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Noise in optical telecommunication fibers is an important limitation on optical quantum data transmission.
Unfortunately, the classically successful amplifiers cannot be used in quantum communication because of the
no-cloning theorem. We propose a simple method to reduce quantum noise: the insertion of phase shifters
and/or beam splitters at regular distance intervals into a fiber. We analyze in detail the case of qubits encoded
into polarization states of low-intensity light, which is of central importance to various quantum information
tasks, such as quantum cryptography and communication. We discuss the experimental feasibility of our
scheme and propose a simple experiment to test our method.
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INTRODUCTION

Quantum communication(QC) has recently emerged as a
subject of much interest, due to its applications in distributed
quantum computation and quantum cryptography[1]. In QC,
nonorthogonal quantum signals are typically transmitted
through telecommunication fibers. Reducing noise in tele-
communication fibers is crucial for QC applications, because
the very weak signals carried by polarization states are usu-
ally employed. Ideally, a single photon in a superposition of
two pulses separated in time with a controlled phase differ-
ence (i.e., upulseAl+eiuupulseBl) may be used. However,
on-demand single-photon sources remain an important tech-
nological challenge. Currently, weak coherent states are of-
ten employed as approximate single-photon signals. It is well
known in quantum cryptography[2,3])—a branch of QC—
that weak coherent states may open up loopholes in security
because of the probabilistic existence of multiphoton signals
[4]. Indeed, a weak coherent state, when phase randomized
via decoherence, gives a Poisson distribution in photon num-
bers. An eavesdropper, Eve, may, in principle, measure the
photon number in such a signal by a nondemolition measure-
ment. Afterward, she can stop all single-photon signals from
reaching the receiver, Bob. For each multiphoton signal, she
can steal one photon and keep it in her quantum memory and
send the rest of the signals to Bob by using, for example, an
ideal channel instead. Since Eve now has an exact copy of
the quantum state transmitted to Bob, this creates a signifi-
cant challenge in the security of quantum cryptography[4].
Thus, attenuation losses and decoherence in QC are a major
issue and methods for reducing such quantum noise are
therefore important. Unfortunately, the classically successful
amplifiers[such as erbium-doped fiber amplifier(EDFA) [5]]
cannot be used in QC because of the no-cloning theorem[6],
and new methods must be explored.

Here, we propose a method to reduce noise in the trans-
mission of quantum optical signals in a telecommunication
fiber. Our method is inspired by the theory of quantum dy-
namical “bang-bang”(BB) decoupling[7]. However, a key
novelty of our work is the following: we propose to imple-
ment BB control in space, rather than time, through the in-
sertion at regular intervals of a sequence of simple linear

optical elements(phase shifters and/or beam splitters) in sec-
tions of a telecommunication fiber. We also discuss the ex-
perimental feasibility of our scheme and propose a few
simple experimental tests. We do not expect our method to
improve the fidelity of classical light transmission compared
to, e.g., EDFA amplifiers, since our method turns out to be
quite sensitive to reflection from optical elements and devia-
tions from average fiber homogeneity, which is not the case
for classical amplifiers.

QUANTUM NOISE IN OPTICAL FIBERS

An optical fiber provides boundary conditions that guide
light along a(locally) straight trajectory. An ideal fiber al-
lows modes of traveling photons to propagate through un-
changed. A real fiber induces noise(dispersion, loss, deco-
herence) compared to the ideal case. The method we
introduce in this paper is designed to cancel in principle all
quantum noise. The dominant classical light loss mecha-
nisms in an optical fiber are UV absorption, Rayleigh back-
scattering, OH absorption, and Raman scattering and lead to
typical attenuation rates, for state-of-the-art commercial
silica telecommunication fiber, of about 0.25 db/km[5].
These mechanisms are active also in the quantum regime
[8,9]. All noise processes affecting quantum light in optical
fibers are derivable from a microscopic Hamiltonian describ-
ing (i) the direct interaction between photons and the optical
(dielectric) material of a fiber and(ii ) the indirect interaction
between photons and quasiparticle excitations of the fiber
material, such as polaritons and photon-phonon coupling.
These indirect interactions are, of course, in turn derivable
from a microscopic Hamiltonian that takes into account
matter-matter interactions in the fiber and couples them to
photons. The derivation of the resulting effective interactions
(e.g., a nonlinear Schrödinger equation) from such micro-
scopic Hamiltonians has been covered in detail, e.g., in
[8–10].

The starting point of our analysis is the observation that
all interactions involving photons can be written in terms of
polynomials in the bosonic raising and lowering operators
bj

†,bj (where j is the mode of the traveling photons[8,9]). A
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polynomial of orderN describes anN-photon process, and
typically the cross section of interactions decreases with in-
creasingN. In the case of the nonrelativistic quantum elec-
trodynamics of charged particles one can decompose the
photon-matter interaction Hamiltonian into linear and qua-
dratic terms with respect to the photon field,HI =HI

l +HI
q,

where the linear part is

HI
l = o

j

sbjB̂j
† + bj

†B̂jd, s1d

where the “bath” operatorsB̂j depend only on the variables
of charged particles and/or quasiparticles and the quadratic
partHI

q is a function of the bilinear operatorsbi
†bj , bi

†bj
†, and

bibj. Higher-order interactions may originate from relativistic
effects. In generalHI

q, which makes no contribution to one-
photon processes, is much smaller thanHI

l [11]. Therefore,
the quadratic term can usually be neglected.

Let us substantiate these arguments by briefly reviewing
the corresponding nonrelativistic electrodynamics. Consider
particlesa with chargeqa and massma, which constitute the
optical material of a fiber. Letr a andpa be the position and
momentum of particlea andAsr d be the vector potential of
the photon field. The system-bath Hamiltonian that describes
the dynamics can be written, in the Coulomb gauge, as

H = H0 + HI ,

H0 = HM + HP. s2d

HereHM depends only on the variables of the charged par-
ticles.HP=o"v jsbj

†bj +1/2d is the free photon Hamiltonian,
where bj and bj

† are the photon annihilation and creation
operators in the normal vibrational modej of the field iden-
tified by the wave vectork j, the polarization« j, and the
frequencyv j =ckj, wherec is the speed of light in vacuum.
Then the linear part with respect to the photon field[11] is

HI
l = o

a
S qa

ma

pa ·Asr ad +
gaqa

2ma

Sa ·Bsr adD
= o

j

sB̂j
†bj + B̂jbj

†d, s3d

where for a cubic box with dimensionL the operatorB̂j can
be expressed as

B̂j
† = − o

a

qa

ma

Î "v j

2«0L
3eik j·r aSpa · « j +

iga

2c
Sa ·k j 3 « jD ,

which only depends on the variables of charged particles.
Here ga is the g factor, «0 is the permittivity of free space,
andSa is the spin of particlea. Note that the interaction is
linear in the operatorsbj andbj

†.
The quadratic part of the interaction Hamiltonian is found

to be

HI
q = − o

a

qa
2

2ma

A2sr ad s4d

and is a function of the bilinear operatorsbi
†bj , bi

†bj
†, and

bibj.

Under the long-wavelength approximation, where the spa-
tial variations of the electromagnetic field over the size of the
particles is negligible, first-order perturbation theory ofHI

l

results in the widely applied dipole interaction(e.g.,[10] and
references therein). Some effective interactions, such as
atom-mediated photon-photon interactions and nonlinear
photon-photon interactions(Kerr effect), have been derived
without consideration ofHI

q [8–10]. We provide more details
on these effective interactions in a later section. For simplic-
ity of presentation we will first design an “anti-linear-
decoherence fiber” by consideringHI

l only. Later on we show
how to treat higher-order interaction terms. It is important to
stress that in essence our method hardly depends on the de-
tails of the interaction, butdepends on the statistics of pho-
tons as bosons.For this reason our method is very general
and is in principle applicable to the entire phenomenology of
quantum noise processes affecting photons in fibers, though
its practical applicability is a matter of being able to satisfy
certain constraints that will be discussed in detail below.

ANTI-LINEAR-DECOHERENCE FIBER

We first consider quantum data transmission through a
telecommunication fiber with noise induced byHI

l . SinceHI
l

describes the absorption and creation of photons, it generates
photon loss, among other processes. To simplify, we suppose
that apolarizationphoton is transmitted from endA to end
B. One can define a logical qubit supported byu0lL
=b1

†uvacl and u1lL=b2
†uvacl where the mode indices refer to

the two polarization states. The initial state at endA is
uCAl=sau0lL+bu1lLduMl, where uMl is the state of the bath
(dielectric material and quasiparticle excitations in the fiber).
At the timeT=X/v (whereX is the distance betweenA and
B, and v is the average speed of light in the fiber) the
wave function isuCsTdl=UsT,0duCAl, where the evolution
operator is (in units where "=1) UsT,0d
<e−iHsNDdt

¯e−iHs2Ddte−iHsDdt, whereHskDd; 1
Desk−1dD

kD fHIsxd
+H0sxdgdx is the average Hamiltonian over thekth segment,
where H0 is a sum of the matter(and/or excitations) and
photon self-Hamiltonians,t=D /v, and we have assumed that
N=X/D is large in order to expand the normal-ordered exact
propagator UsT,0d¬exph−ieA

BfHIsxd+H0sxdgdxj:. I.e., we
have neglected deviations from average fiber homogeneity,
dk=khHskDd−fHIskDd+H0skDdgj2l fUsT,0d can easily be
expressed including such second- and higher-order moments
using a Magnus expansion, and it is known how to general-
ize BB decoupling to treat such higher moments, at the ex-
pense of more BB pulses[12]] The interactionHI entangles
the output wave function at endB with the material or exci-
tations in the fiber. By standard arguments it follows that,
therefore, the quantum information encoded into the photon
state will decohere[1].

In order to solve this problem of decoherence, we draw
inspiration from the idea of BB decoupling via time-
dependent pulses[7] (we note that a method for finding such
pulses directly from empirical data was proposed in[13]).
We first recall the action of a phase shifter. It is simple to
show [using the Baker-Campbell-Hausdorff(BCH) formula
[14]] for a boson that
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eifn̂b†e−ifn̂ = eifb†, eifn̂be−ifn̂ = e−ifb, s5d

where n̂=b†b is a boson number operator. Physically, the
operationeipn̂ is a p phase shifter(it puts a phase ofp
between the number statesu0l and u1l, not to be confused
with our logical qubit states). Defining thep-phase-shifter
operator

P = P† = eipsn̂1+n̂2d, s6d

we therefore have

PHP = H0 − HI
l , s7d

because the photons term ofH0 is o"v jsnj +1/2d, so that
fH0, n1+n2g=0. The crucial point is thatthe sign of the lin-
ear term of the interaction Hamiltonian has been negated by
the action of two phase shifters—i.e., effectively time re-
versed.Now, if we install thin phase shifters inside the fiber
at positionsx=0,D ,2D, …, from A to B, the evolution will
be modified to

U8sT,0d < e−iHsNDdt
¯ Pe−iHs2DdtPe−iHsDdtP

; fN,…,P,2,P,1,Pg,

where in the second line we have introduced a self-
explanatory notation that will be used repeatedly below. Note
that in writing this expression we have neglected the varia-
tion of H inside the phase shifter; this will hold provided that
the phase-shifter width is much smaller than the distance
over which deviationsdk from average fiber homogeneity
become significant. Further note that we are applying the
“parity-kick” version of BB decoupling[7,15], but are
implementing it in space, rather than time. Now assume that
the averageHamiltonians over two successive segments are
equal:

HI
l
„sk + 1dD… = HI

lskDd,

H0„sk + 1dD… = H0skDd. s8d

The better this approximation, the better our method will
perform; we address deviations in the Appendix. In this case,
to first order int and using Eq.(7), we have an exact can-
cellation ofHI

l between successive segments:

e−iH„sk+1dD…tPe−iHskDdtP = e−iH„sk+1dD…te−iPHskDdPt = e−2iH0skDdt.

s9d

This yields the overall evolution operator

U8sT,0d = eH0sNDdt = eH0sXdt;

i.e., the evolution is completely decoherence free, in analogy
to the ideal BB limit of infinitely fast and strong pulses[7].

ROUGH ESTIMATE OF REQUIRED
INTER-PHASE-SHIFTER DISTANCE

Because of the in-principle equivalence between the BB
method and the quantum Zeno effect[16], the proposed
method can only work if the phase shifters are inserted at
small intervalsD over which coherence loss is quadratic

(“Zeno like”), rather than exponential(“Markovian”). A re-
liable estimate ofD requires a first-principles calculation
which is beyond the scope of the present work; we present a
phenomenological model for a detailed estimate ofD in the
Appendix. Here we give a roughupper boundestimate of
this distance. We assume that the linear term of the interac-
tion Hamiltonian gives rise to the 0.25 dB/kms5310−2d
classicalloss figure in a telecommunication fiber. Our main
approximation now consists in further assuming that the in-
sertion of phase shifters into the fiber causes a reduction of
loss from first to second order, and we use this to estimate
the D required in thequantumcase. Thus, imagine a distrib-
uted quantum computing scenario where small-scale quan-
tum computers are connected by optical fibers of length
about 1 km. Our goal is to have reliable quantum computa-
tion within the fault-tolerance threshold value of a 10−4 error
rate for each elementary quantum logical operation.(We re-
mark that for reliable quantumcommunication of entangled
photon pairs,the current error rate of about 5310−2 is al-
ready acceptable provided one allows the application of en-
tanglement purification[17]; our scheme is significantly sim-
pler.) Therefore, we need to cut down the loss figure from
5310−2 to, say, 10−4. Suppose we need to insertN phase
shifters within 1 km of a telecommunication fiber. Denote
the attenuation between a pair of phase shifters byl. Then,
without theN phase shifters, we haves1−ldN=0.95. For a
sufficiently largeN, we can expand the expression binomi-
ally and obtain the approximationlN=0.05. Now, with the
insertion of phase shifters, we simply assume that the attenu-
ation between two phase shifters is due to a second-order
contribution of the forml2. We further assume that those
contributions sum up in the usual addition. Therefore, we
havel2N=10−4. This yieldsl =2310−3 andN=25. Recalling
that two phase shifters are needed per cancellation step, we
see that about 50 phase shifters have to be inserted in a
distance of 1 km which translates to one phase shifter every
20 m. This figure is merely a rough upper-bound estimate on
the distanceD between two phase shifters for our scheme to
be useful; one can also determineD via the experiment we
propose below. Also note that we have assumed here that the
fiber is straight as is typically done in theoretical models. In
order to regain the straight fiber approximation, in the case of
a curved fiberD is upper bounded by the local radius of
curvature.

While in spirit our method is similar to BB decoupling
[7], a major advantage here is that we do not need to apply
any time-dependent pulses, which may result in significant
uncertainties such as gate errors and off-resonance transi-
tions. Instead, the phase shifters may be incorporated into the
fiber directly during the manufacturing process. Alterna-
tively, time-independent(say, electronic or pressure) controls
may be applied at various points of a telecommunication
fiber to achieve the action of pulse shifters.

ANTI-BILINEAR-DECOHERENCE FIBER

We now consider higher-order processes. Although they
are generally weak, the bilinear interactions appearing inHI

q

may still cause decoherence. A direct harmful consequence is
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to change the polarization direction, through a term such as
b1

†b2. In the classical case, the fiber structure can be designed
so that aknownpolarization direction can be preserved[18].
In the quantum case the polarization direction isnot
known prior to the transmission and the classical
method is not applicable. In this case one must in general
consider a system-bath Hamiltonian that is a linear
combination of all 10 possible independent bilinear
terms: A=hb1

†b2,b2
†b1,sb1

†d2,sb2
†d2,sb1d2,sb2d2j , B

=hb1b2,b1
†b2

†j , C=hb1
†b1,b2

†b2j (the grouping will be clarified
momentarily). It can be shown that all 10 of these terms can
be eliminated by installing 18 linear optical devices that in-
clude beam splitters in addition to phase shifters—i.e., in 16
elementary steps(we combine beam splitting and phase
shifting into one step). This result is based on Eq.(5) and the
identities[which follow directly from Eq.(5)]

eifn̂sb†d2e−ifn̂ = e2ifsb†d2, eifn̂sbd2e−ifn̂ = e−2ifsbd2.

s10d

The role of the beam splitter is to eliminate the set of opera-
torsC; the beam splitter is inserted after the first eight steps.
The 16-step result can be considerably simplified in a realis-
tic situation wherein the two polarizations used to represent
our qubit are degenerate. In this caseC becomesb1

†b1+b2
†b2,

which generates anoverall phase and hence will not cause
decoherence. In this degenerate case, as we now show, we
need only phase shifters to eliminate all contributions to de-
coherence. Let

Pi = eipn̂i, G = eipsn̂1−n̂2d/2, s11d

i.e., a pair of phase shifters. It follows immediately from Eqs.
(5) and (10) that

G†AG = A,

while

G†BG = B, P†AP = A, P†BP = B s12d

(whereP=P1P2 was used in Eq.(7)). From these and the
results for the “anti-linear-decoherence fiber,” the sequence
V12;f2,P ,1 ,Pg does not contain any linear terms, but still
contains all bilinear terms. Then, the sequence

V1234; fV34,G
†,V12,Gg = f4,P,3,PG†,2,P,1,PGg

s13d

has, in four elementary phase-shifter steps, eliminatedHI
l as

well as A and, in particular, the polarization-direction-
changing termsb1

†b2 and b2
†b1: at this point we have a

polarization-preserving fiber.Note that the composite terms
can be combined into a single phase shifter—i.e.,

PG† = eipsn̂1+3n̂2d/2,

PG = eips3n̂1+n̂2d/2. s14d

The only remaining bilinear terms at this point are the
counterrotating termsB=hb1b2,b1

†b2
†j, which are typically

neglected in the rotating-wave approximation[11]. To elimi-
nate them, nevertheless, we note that

P1BP1 = − B.

Therefore the sequence that eliminatesall linear and bilinear
terms for degenerate qubit states is

fV5678,P1,V1234,P1g

= f8,P,7,PG†,6,P,5,PGP1,4,P,3,PG†,2,P,1,PGP1g,

which involves eight elementary phase-shifter steps(note
thatPGP1=eips5n̂1+n̂2d/2). At this point we have a fiber that is
completely free of both linear and bilinear decoherence-
causing terms for degenerate polarization qubits.

We can repeat the mixed-classical-quantum rough dis-
tance estimate above by simply assuming that now contribu-
tions to decoherence come only due to third order inl : l3N
=10−4. This leads toN=5/Î20<1.2, and recalling that eight
phase shifters are needed per cancellation step, we arrive at
an upper-bound estimate of about ten phase shifters per km
or one phase shifter every 100 m. These phase shifters must
be introduced in addition to the ones used above for cancel-
lation of first-order effects. We have again assumed here that
the fiber is straight; local curvature may impose a lower up-
per bound.

GENERAL DECOHERENCE ELIMINATION

So far we have considered linear and bilinear photon
terms in the interaction Hamiltonian. The most general two-
mode photon-related term in a Hamiltonian isb1

†rb1
sb2

†kb2
l .

Providedr Þs andkÞ l the identity

eisan1+bn2db1
†rb1

sb2
†kb2

l e−isan1+bn2d = eifsr−sda+sk−ldbb1
†rb1

sb2
†kb2

l

shows that such a term can be eliminated using only phase
shifters. For example, whenr +s+k+ l is an odd number, our
considerations in the linear case show that the term can be
eliminated using the phase shifterP, while b1

†2b2
2 can be

eliminated usinge−isp/2dn1. High-order terms withr ,s,k, l
.1 arise if one considers the relativistic contribution, and
they appear also in most of the effective photon scattering
theories. It should be clear that if such terms arise, they can
be reduced using additional phase shifters or beam splitters
in the caser =s and/ork= l, which arise due to terms con-
taining photon number operators.

CONNECTION TO KNOWN LEADING LOSS
MECHANISMS IN OPTICAL FIBERS

As mentioned in a previous section the leading loss
mechanisms in optical fibers are well characterized: UV ab-
sorption, Rayleigh backscattering, OH absorption, and infra-
red absorption. It is useful to quickly review how these pro-
cesses arise and then are treated by our method. Consider, for
example, the case of Rayleigh backscattering. We base our
discussion on the standard reference[19] (for a general de-
scription of absorption see p. 168; the cross section of Ra-
leigh scattering is given on pp. 371–373). The discussion
starts[19] [Eq. (4.9.9)] from thedipole approximationto our
general photon-matter interaction Hamiltonian, Eq.(3):
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ĤED = ieo
k

o
l

o
i,j

s"vk/2«0Vd1/2ekl ·Di jhb̂kl expsik ·Rd

− b̂kl
† exps− ik ·Rdjuilk j u, s15d

whereuil is the interacting charged particle state or the eigen-
state ofHM , R is the atom position,V=L3 is the volume,
Di j =−eki uo r au jl are the matrix elements of the atomic dipole
moment, andl is the polarization. A general scattering tran-
sition ratet is [19] [Eq. (7.7.2)]:

1

t
= o

f
o
ksc

Uo
l

kn − 1,1,f uĤEDullkl uĤEDun,0,1l
nv − vl

U2

3
2p

"4 dsv f + vsc− vd, s16d

whereu1l and ufl are the atomic ground state and final state.
Initially, there aren photons with frequencyv and wave
vector k. At the end there aren−1 incident photons and a
single scattered photon with frequencyvsc and wave vector
ksc. Then the cross section follows from the relationssvd
=V/cnt, and the differential light-scattering cross section is
dssvd /dV. The differential cross section of Rayleigh scat-
tering is the special case when the atom returns to its ground
state, which is[19] [Eq. (8.8.1)]

dssvd
dV

=
e4v4

16p2«0
2"2c4Uo

l

sesc·D1ldse ·Dl1d
vl − v

+
se ·D1ldsesc·D1ld

vl + v
U2

, s17d

where the parameters are obtained from the matrix elements

of ĤED.
The important equation is Eq.(16) above: it shows that

Rayleigh scattering originates from the interactionĤED.
Clearly, the differential cross section of Rayleigh scattering

vanishes whenĤED is zero.Our spatial BB method does just

that: it effectively eliminates the interaction Hˆ
ED. Of course,

this is not unique to Rayleigh scattering, which is just one of
the processes derived from considering various cases involv-

ing ĤED. For example, photon absorption and emission are
mainly related to transitions involving two atomic or mo-
lecular levels. The corresponding matrix element for absorp-
tion is [19] [Eq. (4.10.1)]

knkl − 1,2uĤEDunkl,1l = i"gkl expfisv0 − vkdt + ik ·Rgnkl
1/2,

s18d

wheregkl=sevk/2«0"Vd1/2ekl ·D12. The radiative lifetime is

1/tR = 2po
k

o
l

gkl
2 dsvk − v0d, s19d

and, of course, it follows from Eq.(18) that this absorption is

prevented whenĤED is zero.

Note how ĤED, which is effectively eliminated by our
method, involves the bosonic raising and lowering operators

b̂kl ,b̂kl
† . The reason that our method is so general is that it

acts directly on these operators and “time-reverses”ĤED by
flipping their sign.

PROPOSAL FOR AN EXPERIMENT

As mentioned above, a crucial requirement for the success
of our proposed method is to insert the optical elements at
intervals over which the coherence loss is still quadratic,
rather than exponential. An experiment to test for this regime
is thus useful. This could be done by monitoring the coher-
ence(in particular, loss) locally, by focusing onto the edge of
the fiber and collecting light into a photon-counting device
(since the absolute intensity would be very small). By mov-
ing the focus along the fiber, one should be able to track the
decay as a function of distance from the fiber entry point and
observe the required quadratic-to-exponential transition,
yielding an estimate ofD.

To actually test the method in the presence of phase
shifters, one could repeat the above experiment with a single
fiber and write some phase-shift segments into it(as in the
manufacturing of fiber Bragg gratings), at intervals bounded
above by those determined from the first experiment. We
note that a point of some potential concern is the impedance
mismatch between air and the phase-shifter material, which
will lead to reflection. Letni (i =1,2) denote the indices of
refraction: the reflected amplitude issn2−n1d / sn2+n1d,
which leads, at normal incidence, to 4% loss per air-glass
interface. However, a standard antireflection coating can
solve the problem: a quarter-wave layer of material atÎn1n2
between the two materials(two equal reflections out of phase
cancel out). In fibers the index changes will be smaller and
reflection is typically neglected. Moreover, by writing a
smooth phase profile as in the experiment proposed above,
the reflection problem essentially disappears.

OnceD has been estimated, one can proceed to directly
test our method, as follows. Take two fiber segments and
write ap phase shifter(PS) into each. Attach them colinearly
(i) in the order PS-fiber-PS-fiber,(ii ) in the order fiber-PS-
PS-fiber, and perform a photon counting measurement. Our
method should reduce attenuation in(i) by comparison to
(ii ).

CONCLUSIONS

We have proposed a method to reduce quantum noise in
optical fibers via the insertion of phase shifters at appropri-
ately spaced intervals. We have shown that, in principle, this
method can eliminate all quantum noise processes that do not
involve photon number operators in the system-bath Hamil-
tonian; when such terms do arise, the phase shifters need to
be supplemented with beam splitters, and our conclusions
remain. Thus, with simple linear-optical devices, quantum
noise in optical fibers can be drastically reduced. This con-
clusion has potentially important implications for quantum
communication(and its variants, quantum cryptography and
distributed quantum computing) via optical fibers. The prac-
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tical feasibility of our method hinges on the required distance
between phase shifters. We have given a rough upper-bound
estimate of several meters based on known attenuation rates.
The Appendix presents a more detailed calculation that pre-
dicts a range of distances, depending on the bath spectral
density appropriate for a fiber. Ultimately we believe that the
best way to test our proposal is to perform the relatively
straightforward experiment that it implies.
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APPENDIX: DETAILED MODEL FOR ESTIMATING D

Recall that our main approximation was the assumption of
average fiber homogeneity, Eq.(8). In this appendix we relax
this assumption in order to estimate an upper bound on the
distanceD between phase shifters. We do this by considering
corrections to ordert2 and the nonideal case

H0„sk − 1dD… = H0skDd + «Pk,

HI
l
„sk − 1dD… = HI

lskDd + «Qk, sA1d

where «!1 and we takePk,Qk to be independent, identi-
cally distributed(IID ) Gaussian, local, and time-dependent
operator-valued corrections. This phenomenological model
of fiber inhomogeneity may be the result of material nonuni-
formity along the fiber(such as local defects), slow time-
dependent fluctuations in fiber properties, or even the qua-
dratic interaction(4). By virtue of the central limit theorem it
will be accurate in the case of alarge numberof defects. We
assume that the effective BB time intervalt is chosen to be
on the order of the small parameter« (though we make no
attempt to estimate«). In this case, using the BCH formula
eAeB=eA+B+fA,Bg/2+¯ to second order(i.e., keeping only terms
of order« ,t ,«2,«t ,t2), we find, instead of the ideal Eq.(9),

e−iH„sk−1dD…tPe−iHskDdtP

= e−iH„sk−1dD…te−iPHskDdPt

= e−ifH0skDd+HI
l skDd+«sPk+Qkdgte−ifH0skDd−HI

l skDdgt

< exph− itf2H0skDd + «sPk + Qkdg − t2fHI
lskDd,H0skDdgj

sA2d

where in the second line the effect of the phase shifters was
to flip the sign (and thus cancel) the HI

lskDd term. To the
same order of accuracy the overall evolution operator be-
comes

U8sT,0d < e−iH0s0dTexpH− t2o
k=1

N/2

fHI
ls2kDd,H0s2kDdgJ

3expH− i«to
k=1

N/2

sP2k + Q2kdJ . sA3d

Let us evaluate the first exponential. Using Eqs.(1) and(2),

− ifHI
ls2kDd,H0s2kDdg

= − io
j ,j8

fsB̂j
†s2kDdbj + B̂js2kDdbj

†d,

"v j8s2kDdsn̂j8 + 1/2d + HMs2kDdg

= − i o
j=0,1

h"v js2kDdB̂js2kDd + fB̂js2kDd,HMs2kDdgjbj
†

− h"v js2kDdB̂j
†s2kDd − fB̂j

†s2kDd,HMs2kDdgjbj

; H8, sA4d

whereH8 is an effective Hamiltonian(it is Hermitian), which
plays the role of a Lamb shift[20]. We thus have for the first
exponential in Eq.(A3):

expH− t2o
k=1

N/2

fHI
ls2kDd,H0s2kDdgJ = exps− it2H8d,

sA5d

whose effect is an energy renormalization(i.e., a phase shift)
and does not contribute to decoherence.

Next, consider the second exponential in Eq.(A3). The
operator Gstd defined through ok=1

N/2sP2k+Q2kd,e0
TfPstd

+Qstdgdt;e0
TGstddt is Gaussian distributed by our assump-

tion that P2k,Q2k are Gaussian, IID random variables. We
would like to estimate the average deviation inU8sT,0d that
results from its presence. SinceGstd is Gaussian distributed
the average can be computed as follows[21]:

KexpH− i«to
k=1

N/2

sP2k + Q2kdJL
,KexpF− i«tE

0

T

GstddtGL
= expF− i«tE

0

TE
0

T

kGstdGst8dldt dt8G
; expf− «tGsTdg. sA6d

Expressed in terms of Fourier componentsGv of Gstd we
have, for the decoherence factor

GsTd =
1

2
E

0

`

dvkGv
2lQsv,Td, sA7d

where

Qsv,Td =E
0

TE
0

T

dt dt8 cosfvst − t8dg = S2 sinsvT/2d
v

D2

.

sA8d

But in the Gaussian case we have(as in the spin-boson
model [21])
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kGv
2l =

1

2
Isvdcoth

bv

2
, sA9d

whereIsvd is the spectral density(of matter in the fiber) and
b is the inverse temperature. Hence our result is that the
correction is

expf− «tGsTdg

= expF− «tE
0

`

dv Isvdcoth
bv

2
SsinsvT/2d

v
D2G .

sA10d

The attenuation is thus strongly dependent upon the form of
Isvd, but also depends sensitively on temperature. In particu-
lar, the thermal time scale"b is important in separating ther-
mal effects from effects due purely to vacuum fluctuations
[22]. In order to formally separate the two it is convenient to
write

coth
bv

2
= 1 + n̄sv,bd, sA11d

where

n̄sv,bd = exps− bv/2d/sinhsbv/2d sA12d

is the average number of field excitations at inverse tempera-
ture b.

In the limit of very low temperaturessb@1d we have

n̄sv,bd <
b@1

2 exps− bvd sA13d

and we can analytically evaluate the integral in Eq.(A10)—
e.g., for the class of Ohmic-type spectral densities—i.e., for
the case

Isvd = avne−v/vc, sA14d

where a is the coupling strength andvc is the high-
frequency cutoff(note thata is not dimensionless). The re-
sult in the zero-temperature case is

lim
b→`

E
0

`

dvIsvdcoth
bv

2
SsinsvT/2d

v
D2

=5
a

4
lnf1 + svcTd2g, n = 1,

a

2
vc

n−1Gsn − 1ds1 − f1 + svcTd2gsn−1d/2cosfsn − 1darctansvcTdgd, n Þ 1.6
sA15d

To obtain the nonzero-temperature correction in the approxi-
mation(A13) take these results, multiply by 2, replacevc by
vc/ s1+bvcd everywhere, and add to the zero-temperature
case. We tabulate a few cases of interest in the zero-
temperature limit, lettingx;vcT:

lim
b→`

expf− «tGsTdg

=5
s1 + x2d−a«t/4, n = 1 sOhmicd,

expF−
1

2
a«tvc

x2

1 + x2G , n = 2 ssuper-Ohmicd,

expF−
1

2
a«tvc

2x2s3 + x2d
s1 + x2d2 G , n = 3 sDebyed. 6

sA16d

Let 1−dsTd be the desired coherence value after timeT (or
distanceX); then we need to solve for the phase-shifter spac-
ing D from

lim
b→`

expf− «tGsTdg . 1 − dsTd. sA17d

We find (assuminga.0)

D2 , − 4v2 lnf1 − dsTdg/lnfs1 + x2dg, n = 1,

D2 , −
2v2

avc

1 + x2

x2 lnf1 − dsTdg, n = 2,

D2 , −
2v2

avc
2

s1 + x2d2

x2s3 + x2d
lnf1 − dsTdg, n = 3. sA18d

The present model is, unfortunately, too phenomenologi-
cal to make a reliable estimate ofD. Nevertheless, it is of
some interest to see its prediction. E.g., we could wish to
improve upon the current figure of merit of 0.25 db/km to
the threshold value ofdsTd=10−4. Recall thatT=X/v , t
=sD /vd and we assumedt,«. The coupling strengtha is
typically of order unity[7,23]; we shall seta=1. We take
v=c/1.6, the speed of light in a typical fiber, anddsTd
=10−4. The results in the three cases, withx=1.6/3
310−5vc, are displayed in Fig. 1, as a function of the high-
frequency cutoffvc. As a rough reference, the Debye tem-
perature of amorphous silica isTD=342 K [24], yielding a
Debye frequency estimate ofvc=kBTD /"=231013 Hz. The
corresponding value ofD is 63105 m sn=1d, 0.6 m sn=2d,
and 10−7 m sn=3d.

This strong sensitivity to the decoherence model under-
scores the need for the proposed experiment in order to settle
the question of the actual required distance between phase
shifters. Nevertheless, one can make a heuristic argument
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which favors then=1 model. The argument is the following
[25]: phenomenologically, decoherence effects in fibers are
due to low-frequency fluctuations of the(optical-frequency)
dielectric constants. The most obvious source of such fluc-
tuations, though not the only one, is simply fluctuations of
the total density at spatial Fourier componentk equal to that

of the light. Thus we are asking for thev dependence of the
imaginary part of the density autocorrelation function in the
limit of small k,v!ck sc=speed of soundd. If one uses the
standard “tunneling two-state system model”[21], this quan-
tity should be linear inv—i.e., n=1 in our language above.
At first sight these considerations might seem not to settle
the question, since for a perfectly uniform system fluctua-
tions of the density should affect the two relevant compo-
nents of the dielectric constant« in exactly the same way and
thus not affect their ratio, which is presumably what is im-
portant for decoherence of our qubit. However, because of
the inhomogeneity at the microscopic scale, there should
nevertheless be an effect which should be proportional to the
rms fluctuations of the ratio of the quantitiesd«V/dr and
d«H /dr over some characteristic length scaleL (V
=vertical,H=horizontal,r=density, and one may estimate
L=1/k). The rms fluctuations are independent ofv, so one is
still led to conclude thatn=1. Considering the favorable
scaling exhibited in then=1 case as shown in Fig. 1, we
believe that there is room for cautious optimism that our
proposal can be made to work under conditions which are
technologically feasible.
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FIG. 1. Zero-temperature estimate of distanceD between phase
shifters (in meters), as a function of high-frequency cutoffvc (in
Hz). Note the double-logarithmic scale. Upper, middle, and bottom
curves correspond ton=1, 2, and 3, respectively, in Eq.(A18).
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