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Analysis of generalized Grover quantum search algorithms using recursion equations
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The recursion equation analysis of Grover’s quantum search algorithm presented by Bihamet al. @Phys. Rev.
A 60, 2742 ~1999!# is generalized. It is applied to the large class of Grover-type algorithms in which the
Hadamard transform is replaced by any other unitary transformation and the phase inversion is replaced by a
rotation by an arbitrary angle. The time evolution of the amplitudes of the marked and unmarked states, for any
initial complex amplitude distribution, is expressed using first-order linear difference equations. These equa-
tions are solvedexactly. The solution provides the number of iterationsT after which the probability of finding
a marked state upon measurement is the highest, as well as the value of this probability,Pmax. Both T and
Pmax are found to depend on the averages and variances of the initial amplitude distributions of the marked and
unmarked states, but not on higher moments.
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I. INTRODUCTION

Grover’s search algorithm@1,2# provides a dramatic ex
ample of the potential speedup offered by quantum com
ers. It also provides an excellent laboratory for the analy
and implementation of quantum algorithms in various ha
ware media. The problem addressed by Grover’s algori
can be viewed as trying to find a marked element in an
sorted database of sizeN. To solve this problem, a classica
computer would need, on average,N/2 database queries an
N queries in the worst case. Using Grover’s algorithm
quantum computer can accomplish the same task u
merely O(AN) queries. The importance of Grover’s resu
stems from the fact that it proves the enhanced powe
quantum computers compared to classical ones for a w
class of oracle-based problems, for which the bound on
efficiency of classical algorithms is known.

Grover’s algorithm can be represented as searching a
image of an oracle-computable Boolean function, which c
only be computed forward, but whose inverse cannot be
rectly computed. Such a function isF:D→$0,1% whereD is
a set ofN domain values~or states! and the pre-images of th
value 1 are called the marked states. The problem is to id
tify one of the marked states, i.e., somevPD such that
F(v)51. Problems of this type are very common. One i
portant example, from cryptography, is searching for the
K of the data encryption standard~DES! @3#, given a known
plaintext P and its ciphertextC, whereF51 if the pair of
plaintext and ciphertext match@i.e., EK(P)5C whereEK is
the encryption function# and F50 otherwise. Other ex-
amples are solutions of nondeterministic polynomial tim
~NP! and NP-complete problems, which include virtually a

*Present address: Department of Physics of Complex Syst
Weizmann Institute of Science, Rehovot 76100, Israel.

†Permanent address: Chemistry Department, University of T
onto, 80 St. George Street, Toronto, ON, Canada M5S 3H6.
1050-2947/2000/63~1!/012310~8!/$15.00 63 0123
t-
is
-
m
-

a
ng

of
le
e

re-
n
i-

n-

-
y

the difficult computing problems in practice@4#.
Let us assume, for simplicity, thatN52n, wheren is an

integer. We introduce a registerux̄&5ux1 , . . . ,xn& of n qu-
bits to be used in the computation. Grover’s original qua
tum search algorithm consists of the following steps.

~1! Initialize the register tou0̄&5u0•••00&, and apply the
Hadamard transform to obtain a uniform amplitude distrib
tion.

~2! Repeat the following operationT times
~a! Rotate the marked states by a phase ofp radians.
~b! Rotate all states byp radians around the average am

plitude ofall states. This is done by~i! Hadamard transform-
ing every qubit,~ii ! rotating theu0̄& state by a phase ofp
radians, and~iii ! again Hadamard transforming every qub

~3!Measure the resulting state.
A large number of results followed Grover’s discover

These results include the proof@5# that the algorithm is as
efficient as theoretically possible@6#. A variety of applica-
tions were developed, in which the algorithm is used in
solution of other problems@7–14#. Recently, experimenta
implementations of Grover’s algorithm were constructed
ing nuclear magnetic resonance~NMR! @15,16# as well as an
optical device@17#.

Several generalizations of Grover’s original algorith
have been developed. The case in which there are sev
marked states was studied in Ref.@18#. Let k(t) @ l (t)# de-
note the amplitude of themarked@unmarked# states aftert
iterations of the algorithm. It was shown in@18# that the
amplitude of the marked states increases ask(t)5sin@v(t
11/2)#/Ar , while at the same time that of the unmarke
states decreases asl (t)5cos@v(t11/2)#/AN2r , where v
52 arcsin(Ar /N) and r is the number of marked states. F
N@r the optimal time to measure and complete the com
tation is afterT5O(AN/r ) iterations, whenk(t) is maximal.

Recently, the algorithm was further generalized by allo
ing an arbitrary~but constant! unitary transformation to take
the place of the Hadamard transform in the original sett

s,

r-
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@19–21# and an arbitrary phase rotation of the marked a
the predefined states instead of thep inversion@22#. Another
generalization was obtained by allowing for anarbitrary
complex initial amplitude distribution, instead of the uniform
initial amplitude distribution obtained in step~1! above
@23,24#.

In this paper we analyze the time evolution of the amp
tudes in the most general algorithm, using an arbitrary u
tary transformation and phase rotations on an arbitrary c
plex initial amplitude distribution. Using first-order linea
difference equations we obtain an exact solution for the t
evolution of the amplitudes under the most general con
tions. The solution provides the optimal number of iteratio
T after which the probability of finding a marked state up
measurement is the highest, as well as the value of this p
ability, Pmax. Both T and Pmax are found to depend on th
averages and variances of the initial amplitude distributi
of the marked and unmarked states, but not on higher
ments.

The paper is organized as follows. In Sec. II we pres
the generalized algorithm. The analysis based on recur
equations is given in Sec. III. The results are discussed
Sec. IV and summarized in Sec. V. In the Appendix w
obtain upper bounds on some weighted averages of the in
amplitudes of the marked and unmarked states which
needed in the analysis.

II. GENERALIZED GROVER ALGORITHM

In the generalized algorithm the initialization step
modified as follows. Instead of initializing the register a
cording to step~1!, any initial distribution of marked and
unmarked states can be used~e.g., the final state of any othe
quantum computation!. In addition, thep phase rotation of
marked states described byI f

p5(xe
ipF(x)ux&^xu is replaced

by rotation by an arbitrary phaseg:

I f
g5(

x
eigF(x)ux&^xu. ~1!

The rotation about the average, described byG52WI0
pW†,

whereW is the Hadamard transform andI 0
p5I 22u0&^0u, is

modified in two ways. First, the rotation ofu0& by p is re-
placed by the rotation of a predefined stateus& by an angleb.
Second, the Hadamard transformW is replaced by an arbi
trary unitary operatorU. In this generalized algorithm, ste
~2B! above is replaced by

G52UI s
bU†, ~2!

where

I s
b5I 2~12eib!us&^su. ~3!

In the generalized algorithm, the geometric interpretat
of step~2B! as a rotation around the average amplitude of
states is not straightforward. We will demonstrate bel
that, in fact, one can return to this interpretation by identi
ing suitable variables. By insertingI s

b from Eq. ~3! into Eq.
~2! we obtain that
01231
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G5~12eib!uh&^hu2I , ~4!

whereuh&5Uus&.

III. RECURSION EQUATIONS

A. Analysis

We will now analyze the time evolution of the amplitude
in the generalized algorithm with a total ofN states,r of
which are marked. Let the marked amplitudes at timet be
denoted byki(t), i PM , and the unmarked amplitudes b
l i(t), i PM̄ , whereM is the set of marked states (uM u5r )
andM̄ is the set of unmarked states (uM̄ u5N2r ). The initial
amplitudeski(0), i PM and l i(0), i PM̄ at t50 are arbi-
trary. Without loss of generality we assume that the num
of marked states satisfies 1<r<N/2. A general state of the
system at timet will now take the form

ug~ t !&5 (
i PM

ki~ t !u i &1 (
i PM̄

l i~ t !u i &. ~5!

A single Grover iterationGI f
g will transform the amplitudes

kj (t), j PM , to kj (t11)5^ j uGI f
gug(t)& and the amplitudes

l j (0), j PM̄ , to l j (t11)5^ j uGI f
gug(t)&. We find that the

recursion equations describing such iteration take the for

kj~ t11!5~12eib!eigh j (
i PM

ki~ t !h i*

1~12eib!h j (
i PM̄

l i~ t !h i* 2eigkj~ t !, ~6!

l j~ t11!5~12eib!eigh j (
i PM

ki~ t !h i*

1~12eib!h j (
i PM̄

l i~ t !h i* 2 l j~ t !, ~7!

where

h i5^ i uh&, i 51, . . . ,N. ~8!

If h i50 for somei, the Grover iterationGI f
g changes only

the phase of the stateu i &. Thus the probability to measure
stateu i & with h i50 remains constant. Hence we can treat
states withh i50 separately from those withh iÞ0. From
now on we assume, without loss of generality, that for
given operatorU, the predefined stateus& is chosen such tha
uh& satisfiesh iÞ0, i 51, . . . ,N. We will now introduce new
variables

kj8~ t !5
kj~ t !

h j
, ~9!

l j8~ t !5
l j~ t !

h j
. ~10!
0-2
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With these variables, the recursion equations will take
form

kj8~ t11!5~12eib!eig (
i PM

ki8~ t !uh i u2

1~12eib! (
i PM̄

l i8~ t !uh i u22eigkj8~ t !, ~11!

l j8~ t11!5~12eib!eig (
i PM

ki8~ t !uh i u2

1~12eib! (
i PM̄

l i8~ t !uh i u22 l j8~ t !. ~12!

Let us define

2C~ t !5~12eib!eig (
i PM

ki8~ t !uh i u2

1~12eib! (
i PM̄

l i8~ t !uh i u2. ~13!

It becomes clear that the time evolution of all the amplitud
~of both marked and unmarked states! can be expressed by

kj8~ t11!52C~ t !2eigkj8~ t !, j PM , ~14!

l j8~ t11!52C~ t !2 l j8~ t !, j PM̄ . ~15!

One can define the following weights:

Wk5 (
i PM

uh i u2, ~16!

Wl5 (
i PM̄

uh i u2, ~17!

quantifying the projections of the stateuh& on M and M̄ ,
respectively. From the normalization of the stateuh& it is
clear thatWk1Wl51. These weights can be used in order
define weighted averages of the new variables, of the fo

k̄8~ t !5

(
i PM

uh i u2ki8~ t !

Wk
, ~18!

l̄ 8~ t !5

(
i PM̄

uh i u2l i8~ t !

Wl
. ~19!

Using these averages to expressC(t) we obtain

2C~ t !5~12eib!@eigWkk̄8~ t !1Wl l̄ 8~ t !#. ~20!
01231
e
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By averaging over all the marked states in Eq.~14! and over
all the unmarked states in Eq.~15! we find that the weighted
averagesk̄8(t) and l̄ 8(t) obey the following recursion equa
tions:

k̄8~ t11!52C~ t !2eigk̄8~ t !, ~21!

l̄ 8~ t11!52C~ t !2 l̄ 8~ t !. ~22!

These equations can be solved fork̄8(t) and l̄ 8(t), and along
with the initial distribution this yields the exact solution fo
the dynamics of all amplitudes. We will proceed to solve t
recursion formulas for arbitrary complex initial amplitude
Let us rewrite Eqs.~21! and ~22! in a matrix notation

rW~ t11!5ArW~ t !, ~23!

where

rW~ t !5S k̄8~ t !

l̄ 8~ t !
D ~24!

and

A5S a b

c dD . ~25!

The matrix elements ofA are given by

a5~12eib!eigWk2eig, ~26!

b5~12eib!Wl , ~27!

c5~12eib!eigWk , ~28!

d5~12eib!Wl21. ~29!

The time evolution ofk̄8(t) and l̄ 8(t) is given by

rW~ t !5AtrW~0!. ~30!

In order to obtain explicit expressions fork̄8(t) and l̄ 8(t) we
consider the diagonal matrix

AD5S21AS[S l1 0

0 l2
D . ~31!

The eigenvaluesl6 of the matrix A are the solutions of
det(A2lI )50. They can be expressed as

l65eiv6, ~32!

where

v65p1
b1g

2
6v ~33!

and the angular frequencyv is in the range 0,v,p, and
satisfies
0-3
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cosv5Wk cos
b1g

2
1Wl cos

b2g

2
. ~34!

The matrixS, which consists of the corresponding colum
eigenvectors, takes the form

S5S 1 1

l12a

b

l22a

b
D . ~35!

We will now apply Eq.~31! to reconstruct the matrixA, and
computeAt. A simpler expression for the time evolution
obtained:

rW~ t !5SAD
t S21rW~0!, ~36!

where

AD
t 5S l1

t 0

0 l2
t D . ~37!

The time dependence is given by

k̄8~ t !5z1eiv1t2z2eiv2t, ~38!

l̄ 8~ t !5z3eiv1t2z4eiv2t, ~39!

where

z15
~l22a!k̄8~0!2b l̄ 8~0!

l22l1
, ~40!

z25
~l12a!k̄8~0!2b l̄ 8~0!

l22l1
~41!

and

z35
l12a

b
z1 , ~42!

z45
l22a

b
z2 . ~43!

We have now completed the solution for the time dep
dence of the averagesk̄8(t) and l̄ 8(t). However, our aim is
to obtain the time evolution of the individual variableski8(t)
and l i8(t) and from them to extract the amplitudeski(t) and
l i(t). Subtracting Eq.~21! from Eq. ~14!, and Eq.~22! from
Eq. ~15! one finds that

ki8~ t11!2 k̄8~ t11!52eig@ki8~ t !2 k̄8~ t !#, ~44!

l i8~ t11!2 l̄ 8~ t11!52@ l i8~ t !2 l̄ 8~ t !#; ~45!

namely, the difference, in absolute value, between eac
the variableski8(t), l i8(t) and the averages of the corr
sponding sets are time independent. This means that
01231
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Dki8[ki8~0!2 k̄8~0!, ~46!

D l i8[ l i8~0!2 l̄ 8~0! ~47!

are constants of motion. Thus, the time dependence of th
variables follows:

ki8~ t !5 k̄8~ t !1~21! teigtDki8 , ~48!

l i8~ t !5 l̄ 8~ t !1~21! tD l i8 . ~49!

The time evolution of the amplitudes can now be obtaine

ki~ t !5h i@ k̄8~ t !1~21! teigtDki8#, ~50!

l i~ t !5h i@ l̄ 8~ t !1~21! tD l i8#. ~51!

In this picture all the marked as well as the unmarked sta
evolve in unison, so it is sufficient to follow the time evolu
tion of the average in each set. The only feature distingu
ing the states from one another is their initial deviation fro
the average.

B. Results

From Eqs.~48! and ~49! it follows immediately that the
weighted variances

sk
2~ t !5

1

Wk
(
i PM

uh i u2uki8~ t !2 k̄8~ t !u2, ~52!

s l
2~ t !5

1

Wl
(
i PM̄

uh i u2u l i8~ t !2 l̄ 8~ t !u2 ~53!

are time independent and therefore at any timet they can be
replaced bysk

25sk
2(0) ands l

25s l
2(0), respectively. When

a measurement is performed at timet, the probability that a
marked state will be obtained isP(t)5( i PMuki(t)u2. Since
all the operators used are unitary, the variableski8(t) and
l i8(t) satisfy the normalization condition

(
i PM

uh i u2uki8~ t !u21 (
i PM̄

uh i u2u l i8~ t !u251 ~54!

at all times. Using the definitions ofki8(t) andl i8(t) and their

weighted averagesk̄8(t) and l̄ 8(t) given in Eqs.~9!, ~10! and
~18!, ~19!, one can bring Eqs.~52! and ~53! to the form

(
i PM

uki~ t !u25Wksk
21Wkuk̄8~ t !u2, ~55!

(
i PM̄

u l i~ t !u25Wls l
21Wl u l̄ 8~ t !u2. ~56!

The first equation provides the probability to measure
marked state at timet, while the probability to measure a
unmarked state is given by the second equation. We will n
try to examine the probability that a measurement at timt
will yield a marked state, and its dependence on the rota
0-4
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anglesb andg, the unitary transformationU, the predefined
state us&, and the averages and standard deviations of
initial amplitude distributions of the marked and unmark
states. Using Eq.~38! with z15uz1ueif1 andz25uz2ueif2, the
probability that a measurement at timet will yield a marked
state is given by a sinusoidal function of the form

P~ t !5Pav2DP cos@2~vt1f!#, ~57!

where

DP52Wkuz1uuz2u ~58!

is the amplitude of the oscillations,p/v is their period,

Pav5Wk~ uz1u21uz2u21sk
2! ~59!

is the average, or reference value of the probability, and

2f5f12f2 ~60!

is the phase. These parameters are found to depend o
unitary operatorU which is used in the algorithm, the pre
defined stateus&, and the angleb by which its phase is ro-
tated as well as the angleg by which the phases of th
marked states are rotated. The dependence on the initial
plitudes enters only through the weighted averages of
variableski8(0) andl i8(0) and their standard deviations.

It is thus observed thatP(t) does not depend on an
higher moments of the initial amplitude distribution. This
due to the fact that all the transformations in the quant
algorithm are linear. Therefore,ki(t) and l i(t) can be ex-
pressed as some linear combinations ofki(0) andl i(0). The
only nonlinearity appears in the expression ofP(t) as a sum
of squares of the amplitudes of the marked states at timt.
Therefore, powers higher than quadratic are excluded in
expression forP(t). Moreover,P(t) does not depend on an
other linear combinations of the first and second powers
the initial amplitudes, except for the particular weighted a
erages that compose the first and second moments. Thi
sults from the fact that Grover’s iterations maintain a lar
number of conserved quantities, particularly the variancessk

2

ands l
2 which are constants of motion. As a result, the tim

evolution of the amplitudes can be fully described by t
time dependence of the averagesk̄8(t) and l̄ 8(t). Due to the
linearity of the transformations,k̄8(t) and l̄ 8(t) can be ex-
pressed as linear combinations ofk̄8(0) and l̄ 8(0). The
probability P(t) of measuring a marked state at timet is
given by Eq.~55! in which the first term on the right han
side, which includes the second moment, is a constan
motion. Therefore, no other quadratic forms can appear.
second term depends on the first moment at timet, which is
related to the first moment att50 through the recursion
equations. Thus, the dependence ofP(t) on the initial am-
plitudes is only through the first and second moments of th
distribution.
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IV. DISCUSSION

In order to examine the performance of the generaliz
Grover algorithm we will now evaluate the highest possib
probability Pmax5Pav1DP that a measurement will yield a
marked state. We will also evaluate the optimal number
iterationsT after which the probabilityPmax is achieved.

The limit of difficult search problems is obtained whe
N@r>1. This is reflected in the fact that in the origin
Grover algorithm the probability of measuring a mark
state immediately after the initialization step isWk5r /N.
The assumption thatWk!1 carries over to the generalize
case discussed here. It is satisfied in all cases except for
unlikely choices of the stateus& from which one Grover it-
eration with the operatorU is sufficient in order to measure
marked state with high probability. In the analysis belowWk
will be considered as a small parameter. The highest poss
value of the probability to measure a marked state is

Pmax5Wk~ uz1u1uz2u!21Wksk
2 . ~61!

Consider the parametersz1 andz2 that express the depen
dence ofPmax on the initial amplitudes and the phase rot
tion anglesb andg. The expressions forz1 andz2 in Eqs.
~40! and ~41! include (l22l1) in the denominator. Using
Eq. ~32! it can be written as

l22l152iei (b1g)/2sinv. ~62!

Expanding sinv in powers ofWk!1, one finds that in case
that the anglesb and g are different, and the differenc
between them satisfiesub2gu5O(1) ~e.g., in radians!:

l22l152iei (b1g)/2sin
ub2gu

2
1O~Wk!; ~63!

namely, the denominator, in absolute value, is typically
order unity. In caseb5g

l22l154ieibsin
b

2
Wk

1/21O~Wk
3/2! ~64!

and the denominator is of orderAWk!1. In the following
we discuss the search problem in these two cases separ

A. Different rotation angles: bÅg

Here we consider the case whenbÞg and the difference
between them is fixed and finite, and satisfiesub2gu
5O(1). In this case, using Eqs.~26!, ~27!, and~32! and the
assumption thatWk!1, the matrix elements can be approx
mated by

a52eig1O~Wk!, ~65!

b512eib1O~Wk!. ~66!

The eigenvalues are

l152eib1O~Wk!, ~67!

l252eig1O~Wk!, ~68!
0-5
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whenb.g (0,b,2p, 0,g,2p), and

l152eig1O~Wk!, ~69!

l252eib1O~Wk!, ~70!

wheng.b. In the Appendix it is shown that the initial am
plitude distribution satisfiesuk̄8(0)u5O(Wk

21/2) and u l̄ 8(0)u
5O(1). From Eqs. ~40! and ~41! we obtain that uz1u
5O(1) anduz2u5O(Wk

21/2), in the caseb.g, while in the
caseg.b, uz1u5O(Wk

21/2) and uz2u5O(1). Therefore, in
both cases, using Eq.~58! one obtains

DP5O~Wk
1/2!; ~71!

namely, the amplitude of the oscillations is negligible. Th
the probability to measure a marked state after any num
of iterations cannot be significantly larger than the proba
ity, given by Eq.~55!, to measure a marked state at timet
50. We conclude that in this case the algorithm fails
enhance the probability of measuring a marked state.
angular frequency isv5ub2gu/21O(Wk). Clearly, for
such a high frequency, for which the period is of the order
only few steps, it is hard to exploit the oscillations sin
measurements can be taken only in discrete times and
likely to miss the highest point. The analysis presented ab
applies as long asWk!(b2g)2. The conclusions are in
agreement with the results of Refs.@22,25#.

B. Identical rotation angles: bÄg

In this case the matrix elements can be approximated
cording to

a52eib1O~Wk!, ~72!

b512eib1O~Wk!, ~73!

l652eib7 i F2eibsin
b

2GWk
1/21O~Wk!. ~74!

This gives rise to

z1,25
1

2
Wk

21/2@ i l̄ 8~0!eic6Wk
1/2k̄8~0!#1O~1!, ~75!

wherec5(p2b)/2. Inserting Eq.~75! into Eq. ~61! we ob-
tain

Pmax5
1

4
@ u i l̄ 8~0!eic1Wk

1/2k̄8~0!u

1u i l̄ 8~0!eic2Wk
1/2k̄8~0!u#2

1Wksk
21O~Wk!. ~76!

To simplify this expression we will now use the identi
(ua1bu1ua2bu)252(uau21ubu21ua22b2u), wherea andb

are complex numbers. We will also replacel̄ 8(0) by
Wl

1/2l̄ 8(0) @note thatWl
1/2511O(Wk)# and find that
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Pmax512Wls l
22

1

2
Wl u l̄ 8~0!u2

2
1

2
Wkuk̄8~0!u21

1

2
zWl u l̄ 8~0!u2e2i (c1a l2ak)

1Wkuk̄8~0!u2z1O~Wk!, ~77!

wherek̄8(0)5uk̄8(0)ueiak and l̄ 8(0)5u l̄ 8(0)ueia l. This is in
agreement with the results of Ref.@20#, where the caseb
5g5p was studied using a different approach. We obse
that Pmax depends on the statistical properties~averages and
variances! of the initial amplitude distribution of the marke
and unmarked states. For a given distribution, the probab
of measuring a marked state is bounded byPmax51
2Wls l

2 . This upper bound is reached whenc1a l2ak50,

as well as whenl̄ 850 or k̄850. This optimization can be
achieved by an adjustment of the rotation phases to the v
b5p22(ak2a l). However, this requires one to know th
difference between the phasesak anda l , which is not gen-
erally available for an arbitrary initial amplitude distribution

The optimal case ofPmax51 can be obtained by using th
predefined stateus& and applying on it the operatorU, to
generate the initial amplitude distribution. In this case t
initial unmarked state variance iss l50, the weighted initial
averages arek̄8(0)51 and l̄ 8(0)51, and the phasesak
5a l50. Thus, executing the generalized Grover iteratio
using the same unitary operatorU, the predefined stateus& as
the initial state, and a rotation phase ofb5g5p enables one
to measure a marked state with the optimal probabi
Pmax51. The original Grover algorithm is a special case
which U is the Hadamard operator and the predefined s
us&5u0•••00&.

Consider an arbitrary initial distribution ofr marked and
N2r unmarked states, with known averagesk̄(0) and l̄ (0),
respectively. The probabilityP(t) that a measurement a
time t will yield a marked state is a sinusoidal functio
given by Eq.~57!. The highest value ofP(t) is obtained at
time T, for which the argument of the cosine function sat
fies 2(vT1f)5p. Thus, the number of iterationsT which
gives rise to the highest probability of finding a marked st
upon measurement is

T5
p22f

2v
, ~78!

where the angular frequency is

v52 sin
b

2
AWk1O~Wk

3/2!. ~79!

An interesting case is the one in which the average
variance of the initial amplitude distribution arenot known,
but different runs of the algorithm use initial amplitude
drawn from the same distribution. Naively, one could pick
random number of iterationsTr and thus find a marked stat
with probability P(Tr). Correspondingly, the expected num
ber of repetitions of the entire algorithm using the sameTr
0-6
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would be 1/P(Tr) until a marked state is found. Howeve
P(Tr) could be very small. A better strategy is now show
From Eqs.~34! and ~57! it follows that the period of oscil-
lation of P(t) depends only on the unitary operatorU and the
predefined stateus& as well as on the rotation phaseb5g
used in the algorithm. The phasef depends on the initia
amplitude distribution and is thus unknown. Consider
case where one runs the algorithm twice, taking meas
ments at timesT1 and T2, respectively, whereT22T1
5p/(2v). From Eq.~57! it is clear that in one of the two
measurements the cosine expression will be negative so
P(T)>Pav . Since the probabilityP(t) must be non-
negative at any time,Pav>DP. SincePmax5Pav1DP, we
also find thatPav>Pmax/2. Therefore, in one of the two
measurements one obtainsP(T)>Pmax/2. In this case one
needs twice as many repetitions to obtain at least half
success probability compared to the case when the opt
measurement time is known. The slowdown is thus at m
by a factor of 4.

V. SUMMARY

In this paper we have generalized the recursion equa
analysis of Grover’s quantum search algorithm presente
Ref. @24#. We applied it to the large class of Grover-typ
algorithms in which the Hadamard transform is replaced
any unitary transformation and the phase inversion is
placed by a rotation by an arbitrary angle. We derived rec
sion equations for the time evolution of the amplitudes of
marked and unmarked states, for any initial complex am
tude distribution. These equations were solvedexactly. From
the solution we obtained an expression for the optimal nu
ber of iterationsT after which the probability of finding a
marked state upon measurement is the highest. The valu
this probability,Pmax, was also obtained. BothT and Pmax
are found to depend on the averages and variances o
initial amplitude distributions of the marked and unmark
states, but not on higher moments. This is due to the linea
of the transformations and the large number of conser
quantities, particularly the~weighted! variances of the distri-
butions of the amplitudes of the marked and unmark
states. The timeT and the probabilityPmax also depend on
the unitary operatorU which is used in the algorithm, th
predefined stateus&, and the angleb by which its phase is
rotated as well as the angleg by which the phases of th
marked states are rotated. Moreover, it was found tha
order for the algorithm to apply the two rotation angles m
be equal, namely,b5g.
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APPENDIX

In this appendix we obtain upper bounds onuk̄8(0)u and
u l̄ 8(0)u in the initial amplitude distribution. According to
Eqs.~9! and~18! the initial distribution weighted average o
the marked states is

k̄8~0!5

(
i PM

h i* ki~0!

Wk
. ~A1!

From normalization it is clear thatuki(0)u<1 for any marked
state. Therefore

uk̄8~0!u<
(
i PM

uh i uuki~0!u

Wk
<

(
i PM

uh i u

Wk
<

r uhu
Wk

, ~A2!

where r is the number of marked states anduhu
5maxiPMuhiu. Sinceuhu2<( i PMuh i u25Wk , one obtains

uk̄8~0!u<
rWk

1/2

Wk
5rWk

21/2. ~A3!

Therefore, typical initial amplitude distributions in larg
search problems satisfy

uk̄8~0!u5O~Wk
21/2!. ~A4!

According to Eqs.~10! and~19! the weighted average of th
initial distribution l i8(0) satisfies

l̄ 8~0!5

(
i PM̄

h i* l i~0!

Wl
5 (

i PM̄

h i* l i~0!1O~Wk!. ~A5!

Using Eq.~5! for the initial state of the systemug(0)&, the
expression for k̄8(0) @given in Eq. ~A1!#, and h i*
5^suU* u i &, one can bring Eq.~A5! to the form

l̄ 8~0!5^suU* ug~0!&2Wkk̄8~0!1O~Wk!. ~A6!

Using Eq.~A4! one obtains

l̄ 8~0!5^suU* ug~0!&1O~Wk
1/2!. ~A7!

Since ug(0)& is normalized and U* is unitary,
z^suU* ug(0)& z,1. Therefore,

u l̄ 8~0!u,11O~Wk
1/2!, ~A8!

namely,

u l̄ 8~0!u5O~1!. ~A9!
0-7
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