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The characterization of the dynamics of quantum systems is a task of both fundamental and practical
importance. A general class of methods which have been developed in quantum information theory to accom-
plish this task is known as quantum process tomography �QPT�. In an earlier paper �M. Mohseni and D. A.
Lidar Phys. Rev. Lett. 97, 170501 �2006�� we presented an algorithm for direct characterization of quantum
dynamics �DCQD� of two-level quantum systems. Here we provide a generalization by developing a theory for
direct and complete characterization of the dynamics of arbitrary quantum systems. In contrast to other QPT
schemes, DCQD relies on quantum error-detection techniques and does not require any quantum state tomog-
raphy. We demonstrate that for the full characterization of the dynamics of n d-level quantum systems �with d
prime�, the minimal number of required experimental configurations is reduced quadratically from d4n in
separable QPT schemes to d2n in DCQD.
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I. INTRODUCTION

The characterization of quantum dynamical systems is a
fundamental problem in quantum physics and quantum
chemistry. Its ubiquity is due to the fact that knowledge of
quantum dynamics of �open or closed� quantum systems is
indispensable in prediction of experimental outcomes. In par-
ticular, accurate estimation of an unknown quantum dynami-
cal process acting on a quantum system is a pivotal task in
coherent control of the dynamics, especially in verifying
and/or monitoring the performance of a quantum device in
the presence of decoherence. The procedures for character-
ization of quantum dynamical maps are traditionally known
as quantum process tomography �QPT� �1–3�.

In most QPT schemes the information about the quantum
dynamical process is obtained indirectly. The quantum dy-
namics is first mapped onto the state�s� of an ensemble of
probe quantum systems, and then the process is recon-
structed via quantum state tomography of the output states.
Quantum state tomography is itself a procedure for identify-
ing a quantum system by measuring the expectation values
of a set of noncommuting observables on identical copies of
the system. There are two general types of QPT schemes.
The first is standard quantum process tomography �SQPT�
�1,4,5�. In SQPT all quantum operations, including prepara-
tion and �state tomography� measurements, are performed on
the system whose dynamics is to be identified �the “princi-
pal” system�, without the use of any ancillas. The SQPT
scheme has already been experimentally demonstrated in a
variety of systems including liquid-state nuclear magnetic
resonance �NMR� �6–8�, optical �9,10�, atomic �11�, and
solid-state systems �12�. The second type of QPT scheme is
known as ancilla-assisted process tomography �AAPT�
�13–16�. In AAPT one makes use of an ancilla �auxilliary
system�. First, the combined principal system and ancilla are
prepared in a “faithful” state, with the property that all infor-
mation about the dynamics can be imprinted on the final
state �13,15,16�. The relevant information is then extracted

by performing quantum state tomography in the joint Hilbert
space of system and ancilla. The AAPT scheme has also been
demonstrated experimentally �15,17�. The total number of
experimental configurations required for measuring the
quantum dynamics of n d-level quantum systems �qudits� is
d4n for both SQPT and separable AAPT, where separable
refers to the measurements performed at the end. This num-
ber can in principle be reduced by utilizing nonseparable
measurements, e.g., a generalized measurement �1�. How-
ever, the nonseparable QPT schemes are rather impractical in
physical applications because they require many-body inter-
actions, which are not experimentally available or must be
simulated at high resource cost �3�.

Both SQPT and AAPT make use of a mapping of the
dynamics onto a state. This raises the natural question of
whether it is possible to avoid such a mapping and instead
perform a direct measurement of quantum dynamics, which
does not require any state tomography. Moreover, it seems
reasonable that by avoiding the indirect mapping one should
be able to attain a reduction in resource use �e.g., the total
number of measurements required�, by eliminating redun-
dancies. Indeed, there has been a growing interest in the
development of direct methods for obtaining specific infor-
mation about the states or dynamics of quantum systems.
Examples include the estimation of general functions of a
quantum state �18�, detection of quantum entanglement �19�,
measurement of nonlinear properties of bipartite quantum
states �20�, reconstruction of quantum states or dynamics
from incomplete measurements �21�, estimation of the aver-
age fidelity of a quantum gate or process �22,23�, and uni-
versal source coding and data compression �24�. However,
these schemes cannot be used directly for a complete char-
acterization of quantum dynamics. In Ref. �25� we presented
such a scheme, which we called “direct characterization of
quantum dynamics” �DCQD�.

In trying to address the problem of direct and complete
characterization of quantum dynamics, we were inspired by
the observation that quantum error detection �QED� �1� pro-
vides a means to directly obtain partial information about the
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nature of a quantum process, without ever revealing the state
of the system. In general, however, it is unclear if there is a
fundamental relationship between QED and QPT, namely
whether it is possible to completely characterize the quantum
dynamics of arbitrary quantum systems using QED. And,
providing the answer is affirmative, how the physical re-
sources scale with system size. Moreover, one would like to
understand whether entanglement plays a fundamental role,
and what potential applications emerge from such a theory
linking QPT and QED. Finally, one would hope that this
approach may lead to new ways of understanding and/or
controlling quantum dynamical systems. We addressed these
questions for the first time in Ref. �25� by developing the
DCQD algorithm in the context of two-level quantum sys-
tems. In DCQD—see Fig. 1—the state space of an ancilla is
utilized such that experimental outcomes from a Bell-state
measurement provide direct information about specific prop-
erties of the underlying dynamics. A complete set of probe
states is then used to fully characterize the unknown quan-
tum dynamics via application of a single Bell-state measure-
ment device �3,25�.

Here we generalize the theory of Ref. �25� to arbitrary
open quantum systems undergoing an unknown, completely
positive �CP� quantum dynamical map. In the generalized
DCQD scheme, each probe qudit �with d prime� is initially
entangled with an ancillary qudit system of the same dimen-
sion, before being subjected to the unknown quantum pro-
cess. To extract the relevant information, the corresponding
measurements are devised in such a way that the final �joint�
probability distributions of the outcomes are directly related
to specific sets of the dynamical superoperator’s elements. A
complete set of probe states can then be utilized to fully
characterize the unknown quantum dynamical map. The
preparation of the probe systems and the measurement
schemes are based on QED techniques, however, the objec-
tive and the details of the error-detection schemes are differ-
ent from those appearing in the protection of quantum sys-
tems against decoherence �the original context of QED�.
More specifically, we develop error-detection schemes to di-
rectly measure the coherence in a quantum dynamical pro-
cess, represented by off-diagonal elements of the correspond-
ing superoperator. We explicitly demonstrate that for
characterizing a dynamical map on n qudits, the number of
required experimental configurations is reduced from d4n, in
SQPT and separable AAPT, to d2n in DCQD. A useful feature
of DCQD is that it can be efficiently applied to partial char-
acterization of quantum dynamics �25,26�. For example, it
can be used for the task of Hamiltonian identification, and
also for simultaneous determination of the relaxation time T1
and the dephasing time T2.

This paper is organized as follows. In Sec. II, we provide
a brief review of completely positive quantum dynamical

maps, and the relevant QED concepts such as stabilizer
codes and normalizers. In Sec. III, we demonstrate how to
determine the quantum dynamical populations, or diagonal
elements of a superoperator, through a single �ensemble�
measurement. In order to further develop the DCQD algo-
rithm and build the required notations, we introduce some
lemmas and definitions in Sec. IV, and then we address the
characterization of quantum dynamical coherences, or off-
diagonal elements of a superoperator, in Sec. V. In Sec. VI,
we show that measurement outcomes obtained in Sec. V pro-
vide d2 linearly independent equations for estimating the co-
herences in a process, which is in fact the maximum amount
of information that can be extracted in a single measurement.
A complete characterization of the quantum dynamics, how-
ever, requires obtaining d4 independent real parameters of
the superoperator �for nontrace preserving maps�. In Sec.
VII, we demonstrate how one can obtain complete informa-
tion by appropriately rotating the input state and repeating
the above algorithm for a complete set of rotations. In Secs.
VIII and IX, we address the general constraints on input
stabilizer codes and the minimum number of physical qudits
required for the encoding. In Sec. X and Sec. XI, we define a
standard notation for stabilizer and normalizer measurements
and then provide an outline of the DCQD algorithm for the
case of a single qudit. For convenience, we provide a brief
summary of the entire DCQD algorithm in Sec. XII. We
conclude with an outlook in Sec. XIII. In the Appendix , we
generalize the scheme for arbitrary open quantum systems.
For a discussion of the experimental feasibility of DCQD see
Ref. �25�, and for a detailed and comprehensive comparison
of the required physical resources in different QPT schemes
see Ref. �3�.

II. PRELIMINARIES

In this section we introduce the basic concepts and nota-
tion from the theory of open quantum system dynamics and
quantum error detection, required for the generalization of
the DCQD algorithm to qudits.

A. Quantum dynamics

The evolution of a quantum system �open or closed� can,
under natural assumptions, be expressed in terms of a com-
pletely positive quantum dynamical map E, which can be
represented as �1�

E��� = �
m,n=0

d2−1

�mnEm�En
†. �1�

Here � is the initial state of the system, and the �Em� are a set
of �error� operator basis elements in the Hilbert-Schmidt
space of the linear operators acting on the system. That is,
any arbitrary operator acting on a d-dimensional quantum
system can be expanded over an orthonormal and unitary
error operator basis �E0 ,E1 , . . . ,Ed2−1�, where E0= I and
tr�Ei

†Ej�=d�ij �27�. The ��mn� are the matrix elements of the
superoperator �, or “process matrix,” which encodes all the
information about the dynamics, relative to the basis set �Em�

A

B

Bell state
preparation BSM

FIG. 1. �Color online� Schematic of DCQD for a single qubit,
consisting of Bell-state-type preparations, application of the un-
known quantum map, E, and Bell-state measurement �BSM�.
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�1�. For an n-qudit system, the number of independent matrix
elements in � is d4n for a non-trace-preserving map and
d4n−d2n for a trace-preserving map. The process matrix � is
positive and Tr ��1. Thus � can be thought of as a density
matrix in the Hilbert-Schmidt space, when we often refer to
its diagonal and off-diagonal elements as “quantum dynami-
cal population” and “quantum dynamical coherence,” respec-
tively.

In general, any successive operation of the �error� opera-
tor basis can be expressed as EiEj =�k�

i,j,kEk, where i , j ,k
=0,1 , . . . ,d2−1. However, we use the “very nice �error� op-
erator basis” in which EiEj =�i,jEi*j, det Ei=1, �i,j is a dth
root of unity, and the operation * induces a group on the
indices �27�. This provides a natural generalization of the
Pauli group to higher dimensions. Any element Ei can be
generated from appropriate products of Xd and Zd, where
Xd �k	= �k+1	, Zd �k	=�k �k	, and XdZd=�−1ZdXd �27,28�.
Therefore, for any two elements Ei=�a,q,p�=�aXd

qZd
p and

Ej=�a�,q�,p��=�a�Xd
q�Zd

p� �where 0�q , p�d� of the single-
qudit Pauli group, we always have

EiEj = �pq�−qp�EjEi, �2�

where

pq� − qp� 
 k�mod d� . �3�

The operators Ei and Ej commute if and only if k=0. Hence-
forth, all algebraic operations are performed in mod�d� arith-
metic, and all quantum states and operators, respectively, be-
long to and act on a d-dimensional Hilbert space. For
simplicity, from now on we drop the subscript d from the
operators.

B. Quantum error detection

In the last decade the theory of quantum error correction
�QEC� has been developed as a general method for detecting
and correcting quantum dynamical errors acting on multiqu-
bit systems such as a quantum computer �1�. QEC consists of
three steps: preparation, quantum error detection �QED� or
syndrome measurements, and recovery. In the preparation
step, the state of a quantum system is encoded into a sub-
space of a larger Hilbert space by entangling the principal
system with some other quantum systems using unitary op-
erations. This encoding is designed to allow detection of ar-
bitrary errors on one �or more� physical qubits of a code by
performing a set of QED measurements. The measurement
strategy is to map different possible sets of errors only to
orthogonal and undeformed subspaces of the total Hilbert
space, such that the errors can be unambiguously discrimi-
nated. Finally the detected errors can be corrected by apply-
ing the required unitary operations on the physical qubits
during the recovery step. A key observation relevant for our
purposes is that by performing QED one can actually obtain
partial information about the dynamics of an open quantum
system.

For a qudit in a general state ��c	 in the code space, and
for arbitrary error basis elements Em and En, the Knill-
Laflamme QEC condition for degenerate codes is

��c �En
†Em ��c	=�nm, where �nm is a Hermitian matrix of

complex numbers �1�. For nondegenerate codes, the QEC
condition reduces to ��c �En

†Em ��c	=�nm; i.e., in this case the
errors always take the code space to orthogonal subspaces.
The difference between nondegenerate and degenerate codes
is illustrated in Fig. 2. In this work, we concentrate on a large
class of error-correcting codes known as stabilizer codes
�29�; however, in contrast to QEC, we restrict our attention
almost entirely to degenerate stabilizer codes as the initial
states. Moreover, by definition of our problem, the recovery
and/or correction step is not needed or used in our analysis.

A stabilizer code is a subspace HC of the Hilbert space of
n qubits that is an eigenspace of a given Abelian subgroup S
of the n-qubit Pauli group with the eigenvalue +1 �1,29�. In
other words, for ��c	�HC and Si�S, we have Si ��c	= ��c	,
where Si’s are the stabilizer generators and �Si ,Sj�=0. Con-
sider the action of an arbitrary error operator E on the stabi-
lizer code ��c	, E ��c	. The detection of such an error will be
possible if the error operator anticommutes with �at least one
of� the stabilizer generators, �Si ,E�=0. That is, by measuring
all generators of the stabilizer and obtaining one or more
negative eigenvalues we can determine the nature of the er-
ror unambiguously as

Si�E��c	� = − E�Si��c	� = − �E��c	� .

A stabilizer code �n ,k ,dc� represents an encoding of k
logical qudits into n physical qudits with code distance dc,
such that an arbitrary error on any subset of t= �dc−1� /2 or
fewer qudits can be detected by QED measurements. A sta-
bilizer group with n−k generators has dn−k elements and the
code space is dk dimensional. Note that this is valid when d
is a power of a prime �28�. The unitary operators that pre-
serve the stabilizer group by conjugation, i.e., USU†=S, are
called the normalizer of the stabilizer group, N�S�. Since the
normalizer elements preserve the code space they can be
used to perform certain logical operations in the code space.

FIG. 2. �Color online� A schematic diagram of quantum error
detection �QED�. The projective measurements corresponding to
eigenvalues of stabilizer generators are represented by arrows. For a
nondegenerate QEC code, after the QED, the wave function of the
multiqubit system collapses into one of the orthogonal subspaces
each of which is associated with a single error operator. Therefore,
all errors can be unambiguously discriminated. For degenerate
codes, by performing QED the code space also collapses into a set
orthogonal subspaces. However, each subspace has multiple degen-
eracies among k error operators in a subset of the operator basis,

i.e., �Em�m=1
k � �Ei�i=0

d2−1. In this case, one cannot distinguish between
different operators within a particular subset �Em�m=1

k0 .
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However, they are insufficient for performing arbitrary quan-
tum operations �1�.

Similarly to the case of a qubit �25�, the DCQD algorithm
for the case of a qudit system consists of two procedures: �i�
a single experimental configuration for characterization of
the quantum dynamical populations, and �ii� d2−1 experi-
mental configurations for characterization of the quantum
dynamical coherences. In both procedures we always use
two physical qudits for the encoding, the principal system A
and the ancilla B, i.e., n=2. In procedure �i�–characterizing
the diagonal elements of the superoperator—the stabilizer
group has two generators. Therefore it has d2 elements and
the code space consists of a single quantum state �i.e., k=0�.
In procedure �ii�–characterizing the off-diagonal elements of
the superoperator–the stabilizer group has a single generator,
thus it has d elements, and the code space is two dimen-
sional. That is, we effectively encode a logical qudit �i.e., k
=1� into two physical qudits. In the next sections, we de-
velop the procedures �i� and �ii� in detail for a single qudit
with d being a prime, and in the Appendix we address the
generalization to systems with d being an arbitrary power of
a prime.

III. CHARACTERIZATION OF QUANTUM DYNAMICAL
POPULATION

To characterize the diagonal elements of the superopera-
tor, or the population of the unitary error basis, we use a
nondegenerate stabilizer code. We prepare the principal qu-
dit, A, and an ancilla qudit, B, in a common +1 eigenstate
��c	 of the two unitary operators Ei

AEj
B and Ei�

AEj�
B , such that

�Ei
AEj

B ,Ei�
AEj�

B �=0 �e.g., XAXB and ZA�ZB�d−1�. Therefore, si-
multaneous measurement of these stabilizer generators at the
end of the dynamical process reveals arbitrary single qudit
errors on the system A. The possible outcomes depend on
whether a specific operator in the operator-sum representa-
tion of the quantum dynamics commutes with Ei

AEj
B and

Ei�
AEj�

B , with the eigenvalue +1, or with one of the eigenval-
ues � ,�2 , . . . ,�d−1. The projection operators corresponding
to outcomes �k and �k�, where k ,k�=0,1 , . . . ,d−1, have the
form Pk= 1

d�l=0
d−1�−lk�Ei

AEj
B�l and Pk�= 1

d�l�=0
d−1 �−l�k��Ei�

AEj�
B �l�.

The joint probability distribution of the commuting Hermit-
ian operators Pk and Pk� on the output state E���
=�m,n�mnEm�En

†, where �= ��c	��c�, is

Tr�PkPk�E���� =
1

d2 �
m,n=0

d2−1

�mn�
l=0

d−1

�
l�=0

d−1

�−lk�−l�k�

	Tr�En
†�Ei

A�l�Ei�
A �l�Em�Ej

B�l�Ej�
B �l��� .

Using EiEm=�imEmEi and the relation �Ei
AEj

B�l�Ei�
AEj�

B �l��=�,
we obtain

Tr�PkPk�E���� =
1

d2 �
m,n=0

d2−1

�mn�
l=0

d−1

�
l�=0

d−1

��im−k�l��im� −k��l��mn,

where we have used the QED condition for nondegenerate
codes

Tr�En
†Em�� = ��c�En

†Em��c	 = �mn

i.e., the fact that different errors should take the code space
to orthogonal subspaces, in order for errors to be unambigu-
ously detectable, see Fig. 3. Now, using the discrete Fourier

transform identities �l=0
d−1��im−k�l=d�im,k and �l�=0

d−1 ��im� −k��l�

=d�im� ,k�, we obtain

Tr�PkPk�E���� = �
m=0

d2−1

�mm�im,k�im� ,k� = �m0m0
. �4�

Here, m0 is defined through the relations im0
=k and im0

� =k�,
i.e., Em0

is the unique error operator that anticommutes with
the stabilizer operators with a fixed pair of eigenvalues �k

and �k� corresponding to the experimental outcomes k and
k�. Since each Pk and Pk� operator has d eigenvalues, we
have d2 possible outcomes, which gives us d2 linearly inde-
pendent equations. Therefore, we can characterize all the
diagonal elements of the superoperator with a single en-
semble measurement and 2d detectors.

In order to investigate the properties of the pure state ��c	,
we note that the code space is one dimensional �i.e., it has
only one vector� and can be Schmidt decomposed as ��c	
=�k=0

d−1
k �k	A �k	B, where 
k are non-negative real numbers.
Suppose Z �k	=�k �k	; without loss of generality the two sta-
bilizer generators of ��c	 can be chosen to be �XAXB�q and
�ZA�ZB�d−1�p. We then have ��c � �XAXB�q ��c	=1 and
��c � �ZA�ZB�d−1�p ��c	=1 for any q and p, where 0�q , p�d.
This results in the set of equations �k=0

d−1
k
k+q=1 for all q,
which have only one positive real solution, 
0=
1= ¯ =
k

=1/�d; i.e., the stabilizer state, ��c	, is a maximally en-
tangled state in the Hilbert space of the two qudits.

In the remaining parts of this paper, we first develop an
algorithm for extracting optimal information about the dy-
namical coherence of a d-level quantum system �with d be-
ing a prime�, through a single experimental configuration, in
Secs. IV–VI. Then, we further develop the algorithm to ob-
tain complete information about the off-diagonal elements of
the superoperator by repeating the same scheme for different
input states, Sec. VII. In the Appendix, we address the gen-
eralization of the DCQD algorithm for qudit systems with d

FIG. 3. �Color online� A diagram of the error-detection measure-
ment for estimating quantum dynamical population. The arrows
represent the projection operators PkPk� corresponding to different
eigenvalues of the two stabilizer generators S and S�. These projec-
tive measurements result in a projection of the wave function of the
two-qudit systems, after experiencing the dynamical map, into one
of the orthogonal subspaces each of which is associated to a specific
error operator basis. By calculating the joint probability distribution
of all possible outcomes, PkPk�, for k ,k�=0, . . . ,d, we obtain all d2

diagonal elements of the superoperator in a single ensemble
measurement.
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being a power of a prime. In the first step, in the next section,
we establish the required notation by introducing some lem-
mas and definitions.

IV. BASIC LEMMAS AND DEFINITIONS

Lemma 1. Let 0�q , p ,q� , p��d, where d is prime. Then,
for given q, p, q� and k�mod d�, there is a unique p� that
solves pq�−qp�=k�mod d�.

Proof. We have pq�−qp�=k�mod d�=k+ td, where t is an
integer. The possible solutions for p� are indexed by t as
p��t�= �pq�−k− td� /q. We now show that if p��t1� is a solu-
tion for a specific value t1, there exists no other integer t2
� t1 such that p��t2� is another independent solution to this
equation, i.e., p��t2��p��t1��mod d�. First, note that if p��t2�
is another solution then we have p��t1�= p��t2�+ �t2− t1�d /q.
Since d is prime, there are two possibilities: �a� q divides
�t2− t1�, then �t2− t1�d /q= ±nd, where n is a positive integer;
therefore we have p��t2�= p��t1��mod d�, which contradicts
our assumption that p��t2� is an independent solution from
p��t1�. �b� q does not divide �t2− t1�, then �t2− t1�d /q is not a
integer, which is unacceptable. Thus, we have t2= t1, i.e., the
solution p��t� is unique.

Note that the above argument does not hold if d is not
prime, and therefore, for some q� there could be more than
one p� that satisfies pq�−qp�
k�mod d�. In general, the va-
lidity of this lemma relies on the fact that Zd is a field only
for prime d.

Lemma 2. For any unitary error operator basis Ei acting
on a Hilbert space of dimension d, where d is a prime and
i=0,1 , . . . ,d2−1, there are d unitary error operator basis el-
ements, Ej, that anticommute with Ei with a specific eigen-
value �k, i.e., EiEj =�kEjEi, where k=0, . . . ,d−1.

Proof. We have EiEj =�pq�−qp�EjEi, where 0�q , p ,q� , p�
�d, and pq�−qp�
k�mod d�. Therefore, for fixed q, p, and
k �mod d� we need to show that there are d solutions �q� , p��.
According to Lemma 1, for any q� there is only one p� that
satisfies pq�−qp�=k�mod d�; but q�can have d possible val-
ues, therefore there are d possible pairs of �q� , p��.

Definition 1. We introduce d different subsets, Wk
i , k

=0,1 , . . . ,d−1, of a unitary error operator basis �Ej� �i.e.,
Wk

i � �Ej��. Each subset contains d members which all anti-
commute with a particular basis element Ei, where i
=0,1 , . . . ,d2−1, with fixed eigenvalue �k. The subset W0

i

which includes E0 and Ei is in fact an Abelian subgroup of
the single-qudit Pauli group, G1.

V. CHARACTERIZATION OF QUANTUM
DYNAMICAL COHERENCE

For characterization of the coherence in a quantum dy-
namical process acting on a qudit system, we prepare a two-
qudit quantum system in a nonseparable eigenstate ��ij	 of a
unitary operator Sij =Ei

AEj
B. We then subject the qudit A to the

unknown dynamical map, and measure the sole stabilizer
operator Sij at the output state. Here, the state ��ij	 is in fact
a degenerate code space, since all the operators Em

A that an-
ticommute with Ei

A, with a particular eigenvalue �k, perform

the same transformation on the code space and cannot be
distinguished by the stabilizer measurement. If we express
the spectral decomposition of Sij =Ei

AEj
B as Sij =�k �kPk, the

projection operator corresponding to the outcome �k can be
written as Pk= 1

d�l=0
d−1�−lk�Ei

AEj
B�l. The post-measurement

state of the system, up to a normalization factor, will be

PkE���Pk =
1

d2 �
m,n=0

d2−1

�mn�
l=0

d−1

�
l�=0

d−1

�−lk�l�k

	��Ei
AEj

B�lEm�En
†�Ei

A†Ej
B†�l�� .

Using the relations EiEm=�imEmEi, En
†Ei

†=�−inEi
†En

† and
�Ei

AEj
B�l��Ei

A†Ej
B†�l�=� we have

PkE���Pk =
1

d2 �
l=0

d−1

��im−k�l �
l�=0

d−1

��k−in�l� �
m,n=0

d2−1

�mnEm�En
†.

Now, using the discrete Fourier transform properties
�l=0

d−1��im−k�l=d�im,k and �l�=0
d−1 ��k−in�l�=d�in,k, we obtain

PkE���Pk = �
m

�mmEm
A�Em

A† + �
m�n

��mnEm
A�En

A† + �mn
* En

A�Em
A†� .

�5�

Here, the summation runs over all Em
A and En

B that belong to
the same Wk

i ; see Lemma 2. That is, the summation is over
all unitary operator basis elements Em

A and En
B that anticom-

mute with Ei
A with a particular eigenvalue �k. Since the num-

ber of elements in each Wk is d, the state of the two-qudit
system after the projective measurement comprises d
+2�d�d−1� /2�=d2 terms. The probability of getting the out-
come �k is

Tr�PkE���� = �
m

�mm + 2 �
m�n

Re��mn Tr�En
A†Em

A��� . �6�

Therefore, the normalized post-measurement states are �k
= PkE���Pk /Tr�PkE����. These d equations provide us with
information about off-diagonal elements of the superoperator
if and only if Tr��En

A�†Em
A���0. Later we will derive some

general properties of the state � such that this condition can
be satisfied.

Next we measure the expectation value of any other uni-
tary operator basis element Trs=Er

AEs
B on the output state,

such that Er
A� I, Es

B� I, Trs�N�S�, and Trs� �Sij�a, where
0�a�d. Let us write the spectral decomposition of Trs as
Trs=�k� �k�Pk�. The joint probability distribution of the
commuting Hermitian operators Pk and Pk� on the output
state E��� is Tr�Pk�PkE����. The average of these joint prob-
ability distributions of Pk and Pk� over different values of k�
becomes �k��

k� Tr�Pk�PkE����=Tr�TrsPkE����=Tr�Trs�k�,
which can be explicitly written as
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Tr�Trs�k� = �
m

�mm Tr�Em
A†Er

AEs
BEm

A��

+ �
m�n

��mn Tr�En
A†Er

AEs
BEm

A��

+ �mn
* Tr�Em

A†Er
AEs

BEn
A��� .

Using Er
AEm

A =�rmEm
AEr

A and Er
AEn

A=�rnEn
AEr

A this becomes

Tr�Trs�k� =
1

Tr�PkE����
�m �rm�mm Tr�Trs��

+ �
m�n

��rm�mn Tr�En
A†Em

ATrs��

+ �rn�mn
* Tr�Em

A†En
ATrs���� . �7�

Therefore, we have an additional set of d equations to iden-
tify the off-diagonal elements of the superoperator, provided
that Tr�En

A†Em
ATrs���0. Suppose we now measure another

unitary operator Tr�s�=Er�
A Es�

B that commutes with Sij, i.e.,
Tr�s��N�S�, and also commutes with Trs, and satisfies the
relations Tr�s��Trs

b Sij
a �where 0�a ,b�d�, Er

A� I and Es
B

� I. Such a measurement results in d equations for
Tr�Tr�s��k�, similar to those for Tr�Trs�k�. However, for these
equations to be useful for characterization of the dynamics,
one must show that they are all linearly independent. In the
next section, we find the maximum number of independent
and commutating unitary operators Trs such that their expec-
tation values on the output state, Tr�Trs�k�, result in linearly
independent equations to be d−1, see Fig. 4. That is, we find
an optimal Abelian set of unitary operators such that the joint
probability distribution functions of their eigenvalues and
stabilizer eigenvalues at the output state are linearly indepen-
dent.

VI. LINEAR INDEPENDENCE AND OPTIMALITY
OF MEASUREMENTS

Before presenting the proof of linear independence of the
functions Tr�Trs�k� and of the optimality of the DCQD algo-

rithm, we need to introduce the following lemmas and defi-
nitions.

Lemma 3. If a stabilizer group, S, has a single generator,
the order of its normalizer group, N�S�, is d3.

Proof. Let us consider the sole stabilizer generator S12

=E1
AE2

B, and a typical normalizer element T1�2�=E1�
A E2�

B ,
where E1

A=Xq1Zp1, E2
B=Xq2Zp2, E1�

A =Xq1�Zp1�, and E2�
B

=Xq2�Zp2�. Since S12 and T1�2� commute, we have S12T1�2�
=��i=1

2 piqi�
� −qipi�

� T1�2�S12, where �i=1
2 piqi�

� −qipi�
� 
0�mod d�.

We note that for any particular code with a single stabilizer
generator, all q1, p1, q2, and p2 are fixed. Now, by Lemma 1,
for given values of q1�, p1�, and q2� there is only one value for
p2� that satisfies the above equation. However, each q1�, p1�,
and q2� can have d different values. Therefore, there are d3

different normalizer elements T1�2�.
Lemma 4. Each Abelian subgroup of a normalizer, which

includes the stabilizer group �Sij
a � as a proper subgroup, has

order d2.
Proof. Suppose Trs is an element of N�S�, i.e., it com-

mutes with Sij. Moreover, all unitary operators of the form
Trs

b Sij
a , where 0�a ,b�d, also commute. Therefore, any Abe-

lian subgroup of the normalizer, A�N�S�, which includes
�Sij

a � as a proper subgroup, is at least an order of d2. Now let
Tr�s� be any other normalizer element, i.e., Tr�s��Trs

b Sij
a with

0�a, b�d, which belongs to the same Abelian subgroup A.

In this case, any operator of the form Tr�s�
b� Trs

b Sij
a would also

belong to A. Then all elements of the normalizer should com-
mute or A=N�S�, which is unacceptable. Thus, either Tr�s�
=Trs

b Sij
a or Tr�s��A, i.e., the order of the Abelian subgroup A

is at most d2.
Lemma 5. There are d+1 Abelian subgroups, A, in the

normalizer N�S�.
Proof. Suppose that the number of Abelian subgroups

which includes the stabilizer group as a proper subgroup is n.
Using Lemmas 3 and 4, we have d3=nd2− �n−1�d, where the
term �n−1�d has been subtracted from the total number of
elements of the normalizer due to the fact that the elements
of the stabilizer group are common to all Abelian subgroups.
Solving this equation for n, we find that n= d2−1

d−1 =d+1.
Lemma 6. The basis of eigenvectors defined by d+1 Abe-

lian subgroups of N�S� are mutually unbiased.
Proof. It has been shown �30� that if a set of d2−1 trace-

less and mutually orthogonal d	d unitary matrices can be
partitioned into d+1 subsets of equal size, such that the d
−1 unitary operators in each subset commute, then the basis
of eigenvectors corresponding to these subsets are mutually
unbiased. We note that, based on Lemmas 3, 4, and 5, and in
the code space �i.e., up to multiplication by the stabilizer
elements �Sij

a ��, the normalizer N�S� has d2−1 nontrivial el-
ements, and each Abelian subgroup A, has d−1 nontrivial
commuting operators. Thus, the bases of eigenvectors de-
fined by d+1 Abelian subgroups of N�S� are mutually unbi-
ased.

Lemma 7. Let C be a cyclic subgroup of A, i.e.,
C�A�N�S�. Then, for any fixed T�A, the number of dis-
tinct left �right� cosets, TC�CT�, in each A is d.

Proof. We note that the order of any cyclic subgroup

FIG. 4. �Color online� A diagram of the error-detection measure-
ment for estimating quantum dynamical coherence: we measure the
sole stabilizer generator at the output state, by applying projection
operators corresponding to its different eigenvalues Pk. We also
measure d−1 commuting operators that belong to the normalizer
group. Finally, we calculate the probability of each stabilizer out-
come, and joint probability distributions of the normalizers and the
stabilizer outcomes. Optimally, we can obtain d2 linearly indepen-
dent equations by appropriate selection of the normalizer operators
as it is shown in the next section.
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C�A, such as Trs
b with 0�b�d, is d. Therefore, by Lemma

4, the number of distinct cosets in each A is d2

d =d.
Definition 2. We denote the cosets of an �invariant� cyclic

subgroup, Ca, of an Abelian subgroup of the normalizer, Av,
by Av /Ca, where v=1,2 , . . . ,d+1. We also represent generic
members of Av /Ca as Trs

b Sij
a , where 0�a ,b�d. The mem-

bers of a specific coset Av /Ca0
are denoted as Trs

b Sij
a0, where

a0 represents a fixed power of stabilizer generator Sij, that
labels a particular coset Av /Ca0

, and b �0�b�d� labels dif-
ferent members of that particular coset.

Lemma 8. The elements of a coset, Trs
b Sij

a0 �where Trs
=Er

AEs
B, Sij =Ei

AEj
B, and 0�b�d� anticommute with Ei

A with
different eigenvalues �k. That is, there are no two different
members of a coset, Av /Ca0

, that anticommute with Ei
A with

the same eigenvalue.
Proof. First we note that for each Trs

b = �Er
A�b�Es

B�b, the uni-
tary operators acting only on the principal subsystem, �Er

A�b,
must satisfy either �a� �Er

A�b=Ei
A or �b� �Er

A�b�Ei
A. In the

case �a�, and due to �Trs ,Sij�=0, we should also have �Es
B�b

=Ej
B, which results in Trs

b =Sij; i.e., Trs
b is a stabilizer and not

a normalizer. This is unacceptable. In the case �b�, in particu-
lar for b=1, we have Er

AEi
A=�riEi

AEr
A. Therefore, for arbitrary

b we have �Er
A�bEi

A=�briEi
A�Er

A�b. Since 0�b�d, we con-

clude that �bri��b�ri for any two different values of b and
b�.

As a consequence of this lemma, different �Er
A�b, for 0

�b�d, belong to different Wk
i ’s.

Lemma 9. For any fixed unitary operator Er
A�Wk

i , where
k�0, and any other two independent operators Em

A and En
A

that belong to the same Wk
i , we always have �rm��rn, where

Er
AEm

A =�rmEm
AEr

A and Er
AEn

A=�rnEn
AEr

A.
Proof. We need to prove for operators Er

A ,Em
A ,En

A�Wk
i

�where k�0�, that we always have Em
A �En

A⇒�rm��rn. Let
us prove the converse, �rm =�rn ⇒Em

A =En
A. We define Ei

A

=XqiZpi, Er
A=XqrZpr, Em

A =XqmZpm, En
A=XqnZpn. Based on the

definition of subsets Wk
i with k�0, we have piqm−qipm


 piqn−qipn=k�mod d�=k+ td �I�, where t is an integer num-
ber. We need to show if prqm−qrpm
 prqn−qrpn
=k��mod d�=k�+ t�d �II�, then Em

A =En
A.

We divide the equations �I� by qiqm or qiqn to get
pi

qi

= k+td
qiqm

+
pm

qm
= k+td

qiqn
+

pn

qn
�I��. We also divide the equations �II� by

qrqm or qrqn to get
pr

qr
= k�+t�d

qrqm
+

pm

qm
= k�+t�d

qrqn
+

pn

qn
�II��. By subtract-

ing the equation �II�� from �I�� we get

qn
 k + td

qi
−

k� + t�d

qr
� = qm
 k + td

qi
−

k� + t�d

qr
� . �8�

Similarly, we can obtain the equation

pn
k + tdpi −
k� + t�d

pr
� = pm
 k + td

pi
−

k� + t�d

pr
� . �9�

Note that the expressions within the parentheses in both
equations �8� or �9� cannot be simultaneously zero, because
it will result in piqr−qipr=0, which is unacceptable for k
�0. Therefore, the expression within the parentheses in at
least one of the equations �8� or �9� is nonzero. This results

in qn=qm and/or pn= pm. Consequently, considering the equa-
tion �8�, we have Em

A =En
A.

A. Linear independence of the joint distribution functions

Theorem 1. The expectation values of normalizer ele-
ments on a post-measurement state, �k, are linearly indepen-
dent if these elements are the d−1 nontrivial members of a
coset Av /Ca0

. That is, for two independent operators Trs,
Tr�s��Av /Ca0

, we have Tr�Trs�k��c Tr�Tr�s��k�, where c is
an arbitrary complex number.

Proof. We know that the elements of a coset can be writ-
ten as Trs

b Sij
a0 = �Er

AEs
B�bSij

a0, where b=1,2 , . . . ,d−1. We also
proved that �Er

A�b belongs to different Wk
i �k�0� for different

values of b �see Lemma 8�. Therefore, according to Lemma
9 and regardless of the outcome of k �after measuring the
stabilizer Sij�, there exists one member in the coset Av /Ca0
that has different eigenvalues �rm with all �independent�
members Em

A �Wk
i . The expectation value of Trs

b Sij
a0 is

Tr�Trs
b Sij

a0�k� = �
m

�mm Tr�Em
A†Trs

b Sij
a0Em

A��,

+ �
m�n

��mn Tr�En
A†Trs

b Sij
a0Em

A��

+ �mn
* Tr�Em

A†Trs
b Sij

a0En
A��� , �10�

Tr�Trs
b �k� = �

m

�brm�mm Tr�Trs
b ��

+ �
m�n

��brm�mn Tr�En
A†Em

ATrs
b ��

+ �brn�mn
* Tr�Em

A†En
ATrs

b ��� , �11�

where �rm��rn�¯ for all elements Em
A ,En

A ,¯ that belong
to a specific Wk

i . Therefore, for two independent members of
a coset denoted by b and b� �i.e., b� b��, we have
��b�rm ,�b�rn , . . . ��c��brm ,�brn , . . . � for all values of 0
�b ,b��d, and any complex number c. We also note that we

have Tr�En
A†Em

ATrs
b ���c Tr�En

A†Em
ATrs

b���, since Trs
b�−b is a nor-

malizer, not a stabilizer element, and its action on the state
cannot be expressed as a global phase. Thus, for any two
independent members of a coset Av /Ca0

, we always have

Tr�Trs
b��k��c Tr�Trs

b �k�.
In summary, after the action of the unknown dynamical

process, we measure the eigenvalues of the stabilizer genera-
tor, Ei

AEj
B, that has d eigenvalues for k=0,1 , . . . ,d−1 and

provides d linearly independent equations for the real and
imaginary parts of �mn. This is due to the fact that the out-
comes corresponding to different eigenvalues of a unitary
operator are independent. We also measure expectation val-
ues of all the d−1 independent and commuting normalizer
operators Trs

b Sij
a0 �Av /Ca0

, on the post-measurement state �k,
which provides �d−1� linearly independent equations for
each outcome k of the stabilizer measurements. Overall, we
obtain d+d�d−1�=d2 linearly independent equations for
characterization of the real and imaginary parts of �mn by a
single ensemble measurement. In the following, we show
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that the above algorithm is optimal. That is, within the d2

Hilbert space of principal system and ancilla, there does not
exist any other possible strategy that can provide more than
d2 linearly independent equations by a single measurement
on the output state E���.

B. Optimality

Theorem 2. The maximum number of commuting normal-
izer elements that can be measured simultaneously to pro-
vide linear independent equations for the joint distribution
functions Tr�Trs

b Sij
a �k� is d−1.

Proof. Any Abelian subgroup of the normalizer has order
d2 �see Lemma 4�. Therefore, the desired normalizer opera-
tors should all belong to a particular Av and are limited to d2

members. We already showed that the outcomes of measure-
ments for d−1 elements of a coset Av /Ca, represented by
Trs

b Sij
a �with b�0�, are independent �see Theorem 1�. Now

we show that measuring any other operator, Trs
b Sij

a�, from any
other coset Av /Ca�, results in linearly dependent equations

for the functions w=tr�Trs
b Sij

a �k� and w�=tr�Trs
b Sij

a��k� as the
following:

w = Tr�Trs
b Sij

a �k�

= �
m

�mm Tr�Em
A†Trs

b Sij
a Em

A�� + �
m�n

��mn Tr�En
A†Trs

b Sij
a Em

A��

+ �mn
* Tr�Em

A†Trs
b Sij

a En
A��� ,

w� = Tr�Trs
b Sij

a��k�

= �
m

�mm Tr�Em
A†Trs

b Sij
a�Em

A�� + �
m�n

��mn Tr�En
A†Trs

b Sij
a�Em

A��

+ �mn
* tr�Em

A†Trs
b Sij

a�En
A��� .

Using the commutation relations Trs
b Sij

a Em
A =�brm+aimEm

ATrs
b Sij

a ,
we obtain

w = �
m

�brm+aim�mm Tr�Trs
b ��

+ �
m�n

��brm+aim�mn Tr�En
A†Em

ATrs
b ��

+ �brn+ain�mn
* Tr�Em

A†En
ATrs

b ���

w� = �
m

�brm+a�im�mm tr�Trs
b ��

+ �
m�n

��brm+a�im�mn Tr�En
A†Em

ATrs
b ��

+ �brn+a�in�mn
* Tr�Em

A†En
ATrs

b ��� ,

where we also used the fact that both Sij
a and Sij

a� are stabilizer
elements. Since all of the operators Em

A belong to the same
Wk

i , we have im= in=k, and obtain

w = �ak
�
m

�brm�mm Tr�Trs
b �� + �

m�n

��brm�mn Tr�En
A†Em

ATrs
b ��

+ �brn�mn
* Tr�Em

A†En
ATrs

b ���� ,

w� = �a�k
�
m

�brm�mm Tr�Trs
b ��

+ �
m�n

��brm�mn Tr�En
A†Em

ATrs
b ��

+ �brn�mn
* Tr�Em

A†En
ATrs

b ���� .

Thus, we have w�=��a�−a�kw, and consequently the measure-
ments of operators from other cosets Av /Ca� do not provide
any new information about �mn beyond the corresponding
measurements from the coset Av /Ca.

For another proof of the optimality, based on fundamental
limitation of transferring information between two parties
given by the Holevo bound see Ref. �26�. In principle, one
can construct a set of non-Abelian normalizer measurements,
from different Av, where v=1,2 , . . . ,d+1, to obtain informa-
tion about the off-diagonal elements �mn. However, deter-
mining the eigenvalues of a set of noncommuting operators
cannot be done via a single measurement. Moreover, as men-
tioned above, by measuring the stabilizer and d−1 commut-
ing normalizer elements, one can in principle transfer log2 d2

bits of classical information between two parties, which is
the maximum allowed by the Holevo bound �31�. Therefore,
other strategies involving non-Abelian, or a mixture of Abe-
lian and non-Abelian normalizer measurements, cannot im-
prove the above scheme. It should be noted that there are
several possible alternative sets of Abelian normalizers that
are equivalent for this task. We address this issue in the next
lemma.

Lemma 10. The number of alternative sets of Abelian nor-
malizer measurements that can provide optimal information
about quantum dynamics, in one ensemble measurement, is
d2.

Proof. We have d+1 Abelian normalizers Av �see Lemma
5�. However, there are d of them that contain unitary opera-
tors that act nontrivially on both qudit systems A and B, i.e.,
Trs

b = �Er
AEs

B�b, where Er
A� I, Es

B� I. Moreover, in each Av we
have d cosets �see Lemma 5� that can be used for optimal
characterization of �mn. Overall, we have d2 possible sets of
Abelian normalizers that are equivalent for our purpose.

In the next section, we develop the algorithm further to
obtain complete information about the off-diagonal elements
of the superoperator by repeating the above scheme for dif-
ferent input states.

VII. REPEATING THE ALGORITHM FOR OTHER
STABILIZER STATES

We have shown that by performing one ensemble mea-
surement one can obtain d2 linearly independent equations
for �mn. However, a complete characterization of quantum
dynamics requires obtaining d4−d2 independent real param-
eters of the superoperator �or d4 for nontrace preserving
maps�. We next show how one can obtain complete informa-
tion by appropriately rotating the input state and repeating
the above algorithm for a complete set of rotations.

Lemma 11. The number of independent eigenkets for the
error operator basis �Ej�, where j=1,2 , . . ., d2−1, is d+1.
These eigenkets are mutually unbiased.
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Proof. We have d2−1 unitary operators, Ei. We note that
the operators Ei

a for all values of 1�a�d−1 commute and
have a common eigenket. Therefore, overall we have �d2

−1� / �d−1�=d+1 independent eigenkets. Moreover, it has
been shown �30� that if a set of d2−1 traceless and mutually
orthogonal d	d unitary matrices can be partitioned into d
+1 subsets of equal size, such that the d−1 unitary operators
in each subset commute, then the basis of eigenvectors de-
fined by these subsets are mutually unbiased.

Let us construct a set of d+1 stabilizer operators Ei
AEj

B,
such that the following conditions hold: �a� Ei

A ,Ej
B� I, �b�

�Ei
A�a� Ei�

A for i� i� and 1�a�d−1. Then, by preparing the
eigenstates of these d+1 independent stabilizer operators,
one at a time, and measuring the eigenvalues of Sij and its
corresponding d−1 normalizer operators Trs

b Sij
a �Av /Ca, one

can obtain �d+1�d2 linearly independent equations to char-
acterize the superoperator’s off-diagonal elements. The linear
independence of these equations can be understood by noting
that the eigenstates of all operators Ei

A of the d+1 stabilizer
operator Sij are mutually unbiased �i.e., the measurements in
these mutual unbiased bases are maximally noncommuting�.
For example, the bases ��0	 , �1	�, ���+ 	X , �−	X� and ��+ 	Y ,
�−	Y� �the eigenstates of the Pauli operators Z, X, and Y� are
mutually unbiased, i.e., the inner products of each pair of
elements in these bases have the same magnitude. Then mea-
surements in these bases are maximally noncommuting �32�.

To obtain complete information about the quantum dy-
namical coherence, we again prepare the eigenkets of the
above d+1 stabilizer operators Ei

AEj
B, but after the stabilizer

measurement we calculate the expectation values of the op-
erators Tr�s�

b Sij
a belonging to other Abelian subgroups Av� /Ca

of the normalizer, i.e., Av��Av. According to Lemma 6 the
bases of different Abelian subgroups of the normalizer are
mutually unbiased, therefore, the expectation values of
Tr�s�

b Sij
a and Trs

b Sij
a from different Abelian subgroups Av� and

Av are independent. In order to make the stabilizer measure-
ments also independent we choose a different superposition
of logical basis in the preparation of d+1 possible stabilizer
state in each run. Therefore in each of these measurements
we can obtain at most d2 linearly independent equations. By
repeating these measurements for d−1 different Av over all
d+1 possible input stabilizer states, we obtain �d+1��d
−1�d2=d4−d2 linearly independent equations, which suffice
to fully characterize all independent parameters of the super-
operator’s off-diagonal elements. In the next section, we ad-
dress the general properties of these d+1 stabilizer states.

VIII. GENERAL CONSTRAINTS ON THE
STABILIZER STATES

The restrictions on the stabilizer states � can be expressed
as follows:

Condition 1. The state �= ��ij	��ij� is a nonseparable pure
state in the Hilbert space of the two-qudit system H. That is,
��ij	AB� ��	A � ��	B.

Condition 2. The state ��ij	 is a stabilizer state with a sole
stabilizer generator Sij =Ei

AEj
B. That is, it satisfies Sij

a ��ij	
=�ak ��ij	, where k� �0,1 , . . . ,d−1� denotes a fixed eigen-

value of Sij, and a=1, . . . ,d−1 labels d−1 nontrivial mem-
bers of the stabilizer group.

The second condition specifies the stabilizer subspace, VS,
that the state � lives in, which is the subspace fixed by all the
elements of the stabilizer group with fixed eigenvalues k.
More specifically, an arbitrary state in the entire Hilbert
space H can be written as ��	=�u,u�=0

d−1 �uu� �u	A �u�	B where
��u	� and ��u�	� are bases for the Hilbert spaces of the qudits
A and B, such that Xq �u	= �u+q	 and Zp �u	=�pu �u	. How-
ever, we can expand ��	 in another basis as ��	
=�v,v�=0

d−1 
vv� �v	A �v�	B, such that Xq �v	=�qv �v	 and Zp �v	
= �v+ p	. Let us consider a stabilizer state fixed under the
action of a unitary operator Ei

AEj
B= �XA�q�XB�q��ZA�p�ZB�p�

with eigenvalue �k. Regardless of the basis chosen to expand
��ij	, we should always have Sij ��ij	=�k ��ij	. Consequently,
we have the constraints pu � p�u�=k, for the stabilizer sub-
space VS spanned by the ��u	 � �u�	�basis, and q�v � p�
� q��v� � p��=k, if VS is spanned by ��v	 � �v�	� basis, where
� is addition mod�d�. From these relations, and also using
the fact that the bases ��v	� and ��u	� are related by a unitary
transformation, one can find the general properties of VS for
a given stabilizer generator Ei

AEj
B and a given k.

We have already shown that the stabilizer states � should
also satisfy the set of conditions Tr�En

A†Em
A���0 and

Tr�En
A†Em

ATrs
b ���0 for all operators Em

A belonging to the same
Wk

i , where Trs
b �0�b�d−1� are the members of a particular

coset Av /Ca of an Abelian subgroup, Av, of the normalizer
N�S�. These relations can be expressed more compactly as
follows.

Condition 3. For stabilizer state �= ��ij	��ij � 
��c	��c�
and for all Em

A �Wk
i , we have

��c�En
A†Em

ATrs
b ��c	 � 0, �12�

where here 0�b�d−1.
Before developing the implications of the above formula

for the stabilizer states we give the following definition and
lemma.

Definition 3. Let ��l	L� be the logical basis of the code
space that is fixed by the stabilizer generator Ei

AEj
B. The sta-

bilizer state in that basis can be written as ��c	=�l=0
d−1�l � l	L,

and all the normalizer operators, Trs, can be generated from
tensor products of logical operations X and Z defined as
Z � l	L=�l � l	L and X � l	L= �l+1	. For example, �l	L= �k	 �k	, Z
=Z � I, and X=X � X, where X �k	= �k+1	 and Z �k	=�k �k	.

Lemma 12. For a stabilizer generator Ei
AEj

B and all unitary
operators Em

A �Wk
i , we always have En

A†Em
A =�cZa, where Z is

the logical Z operation acting on the code space and a and c
are integers.

Proof. Let us consider Ei
A=XqiZpi, and two generic opera-

tors En
A and Em

A that belong to Wk
i , Em

A =XqmZpm and En
A

=XqnZpn. From the definition of Wk
i �see Definition 1� we

have piqm−qipm= piqn−qipn=k�mod d�=k+ td. We can solve
these two equations to get qm−qn=qi�pmqn−qmpn� / �k+ td�
and pm− pn= pi�pmqn−qmpn� / �k+ td�. We also define pmqn

−qmpn=k�+ t�d. Therefore, we obtain qm−qn=qia and pm
− pn= pia, where we have introduced
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a = �k� + t�d�/�k + td� . �13�

Moreover, we have En
A†=X�t�d−qn�Z�t�d−pn� for some other in-

teger t�. Then we get

En
A†Em

A = �cX�t�d+qm−qn�Z�t�d+pm−pn�

= �cX�qm−qn�Z�pm−qn�

= �c�XqiZpi�a,

where c= �t�d− pn��t�d+qm−qn�. However, XqiZpi � I acts as
logical Z on the code subspace, which is the eigenstate of
Ei

AEj
B. Thus, we obtain En

A†Em
A =�cZa.

Based on the above lemma, for the case of b=0 we obtain

��c�En
A†Em

A ��c	 = �c��c�Za��c	 = �c�
l=0

d−1

�al��l�2.

Therefore, our constraint in this case becomes �k=0
d−1�al ��l�2

�0, which is not satisfied if the stabilizer state is maximally
entangled. For b�0, we note that Trs

b are in fact the normal-
izers. By considering the general form of the normalizer el-
ements as Trs

b = �XqZp�b, where q, p� �0,1 , . . . ,d−1�, we ob-
tain

��c�En
A†Em

ATrs
b ��c	 = �c��c�Za�XqZp�b��c	

= �c�
k=0

d−1

�a�l+bq��bpl�l
*�l+bq

= ��c+abq��
l=0

d−1

��a+bp�l�l
*�l+bq.

Overall, the constraints on the stabilizer state, due to condi-
tion �iii�, can be summarized as

�
l=0

d−1

��a+bp�l�l
*�l+bq � 0. �14�

This inequality should hold for all b� �0,1 , . . . ,d−1�, and
all a defined by Eq. �13�, however, for a particular coset
Av /Ca the values of q and p are fixed. One important prop-
erty of the stabilizer code, implied by the above formula with
b=0, is that it should always be a nonmaximally entangled
state. In the next section, by utilizing the quantum Hamming
bound, we show that the minimum number of physical qu-
dits, n, needed for encoding the required stabilizer state is in
fact two.

IX. MINIMUM NUMBER OF REQUIRED
PHYSICAL QUDITS

In order to characterize off-diagonal elements of a super-
operator we must use degenerate stabilizer codes, in order to
preserve the coherence between operator basis elements. De-
generate stabilizer codes do not have a classical analog �1�.
Due to this fact, the classical techniques used to prove
bounds for nondegenerate error-correcting codes cannot be
applied to degenerate codes. In general, it is yet unknown if
there are degenerate codes that exceed the quantum Ham-

ming bound �1�. However, due to the simplicity of the stabi-
lizer codes used in the DCQD algorithm and their symmetry,
it is possible to generalize the quantum Hamming bound for
them. Let us consider a stabilizer code that is used for en-
coding k logical qudits into n physical qudits such that we
can correct any subset of t or fewer errors on any ne�n of
the physical qudits. Suppose that 0� j� t errors occur.
Therefore, there are � ne

j
� possible locations, and in each loca-

tion there are �d2−1� different operator basis elements that
can act as errors. The total possible number of errors is
� j=0

t � ne

j
��d2−1� j. If the stabilizer code is nondegenerate each

of these errors should correspond to an orthogonal
dk-dimensional subspace; but if the code is uniformly g-fold
degenerate �i.e., with respect to all possible errors�, then each
set of g errors can be fit into an orthogonal dk-dimensional
subspace. All these subspaces must be fit into the entire
dn-dimensional Hilbert space. This leads to the following
inequality:

�
j=0

t 
ne

j
� �d2 − 1� jdk

g
� dn. �15�

We are always interested in finding the errors on one physi-
cal qudit. Therefore, we have ne=1, j� �0,1� and � cne

j
�=1,

and Eq. �15� becomes � j=0
1 �d2−1� jdk

g �dn. In order to character-
ize diagonal elements, we use a nondegenerate stabilizer
code with n=2, k=0, and g=1, and we have � j=0

1 �d2−1� j

=d2. For off-diagonal elements, we use a degenerate stabi-
lizer code with n=2, k=1, and g=d, and we have

� j=0
1 �d2−1� jd

d =d2. Therefore, in both cases the upper-bound of
the quantum Hamming bound is satisfied by our codes. Note
that if instead we use n=k, i.e., if we encode n logical qudits

into n separable physical qubits, we get � j=0
1 �d2−1� j

g �1. This
can only be satisfied if g=d2, in which case we cannot obtain
any information about the errors. The above argument justi-
fies condition �i� of the stabilizer state being nonseparable.
Specifically, it explains why alternative encodings such as
n=k=2 and n=k=1 are excluded from our discussions.
However, if we encode zero logical qubits into one physical
qubit, i.e., n=1,k=0, then, by using a d-fold degenerate

code, we can obtain � j=0
1 �d2−1� j

d =d which satisfies the quan-
tum Hamming bound and could be useful for characterizing
off-diagonal elements. For this to be true, the code ��c	
should also satisfy the set of conditions ��c �En

A†Em
A ��c	�0

and ��c �En
A†Em

ATrs
b ��c	�0. Due to the d-fold degeneracy of

the code, the condition ��c �En
A†Em

A ��c	�0 is automatically
satisfied. However, the condition ��c �En

A†Em
ATrs

b ��c	�0 can
never be satisfied, since the code space is one-dimensional,
i.e., dk=1, and the normalizer operators cannot be defined.
That is, there does not exist any nontrivial unitary operator
Trs

b that can perform logical operations on the one-
dimensional code space.

We have demonstrated how we can characterize quantum
dynamics using the most general form of the relevant stabi-
lizer states and generators. In the next section, we choose a
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standard form of stabilizers, in order to simplify the algo-
rithm and to derive a standard form of the normalizer.

X. STANDARD FORM OF STABILIZER
AND NORMALIZER OPERATORS

Let us choose the set ��0	 , �1	 , . . . , �k−1	� as a standard
basis, such that Z �k	=�k �k	 and X �k	= �k+1	. In order to
characterize the quantum dynamical population, we choose
the standard stabilizer generators to be �XAXB�q and
�ZA�ZB�d−1�p. Therefore, the maximally entangled input states
can be written as ��c	= 1

�d
�k=0

d−1 �k	A �k	B. In order to character-
ize the quantum dynamical coherence we choose the sole
stabilizer operator as �Ei

A�Ei
B�d−1�a, which has an eigenket of

the form ��c	=�i=0
d−1�i � i	A � i	B, where Ei � i	=�i � i	 and �i	 rep-

resents one of d+1 mutually unbiased basis states in the
Hilbert space of one qudit. The normalizer elements can be
written as Tqp

b = �XqZp�b�Av0
/Ca0

, for all 0�b�d−1, where

X=Ei
˜ � Ei

˜, Z=Ei � I, Ei
˜ � i	= �i+1	 and Ei � i	=�i � i	; and

Av0
/Ca0

represents a fixed coset of a particular Abelian sub-
group, Av0

, of the normalizer N�S�. For example, for a stabi-
lizer generator of the form �Ei

A�Ei
B�d−1�a= �ZA�ZB�d−1�p we

prepare its eigenket ��c	=�k=0
d−1�k �k	A �k	B, and the normaliz-

ers become Tqp
b = �XqZp�b, where X=X � X and Z=Z � I. Us-

ing this notations for stabilizer and the normalizer operators,
we provide an overall outline for the DCQD algorithm in the
next section.

XI. ALGORITHM: DIRECT CHARACTERIZATION
OF QUANTUM DYNAMICS

The DCQD algorithm for the case of a qudit system is
summarized as follows �see also Figs. 5 and 6.�:

Inputs. �1� An ensemble of two-qudit systems, A and B,
prepared in the state �0	A � �0	B. �2� An arbitrary unknown
CP quantum dynamical map E, whose action can be ex-

pressed by E���=�m,n=0
d2−1 �mnEm

A�En
A†, where � denotes the

state of the primary system and the ancilla.
Output. E, given by a set of measurement outcomes in the

procedures �a� and �b� below.
Procedure �a�. Characterization of quantum dynamical

population �diagonal elements �mm of ��, see Fig. 5.
�1� Prepare ��0	= �0	A � �0	B, a pure initial state.
�2� Transform it to ��c	= 1

�d
�k=0

d−1 �k	A �k	B, a maximally en-
tangled state of the two qudits. This state has the stabilizer
operators Ei

AEj
B= �XAXB�q and Ei�

AEj�
B = �ZA�ZB�d−1�p for 0� p,

q�d−1.
�3� Apply the unknown quantum dynamical map to the

qudit A: E���=�m,n=0
d2−1 �mnEm

A�En
A†, where �= ��c	��c�.

�4� Perform a projective measurement
PkPk� :E���� PkPk�E���PkPk�, where Pk= 1

d�l=0
d−1�−lk�Ei

AEj
B�l,

and Pk�= 1
d�l�=0

d−1 �−l�k��Ei�
AEj�

B �l�, and calculate the joint prob-
ability distributions of the outcomes k and k�,

Tr�PkPk�E���� = �mm.

Number of ensemble measurements for procedure �a�, 1.
Procedure �b�. Characterization of quantum dynamical

coherence �off-diagonal elements �mn of ��, see Fig. 6.
�1� Prepare ��0	= �0	A � �0	B, a pure initial state.
�2� Transform it to ��c	=�i=0

d−1�i � i	A � i	B, a nonmaximally
entangled state of the two qudits. This state has stabilizer
operators �Ei

A�Ei
B�d−1�a.

�3� Apply the unknown quantum dynamical map to the

qudit A: E���=�m,n=0
d2−1 �mnEm

A�En
A†, where �= ��c	��c�.

�4 � Perform a projective measurement

Pk:E��� � �k = PkE���Pk = �
m

�mmEm
A�Em

A†

+ �
m�n

��mnEm
A�En

A† + �mn
* En

A�Em
A†� ,

where Pk= 1
d�l=0

d−1�−lk�Ei
AEj

B�l and Em
A =XqmZpm �Wk

i , and cal-
culate the probability of outcome k:

Tr�PkE���� = �
m

�mm + 2 �
m�n

Re��mnTr�En
A†Em

A��� .

�5� Measure the expectation values of the normalizer op-
erators Tqp

b = �XqZp�b�Av0
/Ca0

, for all 0�b�d−1, where

X=Ei
˜ � Ei

˜, Z=Ei � I, Ei � i	=�i � i	, Ei
˜ � i	= �i+1	, where

Av0
/Ca0

represents a fixed coset of a particular Abelian sub-
group, Av0

, of the normalizer N�S�,

Tr�Tqp
b �k� = �

m

�pqm−qpm�mm Tr�Trs
b ��

+ �
m�n

��pqm−qpm�mn Tr�En
A†Em

ATrs
b ��

+ �pqn−qpn�mn
* Tr�Em

A†En
ATrs

b ��� .

FIG. 5. �Color online� Procedure �a�: Measuring the quantum
dynamical population �diagonal elements �mm�. The arrows indicate
direction of time. �1� Prepare ��0	= �0	A � �0	B, a pure initial state.
�2� Transform it to ��C	= 1

�d
�k=0

d−1 �k	A �k	B, a maximally entangled
state of the two qudits. This state has the stabilizer operators S
=XAXB and S�=ZA�ZB�d−1. �3� Apply the unknown quantum dy-
namical map to the qudit A, E���, where �= ��C	��C�. �4� Perform a
projective measurement PkPk�, for k ,k�=0, . . . ,d−1, corresponding
to eigenvalues of the stabilizer operators S and S�. Then calculate
the joint probability distributions of the outcomes k and k�:
Tr�PkPk�E����=�mm. The elements �mm represent the population of
error operators that anticommute with the stabilizer generators S
and S� with eigenvalues �k and �k�, respectively. The number of
ensemble measurements for procedure �a� is one.
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�6� Repeat the steps �1�–�5� d+1 times, by preparing the
eigenkets of other stabilizer operator �Ei

A�Ei
B�d−1�a for all i

� �1,2 , . . . ,d+1�, such that states �i	A � i	B in the step �2� be-
long to a mutually unbiased basis.

�7� Repeat the step �6� up to d−1 times, each time choos-
ing normalizer elements Tqp

b from a different Abelian sub-
group Av /Ca, such that these measurements become maxi-
mally noncommuting.

Number of ensemble measurements for procedure �b�,
�d+1��d−1�.

Overall number of ensemble measurements, d2.
In the case of performing nondemolition measurements,

the output state in Figs. 5 and 6 becomes a maximally en-
tangled state ��E	=�i=0

d−1 � i	A � i	B which is the common eigen-
ket of the stabilizer generator and its commuting normalizer
operators. For procedure �a�, this state can be directly used
for other measurements. This is indicated by the dashed lines
in Fig. 5. For procedure �b�, the state ��E	 can be unitarily
transformed to another member of the same input stabilizer
code, ��C	=�i=0

d−1�i � i	A � i	B, before another measurement.
Therefore, all the required ensemble measurements, for mea-
suring the expectation values of the stabilizer and normalizer
operators, can be performed in a temporal sequence on the
same pair of qudits, by utilizing nondestructive measure-
ments.

In the preceding sections, we have explicitly shown how
the DCQD algorithm can be developed for qudit systems

when d is prime. In the Appendix , we demonstrate that the
DCQD algorithm can be generalized to other N-dimensional
quantum systems with N being a power of a prime.

XII. SUMMARY

For convenience, we provide a summary of the DCQD
algorithm. The DCQD algorithm for a qudit, with d being a
prime, was developed by utilizing the concept of an error
operator basis. An arbitrary operator acting on a qudit can be
expanded over an orthonormal and unitary operator basis
�E0 ,E1 , . . . ,Ed2−1�, where E0= I and tr�Ei

†Ej�=d�ij. Any ele-
ment Ei can be generated from tensor products of X and Z,
where X �k	= �k+1	 and Z �k	=�k �k	, such that the relation
XZ=�−1ZX is satisfied �28�. Here � is a dth root of unity and
X and Z are the generalizations of Pauli operators to higher
dimension.

Characterization of dynamical population. A measure-
ment scheme for determining the quantum dynamical popu-
lation, �mm, in a single experimental configuration. Let us
prepare a maximally entangled state of the two qudits ��C	
= 1

�d
�k=0

d−1 �k	A �k	B. This state is stabilized under the action of
stabilizer operators S=XAXB and S�,=ZA�ZB�d−1, and it is re-
ferred to as a stabilizer state �1,28�. After applying the quan-
tum map to the qudit A, E���, where �= ��C	��C�, we can
perform a projective measurement PkPk�E���PkPk�, where

Pk= 1
d�l=0

d−1�−lkSl,Pk�= 1
d�l�=0

d−1 �−l�k�S�l�, and �=ei2�/d. Then,
we calculate the joint probability distributions of the out-
comes k and k�: Tr�PkPk�E����=�mm, where the elements
�mm represent the population of error operators that anticom-
mute with stabilizer generators S and S� with eigenvalues �k

and �k�, respectively. Therefore, with a single experimental
configuration we can identify all diagonal elements of the
superoperator.

Characterization of dynamical coherence. For measuring
the quantum dynamical coherence, we create a nonmaxi-
mally entangled state of the two qudits ��C	=�i=0

d−1�i � i	A � i	B.
This state has the sole stabilizer operator S=Ei

A�Ei
B�d−1 �for

detailed restrictions on the coefficients �i see Sec. VIII�. Af-
ter applying the dynamical map to the qudit A, E���, we
perform a projective measurement �k= PkE���Pk, and calcu-
late the probability of the outcome k, Tr�PkE����=�m�mm

+2�m�n Re��mn Tr�En
A†Em

A���; where Em
A are all the operators

in the operator basis, �Ej
A�, that anticommute with the opera-

tor Ei
A with the same eigenvalue �k. We also measure the

expectation values of all independent operators Trs=Er
AEs

B of
the Pauli group �where Er

A� I; Es
B� I� that simultaneously

commute with the stabilizer generator S, Tr�Trs�k�. There are
only d−1 such operators Trs that are independent of each
other, within a multiplication by a stabilizer generator; and
they belong to an Abelian subgroup of the normalizer group.
The normalizer group is the group of unitary operators that
preserve the stabilizer group by conjugation, i.e., TST†=S.
We repeat this procedure d+1 times, by preparing the eigen-
kets of other stabilizer operator Ei

A�Ei
B�d−1 for all i

� �1,2 , . . . ,d+1�, such that states �i	A in input states belong
to a mutually unbiased basis �32�. Also, we can change the
measurement basis d−1 times, each time choosing normal-

FIG. 6. �Color online� Procedure �b�: Measuring the quantum
dynamical coherence �off-diagonal elements �mn�. �1� Prepare
��0	= �0	A � �0	B, a pure initial state. �2� Transform it to ��C	
=�i=0

d−1�i � i	A � i	B, a nonmaximally entangled state of the two qudits.
This state has a sole stabilizer operator of the form S=Ei

A�Ei
B�d−1.

�3� Apply the unknown quantum dynamical map to the qudit A,
E���, where �= ��C	��C�. �4� Perform a projective measurement Pk,
and calculate the probability of the outcome k, tr�PkE����. �5� Mea-
sure the expectation values of all normalizer operators Trs that si-
multaneously commute with the stabilizer generator S. There are
only d−1 such operators Trs that are independent of each other,
within a multiplication by a stabilizer generator; and they belong to
an Abelian subgroup of the normalizer group. �6� Repeat the steps
�1�–�5� d+1 times, by preparing the eigenkets of the other stabilizer
operator Ei

A�Ei
B�d−1 for all i� �1,2 , . . . ,d+1�, such that states �i	A in

step �2� belong to a mutually unbiased basis �32�. �7� Repeat the
step �6� up to d−1 times, each time choosing normalizer elements
Trs from a different Abelian subgroup of the normalizer, such that
these measurements become maximally noncommuting, i.e., their
eigenstates form a set of mutually unbiased bases. The number of
ensemble measurements for Procedure �b� is �d+1��d−1�.
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izer elements Trs from a different Abelian subgroup of the
normalizer, such that their eigenstates form a mutually unbi-
ased basis in the code space. Therefore, we can completely
characterize quantum dynamical coherence by �d+1��d−1�
different measurements, and the overall number of experi-
mental configuration for a qudit becomes d2. For
N-dimensional quantum systems, with N a power of a prime,
the required measurements are simply the tensor product of
the corresponding measurements on individual qudits–see
the Appendix . For quantum system whose dimension is not
a power of a prime, the task can be accomplished by embed-
ding the system in a larger Hilbert space whose dimension is
a prime.

XIII. OUTLOOK

An important and promising advantage of DCQD is for
use in partial characterization of quantum dynamics, where
in general, one cannot afford or does not need to carry out a
full characterization of the quantum system under study, or
when one has some a priori knowledge about the dynamics.
Using indirect methods of QPT in those situations is ineffi-
cient, because one must apply the whole machinery of the
scheme to obtain the relevant information about the system.
On the other hand, the DCQD scheme has built-in applica-
bility to the task of partial characterization of quantum dy-
namics. In general, one can substantially reduce the overall
number of measurements, when estimating the coherence el-
ements of the superoperator for only specific subsets of the
operator basis and/or subsystems of interest. This fact has
been demonstrated in Ref. �26� in a generic fashion, and
several examples of partial characterization have also been
presented. Specifically, it was shown that DCQD can be ap-
plied to �single- and two-qubit� Hamiltonian identification
tasks. Moreover, it is demonstrated that the DCQD algorithm
enables the simultaneous determination of coarse-grained
�semiclassical� physical quantities, such as the longitudinal
relaxation time T1 and the transversal relaxation �or dephas-
ing� time T2 for a single qubit undergoing a general homog-
enizing quantum map. The DCQD scheme can also be used
for performing generalized quantum dense coding tasks.
Other implications and applications of DCQD for partial
QPT remain to be investigated and explored.

An alternative representation of the DCQD scheme for
higher-dimensional quantum systems, based on generalized
Bell-state measurements will be presented in Ref. �33�. The
connection of Bell-state measurements to stabilizer and nor-
malizer measurements in DCQD for two-level systems, can
be easily observed from Table II of Ref. �3�. Our presentation
of the DCQD algorithm assumes ideal �i.e., error-free� quan-
tum state preparation, measurement, and ancilla channels.
However, these assumptions can all be relaxed in certain
situations, in particular when the imperfections are already
known. A discussion of these issues is beyond the scope of
this work and will be the subject of a future presentation
�33�.

There are a number of other directions in which the re-
sults presented here can be extended. One can combine the
DCQD algorithm with the method of maximum likelihood

estimation �35�, in order to minimize the statistical errors in
each experimental configuration invoked in this scheme.
Moreover, a new scheme for continuous characterization of
quantum dynamics can be introduced, by utilizing weak
measurements for the required quantum error detections in
DCQD �36,37�. Finally, the general techniques developed for
direct characterization of quantum dynamics could be further
utilized for control of open quantum systems �38�.
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APPENDIX: GENERALIZATION TO ARBITRARY
OPEN QUANTUM SYSTEMS

Here, we first demonstrate that the overall measurements
for a full characterization of the dynamics of an n qudit
systems �with d being a prime� become the tensor product of
the required measurements on individual qudits. One of the
important examples of such systems is a QIP unit with r
qubits, thus having a 2r-dimensional Hilbert space. Let us
consider a quantum system consisting of r qudits, �=�1
� �2 � ¯ � �r, with a Hilbert space of dimension N=dr. The
output state of such a system after a dynamical map becomes

E���=�m,n=0
N2−1 �mnEm�En

† where here �Em� are the unitary op-
erator basis elements of an N-dimensional Hilbert space.
These unitary operator basis elements can be written as Em
=Xqm1Zpm1 � Xqm2Zpm2 � ¯ � XqmrZpmr �34�. Therefore, we
have

E��� = �
m,n=0

N2−1

�mn�Xqm1Zpm1 � . . . � XqmnZpmn��1 � . . .

� �n�Xqn1Zpn1 � . . . � XqnrZpnr�†

= �
m1,. . .,mr,n1,,. . .,nr=0

d2−1

��m1. . .mr��n1. . .nr�
�Em1

�1En1

† �

� . . . �Ems
�sEns

† � . . . � �Emr
�rEnr

† �

= �
m1. . .mr,n1. . .nr=0

d2−1

��m1. . .mr��n1. . .nr�
�Em�En

†�s
�

r
,

where we have introduced Ems
=XqmsZpms and �mn

=��m1,. . .,mr��n1,. . .,nr�
. I.e., m= �m1 , . . . ,ms , . . . ,mr� and n

= �n1 , . . . ,ns , . . . ,nr�, and the index s represents a generic qu-
dit. Let us first investigate the tensor product structure of the
DCQD algorithm for characterization of the diagonal ele-
ments of the superoperator. We prepare the eigenstate of the

stabilizer operators �Ei
AEj

B�s
�

r
and �Ei�

AEj�
B �s

�
r
. For each qudit,

the projection operators corresponding to outcomes �k and
�k� �where k ,k�=0,1 , . . . ,d−1�, have the form Pk
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= 1
d�l=0

d−1�−lk�Ei
AEj

B�l and Pk�= 1
d�l�=0

d−1 �−l�k��Ei�
AEj�

B �l�. The joint
probability distribution of the commuting Hermitian opera-
tors Pk1

, Pk1�
, Pk2

, Pk2�
, . . . , Pkr

, Pkr�
on the output state E��� is

Tr��PkPk��s
�

r
E���� =

1

�d2�r �
m1,. . .,mr,n1,. . .,nr=0

d2−1

��m1,. . .,mr��n1,. . .,nr�

	 
�
l=0

d−1

�
l�=0

d−1

�−lk�−l�k�Tr�En
†�Ei

A�l�Ei�
A �l�

	Em�Ej
B�l�Ej�

B �l����
s

�
r

.

By introducing EiEm=�imEmEi for each qudit and using the
relation ��Ei

AEj
B�l�Ei�

AEj�
B �l���s=�s we obtain

Tr��PkPk��s
�

r
E���� =

1

�d2�r �
m1,. . .,mr,n1,. . .,nr=0

d2−1

��m1,. . .,mr��n1,. . .,nr�

	 
�
l=0

d−1

�
l�=0

d−1

��im−k�l��im� −k��l�Tr�En
†Em���

s

�
r

Using the QEC condition for nondegenerate codes,
Tr�En

†Em��s= ��mn�s, and also using the discrete Fourier trans-

form identities �l=0
d−1��im−k�l=d�im,k and �l�=0

d−1 ��im� −k��l�

=d�im� ,k� for each qudit, we get

Tr��PkPk��s
�

r
E���� = �

m1,. . .,mr,n1,. . .,nr=0

d2−1

��m1,. . .,mr��n1,. . .,nr�

	��im,k�im� ,k��mn�s
�

r

= ��m01,. . .,m0r��m01,. . .,m0r�
,

where for each qudit, the index m0 is defined through the
relations im0

=k and im0
� =k�, etc. I.e., Em0

is the unique error
operator that anticommutes with the stabilizer operators of
each qudit with a fixed pair of eigenvalues �k and
�k�corresponding to experimental outcomes k and k�. Since
Pk and Pk� operator have d eigenvalues, we have d2 possible
outcomes for each qudit, which overall yields �d2�r equations
that can be used to characterize all the diagonal elements of
the superoperator with a single ensemble measurement and
�2d�r detectors. Similarly, the off-diagonal elements of super-
operators can be identified by a tensor product of the opera-
tions in the DCQD algorithm for each individual qudit, see
Ref. �26�. A comparison of the required physical resources
for n qudits is given in Table I.

For a d-dimensional quantum system where d is neither a
prime nor a power of a prime, we can always imagine an-
other d�-dimensional quantum system such that d� is prime,
and embed the principal qudit as a subspace into that system.
For example, the energy levels of a six-level quantum system
can be always regarded as the first six energy levels of a
virtual seven-level quantum system, such that the matrix el-
ements for coupling to the seventh level are practically zero.
Then, by considering the algorithm for characterization of
the virtual seven-level system, we can perform only the mea-
surements required to characterize superoperator elements
associated with the first six energy levels.

TABLE I. Required physical resources for the QPT schemes: Standard quantum process tomography
�SQPT�, ancilla-assisted process tomography using separable joint measurements �AAPT�, using mutual
unbiased bases measurements �MUB�, using generalized measurements �POVM�, see Ref. �3�, and direct
characterization of quantum dynamics �DCQD�. The overall number of measurements is reduced quadrati-
cally in the DCQD algorithm with respect to the separable methods of QPT. This comes at the expense of
requiring entangled input states, and two-qudit measurements of the output states. The nonseparable AAPT
schemes require many-body interactions that are not available experimentally �3�.

Scheme dim�H�a Ninputs Nexp.
b Measurements Required interactions

SQPT dn d2n d4n One body Single body

AAPT d2n 1 d4n Joint one body Single body

AAPT �MUB� d2n 1 d2n+1 MUB Many body

AAPT �POVM� d4n 1 1 POVM Many body

DCQD d2n ��d+1�+1�n d2n Stabilizer/Normalizer Single and two body

aH, the Hilbert space of each experimental configuration.
bOverall number of experimental configurations.
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