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Abstract

The purity, Tr(q2), measures how pure or mixed a quantum state q is. It is well known that quantum dynamical semigroups that
preserve the identity operator (which we refer to as unital) are strictly purity-decreasing transformations. Here, we provide an almost
complete characterization of the class of strictly purity-decreasing quantum dynamical semigroups. We show that in the case of
finite-dimensional Hilbert spaces, a dynamical semigroup is strictly purity-decreasing if and only if it is unital, while in the infinite
dimensional case, unitality is only sufficient.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Quantum dynamical semigroups have been studied
intensely in the mathematical and chemical physics liter-
ature since the pioneering work of Gorini et al. [1] and
Lindblad [2]. They have a vast array of applications,
spanning, e.g., quantum optics, molecular dynamics,
condensed matter, and most recently quantum informa-
tion [3–6].

In this work, we are interested in general conditions
for dissipativity [2], namely the question of which class
of quantum dynamical semigroups is guaranteed to re-
duce the purity of an arbitrary d-dimensional state q,
where the purity p is defined as
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p ¼ Trq2. ð1Þ
The purity, which is closely related the Renyi entropy of
order 2, �log Trq2 [7], satisfies 1/d2 6 p 6 1, with the
two extremes p = 1/d2,1 corresponding, respectively, to
a fully mixed state and a pure state. The question we
pose and answer in this work is

“What are the necessary and sufficient conditions on
quantum dynamical semigroups for the purity to be
monotonically decreasing ð _p 6 0Þ?”

To answer this question, we first revisit a general
expression for _p using the Lindblad equation, in Section
2. We then give a derivation of a sufficient condition for
purity-decreasing quantum dynamical semigroups in Sec-
tion 3. This condition is valid for a large class of, even un-
bounded, Lindblad operators. We establish a necessary
condition in Section 4, which is valid in finite-dimensional
Hilbert spaces. Some examples are also discussed in this
section. Concluding remarks are presented in Section 5.
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2. Purity and Markovian dynamics

The action of a quantum dynamical semigroup can
always be represented as a master equation of the fol-
lowing form (we set �h = 1):

oq
ot

¼ �i½H ; q� þLðqÞ; ð2Þ

where H is the effective system Hamiltonian, and the
Lindblad generator L is

LðqÞ ¼ 1

2

X
a;b

aab Ga; qG
y
b

h i
þ Gaq;G

y
b

h i� �
. ð3Þ

The matrix A = (aab) is positive semidefinite [ensuring
complete positivity of the mapping expðtLÞ] and the
Lindblad operators {Ga} are the coupling operators of
the system to the bath [3]. One can always diagonalize
A using a unitary transformation W = (wab) and define
new Lindblad operators F a ¼

ffiffiffiffi
ca

p P
bwabGb such that

LðqÞ ¼ 1

2

X
a

F a; qF y
a

� �
þ F aq; F y

a

� �� �
; ð4Þ

where ca P 0 are the eigenvalues of A. Note that, for-
mally, for any A

Tr½LðAÞ� ¼ 0. ð5Þ
For the bounded semigroup-operators case (hence in
particular in finite-dimensional Hilbert spaces) (3) pro-
vides the most general form of the completely positive
trace preserving semigroup. However, the formal
expression (2) makes sense with unbounded H and Fa

provided certain technical conditions are satisfied [11].
In particular, D ¼ �iH �

P
F y

aF a should generate a
contracting semigroup of the Hilbert space and Fa

should be well-defined on the domain of D. Under those
technical conditions, one can construct the so-called
minimal solution of (2) which may not be trace-preserv-
ing [11]. One should notice that in the unbounded case
the solution q(t) of (2) need not be differentiable unless
q(0) is in the domain of �i½H ; .� þL.

In the following, when dealing with unbounded gener-
ators we tacitly assume that all these technical conditions
are satisfied and then the formal mathematical expres-
sions can be precisely defined. In particular, for un-
bounded A, the positivity condition AP 0 means that
h/|A|/i P 0 for all / from a proper dense domain. The
time-evolution of the purity can thus be expressed as

_p ¼ Tr q
oq
ot

� 	
þ Tr

oq
ot

q

� 	
¼ �iTrðq½H ; q�Þ � iTrð½H ; q�qÞ þ TrðqLðqÞÞ

þ TrðLðqÞqÞ. ð6Þ

Recall that if A is bounded and B is trace-class then AB

and BA are also trace-class, and Tr(AB) = Tr(BA) [12].
Assuming bounded {Fa} we thus have
_p ¼ �2iTrðq½H ; q�Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

þ2TrðqLðqÞÞ

¼
X
a

Tr qF aqF y
a

� �
� Tr q2F y

aF a

� �
; ð7Þ

Thus, Hamiltonian control alone cannot change the
first derivative of the purity, and hence cannot keep
it at its initial value (the ‘‘no-cooling principle’’ [8]);
the situation is different when one exploits the interplay
between control and dissipation [9], or with feedback
[10].

It is well-known that a sufficient condition for the
purity to be a monotonically decreasing function under
the Markovian dynamics, is that the Lindblad generator
is unital, namely LðIÞ ¼ 0, where I is the identity oper-
ator [13]. But can this condition be sharpened? Indeed,
we will show that unital Lindblad generators are in fact
a special case of a more general class of quantum
dynamical semigroups for which purity is strictly
decreasing. In Section 3, we prove the following
theorem:

Theorem 1. A sufficient condition for _p 6 0 under

Markovian dynamics, Eqs. (2) and (4) is

LðIÞ ¼
X
a

F a; F y
a

� �
6 0 ð8Þ

whenever the generally unbounded formal operator (8) can
be defined as a form on a suitable dense domain.

Note that Theorem 1 places no restriction on Hilbert-
space dimensionality. Moreover, for particular cases
condition (8) is meaningful for unbounded generators
provided certain technical conditions concerning do-
main problems are satisfied (e.g., the amplitude raising
channel, discussed below). Theorem 1 can be sharpened
under an additional assumption:

Theorem 2. In the case of finite-dimensional Hilbert

spaces the purity is monotonically decreasing if and only

if the Lindblad generator is unital,

LðIÞ ¼
X
a

F a; F y
a

� �
¼ 0. ð9Þ

This is proved in Section 4. Note that in the case of a
finite-dimensional Hilbert space the Lindblad operators
are automatically bounded.
3. Sufficiency

In this section we present three different proofs of suf-
ficiency. The first is the most general, in that it is valid
also for unbounded operators, under appropriate
restrictions. The second and third are valid only for
bounded operators and are presented for their pedagog-
ical value.
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3.1. General proof of sufficiency

We present a proof of Theorem 1 which is valid even
for unbounded Fa, under the following technical condi-
tions, which are satisfied for important examples of
Lindblad generators [14]:

(a) There exists a dense subset D � fjoint dense
domain of all of fH ; F a; F y

a;
P

aF
y
aF a;

P
aF aF y

agg;
(b) All finite range operators

P
jwkih/kj, where

jwki; j/ki 2 D, form a core CðL0Þ for the generator
L0 � �i½H ; .� þL, i.e., for any q in the domain of
L0 there exists a sequence qn 2 CðL0Þ such that
qn ! q, and L0ðqnÞ ! L0ðqÞ;

It follows from condition (a) that the possibly infinite
sums

P
F aF y

aq
2 and

P
F y

aqF aq converge for all
q 2 CðL0Þ. Therefore, the expression on the RHS of
(7) is meaningful for all q ¼ qy 2 CðL0Þ and can be
transformed into the form

� 1

2

X
a

Tr ðqF a � F aqÞyðqF a � F aqÞ
h i

þ Tr q2 F a; F y
a

� �� �
. ð10Þ

The first term is evidently negative. Then, due to Eq. (8),
this leads to _p 6 0 first for all q 2 CðL0Þ, and then by
condition (b) for all q in the domain of L0 [15].

One should notice that in the finite-dimensional case
condition (8) is equivalent to

P
½F y

a; F a� ¼ 0.

3.2. Proof using the dissipativity relation

Lindblad used properties of C*-algebras to prove
(Eq. (3.2) in [2]) the general ‘‘dissipativity relation’’

LðAyAÞ þ AyLðIÞA�LðAyÞA� AyLðAÞ P 0. ð11Þ

This relation is valid for bounded generators L (though
it may be possible to extend it to the unbounded case).
Taking the trace and using Tr½LðAyAÞ� ¼ 0,
A = q = q� then yields

_p ¼ Tr½qðLqÞ� þ Tr½ðLqÞq� 6 Tr½q2LðIÞ�. ð12Þ

To guarantee _p 6 0, it is thus sufficient to require
Tr½q2LðIÞ� 6 0 for all states q. Using Eq. (4) yields
LðIÞ ¼

P
a½F a; F y

a�, so that

_p 6 Tr q2
X
a

F a; F y
a

� �( )
6 0. ð13Þ

Since q2 > 0, it follows that it suffices for
F �

P
a½F a; F y

a� to be a negative operator in order for
the inequality to be satisfied [15]. We have thus proved
that LðIÞ ¼

P
a½F a; F y

a� 6 0, is sufficient.
3.3. Proof using the Schwarz inequality

We now give an alternative and more direct proof of
sufficiency, which, again, is valid only in the case of
bounded Lindblad operators. Let Xa = qFa and
Y a ¼ qF y

a, and use this, along with
P

aF
y
aF a ¼P

aF aF y
a � A, where A 6 0 and bounded, to rewrite Eq.

(7) as

_p ¼ 2TrðqLðqÞÞ ¼ Tr q
X
a

F a; qF y
a

� �
þ F aq; F y

a

� �� � !

¼
X
a

2Tr qF aqF y
a

� �
�
X
a

Tr qF y
aF aq

� �

� Tr
X
a

q
X
a

F aF y
a � A

 !
q

" #

¼
X
a

2Tr½X aY a� � Tr Y aY y
a

� �
� Tr X aX y

a

� �
þ Tr½q2A�.

ð14Þ

We can now apply the the Schwarz inequality for
operators

jTrðX yY Þj 6 TrðX yX Þ
� �1=2½TrðY yY Þ�1=2

6
1

2
½TrðX yX Þ þ TrðY yY Þ�; ð15Þ

and use the fact that Tr[XaYa]P 0 [16] to yield

2Tr½X aY a� � Tr Y aY y
a

� �
� Tr X aX y

a

� �
6 0. ð16Þ

Additionally, Tr[q2A] 6 0 (since q2 > 0 and A 6 0 by
assumption), which completes the proof that _p 6 0.
4. Necessity: a condition for finite-dimensional Hilbert

spaces

We would now like to derive a necessary condition on
the Lindblad operators Fa so that _p 6 0 holds for all q.
Our starting point is again Eq. (7), which is valid only
for bounded Fa:

_p ¼
X
a

Tr qF aqF y
a

� �
� Tr q2F y

aF a

� �
6 0. ð17Þ

We now restrict ourselves to the case of finite-dimen-
sional Hilbert spaces. The inequality (17) must hold in
particular for states q which are close to the fully mixed
state, i.e., q = (I ± eA)/Tr[I ± eA], where 0 < e � 1 and
A = A�, kAk 6 1, otherwise arbitrary. Let us find the
constraint that must be obeyed by the Fa so that (17)
is true for such states. This will be a necessary condition
on the Fa.
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Inserting this q into the inequality (17) yields

0 P
X
a

Tr ðI � eAÞF aðI � eAÞF y
a

� �
� Tr ðI � eAÞ2F y

aF a

h i
¼
X
a

Tr F aF y
a � eAF aF y

a � eF aAF
y
a

� �
� Tr F y

aF a � 2eAF y
aF a

� �
þOðe2Þ

¼
X
a

Tr F a; F y
a

� �
� eTr AF aF y

a þ F aAF
y
a � 2AF y

aF a

� �
þOðe2Þ. ð18Þ

The term Tr½F a; F y
a� vanishes and the second term in the

last line becomes TrðA
P

a½F a; F y
a�Þ. We may then divide

by e and take the limit e ! 0, which yields

�Tr A
X
a

F a; F y
a

� � !
6 0. ð19Þ

Since A is arbitrary this result can only be true for all A,
if
P

a½F a; F y
a� ¼ 0. This is exactly the unitality condition.

We have thus proved Theorem 2.
However, in the infinite-dimensional case the above

argument fails since then in general TrF aF y
a 6¼ TrF y

aF a,
or the trace may not even be defined. Indeed, take a
(non-invertible) isometry V satisfying V�V = I and
VV� = P (a projector). A physical example is given by
the bosonic amplitude-raising semigroup (single Lind-
blad operator): F = a� = the bosonic creation operator.
Then LðIÞ ¼ ½F ; F y� ¼ ½ay; a� ¼ �I , so the semigroup is
non-unital. Yet, LðIÞ < 0, so that by Theorem 1 (suffi-
ciency) we know that this is a purity-decreasing semi-
group. Another example, where LðIÞ 6¼ cI (c a
constant), yet LðIÞ 6 0, is the case F = a�aa� (this
example is not even trace-preserving). We thus have:

Corollary 1. In the infinite-dimensional case, the purity

may be strictly decreasing without the Lindblad generator

being unital.

An example of a semigroup that does not satisfy
LðIÞ 6 0 is the bosonic amplitude-damping semigroup,
Fa = a. For this semigroup LðIÞ ¼ ½F a; F y

a� ¼ ½a; ay� ¼
þI . Thus, this semigroup is not in general purity-
decreasing. Indeed, amplitude damping will in general
purify a state q by taking it to the ground state |0ih0|,
which is pure.

5. Conclusion

In this work we have provided necessary and suffi-
cient conditions for Markovian open-system dynamics
to be strictly purity-decreasing. These conditions are
summarized in Theorems 1 and 2. It turns out that
the well-known result that unital semigroups are pur-
ity-decreasing is a complete characterization (i.e., the
condition is both necessary and sufficient) for finite-
dimensional Hilbert spaces. However, in the infinite-
dimensional case it is possible for a semigroup to be
strictly purity-decreasing without being unital. A simple
example thereof is the bosonic amplitude-raising semi-
group. We leave as an open question the problem of
finding a necessary condition in the case of unbounded
generators.
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where U is the unitary matrix that diagonalizes q, qD = U�qU is
diagonal with eigenvalues ki P 0, and F 0

a ¼ U yF aU . Explicitly
evaluating the trace yields:
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Tr qDF
0
aqDF

0y
a

� �
¼
X
ijkl

kidijðF 0
aÞjkkkdklðF 0y

a Þli ¼
X
ik

kikk jðF 0
aÞik j

2 P 0.
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