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Concatenating Decoherence-Free Subspaces with Quantum Error Correcting Codes
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An operator sum representation is derived for a decoherence-free subspace (DFS) and used to
(i) show that DFS’s are the class of quantum error correcting codes (QECC's) with fixédry
recovery operators and (i) find explicit representations for the Kraus operators of collective
decoherence. We demonstrate how this can be used to construct a concatenated DFS-QECC code
which protects against collective decoherence perturbed by independent decoherence. The code
yields an error threshold which depends only on the perturbing independent decoherence rate.
[S0031-9007(99)09301-1]

PACS numbers: 03.67.Lx, 03.65.Bz, 03.65.Fd, 89.70.+c

Decoherence-free subspaces (DFS’s) have recentlpnian isH = Hg ® I + Iy ® Hy + H;, where Hg,
emerged [1-6] as an alternative way to protect fragileHz, and H; are, respectively, the system, bath, and
quantum states against decoherence, alongside “conveimteraction Hamiltonians, and is the identity operator.
tional” quantum error correcting codes (QECC's) [7,8] andAssuming initial decoupling between system and bath,
the new “dynamical decoupling” schemes [9]. This is ofthe evolution of the closed system is given pyz(r) =
particular importance in quantum computation, where thdJ[ps(0) ® ps(0)JUt. Quite generally, the interaction
promise of a speedup compared to classical computetdamiltonian can be written &d; = > , F, ® B, where
hinges crucially on the possibility to maintain quantumF, and B, are, respectively, system and bath operators.
coherence throughout the computation [10]. So far, DFS’Suppose that there exists a degenerate sulpbgt of
and QECC's have been considered as distinct methodsjgenvectors of th&,’s such that
often characterized as “passive” and “active,” respectively. . . .

However, as we will show here, in fact, DFS’s can be Folk) = aalk) V¥ a,lk). 1)
considered as a special class of QECC's, characterized as - .

having a particularly simple form of recovery operators.If Hs leaves the Hilbert subspac = Spai{|4)}] in-
Conditions for the existence of nontrivial DFS's are variant, and if we start withird{, then the evolution of
stringent: the decoherence process should be “collectivethe system will bedecoherence-fre€DF). To show this,
meaning that the bath couples in a symmetric way teexpand the initial density matrices of the system and the
all qubits. So far conditions for collective decoherencebath in their respective bases;(0) = ,; s;;11) (/| and
have been formulated in a Hamiltonian form [3,4], andpz(0) = 3 ,, bu,lw) (v|. Using Eg. (1), one can write
in the Lindblad semigroup form [5,6]. Here we will the combined operation of the bath and interaction Hamil-
present an alternative formulation in terms of the operatotonians overH as

sum representation (OSR) [11], which has the advantage

of establishing a direct link to the theory of QECC's. Is® Hp + H; =I5 ® H,

This OSR formulation enables us to combine DFS’s and

QECC's, into a concatenated scheme which can error- =I5 ® |:HB + ZQQBQ]
correct the more general physical situation of “cluster a

decoherence.” For the price of longer code words, this .

concatenated scheme operates with a substantially reducgtis clearly commutes wittHg over {. Thus since

error threshold. neither Hg (by our own stipulation) nor the combined
Hamiltonian formulation of decoherence-free sub-HamiltonianH, takes states out of the subspace,

spaces—Conditions for DFS’s within the general . .

(non-Markovian) framework of semigroup dynamics were Ulli) ® [w)] = Usli) ® Uelu), 2)

derived in Ref. [4]. We first briefly rederive these con- ] o

ditions in a simplified form. Consider a closed quantumWhereUx = exp(—iHy1), X = §,c. Hence it is clear,

system, composed of a systesnof interest defined on 9IVen the |n|t|a_IIy decoupled state of the (_jensny matrix,

a Hilbert space (e.g., a quantum computer) and a that the e~voI£Jt|oJrn of the closed system will pgg(z) =

bath B. The evolution of the closed system is given by >.; 5i;UslD) (jlUs ® X, b, Uclu)(w|UL. It follows

pss(t) = Upsp(0)UT, where the unitary evolution opera- using simple algebra that after tracing over the bath,

tor (we setii = 1) is U = exp(—iH¢). The full Hamil-  pg(z) = Trg[psp(t)] = UspS(O)U;r, i.e., that the system
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evolves in a completely unitary fashion oi : under the [j) ® Q;lv), where Q; = f(;)V. + Hp. Similarly,
condition of Eq. (1) the subspace is DF. As shown inH"|j)|v) = |j) ® Q}|v), whence exp-iH1)| ) |v) =
Ref. [4], Eq. (2) is also a necessary condition for a DFS. | j) ® exp(—iQ;7)|v), so that the Kraus operators
Operator sum representation on a decoherence-fre¢an be evaluated explicitly:(j'|A.|j) = 6;y/v X
subspace—In the OSR, the evolution of the density (u|exp(—i€;7)|v). Thus,the Kraus operators for pure

matrix is written as ps(r) = Trg[U(ps ® pp)UT] =  phase damping CD have a diagonal matrix rep-
D4 Aaps(o)A;, where the Kraus operators are resentation in the standard basisgvhich can be
given by written  compactly as A, = diadg!/)], g\ =
Jv{ulexp(—iQ;t) |v). For example, in the case of
A, = Vv ulUly);,  a=(uv), (3) two qubits we obtainA, = diag[ggz),ggo),gio),((gé;)z)],

g = Jv(ulexp(—iHpt)|v) and ga =
exp(—i[Hp *= 2V,]t) |v). By Theorem | the three
blocks in A, correspond to three DFSs. Next, consider
the effect of this OSR on a general density matrix (omit-
?ing standard algebra)p (0)]x o S J[Ap ()AL =
PO X, ve'[) e/, As expected, no mixing of den-
sity matrix elements occurs. The time dependence of each
element is determined by the sum in the last expression,
), ga = Jv{u|U.v). (4) which, motivated by the understanding that decoherence
is taking place, we write formally as a decaying expo-
Here A, is an arbitrary matrix that acts affl L (3 = nential (although without a Markovian approximation

He 3:[i) and may cause decoherence thdfe:is Ug Pomcar(e;‘)re((i‘tj;re_nces may OCCW)' Thus,(ex;y/rjk) =

restricted ta# . This simple condition can be summarized 20 V8,0 S~ 2 ?<V| e.Xp{”[f(]) — SOJV: +

as follows. [VZ,I_{BT) + ...} ), with hlgher order terms, all de-
Theorem I: A subspace{ is a DFS iff (if and only ify Pending on powers off(;) — f(k), given by the

all Kraus operators have an identical unitary representatioFf""mpbe”'H"’IUSOIoncf f?rmula. In agreement with the

upon restriction to it, up to a multiplicative constant. gef?efa' theory of D.FS S .[4'6]’ the DF states are those for
Thus, in the OSR, the task of identifying a DFS reducedVnich /() =“f(].€)' n wh|c'h”case1/rjk = 0. Normally

to finding a subspace in which all the Kraus operators ac .., in the “pointer basis” [12]), aI.I other states are

as the system unitary evolution operator. We now give aﬁx_pected to have/ Tik = 0, "?"though n ord_er to v_enfy

example for the important case of collective decoherenc{%’s one must specif.. This expectation is confirmed

(CD). CD is generally described within the following 'o" & harmonic bath [1].
scenario: the system operatofB,} in the interaction Decoherence-free subspaces as quantum error correct-

Hamiltonian form the Lie algebreu(2) [3,6]. This means ing codes—Quantum error correction can be regarded as

; ; e ; the theory of reversal of quantum operations on a subspace
that the interaction Hamiltonian can be rewritten as ; L
[13]. This subspace = Span{|i;)}], is interpreted as a

H=S.®V,+S ®V_+S.8V.. (5) “code” (with code wordg]i; )}) which can be used to pro-
‘ - tect part of the system Hilbert space against decoherence
HereS, = Y5, o areglobal Pauli spin operators s  (Or “errors”) caused by the interaction between system and

the qubit index) satisfying the/(2) commutation relations, Path. The errors are represented by the Kraus operators
and V, are the bath operators coupled to these degredd.} [8]. To decode the quantum information after the ac-
of freedom. A more restricted case of CD arises wherion of the bath, one introduces “recovery” operatds}.
only phase damping processes are allowed, sohat= A QECC is a subspac€” and a set of recovery opera-
V_ =0. We will concentrate on this case, as it is tors{R,}. Reference [8] gives two equivalent criteria for
fully analytically solvable. For simplicity we will assume the general condition for QECC. It is possible to correct
throughout thatls = 0. the errors induced by a given set of Kraus operatArs,
Pure phase damping on a single qubit is described b9) iff
the Paulio® matrix. In the standard basis it is easy to AT 0
. . R ralC
verify that the matrix representation of the global phase R,A, = < 0 B. ) Vra, (6)
damping operatoS8, is S. = diad f ()], wheref(j) = "
(number of 0’s)— (number of 1's) in the binary repre- or, equivalently, (ii) iff
sentation ofj (j = 0...2K71). For example, for two I 0
qubits, S. = diad2,0,0, —2]. SinceS. is diagonal, the AfA, = (7“’6 ¢ ATA ) Ya,b. (7)
action of the interaction HamiltoniaH; =S, ® V, attb
can be written simply a®l;| j)|v) = f(j)|j) ® V.lv).  Inboth conditions the first block acts @iy B,, andA, are
Hence the action of the full Hamiltonian H|j)|v) =  arbitrary matrices acting o6+ (H = C & C*1). Let
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(lw), |v) are bath states) and satisfy the normalizationv\;l—< |
constrain®., AfA, = Is. VA

Let H be anV-dimensional DFS. In this case it follows
immediately from Egs. (2) and (3) that the Kraus operator
all have the following representation (in the basis where th
first N states spadH ):

_ gaﬁS _0 .
A“‘( 0 A,
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us now explore the relation between DFS’s and QECC’scoherence). Ordinary QECC's are designed to be efficient
First of all, it is immediate that DFS’s are indeed a validwhen each individual qubit couples to a different environ-
QECC. For, given the (DFS) representation Hf as ment (independent decoherence). While neither code is ef-
in Eq. (4), it follows that Eq. (7) is satisfied with,, = ficient in the extreme limit when the other is, QECCs wiill
g.g»- Note, however, that unlike the general QECC casestill work for correlated errors [7,8], whereas DFS’s will
which has a full-rank matrixy,,, in the DFS case this not work in the independent error case [6]. One would
matrix has rank 1 (since theth row equals row 1 upon generally expect the likelihood af qubits collectively
multiplication by gi/g%), implying that a DFS is a highly coupling to the same environment to decrease with increas-
degenerat€ECC [7,8]. ing K [1]. Thus an interesting situation (cluster decoher-
A DFSis an unusual QECC in another way: decoherencence) arises when small blocks of qubits undergo collective
does not affect a perfect DR& all. Since they are based decoherence (e.g., groups of neighboring identical atoms
on a perturbative treatment, other QECC's [e.g., stabilizeon a polymer chain), while this symmetry is broken per-
or GF(4) codes [7]] are specifically constructed to improveturbatively by independent decoherence between blocks.
the fidelity to a given order in the error rate, which Here we show how by adding an additional layer of QECC
therefore always allows for some residual decoherence tencoding, the DFS can be stabilized against such compu-
take place. The absence of decoherence to any order ftational errors.
a perfect DFS is due to the existence of symmetries in the Inthe collective decoherence case [Eqg. (5)], the smallest
system-bath coupling which allow for axacttreatment. DFS which can encode one logical qubit is made up of
These symmetries are ignored by perturbative QECC#ur physical qubits [3]. Consider an operator basis which
either for the sake of generality or because they simply daovers all possible errors which can occur on this 4-qubit
not exist, as in the case of independent couplings. Given BFS. From the discussion above, we know that a DFS has
DFES, the only errors that can take place involve the unitar)Kraus operators which all are direct sums of a fixed unitary
rotations of code words (basis statgsd} of H ) inside  transformation o and variable transformations (whose
the DFS, due to the system Hamiltonidhs (this may exactformis irrelevant) of{ . Thus, perturbative errors
actually be the desired evolution if one is implementing(of size €) on a DFS can conveniently be represented by
a computation insideé{ usingHg). Thus, the complete Kraus operators with the following structure:
characterization of DFSs as a QECC is given by the B Q, Q
following. A, =A, + e(Ql Q2>' (8)
Theorem II: Let C be a QECC for error operatofA ,}, . 3 +
with recovery operatorfR,}. ThenC is a DFS iff upon Here A, represents the (dominant) contribution due to
restriction toC, R, o U;‘ for all r. ideal collective decoherence, and the second matrix repre-

Proof. First suppose&C is a DFS. Then by Egs. (4) sents the symmetry breaking perturbatio®, (a2 X 2

and (6), matrix for the 4-qubit case) acts just on the DHE;
N (2 X 14) takes states fron#{ * into H , but we need
Rr<gaUS 0 ) = (AraIC 0 ) not worry about this as a separate process, since it can
0 Aq 0 Bra also be corrected using QECC insidd ; Q; (14 X 2)
To satisfy this equation, it must be true that takes states fronfH{ into H *+; Q4 acts just onJH *
Ayt and is irrelevant to our discussion. Thus, to first order
R, = (gaUS Cr) in time, all of the relevant errors can be enumerated as
D, E, (i) independent errors acting on the encoded DFS states.

The conditiongaﬁ;rD, — 0 implies D, = 0 by unitar- A basis for these errors are the Pauli operatds:Z,
ity of Ug. Also, sinceA, is arbitrary, generically the Y = XZ, andI actingonly on the DFS qubit$0,) and
conditionC,A, = 0 impliesC, = 0. Thus upon restric- 12) (€:9-X102) = [1,)). (ii) Errors which take the sys-

tion to C = #, indeedR, o U! (by unitarity of Ug, €M into H+ = spaifl ju)} ). Define 14 operators

[Ara/gal = 1). Now supposeR, « Ul The very same P = = 1) (Ol + (1), P, : H — H*, out of a total
argument applied ta, in Eq. (6) yieldsA, « Us upon of 28 in theQ; block. In order to cover all possible errors
restriction toC. Since this is exactly the condition defin- Which might take the DF states outsideHf, it suffices to
ing a DFS in Eq. (4), the theorem is proved. consider the effect dP; andP;Z, whereZ is the phase er-

We conclude that DFS’s are a particularly simpleror operator acting od{ as defined above. The possible
instance of general QECC'’s, where upon restriction to therrors which can occur on our 4-qubit DFS are thus given
code subspace, all recovery operators are proportional toy £ = {X,Y,Z,P;,P,Z}. The taskis now to find an ap-
the inverse of the system evolution operator. propriate error correction scheme. To do so, we may use

Quantum error correction on a decoherence-free subthe DF stated0;) and|1,) to construct the well-known
space—A nonideal DFS will still be subject to some deco- “perfect” 5-qubit QECC [14]. This concatenation yields
herence [6]. DFS's are efficient under conditions in whichnew encoded statd8z) and|1z), composed of 20 physi-
each qubit couples to the same environment (collective dezal qubits. In the standard approach to correcting errors

4558



VOLUME 82, NUMBER 22 PHYSICAL REVIEW LETTERS 31 My 1999

with the 5-qubit code, one uses a quantum network to calmight naively expect (sincEGp,p(t)F};] terms have ap-
culate the syndrome on ancilla qubits and uses this syrpeared), but, remarkably, only of ordére?r) (due to the
drome to apply the appropriate correction procedure on thg;p, p(t)(;;r] terms) [17].

encoded qubits. Thus, in order to apply a similar proce- Perturbing a DFS thus produces error rates which are
dure to correct for the standard bit flip errors which nowsglely proportional to the strength of the additional per-
act on our 4-qubit DF states, we simply convert the gatesurbing process, and which are not dependent on the rate
used in the standard error correction procedure to gatesf the error process which generates the DFS. Applying a
which perform the same operations {fn) and|1.) and  QECC to this system, as discussed above, improves the fi-
which do not disturb the statesiH *. Under these condi- delity to1 — O(e*+?). Now in quantum computation one
tions, it is obvious thaX, Y, Z can be corrected if the DF generally envisions a realization of a quantum computer
qubits decohere independently (the condition on standanrghich has ara priori low decoherence rate. But in the
QECC), as we stipulated. Furthermore, consider the folerdinary QECC case, it is this ratewhich sets the error
lowing modified controlled-not gat€2|0;,0.) = [0,,0,),  threshold. Hence, in the scenario envisioned here, we have
Cl1.,0.) = [1.,0.), Clj.,0.) = | jr,jr), plus unspeci- effectively decoupled the rate from the error threshold,
fied operations (which do not have to concern us) whictand a significant improvement may therefore result, if the
ensure thaC is unitary. Using this gate, one can correctadditional perturbation is sufficiently small. Concatena-
for the effect ofP; on the system as follows: attach an an-tion of a DFS with QECC thus has the potential to achieve
cilla DF qubit in the|0.) state, performC on this state, the goal of truly fault tolerant quantum computation, not
and repeat the procedure on every DF qubit of the 5-qubjust quantum memory.

code word. This detects whether one of Iheerrors has This material is based upon work supported by
occurred. Essential to this procedure is the fact that we dthe U.S. Army Research Office under Contract/
not disturb the original0,) and|1,) states. Once an error Grant No. DAAG55-98-1-0371, and in part by NSF
of this type has been detected, one may recover the erre@HE-9616615. We thank Dr. P. Zanardi for helpful
state td0,). The error has then been reduced to a standardorrespondence.
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