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We study the robustness of the Greenberger-Horne-Zeilinger �“cat”� class of multipartite states under deco-
herence. The noise model is described by a general completely positive map for qubits independently coupled
to the environment. In particular, the robustness of N-party entanglement is studied in the large N limit when
�a� the number of spatially separated subsystems is fixed but the size of each subsystem becomes large and �b�
the size of the subsystems is fixed while their number becomes arbitrarily large. We obtain conditions for
entanglement in these two cases. Among our other results, we show that the parity of an entangled state �i.e.,
whether it contains an even or odd number of qubits� can lead to qualitatively different robustness of entangle-
ment under certain conditions.
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I. INTRODUCTION

Entanglement �1� is believed to be a crucial resource for
quantum information processing, e.g., quantum computing
and quantum communication �2�. It is expected that practical
realizations of quantum protocols will involve independent
or collective manipulation of large-scale entanglement, i.e.,
entanglement distributed among N particles, where N can be
arbitrarily large. Unfortunately, in the absence of active in-
tervention, entanglement is notoriously susceptible to deco-
herence �2�. Intervention in the form of distillation protocols
�3,4� and error correcting codes �5� is capable of restoring
robustness to entanglement in the presence of decoherence.
However, the efficiency of such methods strongly depends
on the a priori robustness of the entangled state in question.
This raises the natural question of the inherent robustness of
entanglement. Recent work has shown that for certain types
of entangled states �6–8� or noisy preparation procedures �9�
there is indeed an �unexpected� inherent robustness. Here we
continue this line of investigation and consider the inherent
robustness of multiqubit entangled states under a rather gen-
eral model of uncorrelated decoherence.

Let us here note that the notion of robustness of entangled
states has been used in a different context before �10–12�.
However, in this paper by robustness we simply mean the
ability of an entangled state to remain entangled in presence
of decoherence.

In addition to the obvious practical importance of study-
ing the effect of decoherence on multiqubit entangled states,
there is a fundamental interest as well. Entanglement being a
microscopic property, one may ask how often macroscopic
entanglement is realized in the physical world? In other

words, when the number of particles sharing an entangled
state becomes very large, entanglement truly becomes a mac-
roscopic property of the system itself. At the same time en-
tanglement could become exponentially fragile, in the sense
that an arbitrary small amount of noise can destroy the com-
plete coherence between the superposed states. Yet, it is
known that the set of separable states is much smaller than
the set of inseparable states �13�, which suggests that en-
tanglement should be relatively common. These conflicting
intuitions suggest that the question of the robustness of en-
tanglement is a subtle one.

The structure of N-party entanglement is considerably
more complex than a simple bipartite scenario where en-
tanglement is only distributed among two subsystems. For
recent results on multipartite entanglement and its measures
see Refs. �14–16�. An important notion is the partitioning of
the system into 2�M �N parties �M partitioning�, where
each of the M parties of several particles is considered to be
a single system with a higher dimensional Hilbert space. A
related notion is M distillability: some M-party pure en-
tanglement can be obtained by local operations and classical
communications �LOCC�. A necessary condition for M dis-
tillability is that the M-partitioned state is nonpositive under
partial transposition �NPPT� across all bipartite cuts �17�.
Thus to obtain information about distillability of an N-party
state it suffices to study entanglement properties across all
possible bipartite cuts. It is important to realize that if there
is distillable entanglement between every pair then the whole
state is M distillable as any multipartite entangled state can
be prepared given sufficient bipartite entanglement between
every pair. Note, that the original N-party state not being
distillable when all N parties are separated, does not rule out
the state being distillable for some M partitioning.

To address the issue whether entanglement can also be
viewed as a macroscopic property it is necessary to study the
limit of large N. If we assume a democratic partitioning for
simplicity, i.e., that N parties are divided into M groups such
that Mk=N, where k is the number of particles in each group,
then a natural question is, out of all possible M partitionings,
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which partition exhibits maximal robustness? Does entangle-
ment exist when N→�? How does large scale entanglement
behave, for instance, when the size of each partition becomes
macroscopic while keeping the number of partitionings
fixed? Such questions have been studied where the noise
model was described by a depolarizing channel �6,7�. We
address these questions in the context of a rather general
decoherence model in this work.

The structure of the paper is as follows. In Sec. II we
introduce the decoherence model: a general completely posi-
tive map under the assumption that each qubit is indepen-
dently coupled to the environment. In Sec. III we preview,
for convenience, the main results of this work. Section IV
finds the resulting density matrix under the action of deco-
herence. Section V deals with some of the useful properties
of the noisy density matrix. In Sec. VI we obtain the en-
tanglement conditions that quantify the robustness of the out-
put state. Section VII concludes and lists some open prob-
lems.

II. DECOHERENCE MODEL

In Refs. �6,7� properties of large-scale entanglement in the
presence of the depolarizing channel were studied. Reference
�6� studied N-particle Greenberger-Horne-Zeilinger �GHZ�
�“cat” states� and compared them to W states and spin-
squeezed states. Reference �7� studied the rather general
class of graph states, which includes GHZ and cluster states
�18,19�. In Ref. �8� the robustness of symmetric entangled
states subject to particle loss was studied. Here we focus on
N-particle cat states, but considerably generalize the decoher-
ence model. Results corresponding to the widely used depo-
larizing channel or dephasing channel can be reproduced as
special cases of our model.

An N-qubit cat state is of the form ���N=1/�2��0��N

+ �1��N�, where �0�, �1� are the +1,−1 eigenstates of the Pauli
�z matrix. We assume that qubits are individually coupled to
the environment. The action of the noisy channel on the mth
qubit is described by a completely positive map of the form

� → �� = Sm��� = �0� + �
i=1

3

�i�i
m��i

m, �1�

where the �i are probabilities ��i�0,�i=0
3 �i=1�, and the �i

are the Pauli matrices ��1=�x, etc.�. The depolarizing chan-
nel and dephasing channel are the special cases �i= �1
−�0� /3 �i=1,2 ,3�, and �1=�2=0, respectively. By studying
this rather general model we hope to provide more physical
insight into the factors affecting the entanglement of a mul-
tiqubit system in presence of decoherence.

III. SUMMARY OF MAIN RESULTS

Before launching into the analysis, let us give a brief pre-
view of the results obtained. We quantify the entanglement
robustness of N-particle cat states by establishing sufficient
conditions for the state to be entangled. Specifically, we ob-
tain the conditions for M distillability, for all 2�M �N.
These conditions are obtained for both finite and infinite N.

The robustness of the entangled state depends on sums
and differences of the probabilities �i and not on the actual
probabilities.

The parity of the entangled state, i.e., whether the state is
composed of an even or odd number of qubits, can lead to
different qualitative behavior under certain conditions.

Macroscopic entanglement is found to be more robust
when distributed among higher dimensional subsystems,
while keeping the number of spatially separated parties un-
changed.

The most robust partition is found to be the bipartite one
where we have equal �N is even� or approximately equal �N
is odd� number of qubits on both sides.

IV. EXPRESSION FOR FINAL STATE

We begin by studying the action of the noisy channel �1�
on the input state ���N:

�N � �N� = S1S2 ¯ SN��N� . �2�

The input pure state �N= ���N	�� can be written as

�N =
1

2
���0�	0���N + ��1�	1���N + ��0�	1���N + ��1�	0���N�



1

2
��00

�N + �11
�N + �01

�N + �10
�N� , �3�

where �i�	j�=�ij, i , j=0,1.
The action of the noise channel �1� on the operators mak-

ing up the density matrix is

S��00� = a�00 + b�11 = 	00,

S��11� = b�00 + a�11 = 	11,

S��01� = c�01 + d�10 = 	01,

S��10� = c�10 + d�01 = 	10, �4�

where

a = �0 + �3,b = �1 + �2,c = �0 − �3,d = �1 − �2. �5�

The coefficients a ,b are positive whereas the coefficients c ,d
can be either positive or negative. Note that the grouping of
�0 with �3 and of �1 with �2 is a result of our choice to
work in the �0�, �1� basis. The final density matrix can now be
written as

�N� =
1

2
�	00

�N + 	11
�N + 	01

�N + 	10
�N� . �6�

Expanding the operator terms one obtains

�N� =
1

2��aN + bN���00
�N + �11

�N� + �
j=1

N−1

�ajbN−j + bjaN−j�


��
p

�m1
j m2

j
¯ mN

j �pp	m1
j m2

j
¯ mN

j �
+ �cN + dN���01

�N + �10
�N� + permutations� , �7�
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where �m1
j m2

j
¯mN

j �p denotes a ket containing exactly j 0s
and the subscript p denotes permutation. For a given j there
are � N

j
� permutations.

Let us now define the N-qubit “cat basis,” consisting of 2N

states. First,

��0
±� =

1
�2

��00 ¯ 0� ± �11 ¯ 1�� .

Other than these two states, we will call any other state a
member of the k group if it is of the form

��k
±� =

1
�2

��k:0;�N − k�:1� ± �k:0̄;�N − k�:1̄�� . �8�

This notation means that the first term of the superposition
state consists of k zeroes and �N−k� ones, and the second
term is obtained by replacing every zero and one of the first
term with one and zero, respectively. The index k
� �1,N /2� �N=even� or k� �1, �N−1� /2� �N=odd�. If N is
even, each k group has 2� N

k
� members, except when k=N /2,

for which there are � N
N/2

� members. If N is odd, there are
always 2� N

k
� members in every k group.

The final density matrix �N� is diagonal in the cat basis.
This can be easily seen from the action of the noisy channel
on the qubits. For example, a maximally entangled state of
two qubits after the action of this channel becomes a mixed
state which is diagonal in the Bell basis. The final density
matrix can be written in the following form:

�N� = �
�=±

�0
���0

��	�0
�� + �

k,j
��kj

+ ��kj
+ �	�kj

+ � + �kj
− ��kj

− �	�kj
− �� ,

�9�

where �= f�a ,b ,c ,d�. The index k stands for the group and
the index j corresponds to the different states due to permu-
tation of indices that belong to the same group. Comparing
the two representations Eq. �7� and Eq. �9� of the final den-
sity matrix, and noting the fact that 	�kj

+ ����kj
+ �

+ 	�kj
− ����kj

− �=�kj
+ +�kj

− remain unchanged under local depo-
larizing, one can show that �kj

+ +�kj
− = �akbN−k+bkaN−k� /2

which is independent of j.

V. BASIS CONDITION FOR ENTANGLEMENT AND SOME
USEFUL LEMMAS

For any arbitrary N-qubit density matrix � it has been
shown that the state � is entangled if at least for one pair
�k , j�, the following condition is satisfied �17�:

�	�0
+����0

+� − 	�0
−����0

−��  	�kj
+ ����kj

+ � + 	�kj
− ����kj

− � .

�10�

Accordingly we compute the above quantities for our state.
First observe that

�0
+ − �0

− = 	�0
+����0

+� − 	�0
−����0

−�

=
1

2
��	00 ¯ 0��N� �00 ¯ 0� + 	11 ¯ 1��N� �11 ¯ 1��

+ �	00 ¯ 0��N� �11 ¯ 1� + 	11 ¯ 1��N� �00 ¯ 0��

− �	00 ¯ 0��N� �00 ¯ 0� + 	11 ¯ 1��N� �11 ¯ 1��

+ �	00 ¯ 0��N� �11 ¯ 1� + 	11 ¯ 1��N� �00 ¯ 0���

= 2 Re	00 ¯ 0��N� �11 ¯ 1� . �11�

One can readily evaluate from the expression of the final
density matrix the value of �0

+−�0
−,

� 
 ��0
+ − �0

−� = �cN + dN� �12�

and

2�k,N−k 
 	�k
+��N� ��k

+� + 	�k
−��N� ��k

−� = �kj
+ + �kj

−

= akbN−k + bkaN−k, �13�

where ��k
±� are the members of the k group. We can now

state our basic result, which follows directly from Eq. �10�.
Proposition 1. The state �N� is entangled if there is at least

one k such that

�  2�k,N−k. �14�

Suppose that there is a k=k0 such that the above inequality is
satisfied. This means that the state �N� is NPPT across the
bipartite partition where k0 parties are on one side and �N
−k0� on the other �which we denote by k0 : �N−k0��. Let us
also note that choosing a specific j �i.e., a given permutation�
implies choosing a specific set of k parties. As � is indepen-
dent of j, the entanglement condition does not depend on
which parties we have chosen for a given number of parties
k on one side of the bipartite cut. We now prove a useful
property of the final state.

Lemma 1. If the state �N� is entangled for some bipartite
partition k : �N−k�, then it is entangled for all bipartite parti-
tions m : �N−m� when mk and 1�k, m�N /2 �N even�,
�N−1� /2 �N odd�.

Proof. Let us first note that we are considering only bipar-
tite partitions where k�m� parties are on one side and N
−k�N−m� are on the other. This automatically puts the sec-
ond constraint on the allowed values of k ,m. We need to
prove that �k,N−k�m,N−m, i.e., akbN−k+bkaN−kambN−m

+bmaN−m, when mk and 1�k, m�N /2 �N even�, �N
−1� /2, �N odd�. Without any loss of generality we can as-
sume that ab because the two sides are equal when a=b.
Suppose, the inequality is not valid, i.e., akbN−k+bkaN−k

�ambN−m+bmaN−m. Then factoring a common akbk from
both sides we have aN−2k+bN−2k� �a /b�lbN−2k+ �b /a�laN−2k,
where m=k+ l. Let a /b=x. Then xN−2k+1�xl+xN−2k−l,
which implies xN−2k−xN−2k−l�xl−1. This can be rewritten as
xN−2k−l�xl−1��xl−1 which is a contradiction because x1
and N−2k− l=N− �k+m�0 �since, k+m�N�. �

It follows immediately from this lemma that:
Corollary 1. �i� If the final state is entangled across the

1:N−1 cut then it is entangled across all other bipartite cuts.
�ii� The most robust bipartite cut is N /2 :N /2�N even� or
�N±1� /2 : �N�1� /2�N odd�.

Let us now consider an M partition with the partitions
labeled as G1 ,G2 , . . . ,GM, 2�M �N. We call such a choice
an M-partition configuration. Let �Gk� be the number of par-
ticles in the group Gk. Then an M-qubit cat state can be
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distilled iff the state is NPPT for all possible bipartite cuts in
the M-partition configuration. That includes the bipartite par-
titions �Gk� : �N− �Gk��∀Gk, as well as the bipartite partitions
obtained by combining a subset of the partitions Gm. Let
�Gi�=mink��Gk��. Then we have the following lemma, that
states under which condition one can distill an M-qubit cat
state.

Lemma 2. An M-qubit cat state can be distilled if and only
if �2��Gi�,N−�Gi�

.
Proof. Using the same calculation as in lemma 1, note that

if �2��Gi�,N−�Gi�
, then �2��Gk�,N−�Gk�∀Gk. This guarantees

that the final state is NPPT across all other possible bipartite
cuts in the M-party configuration. Now note that our state
can be brought to a depolarized form by local operations
while satisfying the condition �2��Gi�,N−�Gi�

as well as pre-
serving the NPPT property. For such a depolarized state dis-
tillability is guaranteed since the satisfaction of the above
condition is both necessary and sufficient for M qubit distill-
ability �17�. Hence our state is also distillable. �

Note that the symmetry properties of the state and the
hierarchical property of the �’s guarantee that it is sufficient
to compute the partial transposition of only one bipartite cut.
The next lemma shows the connection between a bipartite
cut and the largest M one can have in M-qubit distillability.
Let Q�N ,k�=quotient of �N−k� /k.

Lemma 3. For any given k in a bipartite cut k : �N−k�, if
the distillability condition �2�k,N−k is satisfied, then the
density matrix �N� is M-qubit cat state distillable, where
max M =N /k if N is divisible by k or max M =1+Q�N ,k� if
N is not divisible by k.

Proof. Let k be the smallest integer such that �2�k,N−k.
Clearly if N is divisible by k, the maximum number of
groups one can have is N /k. However if N is not divisible by
k, then the remainder of N /k is less than k and hence 1
+N /k cannot be the number of optimal groups, as the parti-
tion �remainder of N /k�: �N-remainder of N /k� is not NPPT.
Therefore the optimal number of partition must be 1
+Q�N ,k�. �

It is clear that every bipartite cut contains distillability
information about some M partition. In what follows we will
analyze the entanglement threshold conditions for bipartite
cuts. The previous lemmas guarantee that the bipartite
threshold conditions are sufficient to describe distillability of
the final state �N� .

VI. ENTANGLEMENT PROPERTIES OF �N�

In this section we study in detail entanglement properties
of the state �N� . As noted before we will concentrate on the
conditions for the state to remain entangled across the bipar-
tite cuts. Let us first point out the effect parity �in the sense
of odd/even number of qubits� can have on the inequality. As
mentioned before, the parameters c ,d can be either positive
or negative. Without loss of generality suppose �c�� �d�.
When c ,d have the same sign we have �recall Eq. �12�� �
= �c�N+ �d�N irrespective of N being even or odd. However, if
c ,d have opposite signs then �= �c�N+ �d�N when N is even or
�= �c�N− �d�N when N is odd. This suggests that parity can

have a dramatic effect on the sufficient condition for en-
tanglement.

A. Sufficient condition for entanglement when c ,d
have the same sign

1. Exact condition for finite N

Let us rewrite our basic NPPT condition �14� explicitly as
��c�N+ �d�N�akbN−k+bkaN−k. Let us note first that, since from
Eq. �5� it follows that a�c and b�d, the NPPT condition is
violated when a=b.

From hereon we assume a�b. Note that if �c�= �d�
the entanglement condition can still be satisfied if a�b. Let-
ting k=N�, where 1/N���

1
2 , one obtains �c�N�1+ �d /c�N�

b�Na�1−��N�1+ �b /a��1−2��N�, where one can assume with-
out loss of generality that ab and �c� �d�. Taking the loga-
rithm of both sides and dividing by N, one obtains

ln�c� +
1

N
ln�1 + �d

c
�N

 ln�b�a�1−��� +
1

N
ln�1 + �b

a
�1−2��N� . �15�

This inequality is an exact sufficient condition for entangle-
ment corresponding to a bipartite cut k : �N−k�.

2. Asymptotic condition when the subsystems and system sizes
become macroscopic

Consider first the case when the subsystem size k be-
comes macroscopic in the limit N→�. This implies � re-
maining a constant as N→�. The asymptotic condition can
easily be obtained from Eq. �15�:

�c�  b�a�1−��. �16�

Note that d dropped out in the asymptotic limit. We can
rewrite this as a lower bound on � in the asymptotic limit,
using the normalization condition a+b=1:

� 
ln�a/�c��

ln�a/�1 − a��

 f�a, �c�� . �17�

Remarkably, the asymptotic condition depends only on two
parameters a and c. Noting that �=1/M, Eq. �17� puts an
upper bound on M.

Since 1/N���
1
2 we find from Eq. �16� a particularly

simple form of the entanglement condition in the case of the
most robust partition, i.e., the case �= 1

2 :

�c�2  ab . �18�

We note here that an identical inequality can also be obtained
by putting the constraint f�a , �c���1/2.

3. Robustness and size of the subsystems

An interesting feature of Eq. �15� is that we can separate
out the asymptotic part from the N-dependent term. Let us
rewrite Eq. �15� as
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ln�c�  ln�b�a�1−��� +
1

N
�ln�1 + �b

a
�1−2��N�

− ln�1 + �d

c
�N� . �19�

In this form it is easy to see that the asymptotic condition is
achieved even for finite N if and only if ln�1+ �b /a��1−2��N�
=ln�1+ �d /c�N�, i.e., the following condition is satisfied:

� =
1

2
�1 −

ln�c/d�
ln�a/b�

 . �20�

For instance, when N is even, for a choice of �c�= �d�, one
obtains �=1/2. This shows, rather surprisingly, that the
asymptotic condition is the same as that of any finite N if
certain conditions are met. Consistency demands that, in
such a case, Eqs. �17� and �20� should be satisfied simulta-
neously. This leads to the condition �c��d�ab, which cannot
be satisfied in general, except for the case when �c�= �d�. We
therefore conclude that latter surprising property holds only
for equigrouped partition, and only when N is even, because
��1/2 if N is odd. This therefore shows another effect of
parity of the number of qubits.

We now examine Eq. �19� more closely. Let us denote
�
 ln�1+ �b /a��1−2��N�−ln�1+ �d /c�N� and rewrite Eq. �19� as

ln�c�  ln�b�a�1−��� +
�

N
. �21�

Let us first observe that ��0 if ��
1
2 �1−ln�c /d� / ln�a /b��.

Therefore if Eq. �21� is satisfied for some finite N when � is
positive, then the asymptotic condition of entanglement �17�
is automatically satisfied as well. As before, demanding the
consistency requirement one can show that 1

2 �1
−ln�c /d� / ln�a /b��� f�a , �c�� if �c��d��ab, which, in general,
is always satisfied. We can therefore conclude that existence
of M-group entanglement for some finite N automatically
implies entanglement also in the asymptotic limit when the
size of the partitions become macroscopic, keeping the num-
ber of partitions M a constant. On the other hand, if the
inequality �21� is not satisfied for some N, it might still be
satisfied for some large N, as the condition itself gets relaxed
as N→�. We summarize these considerations as follows.

Proposition 2. Multipartite entangled states with fixed
number of partitions M are more robust the larger is the
dimension of the constituent subsystems.

4. Fixed number of members in a group while number
of groups and the size of the system become large

We now discuss the second scenario where we allow the
number of particles in a group to remain constant, i.e., k is
fixed while both M ,N are allowed to become arbitrarily
large. For simplicity we assume that each group contains the
same number of qubits. We first rewrite Eq. �19� as

ln�c� 
k

N
ln b + �1 −

k

N
ln a +

1

N
�ln�1 + �b

a
�N−2k��

− ln�1 + �d

c
�N� . �22�

Suppose the above inequality is satisfied for some choice of
k ,N. However, in the limit N→� the inequality reduces to
the condition ln�c� ln a, which is false.

B. Condition for entanglement when c ,d have opposite signs

Let us now consider the case of odd number of qubits and
c ,d having opposite signs, whence �= �c�N− �d�N. First, note
that the condition �14� is considerably tighter than before.
Second, there is no distillable entanglement in this case when
c=d as opposed to the same-sign case, irrespective of
whether a ,b are equal or not.

Let us write the condition �14� in this case as

ln�c�  ln�b�a�1−��� +
1

N
�ln�1 + �b

a
�1−2��N�

− ln�1 − �d

c
�N� . �23�

In the asymptotic limit, we obtain the same condition as
before. However, notice that the term in the parentheses on
the right side of the inequality is always positive. This im-
plies that as we increase the number of particles robustness
always increases for any choice of �. This means that if the
state is entangled for some choice of M ,N, it always remains
entangled in the large N limit, as robustness increases with N
as long as the number of partitions M remain unchanged.

VII. CONCLUSIONS AND OPEN PROBLEMS

To summarize, in this work we have studied the robust-
ness of N-qubit cat states under a rather general decoherence
model. In this model every qubit is independently coupled to
the environment. The noisy channel is described by a com-
pletely positive map with arbitrary probabilities assigned to
the various errors described by the Pauli operators. Our find-
ings show that macroscopic entanglement is more robust in
higher-dimensional systems while keeping the number of
spatially separated parties constant. We have also shown that
states with even or odd numbers of qubits can have qualita-
tively different properties that are not observed in simpler
noisy channels such as depolarizing channel. Furthermore,
we have shown that in the asymptotic limit the entanglement
condition depends only on two noise parameters even though
the noise model itself is described by three independent pa-
rameters.

The present work focuses on the GHZ class of states. It
would be interesting to see if the above observations hold
true for other classes of multiqubit pure states. Kempe and
Simon �6� have studied the robustness of W states for three
qubits, and other inequivalent classes of four-qubit entangle-
ment, using a depolarizing channel. Their work has shown
that GHZ states are more robust than the other classes of
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states. It would be interesting to test whether this holds true
under the more general noise model considered here. The
same comment applies to the class of graph states studied by
Dür and Briegel �7�.

Note added. Upon completion of this work we came to
know about related work by Hein et al. �20�, which uses a
Markovian master equation approach to model decoherence,

whereas in this work we have used the �formally exact�
Kraus operator sum representation.
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