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Entangling capacities of noisy two-qubit Hamiltonians
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We study the limits imposed by intrinsic fluctuations in system-control parameters on the ability of two-qubit
(exchanggHamiltonians to generate entanglement, starting from arbitrary initial states. We find three classes
for Gaussian and Laplacian fluctuations. For the Ising & models there are qualitatively distinct, sharp
entanglement-generation transitions, while the class of Heisenk¥rcand XXZ Hamiltonians is capable of
generating entanglement for any finite noise level. Our findings imply that exchange Hamiltonians are surpris-
ingly robust in their ability to generate entanglement in the presence of noise, thus potentially reducing the
need for quantum error correction.
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I. INTRODUCTION into a canonical, diagonal forrf8]. Hence we will restrict

' J —Ji i-
Considerable experimental efforts have been devoted igHr atte(rjmlon o tk;]e casll*gﬁ .f‘.Jag“[’ fr]? r|r|1 nowzog. The ij
the past few years to the creation of entangled states, wit us models are then classified as folloW('Z J,#J,# J,,

) X . . ' zZ J,=3,#J, XY: J=J,,J,=0, HeisenbergJ,=J,=J
impressive success in systems such as trapped ions, Couplﬁﬁ]g. T=3=0 X oTyrme Ty
atomic gas sgmples,. po'a"ze.d photons, af‘d most recently, TWquugits .can be entangled by first preparing a product
superconducting qubitEl]. An important motivation comes state and then running the interaction for a desired amount of
from quantum-information processingQIP), where en-

time to generate, e.g., a controll&dT (CNOT) or controlled-

e, omeveteaton oo ot ELUSE (HASE 90 (2, Tunabily o e couping con
- SP P, . ' yptograp PPltants inH need not always be possible, even though it is a
cations[2]. As the generation of entanglement often involves : .
) . . . o common assumption of QIP proposals. This leads to two
the manipulation of an interaction Hamiltonian, recent theo- o L . : . ; i
ualitatively distinct scenarios we consider in this wai).

retical work has focused on the entanglement capabilities ; . . . ;
oo . . : -Tunable interactions—where the interaction can be switched
such Hamiltonians. In particular, questions concerning opti-

mality [3,4], equivalence classds], and entangling power/ on and off(e.g., an exchange interaction mediated by a tun-
Y 12,4, €0 . ’ giihg p able tunneling barrief8]), and(b) nontunable interactions—
capacity[6], have been raised and answered, under the as-

. . . where the interaction is always @a.g., a Coulomb interac-
sumption ofnoiselesscontrols. Here we take the first step tion [9]), thus requiring, e.g., external single-qubit operations
toward addressing what happens when this assumption 1B ' q 9. €9, ge-q P

. ; ! 0 refocus the interactions and enable controlled entangle-
relaxed. In particular, we wish to find out the answer to the .
: X S ment generation. Recent work has addressed the problem of
following question:What are the limits imposed on entangle-

ment generation via two-body Hamiltonians by quctuationsumVersal quantum computation with nontunable couplings

in system-control paramete?§7]. We note that, as is well [10], and even unkn.own parametg{fﬂ]. In the Iabora_mtory,
. . however, the execution of every single and two-qubit opera-
known, quantum error correctid@] offers a solution to both

decoherence and the type of control errors we consider hertta"On will generally be noisy due to system and experimental

however, this solution involves a high cost in extra ubitslrhperfections, over which we have limited control. We con-
! . gn cc q sider phenomenological noise models to describe noisy
and logic gates. In view of the central importance of en-

tanglement in QIP, it is of significant interest to find out the single and two-qubit operations, whgrem certain control pa-
N ; . . _rameters vary stochastically. Specifically, we have consid-
limits imposed on entanglement generation via interaction . .
o . ) ered two models(a) Gaussian angb) Laplacian parameter
Hamiltonians and state preparation, without any error correc; . . ; L

tion fluctuations. The Gaussian model has universal applicability

' in the case of noise induced by many weakly coupled ran-

Il. THE MODEL dom sourcegby the central limit theorem It has been ex-
tensively used and discussed in stochastic quantum mechan-
Almost all quantum computing proposals are governed bycs (e.g.,[12]). We consider the Laplacian model mainly to

interaction Hamiltonians that are used to enact two-qubit optest the robustness of our results. Another important model is

erations. The most general two-qulgiexchangej Hamil-  1/f noise due to bistable random fluctuators, which will be
tonian has the form considered in a future publication.
H= g BE 3,89, (1) IIl. GAUSSIAN FLUCTUATIONS
1<] a,b=X,Y,Z

Given a HamiltonianK(t,J) (where J is a parameter
whereSaE%aa are the angular momentum operat@rg are  or set of parameteys a unitary transformationU is
the Pauli matricesandi,j are qubit indices. By applying generated by evolving undeK for some time 7:U(¢)
local unitary operations it is always possible to transféim =7 exg—i[q K(t,J)dt], where 7 denotes time ordering. In
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M(p)=2 for a maximally mixed state. In the present case the
entropy rises rapidly from zergat A\=0) and reaches its
maximum of 2 forA = 2. Next we apply the noisy version of
the U, gate, with anglel7~ N(7,{)). The resulting density
matrix p(\,)) is easily computed but is not particularly il-
luminating; instead, we present the result of using the partial
transposition test for entanglemdii#]: a 2® 2 state is en-
tangled if and only if it has negative partial transpoN@T).
One then arrives at the following condition for inseparability
for the density matrixp(\,():

N 4 2 (12IN+0%4] - ¢ (3)

Figure 1 illustrates this condition. Observe that there is a
significant region of entanglement in parameter space, with a
tradeoff between the tolerated level of noise in state prepa-
ration and interaction. Interestingly, except along the Xut
=0, the transition from entangled to separable is sharp
Solving the inequality(3), we find that the condition for

. . . . entanglement is
our analysis below we only deal with piecewise constant

Hamiltonians, then the ang® #=7J. An initial state p < {-2 log (e @4 4 1)1/2 — g= (VB2 (4)
transforms aSp—>p(¢)=U(¢)pU(¢)T._We now assume that o _ o
¢ is Gaussian distributed with meap (the desired ang)e The finite range of the state preparation param&téndi-

L N . cates thathe purity of the initial state is cruciaHowever,
and standard deviatiafSD) A: ~N(¢,\). This may be the ...~ high quality interaction a significantly mixed initial
outcome of Gaussian noise i) 7, or both. Thus, under a

. o state can be tolerated: From the above follows that if the
noisy control the actual transformation is interaction is perfect@=0) then \,,=[-2 In(v2—1)]2
— 1 (” — s =1.327, meaning that even an initial mixed state with en-
P = Proisy\, #) = :J el@= 9T p(g)dp. (2)  tropy 96% as high as the maximally mixed state would stil
V2ah ) enable entanglement generation. Conversely, if the initial
Below we takeK to be either an exchange Hamiltonian with State preparation does not involve any ndise0), then the
noisy coupling constantslg (in which case we assume for interaction, no matter how noisy, will be able to produce
simplicity an equal SD, denoted &%), or a noisy single- Some entanglement. Finally, note that fo® 2 systems of
qubit Hamiltonian needed to refocus an always-on exchangi€ type we are considering here, if a state is entangled then
Hamiltonian(and denote the SD af). it is distillable as well, i.e., one can extract pure states from
Case (i): Tunable Ising interactiorin the Ising model, such noisy states using local operations and classical com-

FIG. 1. Condition for entanglement as a function of interaction
error Q) and preparation errax in the Ising model. Plotted is the
PPT criterion[Eq. (3)]. The transition line between entanglement
and separability is clearly visible, with the region above the hori-
zontal plane correponding to entanglement.

z . .
=JS<. Consider the preparation of a maximally entangledthat a state is useful for teleportation and all other QIP

state, starting from the initial stajg=|00)(00|, in the pres- Primitives _ o _
ence of noisy interactiorid.3]. Without noise, application of ~ Case (ii): Untunable Ising interactionNow we do not

the Hadamard transfortdy, () =exp(~iS,) on both qubits, assume the ability to switch the interaction ¢ffs, e.g., in
followed by NMR). It is therefore necessary to refocus the interaction

using single-qubit operatiori$6]. This is done by pulsing an
_ i T} 1 20\ _ ity external magnetic field along theaxis (we choose the first
Uzz(m) =exp —i 4‘]"z‘fzdt =e S qubit for this operatiop We assume that such pulses can be
0 made very fast and strong compared to the interadti@n
prepares the maximally entangled pure st@)s:%(|00> Formally, letX,Y,Z be operators satisfyingu2) commuta-
+i|01)+i|10)+|11)). In the presence of noise, the action of tion relations:[X,Y]=iZ and cyclic permutationge.g., the
both Uy, and U,, must be averaged over a distribution of angular momentum operatog;). Then it follows from the
angles, as in Eq(2). The noisy Hadamard transform is a Baker-Campbell-Hausdorff formula that upon “conjugation
rotation about they axis with average angler and SDA, by ¢ CeX=exp-ipZ)X explipZ)=X cose+Y sin ¢.

resulting in the mixed state Note further thatUe*UT=eYAY" for unitary U and arbitrary
A Thus,  C¥e expli 6X)=exp—i¢pZ)exp(i 6X)exp(i ¢Z)
Po(?\):(l/\"gﬁ\)fe_[(a_”)ZIZAZ][UH(ﬁ)piUH(9)T]d9, =exfif(X cosg+Y sin¢)]. One application is “time-
reversal,” which results from conjugation by

which can be easily evaluated. The mixednespyab mea- C7o X = giZmgXgiZm = grifX (5)
sured by its von Neumann entropyt(p) =-Ti{p log, p], as z '
a function of the noise parameterM(p)=0 for a pure state, We then havep(r,) =Ug(m)poUr()', where

010301-2



RAPID COMMUNICATIONS

ENTANGLING CAPACITIES OF NOISY TWO-QUBIT... PHYSICAL REVIEW A 70, 010301R) (2004

Ug(m) = |:Cgloexp<—isz JSS dt)} '
—i " 12 g
><exp< |f0 JSS t)

— ori(ml4)ote?

which in conjunction with our Hadamard-state preparation,
yields the desiredPHASE gate. The parameters must satisfy o
the conditionJ(27,— ) = . In the noisy scenario, the recou-
pling step is implemented with a rotation around thaxis
by an angled~N(m,A) (Where A>=A2+A3, with A; the
SD’s of the independent Gaussian-random variallgsi
=1,2, J fixed); the only change is thetJg(m)—Ug(6H),
and the final state is given by p(m,\,A)
=(1/\27A) fe0-m72A% U (6) psUR(6)T]d6, which can be
analytically evaluated. The inseparability condition, obtainec
using the partial transposition criterion, yields the same form
as the tunable cagé&q. (3)], provided we replac€)/2 by A.
Note that this is by no means anpriori obvious substitu-
tion: Q is the two-body interaction strength error, wherdas
is the error in the single-body coupling parameter. . )
Case (iii): Tunable XYZ HamiltoniansVe now consider =(kx—Jy)7. From 0<|z|,a,b<1, we have the following suf-
the XYZmodelHyy == =y, ‘]asisi, of which, in the noise- ficient conditions foffinseparability right-hand sid&RHS) of
less casethe XXZ XY, and Heisenberg models are special EQ.(6) <0]: b>(1-a)/(1+a) (curve afZ=0 in Fig. 2, and
cases. As in the Ising case we assume the initial stape is separability [RHS of Eg. (6) >1]: b<(1-a)/\2(1+a%
=|00)00| [17]. In the noiseless scenario, we first apply (curve at|z=1 in Fig. 2. Thus we find that that th&XYZ
Ux(m)=exp-imS) on the second qubit, yielding model with J#J,, similarly to the Ising modelgxhibits a
po=|01)01]. This is followed by UxyA by, 6y, ) sharp entanglement/separability transition as a function of
=exp(-if§ Hxyzdt), where 6,,=J3,7, ¢=J,7. Letting preparation and interaction noiseHowever, in contrast to
6,+0,=m/4 and leaving ¢ arbitrary, this prepares the the Ising model, in general there is also a dependence on a
maximally entangled pure staté)=(1/12)(i|01)+|10y).  third parameter, thenoisy) interaction distancé,—Jy, so the
Thus in the noiseless case, and for all the exchange modefs'Z Model belongs to a distinct class.

considered here, there is no dependence,oin the noisy . Case (iv): Tunable XyYXXZ gnd He!senberg Hamilto_-
scenario, we first applyUy(w)=exfd-ioS), where nians Note that because of the integration over the distribu-

~N(,\). Then, po(\) is a mixture of the statel90),|01) tion of J,—J, above wecannotspecialize to theXY, XXz

. . . _ .2 Heisenberg modelgl,=J,=J casg. Repeating the calcula-
W'th respective we|ght§14_rexp( \/2)]/2. Note that now, tions above now withl~N(7z/4,Q) we find that the final
in the worst case scenarid — ) py can only be 50% as

mixed as the totally mixed state, whereas in the Ising mode?'tate (i()\’Q) IS a m|?<ture of th_e stat§$00>l and _|:\I;/2>

abovep, could be fully mixed(or 96% mixed if we insist on :(1/\’2)(|01>J—“|120>)’ W'th2 respective weights;(1-€™ )

entanglement generatipn and 3[1+e V2|15 7?). Such states are always en-
The unitarily transformed density matrix is given tangled as long as the proportions of the stéie® are dif-

by po()\)Hnyz(Gx,Gy,qﬁ)po()\)U;Yz(HX,Gy,(ﬁ):p()\,HJ',H_), ferent, which clearly holds in our case far{)<«. Hence,

where ¢*= 6,+ 6, whose explicit form can be found without the final state in the tunable XXXz and Heisenberg mod-

much difficulty, and again is independent#fi.e., J,), now  els is always entangled for all practical purpos@is, then,

even when the initial state is noisy. We next integrate oveis a third class.

0 ~N(m/4,Q) and 6 ~N(6,Q), WhereQ:(QiJrQi)l/z, Case (v): Untunable XY,ZXY, XXZ and Heisenberg

and where(), are the SD’s ofg,. Upon applying the partial Hamiltonians Since the interaction is always on, we need to

transposition criterion we find the condition for inseparabil-2PPly external single-qubit refocusing operations. This is
ity done by pulsing an external magnetic field along zhexis

(we choose the first qubit for this operatjoAfter a lengthy
|2 > [1/6% - (1 +a)%(1 -a)?]*?, (6)  calculation we find from the partial transposition criterion,
for the XYZ model, the inseparability condition

4

FIG. 2. Plot of the inseparability condition E¢6). Entangle-
ment in the noisy tunablXYZ model is the region wherg] is
above the surface shown ardL.

wherea=e12% b=e2, z=cog26"). This condition, plot- 2 » 2 1 4 2
ted in Fig. 2, depends on the noise paramexef3 (as in the (A+Bu) "1 =7 Cu =Dy~ g1 +7)°<0, (7
Ising casg but also periodically on themearn coupling con-  \yhere Iu:e-AZ/z, e e (22 A=cos cos 5,B
stants through the distance between exchange mafifels =sin 8 sin §,C=sin 8 cosé§,D=cosBsinés, B=Anw/2,0
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=Am/4, andA=(J,—J))/ (I, +Jy). TheXY, XXZ and Heisen- rescaling of the SD. Further, note that as in the Gaussian
berg models(J,=J,) correspond toB=C=D=0. Interest- model, when the initial state is perfect=0) the state re-
ingly, not only this is achieved wheh=J, butXYZmimicks ~ mains inseparable for all practical purposes. By solving in-
XY, XXZ, and Heisenberg also when=4n, with n being an  equality (9) the inseparability condition can be written as
integer. It can be shown that the inequali@ is satisfied as N <3{[(1+(1+Q??)Y?-02]/(1+Q?)}2, which shows that,
long asA,\ <. Hence, in all these exchange models theagain as noticed in the Gaussian case, the purity of the initial
final state is always entangled for all practical purposks. state is crucial and actually even more so in the Laplace case.
contrast to the tunable case, the untunak¥z XY, XXZ  Indeed, if the interaction is perfect, we obtain the insepara-
and Heisenberg Hamiltonians all lie in the same class. bility condition A < 41/8=0.5946, in contrast to the Gauss-
ian case where the the threshold valuexah the no-noise
interaction scenario is as high as 1.327.

As a test of the robustness of our Gaussian-model based
conclusions, we have repeated the above analysis when the V. CONCLUSIONS
flucutuations in control parameters obey a Laplace distribu-

tion: under a noisy control the actual state transformation is The sharp transition found in the Ising akt Zmodels is
now reminiscent of the thermal entanglement transifid8], and

suggests an interesting avenue for further research. The sur-
prising robustness of entanglement to noise bodes well for
quantum-information processing with reduced demands on
error correction. Another interesting implication of our work
While we find quantitative differences compared to theconcernsentanglement verificatiorKnowing the underlying
Gaussian model, the qualitative behavior is identical, thuswo-body interaction Hamiltonian and corresponding level of
bolstering the universality of the classes obtained. To illuscontrol, an experimentalist can confidently characterize the
trate this fact let us reconsider the Ising case. aef\ ()  degree of entanglement his/her system can generate, without
be the SD of the noisy parameter controlling state preparaneeding to perform a direct, and often difficult, measurement
tion (interaction) in both the tunable and nontunable casesof entanglemenfl].

We find, repeating the procedure above, that the condition of
inseparability can be given fdyoth the tunable and nontun-
able cases as

IV. LAPLACIAN FLUCTUATIONS

0

_ 1 —
P Proisf @ ) = J g lo-d2op(p)dp.  (8)

-0
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