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Qubits are neither fermions nor bosons. A Fock space description of qubits leads to
a mapping from qubits to parafermions: particles with a hybrid boson-fermion
guantum statistics. We study this mapping in detail, and use it to provide a classi-
fication of the algebras of operators acting on qubits. These algebras in turn classify
the universality of different classes of physically relevant qubit-qubit interaction
Hamiltonians. The mapping is further used to elucidate the connections between
qubits, bosons, and fermions. These connections allow us to share universality
results between the different particle types. Finally, we use the mapping to study the
guantum computational power of certain anisotropic exchange Hamiltonians. In
particular, we prove that the XY model with nearest-neighbor interactions only is
not computationally universal. We also generalize previous results about universal
guantum computation with encoded qubits to codes with higher rate2002
American Institute of Physics[DOI: 10.1063/1.1499208

I. INTRODUCTION

It is an experimental fact that there are only two typeduwfdamentalparticles in nature:
bosons and fermions. Bosons are particles whose wavefunction is unchanged under permutation of
two identical particles. The wavefunction of fermions is multiplied-b§ under the same opera-
tion. An equivalent statement is that bosons transform according to the one-dimensional, symmet-
ric, irreducible representatiofirrep) of the permutation group, while fermions belong to the
one-dimensional antisymmetric irrep. The permutation group has only these two one-dimensional
irreps. What about particles transforming according to higher-dimensional irreps of the symmetric
group? Much research went into studying this possibility, in the early days of the quark model,
before the concept of “colored” quarks gained widespread acceptatidewever, there are now
good reasons to believe that particles obeying such “parastatistics” do not(Bet3, p. 137.
Nevertheless, as we will show below, the traditional definition of a Hilbert space of qubits is
inconsistent with the properties of either bosons or fermions.

The description of bosons and fermions in terms of their properties under particle permuta-
tions uses the language of first quantization. A useful alternative description is the second-
quantized formalism of Fock spaté A basis state in the boson or fermion Hilbert—Fock space
can be written agn{,n3,...), wheren counts how many bosonsx&b) or fermions @
=f) occupy a given mode, or siie Note that the total number of modes does not need to be
specified in the Fock-basis. Ignoring normalization, rais'mb,(lowering, «;) operators increase
(decreasen{ by 1. A consequence of the permutation properties of bosons and fermions is that
their corresponding raising and lowering operators satisfy commutation and anticommutation re-
lations:

[bf.b/1=0, [b;,b/]=4; bosons,

{f].f=0, {f.fl}=8; fermions.
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From this follow a number of well-known facté Let A=/, ; this is the number operator,
which is diagonal in the Fock-basjs{,n,...), and has e|genvalue1{“. Then we have the
following.

(i) [bl.b T] 0= an arbltrary number of bosoms' can occupy a given mode On the other
hand {f T}~ 0= only n/=0,1 is possible for fermions.
(i) [by ,bg] 5”:> the H|Ibert space of bosons has a natural tensor product structure, i.e.,

In?.n3,...)=[nd®|nY)®---. More specifically, it is possible imdependentlpperate on
each factor of the Hilbert space. However,

ji—1

f
{fi,fl1=5,=1, |n1,...,njf_l,l,njfﬂ,...)=(—1)k21”k|nf1,...,nJ-f_l,O,nij,...),

which means that the outcome of operating on a mode of a multi-fermion state depends on all
previous modesthe order of modes is actually arbitraryrhis nonlocal property means that the
fermionic Fock space does not have a natural tensor product structure, although it can be mapped
onto one that does using the Jordan—Wigner transforntatieee Ref. 6 for a more detailed
discussion

What about qubits? The standard notion of what a qubit is, is the folloing:

Qubit

(i) A qubit is a vector in a two-dimensional Hilbert spatg=spard|0);,|1);} (like a fer-
mion).
(i)  An N-qubit Hilbert space has a tensor product structlbfet@ _1H; (like bosons.

It appears that a qubit is a hybrid fermion-boson particle! We concludejtizts do not exist
as fundamental particlesThis motivates us to consider an intermediate statistics of “parafermi-
ons” in order to have a Fock space description of a qubit. We define the parafermionic commu-
tation relations by®°

{a;.a/}=1,

L D
[a,a]1=0 if i#].

Herei,j are different modes, or different qubits. The reIat[cm,aT] 0 for i#) immediately
implies a tensor product structure, while; ,a’} =1, which together withg;|0)=0 (|0) is the
vacuum stateimplies

aja=aa=0 2

in the standardirreducible two-dimensional representation. Therefore a double-occupation state
cannot be realized, i.e., the single-particle Hilbert space is two-dimensional. These are exactly the
requirements for a qubit.

In fact, the notion of particles with “intermediate” statistics such as parafermions is well
known and established in condensed matter physics, e.g., hard-core bosons, excitons, or the Coo-
per pairs of superconductivity (see also Sec. VI Such particles are alwag®mpositei.e., they
are not fundamental. Another way of obtaining a particle that is neither a boson nor a fermion is
to simply ignore one or more degrees of freedom. This is by and large the approach taken in
current proposals for the physical implementation of quantum computers. For example, a single
spin+, without the orbital component of its wavefunction, behaves exactly like a qubit. This is the
case of the electron-spin qubit in quantum ddtRelated to this, a truncated multi-level atom can
also approximate a qubit, as in the ion-trap propd$alNhat are the implications of this for
guantum computingQC)? In a nutshell, “ideal” qubits are hard to come by. If a qubit is to exist
as an approximate two-level system, or as a composite particle, or as a partial description of an
object with additional degrees of freedom, this means that some robustness is lost and the door is
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opened to decoherence. For example, the additional levels in a multi-level Hilbert space can cause
“leakage,” the orbital degrees of freedom act as a bath coupled to the spin-qubit, and a composite
particle may decaye.g., the exciton-quii).

The advantages of the parafermionic formalism for qubits, however, are not necessarily in
understanding these sources of decoherence, because this formalism “accepts” qubits as particles.
Instead, the parafermionic formalism allows us to naturally establish mappings between qubits,
fermions, and bosons. This mapping serves to transport well-known results about one type of
particle to another, which, as we show below, clarifies questions regarding the ability of sets of one
type of particle to act as universal simulatdrsf sets of another type of particle. It also helps in
connecting the Hamiltonians of condensed matter physics to standard tools of quantum computa-
tion.

The structure of the article is as follows. In the next section we formally introduce the second
guantization of qubits. We then classify the algebraic structure of parafemionic operators in Sec.
lll. This classification, into subalgebras with different conservation properties, is very useful for
establishing which subsets of qubit operators are universal, either on the full Hilbert space, or only
on a subspace. This is taken up in the next two sections, where we establish the connection
between parafermions and fermiot®ec. I\V) and bosongSec. \j. The connection to fermions
and bosons also works in the opposite direction: we are able to classify which fermionic and
bosonic operator sets are universal. This has implications, e.g., for the linear optics quantum
computing proposals:1® Section VI shows how to construct parafermions out of paired fermions
and bosons, emphasizing the compound-particle aspect of qubits. With the connections between
fermions, bosons, and parafermions clarified, we explain in Sec. VII a remarkable difference
between parafermions and the other particle types: bilinear parafermionic Hamiltonians are suffi-
cient for universal quantum computation, whereas fermionic and bosonic Hamiltonians are not. In
Sec. VIl we briefly use the mapping to fermions to derive the thermal fluctuations of noninter-
acting parafermions at finite temperature. In Sec. IX we apply the classification of the various
parafermionic operator subalgebras to the problem of establishing universality of typical Hamil-
tonians encountered in solid state physics. We generalize a number of our previous' fé8uits.
particular, we establish that the XY model is not universal with nearest-neighbor interactions only;
and, we prove universality of the XXZ model for codes with arbitrarily high rates. We conclude in
Sec. X.

II. SECOND QUANTIZATION OF QUBITS

As in the cases of bosons and fermions, a parafermion number operator inincadebe
defined as

fi=ala;,
with eigenvalues);=0,1. The total number operator fis= =;f; . A normalized basis state in the
parafermionic Fock space is

|...ni...>:1_i[ (ai’r)ni|0>,

which we think of as representing a state with ttie qubit in the “up” (“down” ) state if theith
parafermion is presertabseny, i.e.,n;=1 (0). Qubit computational basis states are thus mapped
to parafermionic Fock state€quivalently, consider the following mapping from qubits to para-
fermions:

05--:0;-10;0; 1) —0),

01+:0; 1101+ 1°++)—4a]]0),
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where on the left 0 and 1 represent the standfirst-quantizegl logical states of a qubiQubits
can thus be identified with parafermionic operators
The mapping of qubits to parafermions is completed by mapping the Pauli madtices
parafermionic operators:
o —al, o —a, o'—2n-1. (3
It is then straightforward to check that the standar@)stommutation relations of the Pauli
matrices,

o) o 1= sjof,

+ +
[of, 0 ]==% 60,

are preserved, so that we have a faithful second-quantized representation of the qubit system
Hilbert space and algebrdOf course we could also have mapped suf2¢*,0Y,0% to the
parafermionic operators, by appropriate linear combinaf]drsillustrate the multi-qubit Hilbert—

Fock space representation, consider the case of two modes,jizel,2. The space splits into a
vacuum statd00)=|0), single-particle statefd1)=al|0) and|10)=a}|0), and a two-particle
state|11>=aIaZ|O>. It is important to emphasize that the parafermionic formalism is mathemati-
cally equivalent to the standard Pauli matrix formalism. We will be using both in the sections that
follow, starting with the parafermionic, as it makes particularly transparent the translation of
known results about fermions to qubits.

Ill. GENERAL PROPERTIES OF PARAFERMIONIC OPERATORS

N-qubit operators in QC are elements of the group YJ(2We will begin our discussion by
identifying a set of infinitesimal parafermionic generators for Y(2Recall that with any
r-parameter Lie group there are associatddfinitesimal generators, e.g., in the case of $P)
these are, in the two-dimensional irreducible representation, the Pauli matrices, ,o,}. Now,
let a={a;},B={B;}, wherea;, B; can be 0 or 1. In terms of parafermionic operations, any
element of U(2) can be written as W) =exp(-iZ, sb*#Q, 4(N)), whereb*? are continuous
parameterggeneralized Euler anglgand the 2'x 2N infinitesimal group generators s(N) are
defined as follows: LeN,==" ,«;, and

gl(No)=(af)en--(ah)®, qa(N—-N,)=al -2, (4)

Then,

Qus(N)=aL(N)as(N=N,). (5)

The Q, z(N) will be recognized as all possible transformations betwenubit computational
basis states, e.g., fotd=2 the set of 16 operators is

{1,al,a},a;,a,,alal ,a,a,,ala,,ala,,ala; ,ala,,alala; ,alala,,ala;a,,alaa; ,alala,a;},
where | is the identity operator. The s&,(N) generates all possible basis states from the
vacuum state. Hermitian forms a@+ Q" andi(Q—QT). We will turn to the Hermitian set of
generators in the discussion of applications, in Sec. IX.

Note that infinitesimal generators are not the generators one usually considers in QC. Rather,
in QC, a gate operation is obtained by the unitary evolution generated through the turning on/off
of a set of physically availablélamiltonians{H ,}, which are generally a small subset of the
2Nx 2N infinitesimal generatorQ, 5(N). “Generated” here has the usual meaning of allowing
linear combinations and commutation of Hamiltonians. We will say ¢haet of Hamiltonians
{H,} is universal with respect to a Lie groupif it generates the Lie algebra of that group. The

Downloaded 21 Aug 2002 to 142.150.225.172. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



4510 J. Math. Phys., Vol. 43, No. 9, September 2002 L.-A. Wu and D. A. Lidar

question of the dimension of the universal set of Hamiltonians with respect t)U§Zomewhat
subtle, since it is context dependent. Lloyd showed that given two noncommuting opévairs
represented bpx n matrices, one can almost always generata)J® However, it is not neces-
sarily clear how this result is related physically availableHamiltonians, since in practice one
may have only limited control over terms in a Hamiltonian, e.g., the standard Hamiltonian gen-
erators for SW) (two qubit9 is the five-element sdio], 05,07 ,0%,0505}. However, the four-
element set{o},05,0505—0}05,5,-G,} also generates SW), and may be physically
available!” Another example are the following sets of, respectively, five, four, and three genera-
tors: {o},05,07,05,0705}, {0],05,C107+Cy05,0705}, and {0} ,0%,C105+Cr05+C30705)
(wherec; are constanjsWhich set of generators is physically availalile., directly controllable
depends on the specific system used to implement the quantum computer. As we will show later in
this work, it is sometimes the case that a given, physically available, set of Hamiltonians is
universal with respect to subgroupof U(2V), which may be quite useful, provided the subgroup
is sufficiently large(typically, still exponential inN). This notion of universality with respect to a
subgroup is what gives rise to the ideaasfcoded universality’1821-245%ne encodes a logical
qubit into two or more physical qubits, and studies the universality of the subgroup-generating
Hamiltonians with respect to these encoded/logical qubits.

The infinitesimal parafermionic generatdds, ;(N) can be rearranged into certain subsets of
operators with clear physical meaning, which we now detalil.

(1) Local subalgebras: The tensor product structure of qubits is naturally enforced by
[a ,aJ-T]=0 for i#j. This induces a tensor product structuxé\':lsli(Z) on the subalgebras
formed by the grouping g2)={a; ,aiT,l—Zni}. Each sl(2) can only change states within the
same mode.

(2) SAp—Subalgebra witttonserved parityDefine aparity operator as

p=(-1)"
It has eigenvalues 1-1) for even(odd) total particle number. The operators that commute with

the parity operator form a subalgebra, which we denote bp.St k (I) be the number o&/
(&) factors inQ, 4(N), i.e.,

k=2 i, 1= Bi.

SAp consists of those operators havikg | even, so its dimensiofi.e., number of generators
22N/2. To see this, leQ, be in SAp, and consider its action on a state with an even number of
particles|n). Sincek—1 is even,Q,|n)=|n’) wheren’ is also even. NowpQ,|n)=p|n’)
=+|n"), but alsoQ,p|ny=Q,(+|n))=|n") so[p,Q]=0. For example, foN=2 SAp consists
of {l,a}al ,a,a,,ala;,ala,,aja;,ala,,alalara;}.

(3) SAn—subalgebra withconserved particle numbeihis subalgebra, which we denote
SAn, is formed by all operators commuting with the number operatoFhese are the operators
for whichk=1, so its dimension i£}_, (})?=(2N)!/N!N!. To see this, leQ, be in SM, and
consider its action on a stafe) with n particles.Q,, cannot change this number sinke |, but
it can transformn): AQ,|n)=n|n)’=n|n)’. However,Q,A|n)=nQ,,|n)=n[n)’, so[Q,,,N]
=0. For example, fortN=2 SAn consists of{l,ala;,ala,,ala;,ala,,ajala,a;}. Clearly,
SANC SAp.

(4) Subsets of bilinear operators: There are two types of bilinear operaton’rs&ﬁora;‘aj
(which conserve the particle numbemnda;a; ,af“aj’r (which conserve parily Let w=(ij). Then
first

Ti=ala+aa;,
(6)

zZ — .
T#—ni n,

and 7 =i[T},,T;] form an s2) subalgebra, that we denoteiﬁﬂ). Clearly, SL;L(Z)ESAH.
Second,
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f

X __ T
RM—aiaijai aj,

(@)

RS, =ni+n;—1,

and Ri’L form another s(2) subalgebra, that we denote ;LQQ)E SAp. Note that
[su‘#(Z),sqL(Z)]zo since any product of raising/lowering operators from these algebras contains
a factor ofa;a; or a'a] . Consider as an example the caseNof 2 modes. Whereas the direct
product group SL(2)® SU,(2) yields all product states, the group '$2)@ SU (2) can trans-

form between states with equal particle number and states differing by two particle numbers.

(5) Generators of SA(N): The set of Hamiltonian$afraj i’\fj+:11 generates SAN), i.e., the
subalgebra of conserved particle numberMmodes(qubity. Proof: this set maps to the XY
model(see Sec. IX B The rest follows using the method of Ref. 18. Note t{aftaj}iN'j*:ll does
not generate SA(N+1), since this set cannot generétg,- -y .

(6) Generators of SB(N): The set of Hamiltoniangaa; ,a;a;+a/a] ,i(a;aj—a'a)}_,
yields all states with even particle number Wnmodes from the vacuum stat@roof is trivial)

(7) Generators of SU(®): In order to transform between states differing by an odd number of
particles it is necessary to include the operat{m,af} as well. The corresponding set
{afa; aa;,afal ,a;,a}',_, generates a set of universal gatgsoof is trivia), and then by
standard universality resufts’® the entire SU(Y).

Additional structure emerges from a mapping between fermions and parafermions. This struc-
ture helps both in simulating fermionic system using qubits, and in understanding the universality
of qubit systems.

IV. FERMIONS AND PARAFERMIONS

A general fermionic Fock state is

Ing,na, e, (8)

where n,=0,1 is the occupation number of mode As is well known?’ the fermionic
(“supergroup”®®) U(2V) has infinitesimal generators

QL"B(N)Z(fL)aN'"(fI)‘”AfﬁN'--f'fl,

where
N
A= (1-n).
i=1

This basis is equivalent by a linear transformation to the more familiar set
Ql (N = (FRy - (F]) taf 72,

which transforms between all possible fermionic Fock stdtésrmionic computational basis
state”). There is a group chain of this group,

U(2N)DSQ(2N+1)DSO(2N)DU(N) 9

and the generators of the subgroups are knbwn.
The Jordan—WignefJW) transformatior, recently generalized in Ref. 28, allows one to
establish an isomorphism between fermions and parafermions. Defining

i—1 i—1
S=®@-2n), s=&1-2ny), (10)
k=1

k=1
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TABLE I. Infinitesimal generatorgh.c.=Hermitian conjugate

Group Fermions Parafermions

U2 QL 4(N) Qap(N)

SO(N+1) £t ,f:f;,f h.c. a'SSja; a5 &S ,h.c.

SO(2N) ff;,fif;.h.c. a'SSa;.aSSa; . h.c.

U(N) ff, a'S S

the mapping is

r]if_>ni ’
fi—aS, (1)
f|T—>aITS, .

The action of the fermionic operators on the st@gis equivalent to that of the corresponding
parafermionic operators on the stéig,n,,...). To see this, note thdg; ,S]=0. Therefore the

effect of the JW transformation is quite simple: by commutingSalto the left when mapping a
fermionic infinitesimal generator to a parafermionic one, we see thahé parafermioni@; ,afr
operators will yield a state with the same parafermionic occupation numbers as the corresponding
fermionic state andi{) the action of the product d§’'s is to produce a phas& 1. (This may
become a relative phase when acting on a state that is a superposition of computational basis
states). This allows us to study algebraic properties of one set of particles in terms of the other.

Using the JW transformation we find that the same subgroup ¢Baholds for parafermions,
and we can immediately write down also the infinitesimal generators for the corresponding para-
fermionic subgroups. The result is given in Table |.

The significance of these subgroups for QC is in the classification of the universality proper-
ties of fermionic and parafermionic Hamiltonians. For example, a Hamiltonian of noninteracting
fermions, i.e., one including only bilinear terrfi§ f; ,f;f;,f7f[}, is not by itself universal since it
merely generates SORD. Recent work has clarified what needs to be added to such a Hamil-
tonian in order to establish universalfty®*°Regarding SO(R+ 1), note that one must carefully
discuss the Hermitian term‘$+ﬁr andi(fi—fiT) if one wants to consider them as Hamiltonians,
since it is unclear which physical process can be described by such HamiltGmisingle fermion
creation/annihilation operator can turn an isolated fermion into a boson, a process that does not
seem to occur in natuye

A more powerful classification, from the QC viewpoint, is in terms of physically available
Hamiltonian generators of the subgroups. An interesting restriction of the set of infinitesimal
generators to a physically reasonable set of Hamiltonians is to consider only nearest-neighbor
interactions, where possible. The results known to us in this case are presented in Table II.

A couple of comments are in order regarding Table II: First, note the group IS®(9 may
be unphysical not just for fermions since its generators must contain term:)f,ini‘{r in its
Hamiltonian, but also for parafermions: it requires a nonlocal Hamiltonian due t&;therm.
Second, the corresponding fermionic generators for\y(@iven here is unphysical because it

TABLE Il. Hamiltonian generators.

Group Fermions Parafermions
u(2") f,5f f1f,.,.h.c. a;,ala;,q,h.c.
SO(2N+1) fi,h.c. a;S ,h.c.

SO(2N) fifi1.fifiig.he alai,1,aa,,,h.c.
SU(N) i, 1.h.c. ala;,,h.c.
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includes terms that are linear i) and furthermore nonlocal. A physically acceptable set is
{1, 1. fifi . fTf1  fifi 1, h.c), but this set is not universal over the fulM@limensional
Hilbert space(since it conserves parityThis means that a qubit needs to be encoded into two
fermions in this case, a situation we explore further in Sec. VI. Now let us verify the claims of
Table Il. Our strategy is to show that in each case, we can use the Hamiltonians for generating all
infinitesimal generators of the corresponding subgroup in Table I.

Consider first the subgroup SNYJ: In the fermionic case, we claim that this subgroup has
nearest-neighbor Hamiltonian generatd?&tl and their Hermitian conjugates. For example, for
N=3, if we have the four operator$ f,, fI ,fz3 and h.c., then we can generaféfg,
=[f1f2,f2f3] and h.c., as well aB —f; —[fo fo i]. This yields a total of nine operators, eight
of which are linearly independent that generate(fBLAs for parafermions, we can use the JW
transformation to getf|, ,fi—a',,S a8 S=a’, ,(1-2f;)a,=a/,,a, (where we have used
[a,S]=0 and niaiza;‘aiai=0). This establishes an isomorphism between the fermionic and
parafermionic generators for SNJ. Hence the parafermionic subgroup $U(is generated by
a'a;,, and h.c.

Now consider SO(R!): In the fermionic case we ha\iéfz, and using the result for W) we
also havef}f,; therefore we havéf)f,,flf1]=fif]. Clearly, the interaction range can be ex-
tended to cover all generators. For the parafermionic case, using the JW transformation we find
i fl—al,,S,a/S=al,,(1-2A)a’=a/,,a', so that we again have an isomorphism with
the fermionic case.

Next consider théunphysical subgroup SO(R+1): In the fermionic case it suffices to note
that 3[ f; fi]1="1;f; and %[fr,fj]zf;‘fj , I<] so that we can generate all infinitesimal generators
by the linear terms; andfiT. The parafermionic case follows by the JW transformation.

Finally, in the U(2") case the universality of the parafermionic &&t,a/a;,;, h.c} follows
from that of the set of all single qubit operations together with the Hamiltonian of the nearest-
neighbor XY modelEq. (17) below], proved in Ref. 31. The fermionic case follows by the JW
transformation.

Let us recapitulate the meaning of the results presented in this section: we have shown how to
classify subalgebras of fermionic/parafermionic operators in terms of the groups they generate.
This therefore classifies their universality properties with respect to these groups. This is particu-
larly important in the context of a given set of physically available Hamiltonians. Our method
employed a mapping between fermions and parafermions, which allowed us to easily transport
known results about one type of particle to the other.

V. BOSONS FROM PARAFERMIONS
A linear combination of different-mode parafermions can approximately form a boson. Define

N
B-— a
IN=1
Then using Eq(1) we have

N 2hA
[B,B']== 21 2hi=1- .

If the parafermion number is much smaller than the available number of sites/modes, i.e., when
n<N, then[B,B']~1, which is an approximate single-mode boson commutation relation.

To getK boson modes, we can divide into K approximately equal parts. Each part has
N, =N/K qubits and approximately represents a boson. Rtheboson isB,,= (1/y/N,) Eilea
Then

2A )na<Nu

[Ba,ngz(saﬁ(l— N ~Sup-
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Physically, this means that a low-energy qubit systerith most qubits in their ground state
can macroscopically behave like a boson, or a collection of bosons. If the Hamiltonian is of the
bilinear formH=—B'B=—(1/N) (" +3%,a'a;), the ground state with<N parafermions is
(8H)"0), i.e., AL(BY)"[0)]~n[(B)"0)].

A separate conclusion that follows from this result is that a low-energy noninteracting qubit
system camaturally simulate the dynamics of bosons

VI. PARAFERMIONS FROM FERMIONS AND BOSONS

As stated in the Introduction, qubits do not exist as fundamental particles. This means that
they are either approximate descriptiofesg., a spin in the absence of its spatial degrees of
freedon) or have to be prepared by appropriately combining bosons or fermions, i.e., a qubit can
be encodedin terms of bosons or fermions under certain conditidese also Ref. 32 We
consider bosonic or fermionic systems withl Zingle-particle states. Lét=1,2...,N denote all
relevant quantum numbe(scluding spin, if necessayyThe following three cases yield parafer-
mions.

Case 1: Fermionic particle-particle pairsUnder the conditiom}, _,=n, it can be shown
that {fofox_1,fo 1fot=1 and [fa_1fz,f5_1f51=0 for k#l. Furthermore, the set
{f ok, F o 1 fh o1+ Nh — 1} satisfies the commutation relations of2sl Therefore the map-
ping ay=fofor_1, al@fZK,lfzk and mk@n;k,ﬁ ngk is a mapping to parafermions. The
vacuum state of parafermions in this case corresponds to the vacuuniO$taoé fermions. An
example is Cooper pairs.

Case 2: Fermionic particle-hole pairsUnder the conditiomb, ,+nb, =1 it can be shown
as in case 1 that =), fo 1, afe 1 fa and 20— 1enh,_,—nb, is a mapping to parafer-
mions. However, in this case the vacuum state of parafermiof@)isfh, --f1f5/0)¢, because
thena,|0)=0 for all k. This vacuum state plays the role of a Fermi level. An example is excitons.
In fact, all quantum computer proposals that use electrons, e.g., quantufl aotsglectrons on
Helium 332* are equivalent to this case. For examgik; andflf, can represent the transition
operators between two spin states in the quantum dot proposal.

Case 3: Bosonic “particle-hole” pairs-Under the conditiomb,_,+n5,=1 it can be shown
as in case 1 that,=blby_1, alebl, by and h—1<nb,_,—nb, is a mapping to para-
fermions. However, in this case the vacuum state of parafermions |Q%
=hJy b} --bib}|0),, again because them|0)=0 for all k. An example is dual-rail photons
in the optical quantum computer propo$al.

This classification illustrates the by-necessity compound nature of a qubit, and puts into a
unified context the many different proposals for constructing qubits in physical systems. Note that
it is possible to use more than two fermions or bosons to construct a parafermion. Further impli-
cations, especially as related to the simulation of models of supercondudiétse 1 on a
quantum computer, have been explored in Ref. 35.

VIl. PARAFERMIONIC BILINEAR HAMILTONIANS ARE UNIVERSAL BUT FERMIONIC
AND BOSONIC ARE NOT

In this section we discuss a rather striking difference between the universality of bilinear
Hamiltonians acting on fermions and bosons, as compared to parafermions. Let us consider the set
of particle-number-conserving bilinear operators of bosons, fermions and parafermions:

As noted in Table I, in the fermionic case these operators generate the grbigpmtiéreN is the
number of particles. The same is true for bosbh€learly, therefore, fermionic and bosonic
Hamiltonians containing only these operators are not universal with respect to an intefiesting
exponentially large SU(2V) subgroup. On the other hand, as discussed in the previous section,

these fermionic and bosonic operators can be used to define parafermionic opefa}o'ns
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two-to-one correspondence. As mentioned in Sec. Il théa;Tetj}i’f‘j*zll generates the subalgebra

SAn(N), with dimension (N)!/N!N! (>2N) [recall that the total number @, z(N) operators
is 22N]. The corresponding Lie group appears to be large enough to be interesting for universal
quantum computation. This expectation is borne out, since one can construct an XY model, Eq.
(17), using the se{afaj}. As shown in Ref. 23, the XY model is by itself universal provided one
uses three physical qubits pencoded qutrittogether with nearest-neighbor and next-nearest-
neighbor interactiongsee also Sec. IX D)1We discuss the XY model in detail in Sec. IX B. First,
however, let us argue qualitatively where the difference between paraferftgiabits and fermi-
ons and bosons originates from. An example will illuminate this. For the case of bosons and
fermions, [blb,,blbs]1=blb; and [flf,, f1f;]=flf;. But for parafermions,[ala,,a}a;]
=a{a3(1— 2f,). (An easy way to check this, without explicitly calculating the commutator, is to
use the mapping to fermion$f; ;—aa;,; and the Jordan—Wigner transformatifp-a;S; .)
Thus the difference is thdtosons and fermions preserve locality, but parafermions do not
Similarly, we can consider additional bilinear operators. For fermions, if we alsofagvand
ijfiT, the group is SO(R), which is too small to be interesting for QC. In fact this is a model of
noninteracting fermions: there exists a canonical transformation to a sum of quadratic terms each
of which acts only on a single modsee also Refs. 6, 29, 30, 32, and).3Bor bosons, if we
include b;b; and bijiT, the group generated is thd(2N+1)-parameter symplectic group
Sp(2N,R) which is noncompact, implying that it has no finite dimensional irfégéwe further
include the set of annihilation and creation operat:qr,d;);r together with the identity operatdr
the set{l,b; bl ,b;b; ,bfbl ,blb;} generates the semidirect-product grodgN) = Sp(2N,R),
whereN(N) is the Heisenberg group, witiN(+ 1)(2N+ 1) generatorgRef. 19, Chap. 20 This
is therefore still too small to be interesting for universal QC. In ftus is exactly the reason why
linear optics by itself is insufficient for universal QThe situation does not change even after
introduction of the displacement operatofsi(a)=exp(ab;‘—a* b),® since D;(a)eN(N)
®Sp(N,R).
The way to universalitywith respect to SU(®)] is to introduce nonlinear operations such as
a Kerr nonlinearity’’ self-interactior’® or conditional measuremen$°A Kerr nonlinearity is a
two-qubit interaction of the fornmibn]b (wherei and| are different modes which directly pro-
vides aCPHASE gate. To see this, consider a dual-rail encodih@uppose that one qubit is
encoded into]0)=hb]|0), |1)=b}|0), while a second qubit is encoded int®)=b}|0), |1)
=b}|0) (|0} is the vacuum stajeThe two-qubit states are

|00)=bib][0), [01)=blb]l0),
110)=b}b}[0), [11)=b]b|0).

(This is related to case 3 of Sec. VI, where we showed how to make qubits from hdsa#en

simple to verify that expeiwngnﬂ) acts exactly as @PHASE gate, i.e., it is represented by the
matrix diag(1,1,15- 1) in this two-qubit basis. Here we wish to point out that a recently introduced
alternative to a Kerr nonlinearit, namely the self—interactiom?)z, is in fact closely related to

the Kerr nonlinearity. Thus methods developed to use one of these nonlinear interactions can be
transported to the other. Let us demonstrate this point by giving a simple circuit to show how one
interaction simulates the other. We start with the operator identity

exp(¢(a’b—b'a))b" exp — ¢(a’b—b'a))=cosgb’+singa’,
which can be proved directly from the Baker—Hausdorff formula

2 3
e “ABe*A=B—qa[A,B]+ %[A,[A,B]]— %[A,[A,[A,B]]]wLm . (12

Using the latter identity it is then simple to verify the following identityhich holds on the
two-qubit subspace aboye
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by2 by2 b b
ny)<+(nz)“—n5—n
exq_iﬂ-ngng):exr{_g(b£b4_b£b2)>exﬁ<—iﬂ'( 2 ( 42 2 4

ot ot
><exp( 7 (b3, b4b2)).

This is an exact three-gate simulation of the KepHASEgate in terms of the self-interaction. The
simulation uses the linear bosonic operatb,?bj and the local energies’ in order to unitarily
rotate the self-interaction termsa)?+ (n5)? to a Kerr interaction.

VIIl. FLUCTUATIONS IN PARAFERMION NUMBER AT FINITE TEMPERATURE

So far we have not really made use of the full power of the Fock space representation, which
allows to consider the case of fluctuating particle number. The quantum statistics of parafermions
is determined by their commutation relations, like fermigRermi—Dirac statistigsand bosons
(Bose—Einstein statistit.sA simple case to consider is that of noninteracting parafermions. The
Fermi—Dirac distribution for an ideal Fermi gas is derived using only the restriction that no more
than a single fermion can occupy a given mddlelence the statistics of noninteracting parafer-
mions is clearly the same as that of noninteracting fermions.

Fluctuations in particle number will be a result of interaction of the system with an external
bath, which imposes a chemical potentiallessentially the gradient of the particle flovAs a
simple example, consider the following system-bath interaction Hamiltonian:

N N
Hi=2, of®Bi— >, (2f,—1)®B7, (13)
i=1 i=1

whereB? are bath operators. To further simplify things assume the bath is treated classically, i.e.,
B? are positivec-numbers. With this Hamiltonian, one can study the fluctuations of parafermions
under finite temperatur€. Mapping from the well-know result for a noninteracting Fermi gas,

it then follows that the average occupation for tlie qubit site is

1
a e(2Bf—m)/kT 1"

(n;)
wherek is Boltzman’s constant. This is the average value of the qubit-“spivtiether it is|0) or
|1)). Keeping the chemical potential fixed, in the limit of T—0 we find that(n;)—1 if B?
<, but(n;)—0 if B> pu. Thus, as expected, it is essential to keep the interaction with the bath
weak (compared tqu) to prevent fluctuations in qubit “orientation” at low temperatures. At finite
T we find (n;)< 1, meaning that some fluctuation is unpreventable. Of course, our model is very
naive, and the picture is modified when qubit interactions are taken into account. However, it
should be clear that a Fock space description of qubits, i.e., in terms of parafermions, could be
valuable in studying qubit statistics at finite temperatures.

IX. UNIVERSALITY OF EXCHANGE-TYPE HAMILTONIANS

In this final section we conclude with an application of the formalism we developed earlier to
the study of the universality power of Hamiltonians. We have considered this question in detail
before for general exchange-type Hamiltonidisotropic and anisotropjc’*® We first briefly
review the universality classification of various physically relevant bilinear Hamiltonians. It will
be seen that while in certain cases the Hamiltonian is not sufficiently powerful to be universal with
respect to U(?), it is universal with respect to a subgroup. As mentioned in Sec. Ill, this result
requires the use oéncoding of physical qubits into logical qubfts?*°?We then consider in
detail the representative example of the XY model, where we give a new proof about universality
(in fact, the lack theregfin the case of nearest-neighbor-only interactions. We then present new
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results about codes with higher rates than considered in Refs. 17 and 18. For simplicity we revert
when convenient to the Pauli matrix notation in this section, which is more familiar to practitio-
ners of QC.

A. Classification of bilinear Hamiltonians

The most general bilinear Hamiltonian for a qubit system is
1
H)=Ho+V+F=2 Zsiof+2 Vij+F, (14)
i i<j
whereH,, is the qubit energy term, the interaction between qubésadj is

Vij: 2 Jﬁﬁ(t)O'iaO'jB,
a,ﬁ:x,y,z

and the external single-qubit operations are
F=2 fXt)ol+f(t)a!.
1

Recall the “standard” result about universal quantum computation: The grouf)u2N qubits

can be generated using arbitrary single qubit gates and a nontrivial two-qubit entangling gate such
ascNoT.?® The general Hamiltoniahi (t) can generate such a universal gate set, e.g., as follows:
Suppose there are controllabié and o terms. Therw? can be generated using Euler angles:

ol =exp —imolld) ol expimaild).

This is an instance of a simple but extremely useful result:Aeand B be anticommuting
Hermitian operators wher&2=1 (I is the identity matrix. Then, usingueVUT=eYV" (U is
unitary, V is arbitrary,

exp —ioB) if o=/2,

CReoexpifB)=exp —iAg)expifB)expiAgp)= ext{i 0(IAB)] if o= /d.

(19

One can also derive these relations fo{2wangular momentum operators, without assuming that
{A,B}=0 andA?=I. Let J, andJ, be generators of $B). Then, using the Baker—Hausdorff
relation Eq.(12), and[J,,J]=iJy,

exp(—ied,) I explied,)=J,cose+Jy sing.

. T .
From here follows, using/eVU"=e"YVY" again,

(33020 expli 0J,) =exp(i 6(J, cose+J, sing)),

and Eq.(15) can be verified, withp—2¢, andAB—[A,B].

Different QC proposals usually have different two-qubit interactions. Typical types include
ofof,y,000],, (or ofof, ), ofof 1+ ofa), 1 (XY mode), andg;- & (Heisenberg modgl It is
simple to show that they can all be transformed into a common canonicaldfeth) , , using a
few unitary transformation. The term’c?, ; can be used to generat®HASE and, from there,
cnoT.” For example, the XY term can first be transformed iafo*, ; using Euler angle rotations
aboutay, which flips the sign of ther! o, ; term:
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i
(c;izo exn[—wi*am olol.y) ) = exqi 0070, 1),

i
x5 (o1l o) :

which can subsequently be transformed into the canonical form using another Euler angle rotation,

ml4 X X _ 7z z
Cgiv+giv+1°<fiffi+1—0i0i+1-

o °Cy'asCly v . The method of Euler

| I | I

angle rotations as applied here is also known as “selective recoupling” in the NMR litef8ture.
Not all QC proposals have an interaction Hamiltonian that appears to be of th&/fprr.g.,

the ion-trap propos#l looks quite different since it involves interactions between ions mediated

by a phonon. The interaction between thieion and the phonon has the fow b™+ o, b. This

is nevertheless equivalent to an XY model, since

where using o} ,0Y, ;]=0 we have abbreviate@

l4

z
U'i_(T

. o2i[o; b'+ 0o b0 ,b"+ 0" ,b].

X X y .y _
oo tojol,,=C z

Therefore, in many cases it suffices to study the interactiorf, , .
Let us now consider a number of more restricted models.

1. No external single-qubit operations
If F=0, then thenearest-neighboset{o?,c{0}, 0707 1,07, 07} is still universal, since

wl4
o{=Cz ol 0]
i1

This is the case whehl, is controllable. More physically, the st ;- 7i1,(FiX 1)y
=olo},,— o, 07} is also universal, wheré= (d*,0Y,0%). The terma; X &; , 1 is an anisotropic

(Dzyaloshinskii—Moriya interaction which arises, e.g., in quantum dots in the presence of spin-

orbit coupling?”41-44

2. No external single-qubit operations and H o uncontrollable
If F=0 and Hy is not controllable, then the nearest-neighbor $efo?,,,o70?, ,
olal, 1,00t ,0f0] 1} is universal, meaning that the interaction tevhrby itself is universal.

One way to see this is to map the set to parafermionic operators and note that it overlaps with the
set that generates the parafermionic U 2Table II).

3. Scalar anisotropic exchange-type interactions
Consider the caséﬁ/’:Jf’f&aﬁ (denotingV by V'), which amounts to limiting the Hamil-

tonian to scalar anisotropic exchange-type interactions. Usin@@Eg.e then arrive at the second-
quantized form

Ho=2i 7in;
F=> (ffa+fa)), (16)
1
V,:gj Aij(aiaj‘i‘ara}t)‘{‘\]ij(araj‘l‘ajrai)+4\]izjninj,

where
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n=eit fi=(fi=if}),

; J+I7

A”:\]lxj_\]y

(J
and we dropped a constant energy term.

V' is the so-called XYZ model of solid state physics. Considering the structwé ahd the
classification of operator algebras we carried out in Secs. Il and IV, it should be clear that some
immediate conclusions can be drawn about the universality power of this Hamiltonian. The full
HamiltonianH,+ V' +F contains the generators of the parafermiodi") (Table II), so it is
universal. On the other hand, without external single qubit operatiérsQ(), we have[H,
+V’',p]=0, soHy+V' eSAp, i.e., preserves parity. This immediately implies that the XYZ
model (even withH) is by itself not universal. However, it can be made universaébgoding
logical qubits into severdkwo are in fact sufficientphysical qubits’ The elimination of single-
qubit operations E=0) can be quite useful, since typically single- and two-qubit operations
involve very different constraints. In some cases single-qubit operations can be very difficult to
implement(see Refs. 17, 18, and 22 and references therein for extensive discussions of this point

B. XY model

Consider now the XY model, which is defined by
VXY:izq Jij(aiTaj-f—a]Tai). (17)

It is relevant to a number of proposals for quantum computing, including quantum Hall
systemg®>46 quantum dots in microcaviti€€,quantum dots coupled by exciton exchafigend
atoms in microcavitie®® Let us summarize what is currently known about quantum computational
universality of this model.

(i) In Ref. 31 it was shown that the XY model with nearest-neighbor interactions only, together
with single-qubit operations, is universal.

(i)  In Ref. 23 it was argued that the XY model is universal without single-qubit operations,
provided these gates can be applied between nearest-neighbor and next-nearest-neighbor
pairs of qubits. This involved encoding a logical qutrit into three physical qufs:
=|001), |1,)=1010), |2,)=|100. We reconsider this in Sec. IX D in the context of the
XXZ model (but using the methods of Ref. 18, the results are valid also for the XY model

(i) In Ref. 18 we showed that the XY model is universal using only nearest- and next-nearest-
neighbor §; ;4,) interactions, together with single-quhit, terms. This too involved an
encoding of a logical qubit into two physical qubit§, )=|01), |1,)=|10). Two com-
ments are in order about this result: first, next-nearest-neighbor interactions can be nearest
neighbor in 2D(e.g., in an hexagonal arrgysecond, unlike Ref. 31, we did not assume the
o, terms to be controllable, i.e., there is no individual control avdrEqg. (14)]. A similar
model is treated in Sec. IX C.

The question now arisess the XY model universal with nearest-neighbor interactions only?
We prove that it is not.
The nearest-neighbor XY model in its parafermionic form is

N N
_ + +
H—E eini+2 Jiiri(ajai 1 taj 1 a).
| I

Consulting Table II, we see that can only generate SB), which is clearly too small even for
encoded quantum computation.
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C. Antisymmetric XY model

To illustrate the idea of encoding for universality, let us briefly consider the “antisymmetric
XY model:”

Vaxy= 2 Jiofol+ oY o} (18
HereJ;¥ andJ) are real. We encode a logical qubit into pairs of nearest-neighbor physical qubits.
Letting

Ay=3=3, F;=30+3, en=eom-1—&om. (19)

using the compact notation,= - ,,—1m, and assuming that interactions are on only inside pairs
of qubits encoding one qubit, we find for the Hamiltonidr Hg+V 4y

N/2
Hoy= mE:l (R + 6 RE) + (A T+ €, T2), (20)

where theT andR operators were defined in Eq$) and (7). Since theT andR operators form
commuting S(2) algebras, the Hilbert space splits into two independent computational subspaces.
The R operators conserve parity, so that an appropriate encoding in the axially symmetric case
(A,=0), using standard qubit notation, |8 )=|00) and|1,)=|11). On the other hand, th&
operators preserve particle number, so that &0 (axially antisymmetric cagethe encoding is
|0.)=]01), |1,)=]10). In both cases control over the pair of parame{&fs, e} (or {A,, e}
is sufficient for the implementation of the single-encoded-qubif,&) group (the subscripim
refers to themth logical/encoded qubit

Logic operations between encoded qubits require the “encoded selective recoupling” method
introduced in Ref. 18. Consider the “axially antisymmetric quid} )=|01), |1, )=]|10). First,
note that, using Eq.15),

M2 —x _ i 7 74X

Now assume we can contrﬁllg. Then,

w4

CT§3°(CT>£2° 59 =05(a5—07)l2. (22
Singegioé is constant on the code subspace it can be ignored. On the otherdfarfdacts as
—TiT5:
oZol
100)1/01)2=102)1501)34 — —|01)1901)34= —[0)1|01 )5, (23

and similarly for the other three combinationd )1, )—|0.)/1.), [1.)|0.)—|1.)|0.),
|1)|10)— —|1.)|1,), i.e., o505 acts as an encodetf® o*. This establishes universal encoded
computation in the antisymmetric XY model.

D. Codes with higher rates

The encoding of one logical qubit into two physical qubits is not very efficient. Can we do
better? That is, can we perform encoded universal QC on codes with @oatef logical qubit to
no. of physical qubitsthat is greater thag? We will show how in the case of the XXZ model,
defined aH=Hy+Hyxz, where
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— X X X z Z Z
1<)

When surface and interface effects are taken into account, the XY examples of QC
proposals*>~*8as well as the Heisenberg exampt&d®*Care better described by the axially
symmetric XXZ model. Additional sources of nonzeJ@ in the XY examples can be second-
order effectqe.g., virtual cavity-photon generation without spin-fi)sA natural XXz example
is that of electrons on heliurit:3*
First, note that the code used in the XY modél,)=|01), |1, )=]|10), is applicable here as
well: T = 3(o7'o+ o) o) preserves particle number, and serves as an enegfesf terms from
Ho serve as encoded?, ando{o},, applied to physical qubits belonging to different encoded
qubits acts as encodedf® .
In the general encoding case we consider a block a@fubits where codewords are compu-
tational basis stateitstrings of 0's and 1% {q(N,)|0)},, wherea={«;} anda; can be 0 or
1, whileN,=0,... N. Acode-subspadcg(N,n) will be defined by having a fixed numberof 1’s
(i.e., of parafermions Thus there are
N
N

codewords in a subspace. Examples are considered below. Note that these subspaces are
decoherence-free under the process of collective dephasimgl have been analyzed extensively
in this context in Ref. 52. Figure 1 in Ref. 52 provides a nice graphical illustration af(fRen)
subspaces. Since the decoherence-avoidance properties of the codes we consider here have been
extensively discussed befote>? and even implemented experimentafly* we do not address
this issue here. We further note that Ref. 52 provided an in-principle proof that universal encoded
QC is possible on all subspacé@\,n) independently. However, this proof had several shortcom-
ings: (i) it used a short-time approximatiorij ) it did not make explicit contact with physically
realizable Hamiltonians, andli{) it proceeded by induction, and thus did not explicitly provide an
efficientalgorithm for universal QC. We remedy all these shortcomings here, i.€(i) wse only
finite-time operationsiii) use only the XXZ Hamiltonian, andii) provide an efficient algorithm
that scales polynomially ifN.

We need a measure that captures how efficieifyn) code is. If there arel codewords,
supported oveN p-dimensional object§p =2 is the case of bijsand information is measured in
units of q, then we define the rate of the code as

dyn=dim[C(N,n)]=

log, d
r(d:qu): |Og qu .
q

The traditional definition for qubits is recovered by settpng q=2, i.e., the rate of a code is the
ratio of the number of logical qubits lggd to the number of physical qubitd, which in our case
becomes

N>1
_ IngdN,n

5 — Sle), (24
wheree=k/N,

S(e)=—¢€log, e—(1—¢€)log,(1—¢€)
is the Shannon entropy, and we have used the Stirling formulgl teglogx—x. SinceS(3)=1

the code has a rate that is asymptotically unity for the “symmetric subsggd®&N/2), where the
number of 1's equals the number of O’s in each computational basis state. However, we will not in
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fact attempt to encode lgdy , logical qubits in the subspacgN,n), since the subspace does not
have a natural tensor product structure. Instead we will con§idém) as a subspace encoding a
qudit, whered=dy . Using the generalized definition of a rate above, and measuring information
in units of d so that each subspace encodes one unit of information, the rate of such a code is
= (loggd)/(logg2V). This, however, exactly coincides withof Eq. (24). Therefore we see that the
advantage of working with the symmetric subspé@@d,N/2) in the limit of largeN is that its rate
approaches unity.

Before embarking on the general analysis, let us note that for an encoding of one logical qubit
into N physical qubits, there is a simple construction in terms of parafermionic operators:
Qu.5(N), Q s(N), and[Q s(N), Qa s(N)] (which is a function of parafermion numbeorm
an sy2) algebraln the ba5||$),_> q (Na)|0> and|1,)= qB(N N,)|0), e.g., forN=2 there are
two cases: the se{alaz,agai,nﬁ fA,—1} and{ala,,ala;,A;—f,}, with corresponding bases
|0.)=10), |1, )=ala}|0) and|0,)=al|0), |1,)=a}|0). These two encodings are universil
the sense of blocks dfl physical qubits when onlyH, andV’ are controllabld Eq. (16)].

Let us now move on to the general subspace case, starting with an example.

1. Encoded operations: Example

ConsiderC(3,1)=Sparf{|0)=|001),|1)=|010),|2)=|100)}, i.e., an encoding of a logical
qutrit into three physical qubits, as in Ref. 23. Let us count qubits=} . .. N— 1. Our first task
is to show how to generate @) on this subspace. It is simple to check thg};/001)=0,

611010 ={100), Tg,/100=|010), and in total

0 0 O
31: 0 0 1 :|1><2|+|2><1|EX121
0 1 0

where the notatiorX;, denotes ar* operation between stat¢s)=|010 and|2)=[100). Simi-
IarIy, it is simple to check thal},=Xo; and Tg,=Xo,. Further, usingT;=3(o7—07), we have
61=2Z12, T1,=Zg1, andT§,=Zg,, WhereZ,, denotes ar” operation between staté’ls) and|2),
etc. Therefore each pa{rTX TZ} generates an encoded(®u But in the sense of generating,
su(N) is a sum of overlapplng $0)'s,>® so using just the nearest-neighbor interactions
{751,761, 12, T1op We can generate all of 63) on C(3,1). Note thaf Xq1,X15]=iY,, SO that
su?2) between state$0),/2) can in fact be generated using;'s alone, withoutT};’s. This
conclusion clearly holds for the generation of all of3wn C(3,1), as first pointed out in Ref. 23.
Next, we need to show how to implement encoded logical operations betwee( 80
code subspaces. Let us number the qubits=a8,1,2 for the first block and=3,4,5 for the
second block. Consider the effect of turningd, i.e., consider the action ef;0% on the tensor
product spac€(3,1)®C(3,1). The operator;a} is represented by a nine-dimensional diagonal
matrix on this space, which is easily found to have the following form in the ordered §asis
®]0),|0)®|1),...,|2)®|2)}:

ofoi=diag —1,1,1-1,1,1,1-1,—1)=diag - 1,1,)) ® diag 1,1~ 1),

e.g.,050%2)®|2)= 0505100 ®|100 = (+|100)) ® (—|100)) = — |2) ®|2), which explains the
—1 in the ninth position in the diagonal matrix above. The important point isthaf acts as a
tensor product operator @f{3,1)®C(3,1), whichputs a relative phasbetween the basis states of
eachC(3,1) factor. This means that;o3 acts as an “s(8)-like” o*® o* onC(3,1)®C(3,1).[Itis
an “su(3)-like” o*® a* since for s(2) o*=diag(1,-1) and here we have instead diad(1,1)
and diag(1,1; 1).] It is well known’ that thecPHASEgate can be generated from the Hamiltonian
o’®c”. The same holds here, so that we can generate a CPHASE gate betwe€(3thjo
subspaces by simply turning on a nearest-neighbor interaction between the last qubit in the first
block and the first qubit in the second block.

With this example in mind we can move on to the general case.
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2. Encoded operations: General subspace case

Let us now consider the case of a general subsg@iden). We can enumerate the codewords
as{|0), ... |dy )} where|0)=]0,...,01,...,}, etc., to|dy n)=11,...,10,...,0, where there
areN qubits in total anch 1's in each codeword. Consider a fixed nearest-neighbor pair of qubits
at positions i + 1, and the action of}; , ;,T{; ;. The four possibilities for qubit values at these
positions arg00,01,10,1L Now consider a pair of codewordls, |t’) such thaft) has 01 in the
i,i+1 positions whilglt’) has 10 in thé,i+ 1 positions, and they are identical everywhere else.
We can always find such a pair by definition@N,n). The action ofT};,;,T{;,, on|t), [t") is
to generate 42) between them, just as shown in the cas€(&,1) above. On the other hand, the
action of T}, 1,T{;,, in the case of 00 or 11 in thei + 1 positions is to annihilate all corre-
sponding codewordgvhich are anyhow outside of the giveliN,n) subspack This null action
means that, when exponentiatdd, ., ,,T{;,, act as identity on these codewords. Therefore the
action of T, ;,T{;, 1 is precisely to generate &) betweent), [t"), and nothing more. Denote
this by su(2§ﬁ+l. Let us now keep the 01 and 10 at positions+1 fixed, and vary all other
N—2 positions in|t), |t"), subject to the constraint of 1's, and in the same manner in bdth,
|t"). We then run oveK =()\"7) codewords, and};,,,T?,,, generate si@) between each pair
of new [t), |t'). Denote these by su(¥),,, k=1,..K. By further lettingi=0,..N—2 we
generateN—1 overlappingsu?2)’s. These s(2)'s can be connected by swaps so that we can
generate all su(%§, k=1,...K, i<j. We thus have a total of\({) () su2)’s. To generate the
entire suf@ly,) we need no more thanIN,n=(E) overlapping s(®)'s. Since {~2) (M)/(Y)
=3n(N—n)>1, we have more than enough overlapping2ss, and su@y ,) can be generated.

What is left is to show that we can perform a controlled operation betweenC{hMon)
subspaces. To do so we again use the nearest-neighbor interaftiony,, where the first factor
(o§— 1) acts on the last qubitN— 1) of the firstC(N,n) subspace, and the second factef,) acts
on the first qubit N) of the second’(N,n) subspace. Now let us sort the codewords in the two
subspaces in an identical manner, e.g., by increasing binary value. Then consider the action of
o 10y on the resulting ordered badi)®|0),|0)®|1), ... ,|dy ) ®]|dy.n)}. This action gen-
erates a representation of,_, o}, by ady ,Xdy , diagonal matrix. As in the(3,1) case con-
sidered earlier, this matrix is actually a tensor product of an dgyf)-like” o*® a* on C(N,n)
®C(N,n). It is simple to determine the form of these twdiffereny o*s. For the codewords
belonging to the leftC(N,n) factor, write down a+1 (—1) for each 0(1) in the Nth position.
These numbers are the diagonal entries of the left dgy(-like” o factor. Similarly, for the
codewords belonging to the rigld{N,n) factor, write down a+1 (—1) for each 0(1) in the
(N+1)th position. These numbers are the diagonal entries of the rightiksy¢like” o factor.
Since each such “suly ,)-like” o puts relative phases between the basis state§Nfn), the
action of of_,of, is that of a generalized CPHASE between the two code subspaces. This is
sufficient together with suly ,) on each block to perform universal quantum computatfon.

X. CONCLUSIONS

The standard quantum information-theoretic approach to qubits and operations on qubits
emphasizes qubits agectorsin a Hilbert space and operations &snsformationsof these
vectors’ This is the point of view of the first-quantized formulation of quantum mechanics. An
alternative, mathematically equivalent, point of view is the Fock space, second-quantized formu-
lation of quantum mechanics, which emphasizes the particlelike nature of quantum states. Qubit
up/down states are replaced by qubit presence/absence, while rotations are replaced by operators
that count or change particle occupation humbers. The mapping of qubits to parafermions dis-
cussed in this article is a mapping between these first- and second-quantized formulations. It
proved to be a useful tool in studying the connection between qubits, bosons, and fermions, in
analyzing the algebraic structure of qubit Hamiltonians, and in studying related quantum compu-
tational universality questions. In particular, it allowed us to classify subalgebras of fermion,
boson, and qubit operators and decide their power for quantum computational universality. These
results are relevant for physical implementation of quantum computers: a phyisigait system
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comes equipped with a given Hamiltonian, which generates a subalgebra 8j sli(& important

to know whether this Hamiltonian is by itself universal or needs to be supplemented with addi-
tional operations, or whether one needs to encode physical qubits into logical qubits in order to
attain universality. Our classification settles this question for many subalgebras of physical inter-
est.

Another potential advantage of the parafermionic approach, as a second-quantized formalism
for qubits, lies in its ability to naturally deal with a “qubit-field,” i.e., situations where the qubit
number is not a conserved quantity. This is certainly a concern for optical and various solid-state
quantum computer implementations. We leave the study of a qubit field theory as an open area for
future explorations.
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