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Strong, fast pulses, called ‘‘bang–bang’’ controls can be used to eliminate the effects

of system-environment interactions. This method for preventing errors in quantum

information processors is treated here in a geometric setting which leads to an

intuitive perspective. Using this geometric description, we clarify the notion of group

symmetrization as an averaging technique, provide a geometric picture for evaluating

errors due to imperfect bang–bang controls and give conditions for the compatibility

of BB operations with other controlling operations. This will provide additional

support for the usefulness of such controls as a means for providing more reliable

quantum information processing.

KEY WORDS: decoherence; bang–bang controls; quantum error correction;

quantum computing.
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1. INTRODUCTION

Recently, controlling the evolution of a system by using strong, short pulses
has been introduced as a new means for quantum error correction/preven-
tion.(1–4) These operations have been termed ‘‘bang–bang’’ (BB) pulses(1)

(a name derived from classical control theory(5) ‘‘parity kicks’’(2, 6) (for the
special case of a sign changing operation), decoupling operations(7, 8) (since
they can serve to decouple the system from environmental degrees of free-
dom), and symmetrization procedures(3) (which are associated with a group
symmetrization/averaging). The advantage they have over the active and
passive error correction procedures associated with quantum error cor-
recting codes (QECCs)(9, 10) (also see Ref. 11 and references therein) and
decoherence free subspaces (DFSs)(12–14) (or ‘‘noiseless subsystems’’(15); also
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see Ref. 16 and references therein) is the use of external pulses rather than
requiring several physical qubits to encode one logical qubit. Since today’s
experiments use <10 qubits, this may, for the time being, make BB controls
a method of choice for small-scale quantum computer implementations.
However, it is clear that the time constraints imposed by bang–bang
operations on the system are severe(7) and may not be practical for elim-
inating noise altogether. Even if this technique cannot completely eliminate
the noise, it can still be used to reduce noise.(1, 4, 6) This is important for
possibly reducing error rates and thus extending computing time and/or the
utility of QECCs and/or DFSs.

In order to take full advantage of the BB technique, the symmetrization
operations and their effects must be made clear so that the benefit from the
implementation can be readily determined. The work put forth here will aid in
the analysis of the results of BB operations by providing an explicit geometric
representation for the group-algebraic elements describing such interactions.
This geometric picture also has the advantage of describing the error between
a desired and a modified evolution. In addition, for two-state systems
(qubits), we recover a familiar Bloch sphere representation and this provides
us with an intuitive understanding of BB/symmetrization operations.

Section 2 contains a brief survey of quantum BB controls for quantum
error suppression. In Sec. 3 we present the general geometric perspective for
the BB controls. Section 4 provides an accompanying geometric perspective
for evaluating the errors of a set of BB controls and Sec. 5 shows how these
techniques may be used in practice to rederive the subgroup condition (see
Sec. 2) and extend the viewpoint of this as an averaging technique. A further
example (Subsection 5.2) demonstrates a general condition (Subsection 5.3)
for the compatibility of BB controls with other controlling interactions (for
example gating sequences).

2. DECOUPLING BY SYMMETRIZATION

The process of decoupling by symmetrization, counteracts deco-
herence by applying sequences of frequent pulses.(1, 2, 4) The time scales are
crucial: roughly speaking, one needs to perform a complete cycle of sym-
metrization operations in a time shorter than the bath correlation time. An
elegant group theoretical treatment shows that if the applied pulses are
unitary transformations forming a finite-dimensional group, then the
application of that series of pulses amounts to an average (symmetrization)
over this group.(3, 7, 8, 17, 18) We briefly review this theory.
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The general evolution of a system and a bath coupled to it can be
written in the form

H ¼ HS � 1lB þ 1lS �HB þ
X
�

S� � B� ð2:1Þ

where HS acts on the system alone, HB acts on the bath alone, and
HI �

P
� S� � B� is the interaction part of the Hamiltonian composed of

traceless operators S� (B�) which act on the system (bath). The objective of
the BB procedure is to modify this evolution.

A set of symmetrization or BB operations can be chosen such that they
form a discrete (finite order) subgroup of the full unitary group of opera-
tions on the Hilbert space of the system. Denote this subgroup G and its
elements gk, k ¼ 0; 1; . . . ; jGj 	 1, where jGj is the order of the group. The
cycle time is Tc ¼ jGj�t, where jGj is now also the number of symmetrization
operations, and �t is the time that the system evolves freely between
operations under U0 ¼ expð	iHtÞ. The symmetrized evolution is given by

UðTcÞ ¼
YjGj	1
k¼0

gykU0ð�tÞgk � e	iHeffTc : ð2:2Þ

Heff denotes the resulting effective Hamiltonian. Since the approximation
requires very strong, short pulses to be implemented in a sequence, they
have been termed bang–bang (BB) operations (we will use symmetrization
and BB operations interchangeably). In this (BB) limit

H 7!Heff ¼
1

jGj

XjGj	1
k¼0

gykHgk � �GðHÞ ð2:3Þ

where Heff is the desired Hamiltonian (without noise). The map �G is the
projector into the centralizer, ZðGÞ, defined as

ZðGÞ ¼ fXj ½X; gk� ¼ 0; 8gk 2 Gg ð2:4Þ

It is clear that �G commutes with all gk so that, if our group is generated by
f1l;HS;S�g, the system is effectively decoupled from its environment. The
control algebra is the algebra generated by the set fgkg. Even if the sym-
metrization is performed under less than ideal conditions, it can still reduce
the noise in the system.(1, 4, 6)
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3. GEOMETRIC INTERPRETATION OF THE EFFECT OF BB

OPERATIONS

Now consider a set of unitary operators fUkg, U0 � 1lS, as an explicit
realization of the subgroup G and choice of our set of BB operations. Then
the following condition must be satisfied for an evolution generated by the
effective Hamiltonian:

Heff ¼
1

jGj

XjGj	1
k¼0

UykHUk ð3:1Þ

Note that Heff ¼ 0 is the case of storage. Considering Eq. (2.1), we can
always include the terms HS � 1lB in HI. We do not include the identity
component 1lS � 1lB since it only gives rise to an overall phase. Thus H and
Heff are traceless. Let us now introduce N � n2 	 1 traceless, Hermitian
generators f�ig

N
i¼1 of SUðnÞ. These generators are closed under commutation

and span the space of traceless Hermitian matrices. For SUð2Þ, the Pauli
matrices are commonly used; for SUð3Þ, the Gell–Mann matrices, and for
higher dimensions, one may use a direct generalization of the Gell–Mann
matrices. For dimensions that are a power of two it is often convenient to
use the Pauli group (tensor products of Pauli matrices). The f�ig satisfy
trace-orthogonality,

Trð�i�jÞ ¼M�ij; ð3:2Þ

whereM is a normalization constant (often taken to be 2 for Lie algebras or
n for n� n matrices). Expanding the system operators in terms of the f�ig
yields:

S� ¼
X
i

ai��i ð3:3Þ

where the expansion coefficients are

ai� ¼
1

n
Trð�iS�Þ ð3:4Þ

Using this, H can be written as as follows:

H ¼
X
�

S� � B� ¼
X
�

XN
i¼1

ai��i � B� �
X
�

ð~aa� � ~��Þ � B� ð3:5Þ

Here ~aa� and ~�� are vectors of length N. In this representation, used exten-
sively in,(19) an n� n Hamiltonian, H, is a vector with coordinates ~aa� for
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each error � in an N-dimensional vector space spanned by the f�ig as basis
vectors, with ordinary vector addition and scalar multiplication.

As is well-known, there is a homomorphic mapping between the Lie
groups SUð2Þ and SOð3Þ.(20) This mapping is generalized as follows for
SUðnÞ and a subgroup of the rotation group SOðNÞ:

Uyk�iUk ¼
XN
j¼1

R
ðkÞ
ij �j ð3:6Þ

where the matrix RðkÞ 2 SOðNÞ, the adjoint representation of SUðnÞ.
The BB operation [Eq. (3.1)] may now be viewed as a weighted sum of

rotations of the (adjoint) vectors ~aa� . To see this, first let

~aaðkÞ� ¼ RðkÞ ~aa�

This represents the rotation by RðkÞ of the coordinate vector ~aa� . Next
average over all rotations:

~aa 0� ¼
1

jGj

XjGj	1
k¼0

~aaðkÞ� ð3:7Þ

Finally, note that the effective Hamiltonian, after the BB operations, can be
rewritten as:

Heff ¼
1

jGj

XjGj	1
k¼0

UykHUk ¼
X
�

ð~aa 0� � ~��Þ � B� ð3:8Þ

Equation (3.9) [compare to Eq. (3.5)] is our desired geometric representation
of BB operations. Their effect is to simply transform, for each error �, the
coordinates ~aa� to ~aa

0
� . It is simplest to interpret this in the case of storage,

where we seek BB operations such that Heff ¼ 0. Since the errors can be
decomposed in the linearly independent basis set indexed by �, each term
~aa 0� � ~�� must vanish separately. Furthermore, since the �i are independent this
can only be satisfied if ~aa 0� ¼

~00 for each �. This means that

~aa 0� ¼
1

jGj

X
k

RðkÞ

 !
~aa� ¼ ~00 ð3:10Þ

i.e., the sum of all rotations applied to the original coordinate vector ~aa� must
vanish.

Similarly, to obtain a modified evolution corresponding to a target
Hamiltonian H t

eff ¼
P

�ð~aa
t
� �
~��Þ � B� , we require the weighted sum of rota-

tions applied to the original coordinate vector to be equal to the corre-
sponding target coordinate vector ~aa t

� . I.e., for Heff 6¼ 0, the following
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condition should be satisfied to obtain the desired evolution:

~aa 0� ¼ ~aa
t
� ð3:11Þ

This may require a combination of switching strategies for the BB pulses.(8)

It should be noted that our geometrical picture is an explicit repre-
sentation of a subset of the group algebra CG using the set of traceless
Hermitian matrices and the identity as the basis. When the coefficients of the
adjoint vector are real, the resulting matrix Heff is Hermitian. When they are
complex, the resulting matrix is not Hermitian and the evolution is not
unitary but may still be treated empirically.(21)

4. ERRORS

The geometric setting provides a natural way in which to evaluate the
error that remains in the evolution after the application of the BB pulses.
Here, the appropriate evaluation and interpretation of these errors is
detailed and a comparison with other measures of errors is made.

Let ~aa t
� be the coordinates vector corresponding to the desired or target

Hamiltonian evolution and ~aa 0� the actual vector after BB operations. Then
~aa 0� corresponds to the effective Hamiltonian, Eq. (3.9) (and may be deter-
mined using quantum process tomography, see Ref. 21 and references
therein). The error vector ~ee is given by their difference in the n2-dimensional
vector space where our geometric picture holds:

~ee ¼ ~aa 0� 	 ~aa
t
� ð4:1Þ

The vector ~ee gives us the magnitude and direction of the error (i.e., the basis
elements �i. This error is to be interpreted as the effective undesirable evo-
lution of the system.

Now consider the magnitude of this error,

dð~aa 0�; ~aa
t
�Þ ¼ ð~ee

� � ~ee Þ1=2 ð4:2Þ

(in the case of Hamiltonian evolution there is no need for complex con-
jugation). This is the Euclidean distance between the two vectors in the
adjoint representation space. For two two-state density matrices, it is pro-
portional to the Euclidean distance between the two Bloch vectors, as is the
trace distance.

In the case of imperfect BB operations, the goal is to minimize the
distance d. For the purposes of optimization, note that

dð~aa 0�; ~aa
t
�Þ ¼ ð~ee � ~ee Þ

1=2
¼ ðða 0�Þ

2
þ ða t

�Þ
2
	 2M~aa� � ~aa

t
�Þ
1=2

ð4:3Þ
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whereas the ordinary trace distance (Hilbert–Schmidt norm) between
ð~aa 0�; ~aa

t
�Þ gives [using Eq. (3.2)]

Tr½ð~aa� � ~��Þð~aa
t
� �
~��Þ� ¼M~aa� � ~aa

t
� ð4:4Þ

So minimizing d is equivalent to maximizing ð~aa 0� � ~aa
t
�Þ. The advantage of using

d is interpretational since the error vector describes a Euclidean vector (in the
adjoint representation space) corresponding to an undesired evolution.

For obtaining a desired evolution, we note that the measure given in
Eq. (4.2) is related to the common trace-norm distance for unitary matrices.
For unitary evolutions U and V, this is defined by

duðU;VÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 ð1=nÞRe½TrðUyVÞ�

p
ð4:5Þ

where U, and V are n� n matrices. For BB controls a short-time approx-
imation is relevant. For the case of unitary evolution, the two measures,
Euclidean distance and trace-norm for matrices, are related. Approximating
U (desired evolution) and V (actual evolution) by 1l	 iHt ¼ 1l	 it

P
i a

t
i��i

and 1l	 iH 0t ¼ 1l	 it
P

i a
0
i�i
�i respectively,

duðU;V Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	 ð1=nÞRe½Trð1lþHH 0t 2Þ�

p
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~aa 0� � ~aa

t
�

q
ð4:6Þ

is an OðtÞ approximation to the unitary evolution. Equations (4.2), (4.4), and
(4.6) provide targets which, for the purposes of optimization are completely
equivalent. In conclusion, the erroneous Hamiltonian evolution is appro-
priately defined as the error vector in Eq. (4.1) and is directly related to the
more commonly used distance measures of the trace-distance and Eq. (4.5).

At this point it should be emphasized that the measure given in this
section is particularly well suited to the geometric picture. Equation (4.2) is
not a replacement for other distance, or distinguishability measures, but
rather a quantity which is more related to the work presented here, namely,
the geometric picture. Since it gives a vector-valued quantity for the distance
(corresponding to the effective and erroneous evolution) it is clearly
appropriate for the comparison of noiseless and noisy evolutions. The
corresponding scalar quantity, the Euclidean distance in the adjoint vector
space [Eq. (4.2)], gives a less detailed quantity which may be desirable for
optimization procedures.

5. EXAMPLES

We now discuss several examples illustrating the geometric picture
developed above. We note that in the case of a single qubit we can resort to
the familiar Bloch sphere representation.
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Consider the noisy evolution of a stored qubit. Suppose the evolution
of the qubit is governed by the Hamiltonian

H ¼
X
�

X3
i¼1

ai�	i � B� ð5:1Þ

where the ai� are real coefficients, B� are bath operators, and the 	i are the
Pauli matrices with the usual identification 	1 ¼ 	x, 	2 ¼ 	y, 	3 ¼ 	z. (As
above, the identity component is neglected.) For faithful storage, a set of BB
operations fUkg should serve to eliminate this Hamiltonian. Under such
controls, the evolution is described by

Heff ¼
1

jGj

X
ik�

Uyk½ð~aa� � ~		Þ � B� �Uk ¼
X
�

ð~aa 0� � ~		Þ � B� ð5:2Þ

where Uk 2 SUð2Þ and RðkÞ 2 SOð3Þ, and

~aa 0� ¼
1

jGj

XjGj	1
k¼0

RðkÞ ~aa� ð5:3Þ

In the subsections below we consider different choices of the subgroup G.
These equations then describe a sum of vectors on the Bloch sphere. The
mapping from the unitary matrices Uk to the rotation matrices RðkÞ is
given by

Uy	iU ¼ ei	3
=2ei	2�=2ei	3�=2	ie
	i	3�=2e	i	2�=2e	i	3
=2 ¼ Rij	j: ð5:4Þ

Explicitly, the rotation matrix is given by

R ¼

cosð
Þ cosð�Þ cosð�Þ 	 sinð
Þ cosð�Þ cosð�Þ sinð�Þ cosð�Þ
	 sinð
Þ sinð�Þ 	 cosð
Þ sinð�Þ

cosð
Þ cosð�Þ sinð�Þ 	 sinð
Þ cosð�Þ sinð�Þ sinð�Þ sinð�Þ
þ sinð
Þ cosð�Þ þ cosð
Þ cosð�Þ

	 cosð
Þ sinð�Þ sinð
Þ sinð�Þ cosð�Þ

2
666666664

3
777777775
ð5:5Þ:

Alternatively, one may use

eið�=2Þn̂n�~		 ~xx � ~		e	ið�=2Þn̂n�~		 ¼ ~xx0 � ~		 ð5:6Þ

where

~xx0 ¼ ðn̂n � ~xxÞn̂nþ ½ðn̂n� ~xxÞ � n̂n� cosð�Þ þ ½n̂n� ~xx� sinð�Þ ð5:7Þ
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The correspondence between the unitary and orthogonal groups is made by

X
j

x0j	j ¼
X
i;j

xi½Rn̂nð�Þ�ij	j ¼ Uðn̂n; �=2Þ
X
i

xi	i

 !
Uyðn̂n; �=2Þ ð5:8Þ

where Rn̂nð�Þ is a rotation by � about the axis n̂n. Although this notation is
more compact, the Euler angle parameterization of SUð3Þ and SUð4Þ have
been given.(22–24)

5.1. Storing One Qubit

To be specific, consider an unwanted pure dephasing interaction
described by the Hamiltonian

H ¼ g	3 � B ð5:9Þ

Using Eq. (3.4) we find that the coordinate (adjoint) representation of this
Hamiltonian is

ai ¼
g

2
Trð	i	3Þ ¼ g�i3 ð5:10Þ

i.e., ~aa ¼ ð0; 0; gÞ. This dephasing could be corrected through the use of a
single BB operation U1 ¼ expð	i	1
=2Þ ¼ 	i	1, so that

Uy1	3U1 ¼ 		3 ð5:11Þ

For the geometric picture, using � ¼ 
; 
 ¼ � ¼ 0 in Eq. (5.5):

Rð1Þ ¼
	1 0 0
0 1 0
0 0 	1

0
@

1
A ð5:12Þ

which inverts the adjoint vector ~aa. This is shown schematically in Fig. 1. It is
simple to check that, as required, Heff ¼ 0. This example uses the lowest
dimensional finite order group C2.

Now, let us use our geometric picture to derive another class of BB
operations for pure dephasing on a single qubit. Clearly, the point is to find
a set of rotations of ~aa which when added sum up to zero. The next example
is the group C3, which consists of rotating ~aa by 2
=3 and 	2
=3 about a
fixed axis, i.e., uses two non-trivial BB operations. This is depicted in Fig. 2
where we have chosen 	1 as the fixed axis. The set of rotation matrices that
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accomplish this are Rð1Þ ¼ Rx̂xð2
=3Þ and Rð2Þ ¼ Rx̂xð	2
=3Þ ¼ ðR
ð1ÞÞ

2, where

Rx̂xð�Þ ¼
1 0 0
0 cosð�Þ 	 sinð�Þ
0 sinð�Þ cosð�Þ

0
@

1
A ð5:13Þ

and the corresponding unitary transformations are Uk ¼ expð	i	1ð�
=3ÞÞ,
k ¼ 1; 2.

A large number of BB operations is undesirable due to time con-
straints so that large sets become successively more difficult to implement
effectively. However, experimental constraints regarding the available set of
BB operations as well as considerations regarding the symmmetries of the
Hamiltonian, may sometimes render a larger set preferable to a smaller set
that is more difficult to implement. One situation exemplifying the former
case is when it is difficult to implement large-angle rotations. E.g., using C2
BB operations involves 
 rotations, but using C3 rotations only involves
2
=3 rotations. An inherent limitation on the magnitude of a control
parameter and the time that it can be turned on (e.g., the Heisenberg ex-
change coupling in quantum dots(25)), may then favor the C3 BB group. An
example of Hamiltonian symmetries which may affect the size of the BB set
is the following. Consider a case in which the interaction Hamiltonian is of
the form HI ¼ ð	1 þ 	3Þ � B. If one is able to reliably and quickly perform a

Fig. 1. Addition of adjoint vectors on the Bloch

sphere corresponding to a single pulse application.

The vertical line represents zero 	3 component.

Fig. 2. Addition of adjoint vectors on the Bloch sphere

corresponding to BB operations.
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	2 rotation, then a simple parity kick sequence will suffice. However, if these
rotations are not available, or are difficult to implement under the BB
constraints, then a sequence of 	1 and 	3 rotations may be more prudent.

Let us consider the next higher order set of BB operations. This will be
a set with 4 elements. The subgroup condition requires a set forming either
the cyclic group of order 4 or the so-called Vierergruppe since these are the
only two groups of order 4.(20) An example of the cyclic group of order 4
would be the four-fold rotations about a single axis (e.g., 
=2 around the 	1
axis, as in Fig. 3). An example of the the other fourth order group is the set
of rotations by 
 about three orthogonal symmetry axes.

Note that the set of vectors pointing to the vertices of a tetrahedron also
will sum to zero and thus form a set of adjoint vectors, representing BB
modified Hamiltonians, that will produce the desired decoupling effect, the
elimination of the interaction Hamiltonian Eq. (5.9). This set is determined by

X4
k¼1

~aaðkÞ ¼ 0; and ~aaðkÞ � ~aaðk
0Þ ¼ const � cosð�Þ: ð5:14Þ

This implies � ¼ cos	1ð	1=3Þ so that for Eq. (5.9) the set of rotations can be
1l;Rŷyð�Þ;Râa2

ð2
=3Þ;Râa2
ð	2
=3Þ acting on the initial vector ~aa1 ¼ ð0; 0; gÞ,

and âa2 is the direction of ~aa2 ¼ Rŷyð�Þ~aa1. These rotations will take ~aa to dif-
ferent positions which correspond to the vertices of a tetrahedron (see Fig.
4). The corresponding Uk are found using Eq. (5.8).

Note that in this last example we used a set of rotations that does not
satisfy the subgroup condition, showing that the subgroup condition is suf-
ficient, but not necessary.

5.2. Two Qubits

Now let us suppose a computation is to be performed on two-qubits
using the Heisenberg exchange coupling in the presence of an independent-
dephasing mechanism. We will assume that the Heisenberg exchange
interaction provides qubit–qubit interactions and that single qubit opera-
tions are also available. This is a situation one would expect to find in one of

Fig. 3. The application of the cyclic group of order 4.

Here Rð1Þ ¼ Rx̂xð
=4Þ.
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the proposals for a quantum dot quantum computer(25) where single and
two-qubit gates might be available. The single qubit gates can be imple-
mented via localized magnetic fields or g-factor engineering, although we
note that this is difficult in practice and can be avoided through the use of
encoding, which allows universal quantum computation to be performed
using the Heisenberg interaction together with Zeeman splitting.(26)

Let a basis for the Lie algebra be given by

f�ig
15
i¼0 ¼ f	i � 	jg

3
i;j¼0 ð5:15Þ

and labels correspond to

�j; j ¼ 0; 1; 2; 3 $ 	i � 1l; i ¼ 0; 1; 2; 3;

�j; j ¼ 4; 5; 6 $ 1l� 	i; i ¼ 1; 2; 3;

�j; j ¼ 7; 8; 9 $ 	1 � 	i; i ¼ 1; 2; 3;

�j; j ¼ 10; 11; 12 $ 	2 � 	i; i ¼ 1; 2; 3;

�j; j ¼ 13; 14; 15 $ 	3 � 	i; i ¼ 1; 2; 3

ð5:16Þ

Fig. 4. Rotations of the Hamiltonian to

vertices of the Tetrahedron. The rotated

vectors are ~aa2 ¼ Rŷyð�Þ, ~aa3 ¼ Râa2ð2
=3Þ,
~aa4 ¼ Râa2ð	2
=3Þ.

Fig. 5. Two qubit computation.
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This forms an orthogonal basis with respect to the trace and has normal-
ization given by

Trð�i�jÞ ¼ 4�ij ð5:17Þ

The Heisenberg interaction can be written as:

Hex ¼ J~		1 � ~		2 � ~vv1 � ~�� ð5:18Þ

where ~vv1 ¼ ð0; 0; 0; 0; 0; 0; J; 0; 0; 0; J; 0; 0; 0; JÞ, so that

Hex ¼ Jð�7 þ �11 þ �15Þ ð5:19Þ

The independent dephasing is given by:

HI ¼ ðg1	3 � 1l�þg21l� 	3Þ � B � ~vv2 � ~��� B

where ~vv2 ¼ ð0; 0; g1; 0; 0; g2; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ. So

HI ¼ ðg1�3 þ g2�6Þ � B ð5:20Þ

Note that trace of the product of two Hamiltonians is the dot product of
their corresponding adjoint vectors. In this case the two are orthogonal so
that, TrðHexHIÞ ¼ 4~vv1 � ~vv2 ¼ 0, therefore ~vv1 ? ~vv2. A method for achieving
the required decoupling without affecting the desired Heisenberg interaction
is to consider the little group of ~vv1. (The 1D subgroup of rotations about the
axis ~vv1.) From that set of rotations, a subset of rotations exists which will
rotate the interaction Hamiltonian since the two vectors lie in orthogonal
subspaces. These rotations clearly must be about the axis defined by ~vv1.
Thus we may express this as Rv̂v1ð�Þ. To limit the number of pulses in the
sequence of BB operations, a parity-kick operation is desired. This further
limits our choices to those operations that rotate ~vv2 by an angle 
. More
specifically, we seek a rotation that inverts the components in the directions
�3 and �6, since ~vv2 ¼ g1�3 þ g2�6. The directions �3 and �6 define a plane
perpendicular to v̂v1, so that the desired rotation matrix is effectively an
SOð3Þ rotation matrix with a non-trivial component in this plane, i.e.,
Rv̂v1 ð
Þ. It is then simple to check that the corresponding unitary operation
satisfying the parity kick condition UyHIU ¼ Rv̂v1 ð
ÞHI ¼ 	HI, is

U � U1U2 ¼ expð	ið	ð1Þ1 þ 	
ð2Þ
1 Þ
=2Þ ¼ 		

ð1Þ
1 	
ð2Þ
1 ð5:21Þ

where the superscript indicates the qubit on which the operator acts. This
interaction leaves Hex unaffected and provides decoupling equivalent to Eq.
(5.2). Note that this is a useful means for achieving the desired decoupling,
because exchange interactions can be used to turn on a gate operation in a
solid state device, and the decoupling can be achieved during the process
without interruption of the desired interaction. The geometric picture shows
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that the above U is by no means unique: any set of SOð3Þ rotations acting in
the ð�3; �6Þ plane, and whose elements add up to zero, will eliminate the
undesired interaction. To our knowledge this is a new example of an explicit
BB sequence that is generally compatible with the Heisenberg exchange
interaction. Another example employs the Heisenberg interaction itself to
generate a BB sequence.(31)

5.3. Discussion

The method we have just presented is quite general and provides an
immediate way in which to determine if a decoupled evolution is possible.
That is, one evolution may be eliminated without affecting another if their
adjoint vectors lie in orthogonal subspaces. Since this is equivalent to having the
trace of the product of two Hamiltonians vanish, we have provided a neces-
sary and sufficient condition, which is very easily calculated, to determine
when one may eliminate one evolution without affecting another. Such con-
ditions are very important since BB operationsmay be performed imperfectly.
If this is so, one would prefer they not adversely affect the desired gating
operations while reducing noise (even if it is not perfectly eliminated).

Clearly the number of BB operations is dependent upon the experi-
mentally available BB operations, the interaction one wishes to suppress and
the interaction(s) one wishes to retain. With imperfect BB operations, one
could introduce extra noise into the system. However, if the orthogonality
condition (above) is satisfied, then it is ensured that our BB operations will
not interfere with other control operations.

6. CONCLUSION

A geometric treatment of bang–bang (BB) operations has been pro-
vided. This perspective provides an intuitive picture for BB operations and
their imperfections. The group averaging is made explicit through the cor-
responding average over a set of coordinate vectors representing rotations of
the Hamiltonian; the resultant vector is the sum over all the BB modified
Hamiltonians. These quantities are useful for computations, complementing
the somewhat more abstract approaches of previous treatments.(8, 18) Since
after the application of an imperfect set of decoupling operations, one is
concerned with remaining error(s), we have presented and interpreted, a
natural error measure for the remaining erroneous evolution which is related
to more commonly used measures. In addition, the often promoted Bloch
sphere representation used in some of the examples treated here provides a
means for extending intuition beyond the the low dimensional cases.
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The usual group-theoretic symmetrization description of BB opera-
tions assumes that the set of pulses forms a discrete subgroup.(8, 18) We
showed here that this is not a necessary condition, through the example of
symmetrizing by the vertices of a tetrahedron.

The two-qubit example in Sec. 5.2 provides a way in which this geo-
metric analysis aids in the problem of finding decoupling interactions. The
similarity between this example and recoupling techniques in NMR and
other systems is no coincidence. The BB operations were, afterall, related to
NMR techniques in the earliest papers describing such interactions.(1) The
geometric viewpoint is quite general and provides an instructive way in
which to decompose such problems and a general compatibility condition.
They may be particularly useful for the types of recoupling techniques one
requires for reducing constraints on quantum computer proposals(26) and
for combining BB techniques with DFSs.(27–31)

In the subgroup framework, our geometric picture uses a homo-
morphic mapping between the fundamental representation and the corre-
sponding adjoint representation. The problem of inverting this map from
the adjoint to the fundamental representation may well be difficult for
groups of higher dimension than SUð4Þ. However, for universal quantum
computation, one and two qubit gates are sufficient and fortunately the
discrete subgroups of unitary groups have been classified up to SUð4Þ. (See
Ref. 32–34 and references therein). The determination of the appropriate
subgroup could consist of searching a discrete solution space. This appears
feasible since the lower order subgroups are more relevant given the strict
time constraints of the BB assumptions.

Given the scarcity of qubits in current quantum computing systems,
we believe that the BB method is an important tool. We hope that the work
presented here will be helpful in constructing sequences of BB pulses and
analyzing their imperfections.
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