spin in the absence of its spatial degrees
freedom! or have to be prepared by appropriately combining bosons or fermions, i.e., a qub
be encodedin terms of bosons or fermions under certain conditions~see also Ref. 32!. We
consider bosonic or fermionic systems with 2N single-particle states. Letk51,2,...,N denote all
relevant quantum numbers~including spin, if necessary!. The following three cases yield parafe
mions.

Case 1: Fermionic particle-particle pairs—Under the conditionn2k21
f 5n2k

f it can be shown
that $ f 2kf 2k21 , f 2k21

† f 2k
† %51 and @ f 2k21f 2k , f 2l 21

† f 2l
† #50 for kÞ l . Furthermore, the se

$ f 2k21 , f 2k21
† f 2k

† ,n2k21
f 1n2k

f 21% satisfies the commutation relations of sl~2!. Therefore the map-
ping ak⇔ f 2kf 2k21 , ak

†⇔ f 2k21
† f 2k

† and 2nk⇔n2k21
f 1n2k

f is a mapping to parafermions. Th
vacuum state of parafermions in this case corresponds to the vacuum stateu0& f of fermions. An
example is Cooper pairs.

Case 2: Fermionic particle-hole pairs—Under the conditionn2k21
f 1n2k

f 51 it can be shown
as in case 1 thatak⇔ f 2k

† f 2k21 , ak
†⇔ f 2k21

† f 2k and 2nk21⇔n2k21
f 2n2k

f is a mapping to parafer
mions. However, in this case the vacuum state of parafermions isu0&5 f 2N

†
¯ f 4

†f 2
†u0& f , because

thenaku0&50 for all k. This vacuum state plays the role of a Fermi level. An example is excit
In fact, all quantum computer proposals that use electrons, e.g., quantum dots,11 and electrons on
Helium,33,34 are equivalent to this case. For example,f 2

†f 1 and f 1
†f 2 can represent the transitio

operators between two spin states in the quantum dot proposal.
Case 3: Bosonic ‘‘particle-hole’’ pairs—Under the conditionn2k21

b 1n2k
b 51 it can be shown

as in case 1 thatak⇔b2k
† b2k21 , ak

†⇔b2k21
† b2k and 2nk21⇔n2k21

b 2n2k
b is a mapping to para-

fermions. However, in this case the vacuum state of parafermions isu0&
5b2N

†
¯b2k

†
¯b4

†b2
†u0&b , again because thenaku0&50 for all k. An example is dual-rail photons

in the optical quantum computer proposal.15

This classification illustrates the by-necessity compound nature of a qubit, and puts
unified context the many different proposals for constructing qubits in physical systems. No
it is possible to use more than two fermions or bosons to construct a parafermion. Further
cations, especially as related to the simulation of models of superconductivity~Case 1! on a
quantum computer, have been explored in Ref. 35.

VII. PARAFERMIONIC BILINEAR HAMILTONIANS ARE UNIVERSAL BUT FERMIONIC
AND BOSONIC ARE NOT

In this section we discuss a rather striking difference between the universality of bil
Hamiltonians acting on fermions and bosons, as compared to parafermions. Let us consider
of particle-number-conserving bilinear operators of bosons, fermions and parafermions:

bi
†bj , f i

†f j , ai
†aj .

As noted in Table I, in the fermionic case these operators generate the group U(N) whereN is the
number of particles. The same is true for bosons.19 Clearly, therefore, fermionic and boson
Hamiltonians containing only these operators are not universal with respect to an interestin~i.e.,
exponentially large! SU(2N) subgroup. On the other hand, as discussed in the previous se
these fermionic and bosonic operators can be used to define parafermionic operatorsai

†aj in
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two-to-one correspondence. As mentioned in Sec. III, the set$ai
†aj% i , j 51

N11 generates the subalgeb
SAn(N), with dimension (2N)!/N!N! ( .2N) @recall that the total number ofQa,b(N) operators
is 22N#. The corresponding Lie group appears to be large enough to be interesting for uni
quantum computation. This expectation is borne out, since one can construct an XY mod
~17!, using the set$ai

†aj%. As shown in Ref. 23, the XY model is by itself universal provided o
uses three physical qubits perencoded qutrit, together with nearest-neighbor and next-neare
neighbor interactions~see also Sec. IX D 1!. We discuss the XY model in detail in Sec. IX B. Firs
however, let us argue qualitatively where the difference between parafermions~qubits! and fermi-
ons and bosons originates from. An example will illuminate this. For the case of boson
fermions, @b1

†b2 ,b2
†b3#5b1

†b3 and @ f 1
†f 2 , f 2

†f 3#5 f 1
†f 3 . But for parafermions,@a1

†a2 ,a2
†a3#

5a1
†a3(122n̂2). ~An easy way to check this, without explicitly calculating the commutator, is

use the mapping to fermions:f i
†f i 11↔ai

†ai 11 and the Jordan–Wigner transformationf i→aiSi .!
Thus the difference is thatbosons and fermions preserve locality, but parafermions do not.

Similarly, we can consider additional bilinear operators. For fermions, if we also havef i f j and
f j

†f i
† , the group is SO(2N), which is too small to be interesting for QC. In fact this is a model

noninteracting fermions: there exists a canonical transformation to a sum of quadratic term
of which acts only on a single mode~see also Refs. 6, 29, 30, 32, and 36!. For bosons, if we
include bibj and bj

†bi
† , the group generated is theN(2N11)-parameter symplectic grou

Sp(2N,R) which is noncompact, implying that it has no finite dimensional irreps.19 If we further
include the set of annihilation and creation operatorsbi ,bi

† together with the identity operatorI ,
the set $I ,bi ,bi

† ,bibj ,bj
†bi

† ,bj
†bi% generates the semidirect-product groupN(N) ^ Sp(2N,R),

whereN(N) is the Heisenberg group, with (N11)(2N11) generators~Ref. 19, Chap. 20!. This
is therefore still too small to be interesting for universal QC. In fact,this is exactly the reason wh
linear optics by itself is insufficient for universal QC. The situation does not change even af
introduction of the displacement operatorsDi(a)5exp(abi

†2a*bi),
16 since Di(a)PN(N)

^ Sp(2N,R).
The way to universality@with respect to SU(2N)# is to introduce nonlinear operations such

a Kerr nonlinearity,37 self-interaction,38 or conditional measurements.15,16A Kerr nonlinearity is a
two-qubit interaction of the formni

bnj
b ~where i and j are different modes!, which directly pro-

vides a CPHASE gate. To see this, consider a dual-rail encoding:37 Suppose that one qubit i
encoded intou0&5b1

†u0&, u1&5b2
†u0&, while a second qubit is encoded intou0&5b3

†u0&, u1&
5b4

†u0& ~u0& is the vacuum state!. The two-qubit states are

u00&5b3
†b1

†u0&, u01&5b3
†b2

†u0&,

u10&5b4
†b1

†u0&, u11&5b4
†b2

†u0&.

~This is related to case 3 of Sec. VI, where we showed how to make qubits from bosons.! It is then
simple to verify that exp(2ipn2

bn4
b) acts exactly as aCPHASE gate, i.e., it is represented by th

matrix diag(1,1,1,21) in this two-qubit basis. Here we wish to point out that a recently introdu
alternative to a Kerr nonlinearity,38 namely the self-interaction (ni

b)2, is in fact closely related to
the Kerr nonlinearity. Thus methods developed to use one of these nonlinear interactions
transported to the other. Let us demonstrate this point by giving a simple circuit to show ho
interaction simulates the other. We start with the operator identity

exp~f~a†b2b†a!!b† exp~2f~a†b2b†a!!5cosfb†1sinfa†,

which can be proved directly from the Baker–Hausdorff formula

e2aABeaA5B2a@A,B#1
a2

2!
@A,@A,B##2

a3

3!
@A,@A,@A,B###1¯ . ~12!

Using the latter identity it is then simple to verify the following identity,which holds on the
two-qubit subspace above,
21 Aug 2002 to 142.150.225.172. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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exp~2 ipn2
bn4

b!5expS 2
p

4
~b2

†b42b4
†b2! DexpS 2 ip

~n2
b!21~n4

b!22n2
b2n4

b

2 D
3expS p

4
~b2

†b42b4
†b2! D .

This is an exact three-gate simulation of the KerrCPHASEgate in terms of the self-interaction. Th
simulation uses the linear bosonic operatorsbi

†bj and the local energiesni
b in order to unitarily

rotate the self-interaction terms (n2
b)21(n4

b)2 to a Kerr interaction.

VIII. FLUCTUATIONS IN PARAFERMION NUMBER AT FINITE TEMPERATURE

So far we have not really made use of the full power of the Fock space representation,
allows to consider the case of fluctuating particle number. The quantum statistics of parafe
is determined by their commutation relations, like fermions~Fermi–Dirac statistics! and bosons
~Bose–Einstein statistics!. A simple case to consider is that of noninteracting parafermions.
Fermi–Dirac distribution for an ideal Fermi gas is derived using only the restriction that no
than a single fermion can occupy a given mode.39 Hence the statistics of noninteracting parafe
mions is clearly the same as that of noninteracting fermions.

Fluctuations in particle number will be a result of interaction of the system with an exte
bath, which imposes a chemical potentialm ~essentially the gradient of the particle flow!. As a
simple example, consider the following system-bath interaction Hamiltonian:

HI5(
i 51

N

s i
z
^ Bi

z→(
i 51

N

~2n̂i21! ^ Bi
z , ~13!

whereBi
z are bath operators. To further simplify things assume the bath is treated classicall

Bi
z are positivec-numbers. With this Hamiltonian, one can study the fluctuations of paraferm

under finite temperatureT. Mapping from the well-know result for a noninteracting Fermi gas39

it then follows that the average occupation for thei th qubit site is

^ni&5
1

e(2Bi
z
2m)/kT11

,

wherek is Boltzman’s constant. This is the average value of the qubit-‘‘spin’’~whether it isu0& or
u1&!. Keeping the chemical potentialm fixed, in the limit of T→0 we find that^ni&→1 if Bi

z

,m, but ^ni&→0 if Bi
z.m. Thus, as expected, it is essential to keep the interaction with the

weak~compared tom! to prevent fluctuations in qubit ‘‘orientation’’ at low temperatures. At fin
T we find ^ni&,1, meaning that some fluctuation is unpreventable. Of course, our model is
naive, and the picture is modified when qubit interactions are taken into account. Howe
should be clear that a Fock space description of qubits, i.e., in terms of parafermions, co
valuable in studying qubit statistics at finite temperatures.

IX. UNIVERSALITY OF EXCHANGE-TYPE HAMILTONIANS

In this final section we conclude with an application of the formalism we developed earl
the study of the universality power of Hamiltonians. We have considered this question in
before for general exchange-type Hamiltonians~isotropic and anisotropic!.17,18 We first briefly
review the universality classification of various physically relevant bilinear Hamiltonians. It
be seen that while in certain cases the Hamiltonian is not sufficiently powerful to be universa
respect to U(2N), it is universal with respect to a subgroup. As mentioned in Sec. III, this re
requires the use ofencoding of physical qubits into logical qubits.21–24,52We then consider in
detail the representative example of the XY model, where we give a new proof about unive
~in fact, the lack thereof! in the case of nearest-neighbor-only interactions. We then present
21 Aug 2002 to 142.150.225.172. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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results about codes with higher rates than considered in Refs. 17 and 18. For simplicity we
when convenient to the Pauli matrix notation in this section, which is more familiar to prac
ners of QC.

A. Classification of bilinear Hamiltonians

The most general bilinear Hamiltonian for a qubit system is

H~ t ![H01V1F5(
i

1

2
« is i

z1(
i , j

Vi j 1F, ~14!

whereH0 is the qubit energy term, the interaction between qubitsi and j is

Vi j 5 (
a,b5x,y,z

Ji j
ab~ t !s i

as j
b ,

and the external single-qubit operations are

F5(
i

f i
x~ t !s i

x1 f i
y~ t !s i

y .

Recall the ‘‘standard’’ result about universal quantum computation: The group U(2N) on N qubits
can be generated using arbitrary single qubit gates and a nontrivial two-qubit entangling gat
asCNOT.25 The general HamiltonianH(t) can generate such a universal gate set, e.g., as follo
Suppose there are controllables i

z ands i
x terms. Thens i

y can be generated using Euler angles

s i
y5exp~2 ips i

z/4!s i
x exp~ ips i

z/4!.

This is an instance of a simple but extremely useful result: letA and B be anticommuting
Hermitian operators whereA25I ~I is the identity matrix!. Then, usingUeVU†5eUVU†

~U is
unitary,V is arbitrary!,

CA
w+ exp~ iuB![exp~2 iAw!exp~ iuB!exp~ iAw!5H exp~2 iuB! if w5p/2,

exp@ iu~ iAB!# if w5p/4.
~15!

One can also derive these relations for su~2! angular momentum operators, without assuming t
$A,B%50 andA25I . Let Jx and Jz be generators of su~2!. Then, using the Baker–Hausdor
relation Eq.~12!, and@Jz ,Jx#5 iJy ,

exp~2 iwJz!Jx exp~ iwJz!5Jx cosw1Jy sinw.

From here follows, usingUeVU†5eUVU†
again,

CJz

w + exp~ iuJx!5exp~ iu~Jx cosw1Jy sinw!!,

and Eq.~15! can be verified, withw→2w, andAB→@A,B#.
Different QC proposals usually have different two-qubit interactions. Typical types inc

s i
zs i 11

z ,s i
ys i 11

y ~or s i
xs i 11

x !, s i
xs i 11

x 1s i
ys i 11

y ~XY model!, andsW i•sW j ~Heisenberg model!. It is
simple to show that they can all be transformed into a common canonical forms i

zs i 11
z , using a

few unitary transformation. The terms i
zs i 11

z can be used to generateCPHASE and, from there,
CNOT.7 For example, the XY term can first be transformed intos i

xs i 11
x using Euler angle rotations

abouts i
x , which flips the sign of thes i

ys i 11
y term:
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expF iu

2
~s i

xs i 11
x 1s i

ys i 11
y !G S Cs

i
x

p/2
+ expF iu

2
~s i

xs i 11
x 1s i

ys i 11
y !G D5exp~ ius i

xs i 11
x !,

which can subsequently be transformed into the canonical form using another Euler angle ro

Cs
i
y1s

i 11
y

p/4
+s i

xs i 11
x 5s i

zs i 11
z ,

where using@s i
y ,s i 11

y #50 we have abbreviatedCs
i 11
y

p/4
+Cs

i
y

p/4
asCs

i
y1s

i 11
y

p/4
. The method of Euler

angle rotations as applied here is also known as ‘‘selective recoupling’’ in the NMR literatu40

Not all QC proposals have an interaction Hamiltonian that appears to be of the formVi j , e.g.,
the ion-trap proposal12 looks quite different since it involves interactions between ions media
by a phonon. The interaction between thei th ion and the phonon has the forms i

2b†1s i
1b. This

is nevertheless equivalent to an XY model, since

s i
xs i 11

x 1s i
ys i 11

y 5Cs
i
z2s

i 11
z

p/4
+2i @s i

2b†1s i
1b,s i 11

2 b†1s i 11
1 b#.

Therefore, in many cases it suffices to study the interactions i
zs i 11

z .
Let us now consider a number of more restricted models.

1. No external single-qubit operations

If F50, then thenearest-neighborset$s i
z ,s i

zs i 11
z ,s i

xs i 11
z ,s i 11

x s i
z% is still universal, since

s i
y5Cs

i 11
z s

i
z

p/4
+s i 11

z s i
x .

This is the case whenH0 is controllable. More physically, the set$s i
z ,sW i•sW i 11 ,(sW i3sW i 11)y

5s i
zs i 11

x 2s i 11
z s i

x% is also universal, wheresW 5(sx,sy,sz). The termsW i3sW i 11 is an anisotropic
~Dzyaloshinskii–Moriya! interaction which arises, e.g., in quantum dots in the presence of s
orbit coupling.17,41–44

2. No external single-qubit operations and H 0 uncontrollable

If F50 and H0 is not controllable, then the nearest-neighbor set$s i
zs i 11

z ,s i
xs i 11

z ,
s i

zs i 11
x ,s i

ys i 11
z ,s i

zs i 11
y % is universal, meaning that the interaction termV by itself is universal.

One way to see this is to map the set to parafermionic operators and note that it overlaps w
set that generates the parafermionic U(2N) ~Table II!.

3. Scalar anisotropic exchange-type interactions

Consider the caseJi j
ab5Ji j

a dab ~denotingV by V8!, which amounts to limiting the Hamil-
tonian to scalar anisotropic exchange-type interactions. Using Eq.~3! we then arrive at the second
quantized form

H05(
i

h ini ,

F5(
i

~ f i* ai1 f iai
†!, ~16!

V85(
i , j

D i j ~aiaj1ai
†aj

†!1Ji j ~ai
†aj1aj

†ai !14Ji j
z ninj ,

where
21 Aug 2002 to 142.150.225.172. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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h i5« i1S (
j

Ji j
z 1Jji

z D , f i5~ f i
x2 i f i

y!,

D i j 5Ji j
x 2Ji j

y , Ji j 5Ji j
x 1Ji j

y ,

and we dropped a constant energy term.
V8 is the so-called XYZ model of solid state physics. Considering the structure ofV8 and the

classification of operator algebras we carried out in Secs. III and IV, it should be clear that
immediate conclusions can be drawn about the universality power of this Hamiltonian. Th
HamiltonianH01V81F contains the generators of the parafermionicU(2N) ~Table II!, so it is
universal. On the other hand, without external single qubit operations (F50), we have@H0

1V8,p̂#50, so H01V8PSAp, i.e., preserves parity. This immediately implies that the XY
model ~even withH0! is by itself not universal. However, it can be made universal byencoding
logical qubits into several~two are in fact sufficient! physical qubits.17 The elimination of single-
qubit operations (F50) can be quite useful, since typically single- and two-qubit operati
involve very different constraints. In some cases single-qubit operations can be very diffic
implement~see Refs. 17, 18, and 22 and references therein for extensive discussions of this!.

B. XY model

Consider now the XY model, which is defined by

VXY5(
i , j

Ji j ~ai
†aj1aj

†ai !. ~17!

It is relevant to a number of proposals for quantum computing, including quantum
systems,45,46 quantum dots in microcavities,32 quantum dots coupled by exciton exchange,47 and
atoms in microcavities.48 Let us summarize what is currently known about quantum computati
universality of this model.

~i! In Ref. 31 it was shown that the XY model with nearest-neighbor interactions only, tog
with single-qubit operations, is universal.

~ii ! In Ref. 23 it was argued that the XY model is universal without single-qubit operati
provided these gates can be applied between nearest-neighbor and next-nearest-n
pairs of qubits. This involved encoding a logical qutrit into three physical qubits:u0L&
5u001&, u1L&5u010&, u2L&5u100&. We reconsider this in Sec. IX D in the context of th
XXZ model ~but using the methods of Ref. 18, the results are valid also for the XY mo!.

~iii ! In Ref. 18 we showed that the XY model is universal using only nearest- and next-ne
neighbor (Ji ,i 12) interactions, together with single-qubitsz terms. This too involved an
encoding of a logical qubit into two physical qubits:u0L&5u01&, u1L&5u10&. Two com-
ments are in order about this result: first, next-nearest-neighbor interactions can be n
neighbor in 2D~e.g., in an hexagonal array!; second, unlike Ref. 31, we did not assume t
sz terms to be controllable, i.e., there is no individual control over« i @Eq. ~14!#. A similar
model is treated in Sec. IX C.

The question now arises:Is the XY model universal with nearest-neighbor interactions on
We prove that it is not.

The nearest-neighbor XY model in its parafermionic form is

H5(
i

N

e ini1(
i

N

Ji ,i 11~ai
†ai 111ai 11

† ai !.

Consulting Table II, we see thatH can only generate SU(N), which is clearly too small even fo
encoded quantum computation.
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C. Antisymmetric XY model

To illustrate the idea of encoding for universality, let us briefly consider the ‘‘antisymm
XY model:’’

VaXY5(
i , j

Ji j
xys i

xs j
y1Ji j

yxs i
ys j

x . ~18!

HereJi j
xy andJi j

yx are real. We encode a logical qubit into pairs of nearest-neighbor physical q
Letting

D̃ i j 5Ji j
xy2Ji j

yx , J̃i j [Ji j
xy1Ji j

yx , em
6[«2m212«2m , ~19!

using the compact notation•m[•2m21,2m , and assuming that interactions are on only inside p
of qubits encoding one qubit, we find for the HamiltonianH5H01VaXY

HaXY5 (
m51

N/2

~ J̃mRm
y 1em

1Rm
z !1~D̃mTm

y 1em
2Tm

z !, ~20!

where theT andR operators were defined in Eqs.~6! and~7!. Since theT andR operators form
commuting sl~2! algebras, the Hilbert space splits into two independent computational subsp
The R operators conserve parity, so that an appropriate encoding in the axially symmetric
(D̃m50), using standard qubit notation, isu0L&5u00& and u1L&5u11&. On the other hand, theT
operators preserve particle number, so that ifJ̃m50 ~axially antisymmetric case!, the encoding is
u0L&5u01&, u1L&5u10&. In both cases control over the pair of parameters$J̃m ,em

1% ~or $D̃m ,em
2%!

is sufficient for the implementation of the single-encoded-qubit SUm(2) group~the subscriptm
refers to themth logical/encoded qubit!.

Logic operations between encoded qubits require the ‘‘encoded selective recoupling’’ m
introduced in Ref. 18. Consider the ‘‘axially antisymmetric qubit’’u0L&5u01&, u1L&5u10&. First,
note that, using Eq.~15!,

CT
12
x

p/2
+T23

x 5 is1
zs2

zT13
x . ~21!

Now assume we can controlD̃13. Then,

CT
13
x

p/4
+~CT

12
x +T23

x !5s2
z~s3

z2s1
z!/2. ~22!

Sinces1
zs2

z is constant on the code subspace it can be ignored. On the other hand,s2
zs3

z acts as
2T1

zT2
z :

u0L&1u0L&25u01&12u01&34 →
s2

zs3
z

2u01&12u01&3452u0L&1u0L&2 , ~23!

and similarly for the other three combinations:u0L&u1L&→u0L&u1L&, u1L&u0L&→u1L&u0L&,
u1L&u1L&→2u1L&u1L&, i.e., s2

zs3
z acts as an encodedsz

^ sz. This establishes universal encod
computation in the antisymmetric XY model.

D. Codes with higher rates

The encoding of one logical qubit into two physical qubits is not very efficient. Can we
better? That is, can we perform encoded universal QC on codes with a rate~no. of logical qubit to
no. of physical qubits! that is greater than12? We will show how in the case of the XXZ mode
defined asH5H01HXXZ , where
21 Aug 2002 to 142.150.225.172. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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HXXZ5(
i , j

Ji j
x ~s i

xs j
x1s i

ys j
y!1Ji j

z s i
zs j

z .

When surface and interface effects are taken into account, the XY examples o
proposals,31,45–48as well as the Heisenberg examples,11,49,50 are better described by the axial
symmetric XXZ model. Additional sources of nonzeroJi j

z in the XY examples can be second
order effects~e.g., virtual cavity-photon generation without spin-flips31!. A natural XXZ example
is that of electrons on helium.33,34

First, note that the code used in the XY model,u0L&5u01&, u1L&5u10&, is applicable here as
well: Ti j

x 5 1
2(s i

xs j
x1s i

ys j
y) preserves particle number, and serves as an encodedsx; s i

z terms from
H0 serve as encodedsz, ands i

zs i 11
z applied to physical qubits belonging to different encod

qubits acts as encodedsz
^ sz.

In the general encoding case we consider a block ofN qubits where codewords are comp
tational basis states~bitstrings of 0’s and 1’s!: $qa

†(Na)u0&%a , wherea5$a i% anda i can be 0 or
1, whileNa50, . . . ,N. A code-subspaceC(N,n) will be defined by having a fixed numbern of 1’s
~i.e., of parafermions!. Thus there are

dN,n[dim@C~N,n!#5S N
n D

codewords in a subspace. Examples are considered below. Note that these subspa
decoherence-free under the process of collective dephasing,51 and have been analyzed extensive
in this context in Ref. 52. Figure 1 in Ref. 52 provides a nice graphical illustration of theC(N,n)
subspaces. Since the decoherence-avoidance properties of the codes we consider here h
extensively discussed before,51,52 and even implemented experimentally,53,54 we do not address
this issue here. We further note that Ref. 52 provided an in-principle proof that universal en
QC is possible on all subspacesC(N,n) independently. However, this proof had several shortco
ings: (i ) it used a short-time approximation, (i i ) it did not make explicit contact with physically
realizable Hamiltonians, and (i i i ) it proceeded by induction, and thus did not explicitly provide
efficientalgorithm for universal QC. We remedy all these shortcomings here, i.e., we~i! use only
finite-time operations,~ii ! use only the XXZ Hamiltonian, and~iii ! provide an efficient algorithm
that scales polynomially inN.

We need a measure that captures how efficient aC(N,n) code is. If there ared codewords,
supported overN p-dimensional objects~p52 is the case of bits!, and information is measured i
units of q, then we define the rate of the code as

r ~d,p,q!5
logq d

logq pN .

The traditional definition for qubits is recovered by settingp5q52, i.e., the rate of a code is th
ratio of the number of logical qubits log2 d to the number of physical qubitsN, which in our case
becomes

r 5
log2 dN,n

N
→

N@1

S~e!, ~24!

wheree[k/N,

S~e!52e log2 e2~12e!log2~12e!

is the Shannon entropy, and we have used the Stirling formula logx!'x logx2x. SinceS( 1
2)51

the code has a rate that is asymptotically unity for the ‘‘symmetric subspace’’C(N,N/2), where the
number of 1’s equals the number of 0’s in each computational basis state. However, we will
21 Aug 2002 to 142.150.225.172. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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fact attempt to encode log2 dN,n logical qubits in the subspaceC(N,n), since the subspace does n
have a natural tensor product structure. Instead we will considerC(N,n) as a subspace encoding
qudit, whered5dN,n . Using the generalized definition of a rate above, and measuring inform
in units of d so that each subspace encodes one unit of information, the rate of such a cor
5 (logd d)/(logd 2N). This, however, exactly coincides withr of Eq. ~24!. Therefore we see that th
advantage of working with the symmetric subspaceC(N,N/2) in the limit of largeN is that its rate
approaches unity.

Before embarking on the general analysis, let us note that for an encoding of one logica
into N physical qubits, there is a simple construction in terms of parafermionic opera
Qa,b(N), Qa,b

† (N), and@Qa,b
† (N), Qa,b(N)# ~which is a function of parafermion number! form

an su~2! algebra in the basisu0L&5qa
†(Na)u0& andu1L&5qb

†(N2Na)u0&, e.g., forN52 there are
two cases: the sets$a1a2 ,a2

†a1
† ,n̂11n̂221% and $a1

†a2 ,a2
†a1 ,n̂12n̂2%, with corresponding base

u0L&5u0&, u1L&5a1
†a2

†u0& and u0L&5a1
†u0&, u1L&5a2

†u0&. These two encodings are universal~in
the sense of blocks ofN physical qubits! when onlyH0 andV8 are controllable@Eq. ~16!#.

Let us now move on to the general subspace case, starting with an example.

1. Encoded operations: Example

ConsiderC(3,1)5Span$u0&[u001&,u1&[u010&,u2&[u100&%, i.e., an encoding of a logica
qutrit into three physical qubits, as in Ref. 23. Let us count qubits asi 50, . . . ,N21. Our first task
is to show how to generate su~3! on this subspace. It is simple to check thatT01

x u001&50,
T01

x u010&5u100&, T01
x u100&5u010&, and in total

T01
x 5S 0 0 0

0 0 1

0 1 0
D 5u1&^2u1u2&^1u[X12,

where the notationX12 denotes asx operation between statesu1&[u010& and u2&[u100&. Simi-
larly, it is simple to check thatT12

x 5X01 andT02
x 5X02. Further, usingTi j

z [ 1
2(s i

z2s j
z), we have

T01
z 5Z12, T12

z 5Z01, andT02
z 5Z02, whereZ12 denotes asz operation between statesu1& andu2&,

etc. Therefore each pair$Ti j
x ,Ti j

z % generates an encoded su~2!. But in the sense of generating
su(N) is a sum of overlapping su~2!’s,55 so using just the nearest-neighbor interactio
$T01

x ,T01
z ,T12

x ,T12
x % we can generate all of su~3! on C(3,1). Note that@X01,X12#5 iY02, so that

su~2! between statesu0&,u2& can in fact be generated usingTi j
x ’s alone, withoutTi j

z ’s. This
conclusion clearly holds for the generation of all of su~3! onC(3,1), as first pointed out in Ref. 23

Next, we need to show how to implement encoded logical operations between twoC(3,1)
code subspaces. Let us number the qubits asi 50,1,2 for the first block andi 53,4,5 for the
second block. Consider the effect of turning onJ23

z , i.e., consider the action ofs2
zs3

z on the tensor
product spaceC(3,1)^ C(3,1). The operators2

zs3
z is represented by a nine-dimensional diago

matrix on this space, which is easily found to have the following form in the ordered basis$u0&
^ u0&,u0& ^ u1&, . . . ,u2& ^ u2&%:

s2
zs3

z5diag~21,1,1,21,1,1,1,21,21!5diag~21,1,1! ^ diag~1,1,21!,

e.g.,s2
zs3

zu2& ^ u2&5s2
zs3

zu100& ^ u100&5(1u100&) ^ (2u100&)52u2& ^ u2&, which explains the
21 in the ninth position in the diagonal matrix above. The important point is thats2

zs3
z acts as a

tensor product operator onC(3,1)^ C(3,1), whichputs a relative phasebetween the basis states
eachC(3,1) factor. This means thats2

zs3
z acts as an ‘‘su~3!-like’’ sz

^ sz on C(3,1)^ C(3,1). @It is
an ‘‘su~3!-like’’ sz

^ sz since for su~2! sz5diag(1,21) and here we have instead diag(21,1,1)
and diag(1,1,21).# It is well known7 that theCPHASEgate can be generated from the Hamiltoni
sz

^ sz. The same holds here, so that we can generate a CPHASE gate between twoC(3,1)
subspaces by simply turning on a nearest-neighbor interaction between the last qubit in t
block and the first qubit in the second block.

With this example in mind we can move on to the general case.
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2. Encoded operations: General subspace case

Let us now consider the case of a general subspaceC(N,n). We can enumerate the codewor
as$u0&, . . . ,udN,n&% whereu0&5u0, . . . ,01, . . . ,1&, etc., toudN,n&5u1, . . . ,10, . . . ,0&, where there
areN qubits in total andn 1’s in each codeword. Consider a fixed nearest-neighbor pair of qu
at positionsi ,i 11, and the action ofTi ,i 11

x ,Ti ,i 11
z . The four possibilities for qubit values at thes

positions are$00,01,10,11%. Now consider a pair of codewordsut&, ut8& such thatut& has 01 in the
i ,i 11 positions whileut8& has 10 in thei ,i 11 positions, and they are identical everywhere el
We can always find such a pair by definition ofC(N,n). The action ofTi ,i 11

x ,Ti ,i 11
z on ut&, ut8& is

to generate su~2! between them, just as shown in the case ofC(3,1) above. On the other hand, th
action of Ti ,i 11

x ,Ti ,i 11
z in the case of 00 or 11 in thei ,i 11 positions is to annihilate all corre

sponding codewords@which are anyhow outside of the givenC(N,n) subspace#. This null action
means that, when exponentiated,Ti ,i 11

x ,Ti ,i 11
z act as identity on these codewords. Therefore

action ofTi ,i 11
x ,Ti ,i 11

z is precisely to generate su~2! betweenut&, ut8&, and nothing more. Denote
this by su(2)i ,i 11

(1) . Let us now keep the 01 and 10 at positionsi ,i 11 fixed, and vary all other
N22 positions inut&, ut8&, subject to the constraint ofn 1’s, and in the same manner in bothut&,
ut8&. We then run overK5(n21

N22) codewords, andTi ,i 11
x ,Ti ,i 11

z generate su~2! between each pai
of new ut&, ut8&. Denote these by su(2)i ,i 11

(k) , k51,...,K. By further letting i 50,...,N22 we
generateN21 overlappingsu~2!’s. These su~2!’s can be connected by swaps so that we c
generate all su(2)i , j

(k) , k51,...,K, i , j . We thus have a total of (n21
N22) (2

N) su~2!’s. To generate the
entire su(dN,n) we need no more thandN,n5(n

N) overlapping su~2!’s. Since (n21
N22) (2

N)/(n
N)

5 1
2n(N2n).1, we have more than enough overlapping su~2!’s, and su(dN,n) can be generated

What is left is to show that we can perform a controlled operation between twoC(N,n)
subspaces. To do so we again use the nearest-neighbor interactionsN21

z sN
z , where the first factor

(sN21
z ) acts on the last qubit (N21) of the firstC(N,n) subspace, and the second factor (sN

z ) acts
on the first qubit (N) of the secondC(N,n) subspace. Now let us sort the codewords in the t
subspaces in an identical manner, e.g., by increasing binary value. Then consider the ac
sN21

z sN
z on the resulting ordered basis$u0& ^ u0&,u0& ^ u1&, . . . ,udN,n& ^ udN,n&%. This action gen-

erates a representation ofsN21
z sN

z by a dN,n3dN,n diagonal matrix. As in theC(3,1) case con-
sidered earlier, this matrix is actually a tensor product of an ‘‘su(dN,n)-like’’ sz

^ sz on C(N,n)
^ C(N,n). It is simple to determine the form of these two~different! sz’s. For the codewords
belonging to the leftC(N,n) factor, write down a11 (21) for each 0~1! in the Nth position.
These numbers are the diagonal entries of the left ‘‘su(dN,n)-like’’ sz factor. Similarly, for the
codewords belonging to the rightC(N,n) factor, write down a11 (21) for each 0~1! in the
(N11)th position. These numbers are the diagonal entries of the right ‘‘su(dN,n)-like’’ sz factor.
Since each such ‘‘su(dN,n)-like’’ sz puts relative phases between the basis states ofC(N,n), the
action of sN21

z sN
z is that of a generalized CPHASE between the two code subspaces. T

sufficient together with su(dN,n) on each block to perform universal quantum computation.56

X. CONCLUSIONS

The standard quantum information-theoretic approach to qubits and operations on
emphasizes qubits asvectors in a Hilbert space and operations astransformationsof these
vectors.7 This is the point of view of the first-quantized formulation of quantum mechanics
alternative, mathematically equivalent, point of view is the Fock space, second-quantized f
lation of quantum mechanics, which emphasizes the particlelike nature of quantum states
up/down states are replaced by qubit presence/absence, while rotations are replaced by o
that count or change particle occupation numbers. The mapping of qubits to parafermion
cussed in this article is a mapping between these first- and second-quantized formulati
proved to be a useful tool in studying the connection between qubits, bosons, and fermio
analyzing the algebraic structure of qubit Hamiltonians, and in studying related quantum co
tational universality questions. In particular, it allowed us to classify subalgebras of ferm
boson, and qubit operators and decide their power for quantum computational universality.
results are relevant for physical implementation of quantum computers: a physicalN-qubit system
21 Aug 2002 to 142.150.225.172. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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comes equipped with a given Hamiltonian, which generates a subalgebra of su(2N). It is important
to know whether this Hamiltonian is by itself universal or needs to be supplemented with
tional operations, or whether one needs to encode physical qubits into logical qubits in or
attain universality. Our classification settles this question for many subalgebras of physical
est.

Another potential advantage of the parafermionic approach, as a second-quantized for
for qubits, lies in its ability to naturally deal with a ‘‘qubit-field,’’ i.e., situations where the qu
number is not a conserved quantity. This is certainly a concern for optical and various solid
quantum computer implementations. We leave the study of a qubit field theory as an open a
future explorations.
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