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Noise in optical telecommunication fibers is an important limitation on optical quantum data transmission.
Unfortunately, the classically successful amplifiers cannot be used in quantum communication because of the
no-cloning theorem. We propose a simple method to reduce quantum noise: the insertion of phase shifters
and/or beam splitters at regular distance intervals into a fiber. We analyze in detail the case of qubits encoded
into polarization states of low-intensity light, which is of central importance to various quantum information
tasks, such as quantum cryptography and communication. We discuss the experimental feasibility of our
scheme and propose a simple experiment to test our method.
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INTRODUCTION optical elementgphase shifters and/or beam splitjarssec-

Quantum communicatiofQC) has recently emerged as a i0ns of a telecommunication fiber. We also discuss the ex-
subject of much interest, due to its applications in distributed?@rimental feasibility of our scheme and propose a few
guantum computation and quantum cryptograflyln QC, ~ Simple experimental tests. We do not expect our method to
nonorthogonal quantum signals are typically transmittedmprove the fidelity of classical light transmission compared
through telecommunication fibers. Reducing noise in teleto, e.g., EDFA amplifiers, since our method turns out to be
communication fibers is crucial for QC applications, becausejuite sensitive to reflection from optical elements and devia-
the very weak signals carried by polarization states are usuions from average fiber homogeneity, which is not the case
ally employed. Ideally, a single photon in a superposition offor classical amplifiers.
two pulses separated in time with a controlled phase differ-
ence(i.e., |pu_|seA>+e"9|puIseB)) may be_ useq. However, QUANTUM NOISE IN OPTICAL FIBERS
on-demand single-photon sources remain an important tech-
nological challenge. Currently, weak coherent states are of- An optical fiber provides boundary conditions that guide
ten employed as approximate single-photon signals. It is welight along a(locally) straight trajectory. An ideal fiber al-
known in quantum cryptograph2,3])—a branch of QC— lows modes of traveling photons to propagate through un-
that weak coherent states may open up loopholes in securitshanged. A real fiber induces noiggispersion, loss, deco-
because of the probabilistic existence of multiphoton signaléierencg compared to the ideal case. The method we
[4]. Indeed, a weak coherent state, when phase randomizéatroduce in this paper is designed to cancel in principle all
via decoherence, gives a Poisson distribution in photon nunguantum noise. The dominant classical light loss mecha-
bers. An eavesdropper, Eve, may, in principle, measure theisms in an optical fiber are UV absorption, Rayleigh back-
photon number in such a signal by a nondemolition measurescattering, OH absorption, and Raman scattering and lead to
ment. Afterward, she can stop all single-photon signals frontypical attenuation rates, for state-of-the-art commercial
reaching the receiver, Bob. For each multiphoton signal, sheilica telecommunication fiber, of about 0.25 db/k&].
can steal one photon and keep it in her quantum memory anthese mechanisms are active also in the quantum regime
send the rest of the signals to Bob by using, for example, af8,9]. All noise processes affecting quantum light in optical
ideal channel instead. Since Eve now has an exact copy dibers are derivable from a microscopic Hamiltonian describ-
the quantum state transmitted to Bob, this creates a signifing (i) the direct interaction between photons and the optical
cant challenge in the security of quantum cryptograptly  (dielectrig material of a fiber andii) the indirect interaction
Thus, attenuation losses and decoherence in QC are a majoetween photons and quasiparticle excitations of the fiber
issue and methods for reducing such quantum noise amaterial, such as polaritons and photon-phonon coupling.
therefore important. Unfortunately, the classically successfulhese indirect interactions are, of course, in turn derivable
amplifiers[such as erbium-doped fiber amplifi@DFA) [5]] from a microscopic Hamiltonian that takes into account
cannot be used in QC because of the no-cloning the@®m matter-matter interactions in the fiber and couples them to
and new methods must be explored. photons. The derivation of the resulting effective interactions

Here, we propose a method to reduce noise in the trange.g., a nonlinear Schrodinger equajidrom such micro-
mission of quantum optical signals in a telecommunicationscopic Hamiltonians has been covered in detail, e.g., in
fiber. Our method is inspired by the theory of quantum dy-[8-10.
namical “bang-bang{BB) decoupling[7]. However, a key The starting point of our analysis is the observation that
novelty of our work is the following: we propose to imple- all interactions involving photons can be written in terms of
ment BB control in space, rather than time, through the infpolynomials in the bosonic raising and lowering operators
sertion at regular intervals of a sequence of simple IineabJ-T,bj (wherej is the mode of the traveling photofi8,9]). A
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polynomial of orderN describes arN-photon process, and Under the long-wavelength approximation, where the spa-
typically the cross section of interactions decreases with intial variations of the electromagnetic field over the size of the
creasingN. In the case of the nonrelativistic quantum elec-particles is negligible, first-order perturbation theoryhﬂf
trodynamics of charged particles one can decompose thesults in the widely applied dipole interactigag.,[10] and
photon-matter interaction Hamiltonian into linear and qua-references therejn Some effective interactions, such as
dratic terms with respect to the photon field,:H',+H|q, atom-mediated photon-photon interactions and nonlinear

where the linear part is photon-photon interaction&err effec), have been derived
~p e without consideration ofi! [8—10. We provide more details
2 (b;Bj +b;B 1) on these effective interactions in a later section. For simplic-

ity of presentation we will first design anahti-linear-
decoherence fiber” by considerikyj only. Later on we show
fow to treat higher-order interaction terms. It is important to
stress that in essence our method hardly depends on the de-
tails of the interaction, budepends on the statistics of pho-
tons as bosond-or this reason our method is very general
and is in principle applicable to the entire phenomenology of
guantum noise processes affecting photons in fibers, though
%s practical applicability is a matter of being able to satisfy

where the “bath” operatorBj depend only on the variables
of charged particles and/or quasiparticles and the quadrat
partH{l is a function of the bilinear operatobéb;, bfb/, and
bib;. Higher-order interactions may originate from relativistic
effects. In generaH?, which makes no contribution to one-
photon processes, is much smaller thﬁ:n[ll]. Therefore,
the quadratic term can usually be neglected.

Let us substantiate these arguments by briefly reviewin
the corresponding nonrelativistic electrodynamics. Conside
particlesa with chargeq, and massn,, which constitute the
optical material of a fiber. Let, andp, be the position and
momentum of particler andA(r) be the vector potential of e first consider quantum data transmission through a
the photon field. The system-bath Hamiltonian that describegelecommunication fiber with noise induced Hgl SinceH:
the dynamics can be written, in the Coulomb gauge, as  describes the absorption and creation of photons, it generates

H=H.+H photon loss, among other processes. To simplify, we suppose
0 | . . . .
that apolarization photon is transmitted from endl to end
) B One can define a logical qubit supported K§),
bllvag and|1), =b}|vag where the mode indices refer to
Here H,, depends only on the variables of the charged parthe two polarization states. The initial state at efdis
ticles. Hp= Zﬁwj(bTb +1/2) is the free photon Hamiltonian, |W,)=(al0)_+b|1),)|M), where|M) is the state of the bath
where b; and bJT are the photon annihilation and creation (dielectric material and quasiparticle excitations in the fiber
operators in the normal vibrational mogl®f the field iden- At the time T=X/v (whereX is the distance betweeh and
tified by the wave vectok;, the polarizatione;, and the B, andv is the average speed of light in the fipahe
frequencyw;=ck;, wherec is the speed of light in vacuum. wave function is|¥(T))=U(T,0)|¥,), where the evolution
Then the linear part with respect to the photon figldl] is operator is (in  units where A= 1) U(T,0)

ertain constraints that will be discussed in detail below.

ANTI-LINEAR-DECOHERENCE FIBER

Ho=Hpm + Hp.

I q 9.4 —~ e—iH(NA)T, . ,e-iH(ZA)Te—iH(A where H(kA) = Af(k 1)A[HI(X)
Hi= 2 (m_pa A(rg) + 2m, S Se - B(r )> +Hg(x)]dx is the average Hamiltonian over tkth segment,
“ “ where Hy is a sum of the matteand/or excitationsand
- 2 (BTb + B bT (3) photon self-Hamiltoniang;=A/v, and we have assumed that

N=X/A is large in order to expand the normal-ordered exact
_ o _ R propagator U(T, 0) =: exp{—i [5[H,(x) +Ho(x)]dx}:. l.e., we
where for a cubic box with dimensidnthe operatoB; can  have neglected deviations from average fiber homogeneity,

be expressed as Sc=({H(KA)-[H,(kA)+Hy(kA)]}?) [U(T,0) can easily be
q g expressed including such second- and higher-order moments
2 m“ 2% I_3e"‘ g ( i “S -kj X £J> using a Magnus expansion, and it is known how to general-
€0

ize BB decoupling to treat such higher moments, at the ex-
Joense of more BB pulsg4.2]] The interactiorH, entangles
the output wave function at er8l with the material or exci-
tations in the fiber. By standard arguments it follows that,
therefore, the quantum information encoded into the photon
state will decoher¢l].
In order to solve this problem of decoherence, we draw
inspiration from the idea of BB decoupling via time-
Hi=—S iAZ(r ) @) dependent pulsgg] (we note that a method for finding such
- om @ pulses directly from empirical data was proposed 18]).
“ “ We first recall the action of a phase shifter. It is simple to
and is a function of the bilinear operatdoéb b'b!, and show [using the Baker-Campbell-HausdotBCH) formula

(Rl
bib;. [14]] for a boson that

which only depends on the variables of charged particle
Here g, is the g factor, ¢q is the permittivity of free space,
andS, is the spin of particlex. Note that the interaction is
linear in the operatorb; and bjT.

The quadratic part of the interaction Hamiltonian is found
to be
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g¥pleion = gdéopt,  @dipgidh=gidp, (5) (“Zeno like"), rather than exponentigtMarkovian”). A re-
o . liable estimate ofA requires a first-principles calculation
where n=b'b is a boson number operator. Physically, theyhich is beyond the scope of the present work; we present a
operatione™ is a 7 phase shifterit puts a phase ofr  phenomenological model for a detailed estimate\dh the
between the number staté® and|[1), not to be confused Appendix. Here we give a roughpper boundestimate of
with our logical qubit statgs Defining the m-phase-shifter  thjs distance. We assume that the linear term of the interac-

operator tion Hamiltonian gives rise to the 0.25 dB/k{x 107?)
I1=11" = &7h+h) (6) classicalloss figure in a telecommunication fiber. Our main
approximation now consists in further assuming that the in-
we therefore have sertion of phase shifters into the fiber causes a reduction of

| loss from first to second order, and we use this to estimate

LIHII=Ho=H;, (@) the A required in theguantumcase. Thus, imagine a distrib-
because the photons term i, is Eﬁw].(nj+]_/2), so that uted quantum computing scenario Whe_re sr_nall-scale quan-
[Ho, Nn;+n,]=0. The crucial point is thathe sign of the lin- UM computers are cpnnected by_opt|cal fibers of length
ear term of the interaction Hamiltonian has been negated byaPout 1 km. Our goal is to have reliable quantum computa-
the action of two phase shifters—i.e., effectively time refion within the fault-tolerance threshold value of aAerror

versed Now, if we install thin phase shifters inside the fiber rate for each elementary quantum logical operativve re-
at positionsx=0,A,2A, ..., from A to B, the evolution will mark that for reliable quanturmommunication of entangled

be modified to photon pairs,the current error rate of about&1072 is al-
) ) _ ready acceptable provided one allows the application of en-
U'(T,0) = g HNV7.... g H @A gy tanglement purificatiofil 7]; our scheme is significantly sim-
—[N,...T1,2.01,1,11], pler) Therefore, we need to cut down the loss figure from

5x 1072 to, say, 10*. Suppose we need to insé¥t phase
where in the second line we have introduced a selfshifters within 1 km of a telecommunication fiber. Denote
explanatory notation that will be used repeatedly below. Notehe attenuation between a pair of phase shifters. Byhen,
that in writing this expression we have neglected the variawithout the N phase shifters, we havd —1)N=0.95. For a
tion of H inside the phase shifter; this will hold provided that sufficiently largeN, we can expand the expression binomi-
the phase-shifter width is much smaller than the distancelly and obtain the approximatioliN=0.05. Now, with the
over which deviationss, from average fiber homogeneity insertion of phase shifters, we simply assume that the attenu-
become significant. Further note that we are applying thation between two phase shifters is due to a second-order
“parity-kick” version of BB decoupling[7,15, but are contribution of the forml2. We further assume that those
implementing it in space, rather than time. Now assume thatontributions sum up in the usual addition. Therefore, we
the averageHamiltonians over two successive segments aréavel’N=10". This yieldsl=2 X 10~ andN=25. Recalling
equal: that two phase shifters are needed per cancellation step, we

see that about 50 phase shifters have to be inserted in a

HII((k+ DA = H:(kA)' distance of 1 km which translates to one phase shifter every

20 m. This figure is merely a rough upper-bound estimate on
Ho((k+1)A) =Hg(kA). (8)  the distance\ between two phase shifters for our scheme to

The better this approximation, the better our method willP€ useful: <|Jne ce?n also ditermiﬁﬁvia the experirrr:ent vk\:e N
perform; we address deviations in the Appendix. In this casePropose below. Also note that we have assumed here that the

to first order in~ and using Eq(7), we have an exact can- fiber is straig_ht asis ty_pical!y done in t_heor_etica_ll models. In
cellation ofH', between successive segments: order to regain the straight fiber approximation, in the case of

a curved fiberA is upper bounded by the local radius of

e H(k+DA) T[T g HKA) T = g iH(k+DA) 7o-iTTH(KA) 7 — o-2iHo(KA) T curvature.
(9) While in spirit our method is similar to BB decoupling
[7], a major advantage here is that we do not need to apply
This yields the overall evolution operator any time-dependent pulses, which may result in significant

U'(T,0) = eHolNd)7 = gHoom qncertainties such as gate errors and Qﬁ—resonance. transi-
' ' tions. Instead, the phase shifters may be incorporated into the
i.e., the evolution is completely decoherence free, in analog§iber directly during the manufacturing process. Alterna-
to the ideal BB limit of infinitely fast and strong pulsgg.  tively, time-independentsay, electronic or pressyreontrols
may be applied at various points of a telecommunication

ROUGH ESTIMATE OF REQUIRED fiber to achieve the action of pulse shifters.

INTER-PHASE-SHIFTER DISTANCE

S . ANTI-BILINEAR-DECOHERENCE FIBER
Because of the in-principle equivalence between the BB

method and the quantum Zeno effgdi6], the proposed We now consider higher-order processes. Although they
method can only work if the phase shifters are inserted aare generally weak, the bilinear interactions appearinig{in
small intervalsA over which coherence loss is quadratic may still cause decoherence. A direct harmful consequence is
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to change the polarization direction, through a term such as 1,811, = - B.
bJ{bZ. In the classical case, the fiber structure can be designed o ) N
so that aknownpolarization direction can be preservis]. Therefore the sequence that ehmmamﬁslmear and bilinear
In the quantum case the polarization direction rist  terms for degenerate qubit states is
known prior to the transmission and the classical
method is not applicable. In this case one must in generilQSﬁmnl'legd‘Hl]
consider a system-bath Hamiltonian that is a linear =[8,IL7,JII'",6,I1,5,II'My,4,11,3,I1T"", 2,11, 1, 11T, ],
combination of all T10 Tpossilgle iqdependent bilinear
t_erms. ot _A;{blqrz’bzbl’(bl)z’(b?)z’(b.l)z’(bZ)z}i B that [IT'TT, =€ "571*M)/2) At this point we have a fiber that is
={byby, byby}, C={byby, bz} (the grouping will be clarified 5y ietely free of both linear and bilinear decoherence-
momentarily. It can be shown that all 10 of these terms Cancausing terms for degenerate polarization qubits.
be eliminated by installing 18 linear optical devices that in- We can repeat the mixed-classical-quantum rough dis-
clude beam splitters in addition to phase shifters—i.e., in 1§3ce estimate above by simply assuming that now contribu-
elementary stepgwe combine beam splitting and phase (jons 1o decoherence come only due to third order: N
shifting into one step This result is based on E(p) and the  — 14 This leads tdN=5/,20~1.2, and recalling that eight
identities[which follow directly from Eq.(5)] phase shifters are needed per cancellation step, we arrive at
doN(ph2ei9h = 2412, el #(p)2eidh = g 2d(p)2, an upper-bound estimate of about ten phase shifters per km
or one phase shifter every 100 m. These phase shifters must
(10 be introduced in addition to the ones used above for cancel-
The role of the beam splitter is to eliminate the set of operalation of first-order effects. We have again assumed here that

tors C; the beam splitter is inserted after the first eight stepsthe fiber is straight; local curvature may impose a lower up-
The 16-step result can be considerably simplified in a realisPer bound.

tic situation wherein the two polarizations used to represent

our qubit are degenerate. In this casbecomesib, +blb,,

which generates anverall phase and hence will not cause GENERAL DECOHERENCE ELIMINATION
decoherence. In this degenerate case, as we now show, we

need only phase shifters to eliminate all contributions to de- So _far we have _c0n5|de_red _Imear and bilinear photon
coherence. Let terms in the interaction Hamiltonian. The most general two-

) o mode photon-related term in a Hamiltonian b§ bSb}b,.
[, =™ T =gmh)2 (11)  Providedr #s andk#1 the identity

which involves eight elementary phase-shifter stépste

i.e., a pair of phase shifters. It follows immediately from Egs.  e(@np] hShlkple(ani+ine) = glr=9arkDApITpepTky!

5) and(10) that
© (10 shows that such a term can be eliminated using only phase

AT = A, shifters. For example, whants+k+1 is an odd number, our
considerations in the linear case show that the term can be
eliminated using the phase shiftéF, while bl?b5 can be
I'Br=8, MAlI=A, TNI'BII=B (12)  eliminated usinge™™?". High-order terms withr,s k|

>1 arise if one considers the relativistic contribution, and
(whereII=II,II, was used in Eq(7)). From these and the they appear also in most of the effective photon scattering
results for the “anti-linear-decoherence fiber,” the sequenceheories. It should be clear that if such terms arise, they can
04,=[2,I1,1,I1] does not contain any linear terms, but still pe reduced using additional phase shifters or beam splitters

while

contains all bilinear terms. Then, the sequence in the caser=s and/ork=I, which arise due to terms con-
O1psa=[Qa T Qup ] = [4,01, 3,111, 2,11, 11T taining photon number operators.
(13
has, in four elementary phase-shifter steps, eliminateds CONNECTION TO KNOWN LEADING LOSS

well as A and, in particular, the polarization-direction- MECHANISMS IN OPTICAL FIBERS

: t o e _ _ _ _ _
changing termsb;b, and b;b,: at this point we have a  aAs mentioned in a previous section the leading loss
polarization-preserving fibelNote that the composite terms mechanisms in optical fibers are well characterized: UV ab-

can be combined into a single phase shifter—i.e., sorption, Rayleigh backscattering, OH absorption, and infra-
rt = g3 red absorption. It is useful to quickly review how these pro-

cesses arise and then are treated by our method. Consider, for

TIT = &m3+ip)/2. (14) example, the case of Rayleigh backscattering. We base our

discussion on the standard refererit] (for a general de-
The only remaining bilinear terms at this point are thescription of absorption see p. 168; the cross section of Ra-
counterrotating termsB:{blbz,bIbZ}, which are typically leigh scattering is given on pp. 371-373he discussion
neglected in the rotating-wave approximatidd]. To elimi-  starts[19] [Eq. (4.9.9] from thedipole approximatiorio our
nate them, nevertheless, we note that general photon-matter interaction Hamiltonian, E):
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|3|ED: ey > > (hwd2eoV) Y%y, - Dij{BkA explik - R) Note how Hgp, which is effectively eliminated by our
K N iy method, involves the bosonic raising and lowering operators
_ le exp— ik - RN, (15) bk)\,bl_x. The reason that our method ig so general is that it
acts directly on these operators and “time-revers#ss by
whereli) is the interacting charged particle state or the eigenflipping their sign.
state ofH,,, R is the atom positionV=L2 is the volume,
D;j=—&(i|Zr|j) are the matrix elements of the atomic dipole PROPOSAL FOR AN EXPERIMENT

moment, and\ is the polarization. A general scattering tran-

sition rater is [19] [Eq. (7.7.2): As mentioned above, a crucial requirement for the success

of our proposed method is to insert the optical elements at

- - 2 intervals over which the coherence loss is still quadratic,

1_ ST (n—1,1,f|Hep|){I|Hep|n, 0, 1) rather than exponential. An experiment to test for this regime

T ke |1 Nw — is thus useful. This could be done by monitoring the coher-
ence(in particular, losglocally, by focusing onto the edge of

X;_Z&wf + g~ W), (16)  the fiber and collecting light into a photon-counting device

(since the absolute intensity would be very smdsly mov-

) . ing the focus along the fiber, one should be able to track the
where|1) and|f) are the atomic ground state and final state.qecay as a function of distance from the fiber entry point and
Initially, there aren photons with frequency» and wave gpserve the required quadratic-to-exponential transition,
vectork. At the end there are-1 incident photons and a yielding an estimate oA.
single scattered photon with frequeney; and wave vector To actually test the method in the presence of phase
ks Then the cross section follows from the relatiofw)  shifters, one could repeat the above experiment with a single
=V/cnr, and the differential light-scattering cross section isfiper and write some phase-shift segments int@ét in the
do(w)/dQ. The differential cross section of Rayleigh scat- manufacturing of fiber Bragg gratingsat intervals bounded
tering is the special case when the atom returns to its groungbove by those determined from the first experiment. We

state, which if19] [Eq. (8.8.1)] note that a point of some potential concern is the impedance
mismatch between air and the phase-shifter material, which
do(w) o’ > (ésc-Dy)(e-Dyy) will lead to reflection. Letn; (i=1,2) denote the indices of
aQ 167%eZh%c* | 4 0 - o refraction: the reflected amplitude isn,—n;)/(ny,+ny),

which leads, at normal incidence, to 4% loss per air-glass
, (17) interface. However, a standard antireflection coating can

solve the problem: a quarter-wave layer of materialran,

between the two materia{svo equal reflections out of phase
where the parameters are obtained from the matrix elementsancel out. In fibers the index changes will be smaller and
of |Z|ED. reflection is typically neglected. Moreover, by writing a

The important equation is Eq16) above: it shows that smooth phase profile as in the experiment proposed above,

Rayleigh scattering originates from the interactiéhED. the reflection problem essentially disappears.

Clearly, the differential cross section of Rayleigh scatteringtes?g(;? Amr;?ﬁogeeag ?gltllcr)nv\?steql',aiget\/(\:/infigreorcgggn:zncilsre;:g

vanishes wheilgp is zero.Our spatial BB method does just yyite a 7 phase shifte(PS) into each. Attach them colinearly
that: it effectively eliminates the interactiongl Of course, (i) in the order PS-fiber-PS-fibe(ij) in the order fiber-PS-
this is not unique to Rayleigh scattering, which is just one ofPS-fiber, and perform a photon counting measurement. Our
the processes derived from considering various cases involvnethod should reduce attenuation (in by comparison to

ing Hep. For example, photon absorption and emission ardii)-

mainly related to transitions involving two atomic or mo-

lecular levels. The corresponding matrix element for absorp- CONCLUSIONS

tion is [19] [Eq. (4.10.D)]

+ (e-Dy)(es-Dy)) 2

wtw

We have proposed a method to reduce quantum noise in

A ) ) ) optical fibers via the insertion of phase shifters at appropri-
(N = 1, 2Heolnig, D = ihigio, exdli(wo— 0t +ik - RIngy, ately spaced intervals. We have shown that, in principle, this
(18 method can eliminate all quantum noise processes that do not

involve photon number operators in the system-bath Hamil-
wheregy, = (ew,/ 2(#iV) "%, -D1,. The radiative lifetime is  tonian; when such terms do arise, the phase shifters need to
be supplemented with beam splitters, and our conclusions

g =2m2, X, g2, wy— wp), (199  remain. Thus, with simple linear-optical devices, quantum

k X\ noise in optical fibers can be drastically reduced. This con-

) ) ~_ clusion has potentially important implications for quantum

prevented whetidgp is zero. distributed quantum computingia optical fibers. The prac-
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tical feasibility of our method hinges on the required distance - i[H:(ZkA),HO(ZkA)]

between phase shifters. We have given a rough upper-bound N .

estimate of several meters based on known attenuation rates. =—i>, [(BJ-T(ZkA)bj + Bj(2kA)bjT),
The Appendix presents a more detailed calculation that pre- i’

dicts a range of distances, depending on the bath spectral _ o

density appropriate for a fiber. Ultimately we believe that the hoj (2k8) (N + 1/2) + Hy(2kA)]

best way to test our proposal is to perform the relatively = —j E {ﬁw-(ZkA)é-(ZkA)+[l§-(2kA) HM(ZkA)]}bfr

straightforward experiment that it implies. o1 ) ! ’ ]
Support from NSERC, the DARPA-QuUIST program _{ﬁwj(ZkA)éj‘r(ZkA) —[éf(ZKA),HM(ZkA)]}bj

(managed by AFOSR under agreement No. F49620-01-1- ,

0468, and the Sloan Foundation is gratefully acknowledged =H’, (A4)

(to D.A.L.). We thank Professor H.-K. Lo, Professor A. M.

Steinberg, Professor T. Sargent, and Dr. Y. Z. Sun for veryvhereH’ is an effective Hamiltoniaxit is Hermitiar), which
helpful discussions. plays the role of a Lamb shifR0]. We thus have for the first

exponential in Eq(A3):
APPENDIX: DETAILED MODEL FOR ESTIMATING A

N/2
Recall that our main approximation was the assumption of | _ ol
average fiber homogeneity, E@). In this appendix we relax eXp) = TZE[HI(ZM)'HO(ZM)] =exp(-i7H),
this assumption in order to estimate an upper bound on the B
distanceA between phase shifters. We do this by considering (A5)

corrections to order? and the nonideal case ) o
whose effect is an energy renormalizati@e., a phase shijft

Ho((k=1)A) = Ho(kA) + &P, and does not contribute to decoherence.
| | Next, consider the second exponential in E43). The
Hi((k=1)A) =H,(KA) + £Qy, (A1)  operator G(t) defined through SN2(P,+Qy) ~ [I[P(1)

wheree<1 and we takeP,,Q, to be independent, identi- fQ(t)]thng(t)dt is Gaussian distributed by our assump-
cally distributed(ID) Gaussian, local, and time-dependenttion that P, Qy are Gaussian, IID random variables. We
operator-valued corrections. This phenomenological modei/ould like to estimate the average deviationn(T, 0) that

of fiber inhomogeneity may be the result of material nonuni-"esults from its presence. Sin@t) is Gaussian distributed
formity along the fiber(such as local defectsslow time- the average can be computed as folld@4]:

dependent fluctuations in fiber properties, or even the qua-
dratic interactior(4). By virtue of the central limit theorem it N/2
will be accurate in the case oflarge numberof defects. We exp) —ieT> (Pa+ Qu)
assume that the effective BB time intervals chosen to be k=1

on the order of the small parameterthough we make no _ T
attempt to estimate). In this case, using the BCH formula ~\ exp - ISTf G(tdt
eAeB=eMBHABI2* " g second ordefi.e., keeping only terms 0
of ordere, 7,£2,e7,7), we find, instead of the ideal E¢P), p{ fT fT

CiH (ke _ =exp —ier (G(H)G(t"))dt dt’
e iH(k-DA) 7y o iH (K 7 o Js

_ (DA rgiTTH(KA)T 7 = exg- eT(T)]. (AB)

= @rilHo(ka)+H) (k&) +e Pyt QT rgmilHo(ka)—H (k) 7 . _
Expressed in terms of Fourier componef®s of G(t) we
=~ exp{— i1 2Hy(kA) + e(P+ Q)] - rz[H',(kA),Ho(kA)]} have, for the decoherence factor

(A2)
1 o0
where in the second line the effect of the phase shifters was rms= EJ dw(Gi)Q(w,T), (A7)

to flip the sign(and thus cancglthe H!(kA) term. To the 0
same order of accuracy the overall evolution operator be-

comes where
N/2
U'(T,0) = e‘iHo(O)Texp{— > [H',(zkA),Ho(zkA)]} Qw,T) = J ! J T dt dt codolt—1)] = (2 SIr(wT/2)>2.
k=1 0o Jo ®
N/2 A8
XeXp{_ic?TE(sz"‘sz)}- (A3) (A8)
k=1

But in the Gaussian case we hagas in the spin-boson
Let us evaluate the first exponential. Using E@9.and(2), = model[21])
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(G2 = (w)cothﬁ— (A9) cothﬂ—; =1+n(w,pB), (A11)

wherel(w) is the spectral densit§of matter in the fiberand where

B is the inverse temperature. Hence our result is that the N(w, B) = expl— Bw/2)/sin Bw/2) (A12)
correction is . , o .
is the average number of field excitations at inverse tempera-

- ture .
ex (T
H-erd (D] In the limit of very low temperature§3>1) we have

Bw SIH(wT/Z)) g1
_eXp[ f do l(@)coth™>" ( } Nw,B) = 2 exp~ Bo) (A13)

(A10)  and we can analytically evaluate the integral in BL0)—

e.g., for the class of Ohmic-type spectral densities—i.e., for
The attenuation is thus strongly dependent upon the form dahe case
I(w), but also depends sensitively on temperature. In particu- ol
lar, the thermal time scalg is important in separating ther- (0) = aw'e™™, (A14)
mal effects from effects due purely to vacuum fluctuationswhere o« is the coupling strength ana. is the high-
[22]. In order to formally separate the two it is convenient tofrequency cutoff(note thata is not dimensionlegs The re-
write sult in the zero-temperature case is

. oz | gL e, n=1,
lim J daol ()co t@(M)

o gwg'll“(n - 1)(1 -[1 +(wT)?™V2cog(n- 1arctariw.T)]), n+ 1.
(A15)
[
To obtain the nonzero-temperature correction in the approxi- 5 2021 +x2
mation(A13) take these results, multiply by 2, replangby AT<- oo n=2,
w./(1+Bw,) everywhere, and add to the zero-temperature ¢
case. We tabulate a few cases of interest in the zero- 202 (1+x)2
temperature limit, lettingk= w,T: A< -—S——1In[1-&T)], n=3. (Al
p XK= o, angz(S +X2) [ ( )] n (A18)
;"JLeXF{_STF(T)] The present model is, unfortunately, too phenomenologi-
( nerld ) cal to make a reliable estimate af Nevertheless, it is of
(1+x9 , n=1 (OChmio), some interest to see its prediction. E.g., we could wish to
1 X2 _ i improve upon the current figure of merit of 0.25 db/km to
SR T LasToc g | n=2 (super-Ohmig, the threshold value of§(T)=10% Recall thatT=X/v, 7
1 2(3+32) =(A/v) and we assumeea~¢. The coupling strengthw is
exp{— —asmgu], n=23 (Debys. typically of order unity[7,23]; we shall seta=1. We take
L (1+x%? v=c/1.6, the speed of light in a typical fiber, an#{T)

(Al6) =10% The results in the three cases, witt=1.6/3

X 1075wy, are displayed in Fig. 1, as a function of the high-

Let 1-&(T) be the desired coherence value after timgor  frequency cutoffw.. As a rough reference, the Debye tem-
distanceX); then we need to solve for the phase-shifter spacperature of amorphous silica |, =342 K [24], yielding a

ing A from Debye frequency estimate af,=kgTp/%=2X 103 Hz. The
corresponding value ok is 6X10° m (n=1), 0.6 m(n=2),
Iimooexp:— erl’(M]>1-4T). (AL17) and 10" m (n=3).
- This strong sensitivity to the decoherence model under-
We find (assuminga > 0) scores the need for the proposed experiment in order to settle
the question of the actual required distance between phase
A?<-40%In[1-8TD N[ +x)], n=1, shifters. Nevertheless, one can make a heuristic argument
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Togye [m] of the light. Thus we are asking for the dependence of the
T imaginary part of the density autocorrelation function in the

limit of small k, w<<ck (c=speed of sound If one uses the

standard “tunneling two-state system mod@l], this quan-

2.5 tity should be linear ino—i.e.,n=1 in our language above.
logy,we [Hz] At first sight these considerations might seem not to settle

6 8 10 12 T the question, since for a perfectly uniform system fluctua-

-2.5 tions of the density should affect the two relevant compo-
-5 nents of the dielectric constaatin exactly the same way and
-7.5 thus not affect their ratio, which is presumably what is im-

portant for decoherence of our qubit. However, because of
the inhomogeneity at the microscopic scale, there should
FIG. 1. Zero-temperature estimate of distadcbetween phase nevertheless be an effect which should be proportional to the
shifters(in meters, as a function of high-frequency cutodf; (in rms fluctuations of the ratio of the quantitiels,/dp and
Hz). Note the double-logarithmic scale. Upper, middle, and bottomde,,/dp over some characteristic length scale (V
curves correspond =1, 2, and 3, respectively, in E(A18). =vertical, H=horizontal ,p=density, and one may estimate
which favors then=1 model. The argument is the following L=1/K). The rms fluctuations are independent.ofso one is
[25]: phenomenologically, decoherence effects in fibers arétill led to conclude than=1. Considering the favorable
due to low-frequency fluctuations of tifeptical-frequency ~ scaling exhibited in then=1 case as shown in Fig. 1, we
dielectric constants. The most obvious source of such flucbelieve that there is room for cautious optimism that our
tuations, though not the only one, is simply fluctuations ofproposal can be made to work under conditions which are
the total density at spatial Fourier componkrequal to that technologically feasible.
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