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An operator sum representation is derived for a decoherence-free subspace (DFS) and used
(i) show that DFS’s are the class of quantum error correcting codes (QECC’s) with fixed,unitary
recovery operators and (ii) find explicit representations for the Kraus operators of collective
decoherence. We demonstrate how this can be used to construct a concatenated DFS-QECC co
which protects against collective decoherence perturbed by independent decoherence. The cod
yields an error threshold which depends only on the perturbing independent decoherence rate
[S0031-9007(99)09301-1]
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Decoherence-free subspaces (DFS’s) have rece
emerged [1–6] as an alternative way to protect frag
quantum states against decoherence, alongside “conv
tional” quantum error correcting codes (QECC’s) [7,8] an
the new “dynamical decoupling” schemes [9]. This is o
particular importance in quantum computation, where t
promise of a speedup compared to classical compu
hinges crucially on the possibility to maintain quantu
coherence throughout the computation [10]. So far, DFS
and QECC’s have been considered as distinct metho
often characterized as “passive” and “active,” respective
However, as we will show here, in fact, DFS’s can b
considered as a special class of QECC’s, characterize
having a particularly simple form of recovery operator
Conditions for the existence of nontrivial DFS’s ar
stringent: the decoherence process should be “collectiv
meaning that the bath couples in a symmetric way
all qubits. So far conditions for collective decoherenc
have been formulated in a Hamiltonian form [3,4], an
in the Lindblad semigroup form [5,6]. Here we wil
present an alternative formulation in terms of the opera
sum representation (OSR) [11], which has the advanta
of establishing a direct link to the theory of QECC’s
This OSR formulation enables us to combine DFS’s a
QECC’s, into a concatenated scheme which can err
correct the more general physical situation of “clust
decoherence.” For the price of longer code words, th
concatenated scheme operates with a substantially redu
error threshold.

Hamiltonian formulation of decoherence-free sub
spaces.—Conditions for DFS’s within the genera
(non-Markovian) framework of semigroup dynamics we
derived in Ref. [4]. We first briefly rederive these con
ditions in a simplified form. Consider a closed quantu
system, composed of a systemS of interest defined on
a Hilbert spaceH (e.g., a quantum computer) and
bath B. The evolution of the closed system is given b
rSBstd  UrSBs0dUy, where the unitary evolution opera
tor (we seth̄  1) is U  exps2iHtd. The full Hamil-
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tonian is H  HS ≠ IB 1 IS ≠ HB 1 HI , where HS ,
HB, and HI are, respectively, the system, bath, an
interaction Hamiltonians, andI is the identity operator.
Assuming initial decoupling between system and ba
the evolution of the closed system is given byrSBstd 
UfrSs0d ≠ rBs0dgUy. Quite generally, the interaction
Hamiltonian can be written asHI 

P
a Fa ≠ Ba, where

Fa and Ba are, respectively, system and bath operato
Suppose that there exists a degenerate subsethjk̃lj of
eigenvectors of theFa ’s such that

Fajk̃l  aajk̃l ; a, jk̃l . (1)

If HS leaves the Hilbert subspacẽH  Spanfhjk̃ljg in-
variant, and if we start withinH̃ , then the evolution of
the system will bedecoherence-free(DF). To show this,
expand the initial density matrices of the system and t
bath in their respective bases:rSs0d 

P
ij sijjĩl k j̃j and

rBs0d 
P

mn bmnjml knj. Using Eq. (1), one can write
the combined operation of the bath and interaction Ham
tonians overH̃ as

IS ≠ HB 1 HI  IS ≠ Hc

; IS ≠

"
HB 1

X
a

aaBa

#
.

This clearly commutes withHS over H̃ . Thus since
neither HS (by our own stipulation) nor the combined
HamiltonianHc takes states out of the subspace,

Ufjĩl ≠ jmlg  USjĩl ≠ Ucjml , (2)

whereUX  exps2iHXtd, X  S, c. Hence it is clear,
given the initially decoupled state of the density matri
that the evolution of the closed system will berSBstd P

ij sijUS jĩl k j̃jUy
S ≠

P
mn bmnUcjml knjUy

c . It follows
using simple algebra that after tracing over the ba
rSstd  TrBfrSBstdg  USrSs0dUy

S , i.e., that the system
© 1999 The American Physical Society
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evolves in a completely unitary fashion oñH : under the
condition of Eq. (1) the subspace is DF. As shown i
Ref. [4], Eq. (2) is also a necessary condition for a DFS

Operator sum representation on a decoherence-fr
subspace.—In the OSR, the evolution of the density
matrix is written as rSstd  TrBfUsrS ≠ rBdUyg P

a AarSs0dAy
a, where the “Kraus operators” are

given by

Aa 
p

n kmjUjnl; a  sm, nd , (3)

(jml, jnl are bath states) and satisfy the normalizatio
constraint

P
a Ay

aAa  IS.
Let H̃ be anÑ-dimensional DFS. In this case it follows

immediately from Eqs. (2) and (3) that the Kraus operato
all have the following representation (in the basis where t
first Ñ states spanH̃ ):

Aa 

µ
gaŨS 0

0 Āa

∂
; ga 

p
n kmjUcjnl . (4)

Here Āa is an arbitrary matrix that acts oñH ' (H 
H̃ © H̃ ') and may cause decoherence there;ŨS is US

restricted toH̃ . This simple condition can be summarize
as follows.

Theorem I: A subspaceH̃ is a DFS iff (if and only if)
all Kraus operators have an identical unitary representati
upon restriction to it, up to a multiplicative constant.

Thus, in the OSR, the task of identifying a DFS reduce
to finding a subspace in which all the Kraus operators a
as the system unitary evolution operator. We now give
example for the important case of collective decoheren
(CD). CD is generally described within the following
scenario: the system operatorshFaj in the interaction
Hamiltonian form the Lie algebrasus2d [3,6]. This means
that the interaction Hamiltonian can be rewritten as

HI  S1 ≠ V1 1 S2 ≠ V2 1 Sz ≠ Vz . (5)

HereSa 
PK

i1 s
a
i areglobal Pauli spin operators (i is

the qubit index) satisfying thesls2d commutation relations,
and Va are the bath operators coupled to these degre
of freedom. A more restricted case of CD arises whe
only phase damping processes are allowed, so thatV1 
V2  0. We will concentrate on this case, as it is
fully analytically solvable. For simplicity we will assume
throughout thatHS  0.

Pure phase damping on a single qubit is described
the Paulisz matrix. In the standard basis it is easy t
verify that the matrix representation of the global phas
damping operatorSz is Sz  diagf fs jdg, wherefs jd 
(number of 0’s)2 (number of 1’s) in the binary repre-
sentation ofj ( j  0 . . . 2K21). For example, for two
qubits, Sz  diagf2, 0, 0, 22g. SinceSz is diagonal, the
action of the interaction HamiltonianHI  Sz ≠ Vz

can be written simply asHI j jl jnl  fs jd j jl ≠ Vzjnl.
Hence the action of the full Hamiltonian isHj jl jnl 
n
.
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j jl ≠ Vjjnl, where Vj ; fs jdVz 1 HB. Similarly,
Hnj jl jnl  j jl ≠ Vn

j jnl, whence exps2iHtd j jl jnl 
j jl ≠ exps2iVjtd jnl, so that the Kraus operators
can be evaluated explicitly:k j0jAaj jl  djj0

p
n 3

kmj exps2iVjtd jnl. Thus,the Kraus operators for pure
phase damping CD have a diagonal matrix rep
resentation in the standard basis,which can be
written compactly as Aa  diagfgs fjd

a g, gs fjd
a p

n kmj exps2iVjtd jnl. For example, in the case o
two qubits we obtainAa  diagfgs2d

a , gs0d
a , gs0d

a , gs22d
a g,

with gs0d
a 

p
n kmj exps2iHBtd jnl and g

s62d
a p

n kmj exps2ifHB 6 2Vzgtd jnl. By Theorem I the three
blocks in Aa correspond to three DFSs. Next, consid
the effect of this OSR on a general density matrix (om
ting standard algebra):frs0dgjk °

t P
afAars0dAy

agjk 
frs0dgjk

P
mn ngs fjd

mn
gs fkdp

mn
. As expected, no mixing of den-

sity matrix elements occurs. The time dependence of e
element is determined by the sum in the last expressi
which, motivated by the understanding that decoheren
is taking place, we write formally as a decaying exp
nential (although without a Markovian approximatio
Poincaré recurrences may occur). Thus, exps2tytjkd ;P

mn ngs fj d
mn

gs fkdp

mn


P
n n knj exphit f fs jd 2 fskdg sVz 1

fVz , HBgd 1 . . .j jnl, with higher order terms, all de-
pending on powers offs jd 2 fskd, given by the
Campbell-Hausdorff formula. In agreement with th
general theory of DFS’s [4,6], the DF states are those
which fs jd  fskd, in which case1ytjk  0. Normally
(i.e., in the “pointer basis” [12]), all other states ar
expected to have1ytjk . 0, although in order to verify
this one must specifyVz. This expectation is confirmed
for a harmonic bath [1].

Decoherence-free subspaces as quantum error corre
ing codes.—Quantum error correction can be regarded
the theory of reversal of quantum operations on a subsp
[13]. This subspace,C  SpanfhjiLljg, is interpreted as a
“code” (with code wordshjiLlj) which can be used to pro-
tect part of the system Hilbert space against decohere
(or “errors”) caused by the interaction between system a
bath. The errors are represented by the Kraus opera
hAaj [8]. To decode the quantum information after the a
tion of the bath, one introduces “recovery” operatorshRr j.
A QECC is a subspaceC and a set of recovery opera
tors hRr j. Reference [8] gives two equivalent criteria fo
the general condition for QECC. It is possible to corre
the errors induced by a given set of Kraus operatorshAaj,
(i) iff

RrAa 

µ
lraIC 0

0 Bra

∂
; r , a , (6)

or, equivalently, (ii) iff

Ay
aAb 

µ
gabIC 0

0 Āy
aĀb

∂
; a, b . (7)

In both conditions the first block acts onC ; Bra andĀa are
arbitrary matrices acting onC ' (H  C © C '). Let
4557
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us now explore the relation between DFS’s and QECC
First of all, it is immediate that DFS’s are indeed a val
QECC. For, given the (DFS) representation ofAa as
in Eq. (4), it follows that Eq. (7) is satisfied withgab 
gp

agb. Note, however, that unlike the general QECC ca
which has a full-rank matrixgab, in the DFS case this
matrix has rank 1 (since theath row equals row 1 upon
multiplication bygp

1ygp
a), implying that a DFS is a highly

degenerateQECC [7,8].
A DFS is an unusual QECC in another way: decoheren

does not affect a perfect DFSat all. Since they are based
on a perturbative treatment, other QECC’s [e.g., stabiliz
or GF(4) codes [7] ] are specifically constructed to impro
the fidelity to a given order in the error rate, whic
therefore always allows for some residual decoherence
take place. The absence of decoherence to any order
a perfect DFS is due to the existence of symmetries in
system-bath coupling which allow for anexacttreatment.
These symmetries are ignored by perturbative QEC
either for the sake of generality or because they simply
not exist, as in the case of independent couplings. Give
DFS, the only errors that can take place involve the unita
rotations of code words (basis stateshjĩlj of H̃ ) inside
the DFS, due to the system HamiltonianHS (this may
actually be the desired evolution if one is implementin
a computation insideH̃ usingHS). Thus, the complete
characterization of DFSs as a QECC is given by t
following.

Theorem II: Let C be a QECC for error operatorshAaj,
with recovery operatorshRr j. ThenC is a DFS iff upon
restriction toC , Rr ~ Uy

S for all r.
Proof. First supposeC is a DFS. Then by Eqs. (4)

and (6),

Rr

µ
gaŨS 0

0 Āa

∂


µ
lraIC 0

0 Bra

∂
.

To satisfy this equation, it must be true that

Rr 

√
lra

ga
Ũy

S Cr

Dr Er

!
.

The conditiongaŨy
S Dr  0 implies Dr  0 by unitar-

ity of ŨS . Also, sinceĀa is arbitrary, generically the
conditionCrĀa  0 impliesCr  0. Thus upon restric-
tion to C  H̃ , indeedRr ~ Ũy

S (by unitarity of ŨS ,
jlraygaj  1). Now supposeRr ~ Ũy

S . The very same
argument applied toAa in Eq. (6) yieldsAa ~ ŨS upon
restriction toC . Since this is exactly the condition defin
ing a DFS in Eq. (4), the theorem is proved.

We conclude that DFS’s are a particularly simp
instance of general QECC’s, where upon restriction to t
code subspace, all recovery operators are proportiona
the inverse of the system evolution operator.

Quantum error correction on a decoherence-free su
space.—A nonideal DFS will still be subject to some deco
herence [6]. DFS’s are efficient under conditions in whic
each qubit couples to the same environment (collective
4558
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coherence). Ordinary QECC’s are designed to be effici
when each individual qubit couples to a different enviro
ment (independent decoherence). While neither code is
ficient in the extreme limit when the other is, QECCs w
still work for correlated errors [7,8], whereas DFS’s wi
not work in the independent error case [6]. One wou
generally expect the likelihood ofK qubits collectively
coupling to the same environment to decrease with incre
ing K [1]. Thus an interesting situation (cluster decohe
ence) arises when small blocks of qubits undergo collect
decoherence (e.g., groups of neighboring identical ato
on a polymer chain), while this symmetry is broken pe
turbatively by independent decoherence between bloc
Here we show how by adding an additional layer of QEC
encoding, the DFS can be stabilized against such com
tational errors.

In the collective decoherence case [Eq. (5)], the smal
DFS which can encode one logical qubit is made up
four physical qubits [3]. Consider an operator basis whi
covers all possible errors which can occur on this 4-qu
DFS. From the discussion above, we know that a DFS
Kraus operators which all are direct sums of a fixed unita
transformation onH̃ and variable transformations (whos
exact form is irrelevant) onH̃ '. Thus, perturbative errors
(of sizee) on a DFS can conveniently be represented
Kraus operators with the following structure:

Aa  Ãa 1 e

µ
Q1 Q2
Q3 Q4

∂
. (8)

Here Ãa represents the (dominant) contribution due
ideal collective decoherence, and the second matrix rep
sents the symmetry breaking perturbation.Q1 (a 2 3 2
matrix for the 4-qubit case) acts just on the DFS;Q2

(2 3 14) takes states fromH̃ ' into H̃ , but we need
not worry about this as a separate process, since it
also be corrected using QECC insidẽH ; Q3 (14 3 2)
takes states fromH̃ into H̃ '; Q4 acts just onH̃ '

and is irrelevant to our discussion. Thus, to first ord
in time, all of the relevant errors can be enumerated
(i) independent errors acting on the encoded DFS sta
A basis for these errors are the Pauli operators:X, Z,
Y  XZ, andI acting only on the DFS qubitsj0Ll and
j1Ll (e.g.,Xj0Ll  j1Ll). (ii) Errors which take the sys-
tem into H̃ '  Spanfhj jLlj15

j2g. Define 14 operators
Pj  j jLl sk0Lj 1 k1Ljd, Pj : H̃ ° H̃ ', out of a total
of 28 in theQ3 block. In order to cover all possible error
which might take the DF states outside ofH̃ , it suffices to
consider the effect ofPj andPjZ, whereZ is the phase er-
ror operator acting onH̃ as defined above. The possib
errors which can occur on our 4-qubit DFS are thus giv
by E  hX, Y , Z, Pj, PjZj. The task is now to find an ap
propriate error correction scheme. To do so, we may
the DF statesj0Ll and j1Ll to construct the well-known
“perfect” 5-qubit QECC [14]. This concatenation yield
new encoded statesj0El andj1El, composed of 20 physi-
cal qubits. In the standard approach to correcting err
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with the 5-qubit code, one uses a quantum network to c
culate the syndrome on ancilla qubits and uses this sy
drome to apply the appropriate correction procedure on t
encoded qubits. Thus, in order to apply a similar proc
dure to correct for the standard bit flip errors which now
act on our 4-qubit DF states, we simply convert the gat
used in the standard error correction procedure to ga
which perform the same operations onj0Ll and j1Ll and
which do not disturb the states iñH '. Under these condi-
tions, it is obvious thatX, Y, Z can be corrected if the DF
qubits decohere independently (the condition on standa
QECC), as we stipulated. Furthermore, consider the fo
lowing modified controlled-not gate:Cj0L, 0Ll  j0L, 0Ll,
Cj1L, 0Ll  j1L, 0Ll, Cj jL, 0Ll  j jL, jLl, plus unspeci-
fied operations (which do not have to concern us) whic
ensure thatC is unitary. Using this gate, one can correc
for the effect ofPj on the system as follows: attach an an
cilla DF qubit in thej0Ll state, performC on this state,
and repeat the procedure on every DF qubit of the 5-qu
code word. This detects whether one of thePj errors has
occurred. Essential to this procedure is the fact that we
not disturb the originalj0Ll andj1Ll states. Once an error
of this type has been detected, one may recover the er
state toj0Ll. The error has then been reduced to a standa
Pauli one on a DFS state and can be fixed by QECC. F
example (the first qubit,x  0 or 1, belongs to the code

word and the second is the ancilla):jxLl j0Ll °
P2 sjxLl 1

j2Lld j0Ll °
C

jxLl j0Ll 1 j2Ll j2Ll. Next the ancilla is
measured: if the result is 0, no error has occured; if it
2 then the state is recovered toj0Ll and the resulting stan-
dard Pauli error can be fixed by comparison of the erre
DF qubit to the other four DF qubits in the code word
Finally, the extreme case of single independent physic
qubit errors is also dealt with by the concatenated DF
QECC code, because the above procedure automatic
also corrects the errors which are the subject of the sta
dard QECC procedures, representing them as linear com
nations drawn from our natural DFS basis of errorsE . Of
course, the 20-qubit code presented above is less effici
than the standard 5-qubit QECC code if these independ
errors are the dominant ones.

The final question regarding the concatenated DF
QECC scheme concerns the threshold for fault tolera
quantum computation [15]. The threshold probability o
error has been estimated to be in the range of1026 1023

per operation [16]. In the present context it is simplest
discuss this issue in the language of the Markovian sem
group master equation. Following the notation of Ref. [6
we consider error generatorshFaj yielding a decohering
term fFa , rstdFy

bg in the master equation. Assume thes
generators produce errors with a ratel. Then the fidelity
Fstd  TrfrSs0drSstdg is generally reduced by a term of
Osl2td. Upon inclusion of a symmetry-breaking perturba
tion by error generatorshGpj of ordere, with l ¿ e, we
find, following the arguments in Ref. [6], that this lead
to a decrease in the fidelity, not of orderOsletd as one
al-
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he
e-
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tes
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might naively expect (sincefGp , rstdFy
bg terms have ap-

peared), but, remarkably, only of orderOse2td (due to the
fGp , rstdGy

q g terms) [17].
Perturbing a DFS thus produces error rates which a

solely proportional to the strength of the additional pe
turbing process, and which are not dependent on the r
of the error process which generates the DFS. Applying
QECC to this system, as discussed above, improves the
delity to 1 2 Ose4t2d. Now in quantum computation one
generally envisions a realization of a quantum compu
which has ana priori low decoherence ratel. But in the
ordinary QECC case, it is this ratel which sets the error
threshold. Hence, in the scenario envisioned here, we h
effectively decoupled the ratel from the error threshold,
and a significant improvement may therefore result, if th
additional perturbatione is sufficiently small. Concatena-
tion of a DFS with QECC thus has the potential to achie
the goal of truly fault tolerant quantum computation, no
just quantum memory.
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