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The recursion equation analysis of Grover’s quantum search algorithm presented byeB#igRhys. Rev.
A 60, 2742 (1999] is generalized. It is applied to the large class of Grover-type algorithms in which the
Hadamard transform is replaced by any other unitary transformation and the phase inversion is replaced by a
rotation by an arbitrary angle. The time evolution of the amplitudes of the marked and unmarked states, for any
initial complex amplitude distribution, is expressed using first-order linear difference equations. These equa-
tions are solve@xactly The solution provides the number of iteratiohafter which the probability of finding
a marked state upon measurement is the highest, as well as the value of this protahilityBoth T and
Pnaxare found to depend on the averages and variances of the initial amplitude distributions of the marked and
unmarked states, but not on higher moments.
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I. INTRODUCTION the difficult computing problems in practi¢é].

Let us assume, for simplicity, thit=2", wheren is an

Grover's search algorithrfil, 2] provides a dramatic ex- integer. We introduce a registex)=|x;, . .. X,) of n qu-

ample of the potential speedup offered by quantum computyjts o be used in the computation. Grover's original quan-
ers. It also provides an excellent laboratory for the analysig;m search algorithm consists of the following steps.

impl i f Igorithms i i hard- —
and implementation of quantum algorithms in various hard (1) Initialize the register t40)=0- - -00), and apply the

ware media. The problem addressed by Grover's algorithm 4 . : L
can be viewed as trying to find a marked element in an un[—]adamard transform to obtain a uniform amplitude distribu-
sorted database of sia¢ To solve this problem, a classical tion.

- 2) Repeat the following operatioh times
computer would need, on averad¥?2 database queries and ( .
N queries in the worst case. Using Grover's algorithm, a () Rotate the marked states by a phaseraadians.

quantum computer can accomplish the same task usin (b) Rotate all states byr radians around the average am-

merely O(yN) queries. The importance of Grover's result | litude ofall st_atgg. This_is done hy) Hadamard transform-
stems from the fact that it proves the enhanced power di'd every qubitii) rotating the|O) state by a phase of
quantum computers compared to classical ones for a whol@dians, andiii) again Hadamard transforming every qubit.
class of oracle-based problems, for which the bound on the (3)Measure the resulting state. _
efficiency of classical algorithms is known. A large number of results followed Grover’s discovery.
Grover’s algorithm can be represented as searching a préese results include the profs] that the algorithm is as
image of an oracle-computable Boolean function, which car¢fficient as theoretically possibl€]. A variety of applica-
only be computed forward, but whose inverse cannot be ditions were developed, in which the algorithm is used in the
rectly computed. Such a function isD—{0,1} whereD is solution of other problem§7-14. Recently, experimental
a set ofN domain valuegor statesand the pre-images of the !mplementanons of'Grover’s algorithm were constructed us-
value 1 are called the marked states. The problem is to iderd?d Nuclear magnetic resonan@eMR) [15,16] as well as an
tify one of the marked states, i.e., someD such that Optical devicg17]. o _
F(v)=1. Problems of this type are very common. One im- Several generalizations of Grc_)ver’s. original algorithm
portant example, from cryptography, is searching for the ke)have been developed. 1_'he case in which there are several
K of the data encryption standafBES) [3], given a known Mmarked states was studied in REE8]. Let k(t) [I(t)] de-
plaintext P and its ciphertexC, whereF=1 if the pair of ~ note the amplitude of thenarked[unmarked] states aftet
plaintext and ciphertext matde., Ec(P)=C whereE, is  iterations of the algorithm. It was shown i8] thgt the
the encryption functiohand F=0 otherwise. Other ex- amplitude of the marked states increasesket = sinfw(t
amples are solutions of nondeterministic polynomial time*+1/2)]/\r, while at the same time that of the unmarked
(NP) and NP-complete problems, which include virtually all states decreases &ft) =codw(t+1/2)]/YN—r, where o
=2 arcsing/r/N) andr is the number of marked states. For
N>r the optimal time to measure and complete the compu-
*Present address: Department of Physics of Complex Systemggtion is afterT=O(\/N/r) iterations, wherk(t) is maximal.

Weizmann Institute of Science, Rehovot 76100, Israel. Recently, the algorithm was further generalized by allow-
"Permanent address: Chemistry Department, University of Toring an arbitrary(but constantunitary transformation to take
onto, 80 St. George Street, Toronto, ON, Canada M5S 3H6. the place of the Hadamard transform in the original setting
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[19-21] and an arbitrary phase rotation of the marked and G=(1—e‘5)|77><77|— [, (4)
the predefined states instead of thénversion[22]. Another
generalization was obtained by allowing for ambitrary  where|7)=U|s).
complex initial amplitude distributigrinstead of the uniform
initial amplitude distribution obtained in stefl) above
[23,24].

In this paper we analyze the time evolution of the ampli- A. Analysis

tudes in the most general algorithm, using an arbitrary uni- e wijl now analyze the time evolution of the amplitudes
tary tTaU_Sforma“?“ and_phgse_rotatlon_s on an afb'”a'fy oMy, the generalized algorithm with a total of states,r of
plex initial amplitude distribution. Using first-order linear which are marked. Let the marked amplitudes at tinee

difference equations we obtain an exact solution for the timedenoted byki(t), ieM, and the unmarked amplitudes by
evolution of the amplitudes under the most general condi- i \I/vhe:reM is, the set of marked statesM|=r)
e M, =

tions. The solution provides the optimal number of iterationsli(t)'_ _
T after which the probability of finding a marked state uponandM is the set of unmarked state${| =N—r). The initial
measurement is the highest, as well as the value of this prolamplitudesk;(0), ie M andl;(0), ieM att=0 are arbi-
ability, Pn,ax. Both T and P, are found to depend on the trary. Without loss of generality we assume that the number
averages and variances of the initial amplitude distribution®f marked states satisfiesst <N/2. A general state of the
of the marked and unmarked states, but not on higher masystem at time will now take the form
ments.

The paper is organized as follows. In Sec. Il we present _ . .
the generalized algorithm. The analysis based on recursion |g(t)>_i§,(,| ki(D]i)+ 2* L. ®
equations is given in Sec. lll. The results are discussed in

Sec. IV and summarized in Sec. V. In the Appendix weA single Grover iteratiorG17} will transform the amplitudes

obtain upper bounds on some weighted averages of the initigl. (), j <M, to kj(t+1)=(j|GI7|g(t)) and the amplitudes

amplitudes of the marked and unmarked states which arg¢ . . .
e i the analysi. F(0), jeM, to I;(t+1)=(j|GI7|g(t)). We find that the

recursion equations describing such iteration take the form

IlI. RECURSION EQUATIONS

ieM

ll. GENERALIZED GROVER ALGORITHM
. . i (t+1)=(1—ePe 7. _ *
In the generalized algorithm the initialization step is kj(t+1)=(1-eF)e ’7'% k()7
modified as follows. Instead of initializing the register ac-
cording to step(1), any initial distribution of marked and L (1—eB)p I * g
unmarked states can be udedy., the final state of any other (1-e )’712;7 (U7 =70, (6
quantum computationIn addition, therr phase rotation of
marked states described bj=3,e'""™|x)(x| is replaced

by rotation by an arbitrary phasg l(t+ 1)2(1—ei’8)ei777ji§/| ki(t) "
Y— i yF(x) .
17=2, €7 0hxl @ Ay S O -1, @
ieM

The rotation about the average, described&'}y—WIgWT,
whereW is the Hadamard transform amg=1-2|0)(0|, is
modified in two ways. First, the rotation ¢@) by = is re-
placed by the rotation of a predefined staeby an angles.
Second, the Hadamard transfokMis replaced by an arbi-
trary unitary operatot). In this generalized algorithm, step
(2B) above is replaced by

where
ni=(iln), i=1,...N, (8)

If »=0 for somei, the Grover iteratiorGI} changes only
the phase of the staté). Thus the probability to measure a
state|i) with 7;=0 remains constant. Hence we can treat the
G=—UIAU", (2) States withz; =0 separ_ately from those witby_iaﬁo. From
now on we assume, without loss of generality, that for the
where given operatot, the predefined stats) is chosen such that
_ | ) satisfiesn;#0,i=1, ... N. We will now introduce new
1B=1—(1—€'P)|s)(s]|. (3)  variables

In the generalized algorithm, the geometric interpretation k;(t)
of step(2B) as a rotation around the average amplitude of all kj(t)=—, 9)
states is not straightforward. We will demonstrate below
that, in fact, one can return to this interpretation by identify-
ing suitable variables. By insertirié” from Eq. (3) into Eq. 1/(t)= ﬁ (10)
(2) we obtain that ' 7;
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With these variables, the recursion equations will take theéBy averaging over all the marked states in Eg}) and over

form
kj(t+ D) =(1-e)e” D K/ (0] 7|’

+(1-e) 2 1(O)]m|2—€k/ (1), (11
ieM

|;<t+1>=<1—eiﬁ>e‘?EM k! (t)] 7

+(1-€P) 2 Ol mlP-1 1. (12
ieM
Let us define
zc<t>=<1—e‘ﬁ>e‘?2M k! (0)] 7|2
+(1—€P) 2, 1/ ()] 7% (13

ieM

It becomes clear that the time evolution of all the amplitudes

(of both marked and unmarked statean be expressed by

ki (t+1)=2C(t)—€e"k{(t), jeM, (14)
I/ (t+1)=2C(1)—1/(1), jeM. (15)
One can define the following weights:
W= 2 [l (16)
W= 2 |mil? 17
ieM

quantifying the projections of the stafey) on M and M,
respectively. From the normalization of the statg it is

clear thatw,+W,=1. These weights can be used in order to
define weighted averages of the new variables, of the form

2 Il
k'(t)= —w, (18
iEEM AR
1" (t)= W, (19
Using these averages to expré&3a) we obtain
2C(t)=(1—eP)[e "W, k' (t)+ W1 (1)]. (20)

all the un_marked states in EEL5) we find that the weighted
averagesk’(t) andl’(t) obey the following recursion equa-

tions:

K (t+1)=2C(t)— €'k’ (1), (22)

["(t+1)=2C(t)—1'(1). (22
These equations can be solved k6(t) andl’(t), and along
with the initial distribution this yields the exact solution for
the dynamics of all amplitudes. We will proceed to solve the
recursion formulas for arbitrary complex initial amplitudes.
Let us rewrite Eqs(21) and(22) in a matrix notation

r(t+1)=Ar(t), (23
where
ofnl
and
a b
A=| . d). (25
The matrix elements oA are given by
a=(1-efe'rw,—e'?, (26)
b=(1-e*)W,, (27)
c=(1-¢e'P)e"W,, (28)
d=(1-€e#)w,—1. (29)
The time evolution ok’ (t) and|’(t) is given by
r(t)=A'r(0). (30)

In order to obtain explicit expressions fiof(t) andl’ (t) we
consider the diagonal matrix
0 N_/)°

The eigenvalues\. of the matrix A are the solutions of
det(A—X\1)=0. They can be expressed as

Ap=S 'AS= (31)

)\j:eiwiy (32)
where
_l’_
W= % *w (33

and the angular frequenay is in the range & w<, and
satisfies
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+ - I'=k! K’
cosw=Wj cos%%—w cosg. (34 Aki=ki (0)=k'(0), (46)
| j . . Al{=1{(0)~1"(0) (47
The matrixS which consists of the corresponding column
eigenvectors, takes the form are constants of motianThus, the time dependence of the
variables follows:
1 1 N
S=|{A,—a A_—a]. (35) ki (D) =K'(t)+(—1)'e"Ak/, (48)

b b

I ()=1"(t)+(—1)'Al] . (49
We will now apply Eq.(31) to reconstruct the matriR, and

computeAl. A simpler expression for the time evolution is The time evolution of the amplitudes can now be obtained:

optained: ()= nK (1) +(~1)'e"Ak/], (50)
B
"(O=8hs O, (39 (O= 7T (O+(~ 1AL (50
where .
In this picture all the marked as well as the unmarked states
A0 evolve in unison, so it is sufficient to follow the time evolu-
AD:< . ) (37)  tion of the average in each set. The only feature distinguish-
0 AL ing the states from one another is their initial deviation from

. o the average.
The time dependence is given by

_ ) ) B. R It:
K (1) =z 60+t~ zgl-1, (39) ess
From Egs.(48) and (49) it follows immediately that the

T (1) =24e' 0+ — 7,81, (39) weighted variances

1 _
where aﬁ(t)=Wk iZM |72k (1) =K' (D)2, (52
(A_—a)k'(0)—bl’(0)
Z1= , (40 1 —
1 N\ o*.z(t>=wI 2 =T (53
ieM

(A —a)k’(0)—bI'(0) (41) are time independent and therefore at any tirtteey can be
A=Ay replaced byoZ=02(0) ando?=0?(0), respectively. When
a measurement is performed at titrpehe probability that a
marked state will be obtained R(t)=3;_w|ki(t)|?. Since
all the operators used are unitary, the variatkggt) and

22:

and

Z3= b Z1, (42 I;'(t) satisfy the normalization condition
N_—a > |mlPk 0P+ 2 2l OP=1 (54
Z4_ b 22. (43) ieM ieM

at all times. Using the definitions &f (t) andl{ (t) and their

We have now compl_eted the_solution for the time'de'pen—weighted averagdZ’(t) and?(t) given in Eqs(9), (10) and
dence of the averagéS(t) and| ’(t) However, our aim is (18)1 (19), one can bring Eqi52) and (53) to the form
to obtain the time evolution of the individual variables(t)

andl;’(t) and from them to extract the amplitudiegt) and

2_ 2 L/ 2
[,(t). Subtracting Eq(21) from Eg. (14), and Eqg.(22) from g,(,l [Ki(O]" =W+ Wik (D)% (55)
Eqg. (15) one finds that
K (t+1)—K (t+1)=—e[k/ () —K (1],  (44) 2 IOP=Wof+W[1"(1)[2 (56)
ieM
I (t+ 1)—7(t+ 1)=—[I{(t)—?(t)]; (45) The first equation provides the probability to measure a

marked state at timg while the probability to measure an
namely, the difference, in absolute value, between each ainmarked state is given by the second equation. We will now
the variablesk;’(t), |,'(t) and the averages of the corre- try to examine the probability that a measurement at time
sponding sets are time independent. This means that will yield a marked state, and its dependence on the rotation
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anglesB andy, the unitary transformatiob, the predefined IV. DISCUSSION

state|s), and the averages and standard deviations of the |n order to examine the performance of the generalized
states. Using E(38) with z,=|z,|e'** andz,=|z,/€'?2, the  probability Pyya= P,, + AP that a measurement will yield a
probability that a measurement at tirh@iill yield a marked  marked state. We will also evaluate the optimal number of
state is given by a sinusoidal function of the form iterationsT after which the probability?,,,,, iS achieved.
The limit of difficult search problems is obtained when
P(t)=P,,—APcog2(wt+ ¢)], (57 N>r=1. This is reflected in the fact that in the original
Grover algorithm the probability of measuring a marked
where state immediately after the initialization step \'ig,=r/N.
The assumption thatV,<1 carries over to the generalized
_ case discussed here. It is satisfied in all cases except for very
AP=2W,|z,||z,| (58) unlikely choices of the statks) from which one Grover it-
, ) . , ) ) eration with the operatdd is sufficient in order to measure a
is the amplitude of the oscillations;/ w is their period, marked state with high probability. In the analysis beMiy
will be considered as a small parameter. The highest possible
Paw=Wi(|z1]?+ |22+ 0D) (590 value of the probability to measure a marked state is
2
is the average, or reference value of the probability, and Pmax=Wid|za| + |22|)2+Wk‘7k' (61)
Consider the parametezs andz, that express the depen-
2¢0=¢1— ¢ (60)  dence ofP,,, ON the initial amplitudes and the phase rota-
tion anglesB and y. The expressions far; andz, in Egs.
is the phase. These parameters are found to depend on t#) and(41) include \_—X\.) in the denominator. Using
unitary operatoiJ which is used in the algorithm, the pre- Eg.(32) it can be written as
defined statds), and the anglg8 by which its phase is ro-
tated as well as the angle by which the phases of the
m_arked states are rotated. The dependence on the initial arE'xpanding sino in powers ofW, <1, one finds that in case
pI|tgdes er}ters only /through thelwelghted averages of thﬁwat the anglesB and y are different, and the difference
variablesk;’ (0) andl;’(0) and their standard deviations. between them satisfié8— y|=0(1) (e.g., in radians
It is thus observed thaP(t) does not depend on any e
higher moments of the initial amplitude distribution. This is o 18—l
due to the fact that all the transformations in the quantum )\_—)\+:2|e'(5*7)’25|nT+O(Wk); (63
algorithm are linear. Thereforé;(t) andl;(t) can be ex-
pressed as some linear combination&¢0) andl;(0). The  namely, the denominator, in absolute value, is typically of
only nonlinearity appears in the expressionR¢t) as a sum  order unity. In casegg=y
of squares of the amplitudes of the marked states at time
Therefore, powers higher than quadratic are excluded in the
expression foP(t). Moreover,P(t) does not depend on any
other linear combinations of the first and second powers of
the initial amplitudes, except for the particular weighted av-and the denominator is of ordefW,<1. In the following
erages that compose the first and second moments. This re&e discuss the search problem in these two cases separately.
sults from the fact that Grover’s iterations maintain a large
number of conserved quantities, particularly the variam:%s A. Different rotation angles: B#y

and of which are cons_tants of motion. As a resglt, the time Here we consider the case whgr y and the difference
evolution of the amplitudes can be fully described by thebetvveen them is fixed and finite, and satisfig@— ]
time dependence of the averageét) andl’(t). Due tothe  — (1) In this case, using Eq$26), (27), and(32) and the
linearity of the transformations’(t) and|’(t) can be ex- assumption tha#V,<1, the matrix elements can be approxi-

pressed as linear combinations kf(0) and |’(0). The mated by
probability P(t) of measuring a marked state at times

given by Eq.(55) in which the first term on the right hand

side, which includes the second moment, is a constant of _ i
motion. Therefore, no other quadratic forms can appear. The b=1-¢"+O(W,). (66)
second term depends on the first moment at tinvehich is e eigenvalues are

related to the first moment d@t=0 through the recursion

A_—A\,=2ie/(FTM5ing. (62)

A_—\,=4ie'Psin §Wk1’2+ o(W,3? (64)

a=—¢e"7"+0(W,), (65)

equations. Thus, the dependencePgt) on the initial am- A =—€eP+0(W,), (67
plitudes is only through the first and second moments of their _
distribution. A_=—€e"7+0(W,y), (68)
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when 8>y (0<B<2m, 0<y<2), and

N, =—e7+O(W,), (69)

A_=—eP+0(W,), (70

when y> B. In the Appendix it is shown that the initial am-
plitude distribution satisfiegk’ (0)]=0(W, ¥? and|l’(0)|
=0(1). From Egs. (400 and (41) we obtain that|z,]
=0(1) and|z,|=0(W, 9, in the casg3> y, while in the
casey> B, |z1|=0(W, *?) and|z,|=0(1). Therefore, in
both cases, using E¢58) one obtains

AP=0(W?; (71

namely, the amplitude of the oscillations is negligible. Thus,
the probability to measure a marked state after any number

PHYSICAL REVIEW A 63012310
2 1 T 2
Phax=1-W,oj _EWI“ (0)|

I — 1 o .
- EWk|k’(0)|2+ > IWi[T” ()| 2621+ an =0

+ W[k’ (0)[?]+0(W), (77)
wherek’(0)=|k’(0)|e'* and|’(0)=|l"(0)|e'*. This is in
agreement with the results of R¢R0], where the casg
=y= was studied using a different approach. We observe
that P,,,.x depends on the statistical propertieserages and
variances of the initial amplitude distribution of the marked
and unmarked states. For a given distribution, the probability
of measuring a marked state is bounded By,,=1
—W,o?. This upper bound is reached whem o, — =0,

of iterations cannot be significantly larger than the probabil-as well as wherl’=0 or k’=0. This optimization can be

ity, given by Eq.(55), to measure a marked state at tine

achieved by an adjustment of the rotation phases to the value

=0. We conclude that in this case the algorithm fails to8=7—2(ax—a,). However, this requires one to know the
enhance the probability of measuring a marked state. Théifference between the phaseg and ¢, which is not gen-

angular frequency isw=|8—y|/2+O(W,). Clearly, for

such a high frequency, for which the period is of the order of

erally available for an arbitrary initial amplitude distribution.
The optimal case d®,,,,=1 can be obtained by using the

only few steps, it is hard to exploit the oscillations sincepredefined statgs) and applying on it the operatdd, to
measurements can be taken only in discrete times and aggenerate the initial amplitude distribution. In this case the
likely to miss the highest point. The analysis presented abov#fiitial unmarked state variance ig=0, the weighted initial

applies as long a®V,<(B—vy)?. The conclusions are in
agreement with the results of Ref&2,25.

B. Identical rotation angles: B=vy

In this case the matrix elements can be approximated a

cording to
a=—¢ef+0(W,), (72
b=1-€#+0(W,), (73
A.=—€PFi 2ei55in§ W, 2+ 0(W,). (74)

This gives rise to
1 . _
21275 Wi "l "(0)€V =W ' (0)]+0(1),  (75)

wherey= (7— B)/2. Inserting Eq(75) into Eq.(61) we ob-
tain

1 — ) _
Pmax:ZH'l /(O)elw+wkl/2k,(o)|

+[il7(0)e"— W%’ (0)]17

+ W o2+ O(W,). (76)

To simplify this expression we will now use the identity

(la+b|+|a—b|)>=2(|a|*+|b|*+|a’—b?|), wherea andb
are Eomplex numbers. We will also repladé(0) by
W, Y217 (0) [note thatw,?=1+0(W,)] and find that

averages ar&’(0)=1 and1’(0)=1, and the phasegy
=a,=0. Thus, executing the generalized Grover iterations
using the same unitary operatdr the predefined stats) as

the initial state, and a rotation phase®* y= 7 enables one

to measure a marked state with the optimal probability

%max= 1. The original Grover algorithm is a special case in

which U is the Hadamard operator and the predefined state
|s)=1]0---00).

Consider an arbitrary initial distribution of marked and
N—r unmarked states, with known averadg€®) andl (0),
respectively. The probabilityP(t) that a measurement at
time t will yield a marked state is a sinusoidal function,
given by Eq.(57). The highest value oP(t) is obtained at
time T, for which the argument of the cosine function satis-
fies 2(wT+ ¢) = . Thus, the number of iteratioris which
gives rise to the highest probability of finding a marked state
upon measurement is

-2
7729 (79)

2w

where the angular frequency is
w=2 sing\/WkJr o(W?). (79

An interesting case is the one in which the average and
variance of the initial amplitude distribution an®t known,
but different runs of the algorithm use initial amplitudes
drawn from the same distribution. Naively, one could pick a
random number of iteration, and thus find a marked state
with probability P(T,). Correspondingly, the expected num-
ber of repetitions of the entire algorithm using the safme
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would be 1P(T,) until a marked state is found. However, APPENDIX

P(T,) could be very small. A better strategy is now shown. ) . . —

From Egs.(34) and (57) it follows that the period of oscil- !N this appendix we obtain upper bounds [é(0)| and
lation of P(t) depends only on the unitary operatdand the  |I"(0)] in the initial amplitude distribution. According to

predefined stat¢s) as well as on the rotation phage=y  Eqs.(9) and(18) the initial distribution weighted average of
used in the algorithm. The phage depends on the initial the marked states is
amplitude distribution and is thus unknown. Consider the

case where one runs the algorithm twice, taking measure- S 5*k(0)
ments at timesT,; and T,, respectively, whereT,—T, — it
=7/(2w). From Eq.(57) it is clear that in one of the two k'(0)= —w, (A1)

measurements the cosine expression will be negative so that

P(T)=P,,. Since the probabilityP(t) must be non- From normalization it is clear thék;(0)|<1 for any marked
negative at any timeR,,=AP. SinceP,,,=P,,+AP, we  state. Therefore

also find thatP,,=P,.¢/2. Therefore, in one of the two

measurements one obtaiR{T)=P,,,/2. In this case one

needs twice as many repetitions to obtain at least half the _ < |71k (0)] i;,, |7l r| 7|
success probability compared to the case when the optimal k' (0)|=< W < W, $W, (A2)
k k k

measurement time is known. The slowdown is thus at most

by a factor of 4. where r is the number of marked states andy|

=max . Since| 7|?°<Z; | 7i|*=Wj, one obtains
V. SUMMARY % eml 7l |7l ieml il k
12

In this paper we have generalized the recursion equation |@(0)|$
analysis of Grover’s quantum search algorithm presented in
Ref. [24]. We applied it to the large class of Grover-type ) o ) o )
algorithms in which the Hadamard transform is replaced byTherefore, typical |r_1|t|al amplitude distributions in large
any unitary transformation and the phase inversion is reS€arch problems satisfy
placed by a rotation by an arbitrary angle. We derived recur- —
sion equations for the time evolution of the amplitudes of the k’(0)]=0(W, ). (Ad)
marked and unmarked states, for any initial complex ampli- _ .
tude distribution. These equations were solesdctly From  According to Eqs(,10) and(19) the weighted average of the
the solution we obtained an expression for the optimal numinitial distribution1;(0) satisfies
ber of iterationsT after which the probability of finding a

=rw, 2 (A3)

marked state upon measurement is the highest. The value of 2 741,(0)
this probability,P,ax, Was also obtained. Both and P« _ VIR
are found to depend on the averages and variances of the  1'(0)= —w > 7 L(0)+O0(Wy). (A5)

initial amplitude distributions of the marked and unmarked eM

states, but not on higher moments. This is due to the linearity, _. -
of the transformations and the large number of conservegJSIrlg E.q.(5) for_t,he mma} statg of the systerfy(0)), th*e
quantities, particularly théweighted variances of the distri- €xPression fork’(0) [given in Eq. (Al)], and 7
butions of the amplitudes of the marked and unmarked™(S/U* i), one can bring Eq(AS5) to the form

states. The tim@ and the probabilityP,,,, also depend on — _

the unitary operatot) which is used in the algorithm, the 1(0)=(s|U*[g(0)) —W,k'(0)+O(W,).  (A6)
predefined statés), and the anglgd by which its phase is . )

rotated as well as the angle by which the phases of the USing Ed.(A4) one obtains

marked states are rotated. Moreover, it was found that in — . o

order for the algorithm to apply the two rotation angles must 17(0)=(s|U*[g(0)) + O(W, ). (A7)

be equal, namely3=1y. . . . . .
a =y Since |g(0)) is normalized and U* is unitary,
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