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We study the limits imposed by intrinsic fluctuations in system-control parameters on the ability of two-qubit
(exchange) Hamiltonians to generate entanglement, starting from arbitrary initial states. We find three classes
for Gaussian and Laplacian fluctuations. For the Ising andXYZ models there are qualitatively distinct, sharp
entanglement-generation transitions, while the class of Heisenberg,XY, andXXZ Hamiltonians is capable of
generating entanglement for any finite noise level. Our findings imply that exchange Hamiltonians are surpris-
ingly robust in their ability to generate entanglement in the presence of noise, thus potentially reducing the
need for quantum error correction.

DOI: 10.1103/PhysRevA.70.010301 PACS number(s): 03.67.Pp, 03.65.Fd, 05.40.Ca, 05.50.1q

I. INTRODUCTION

Considerable experimental efforts have been devoted in
the past few years to the creation of entangled states, with
impressive success in systems such as trapped ions, coupled
atomic gas samples, polarized photons, and most recently,
superconducting qubits[1]. An important motivation comes
from quantum-information processing(QIP), where en-
tanglement is believed to play an important role in algorith-
mic speedup, communication tasks, and cryptographic appli-
cations[2]. As the generation of entanglement often involves
the manipulation of an interaction Hamiltonian, recent theo-
retical work has focused on the entanglement capabilities of
such Hamiltonians. In particular, questions concerning opti-
mality [3,4], equivalence classes[5], and entangling power/
capacity[6], have been raised and answered, under the as-
sumption ofnoiselesscontrols. Here we take the first step
toward addressing what happens when this assumption is
relaxed. In particular, we wish to find out the answer to the
following question:What are the limits imposed on entangle-
ment generation via two-body Hamiltonians by fluctuations
in system-control parameters? [7]. We note that, as is well
known, quantum error correction[2] offers a solution to both
decoherence and the type of control errors we consider here;
however, this solution involves a high cost in extra qubits
and logic gates. In view of the central importance of en-
tanglement in QIP, it is of significant interest to find out the
limits imposed on entanglement generation via interaction
Hamiltonians and state preparation, without any error correc-
tion.

II. THE MODEL

Almost all quantum computing proposals are governed by
interaction Hamiltonians that are used to enact two-qubit op-
erations. The most general two-qubit(“exchange”) Hamil-
tonian has the form

H = o
i, j

o
a,b=x,y,z

Jab
i j Sa

i Sb
j , s1d

whereSa; 1
2sa are the angular momentum operators(sa are

the Pauli matrices) and i , j are qubit indices. By applying
local unitary operations it is always possible to transformH

into a canonical, diagonal form[3]. Hence we will restrict
our attention to the caseJab

i j =Ja
i jdab from now on. The vari-

ous models are then classified as follows:XYZ: JxÞJyÞJz,
XXZ: Jx=JyÞJz, XY: Jx=Jy,Jz=0, Heisenberg:Jx=Jy=Jz,
Ising: Jx=Jy=0.

Two qubits can be entangled by first preparing a product
state and then running the interaction for a desired amount of
time to generate, e.g., a controlled-NOT (CNOT) or controlled-
PHASE (CPHASE gate) [2]. Tunability of the coupling con-
stants inH need not always be possible, even though it is a
common assumption of QIP proposals. This leads to two
qualitatively distinct scenarios we consider in this work:(a)
Tunable interactions—where the interaction can be switched
on and off(e.g., an exchange interaction mediated by a tun-
able tunneling barrier[8]), and(b) nontunable interactions—
where the interaction is always on(e.g., a Coulomb interac-
tion [9]), thus requiring, e.g., external single-qubit operations
to refocus the interactions and enable controlled entangle-
ment generation. Recent work has addressed the problem of
universal quantum computation with nontunable couplings
[10], and even unknown parameters[11]. In the laboratory,
however, the execution of every single and two-qubit opera-
tion will generally be noisy due to system and experimental
imperfections, over which we have limited control. We con-
sider phenomenological noise models to describe noisy
single and two-qubit operations, wherein certain control pa-
rameters vary stochastically. Specifically, we have consid-
ered two models:(a) Gaussian and(b) Laplacian parameter
fluctuations. The Gaussian model has universal applicability
in the case of noise induced by many weakly coupled ran-
dom sources(by the central limit theorem). It has been ex-
tensively used and discussed in stochastic quantum mechan-
ics (e.g., [12]). We consider the Laplacian model mainly to
test the robustness of our results. Another important model is
1/ f noise due to bistable random fluctuators, which will be
considered in a future publication.

III. GAUSSIAN FLUCTUATIONS

Given a HamiltonianKst ,Jd (where J is a parameter
or set of parameters), a unitary transformationU is
generated by evolving underK for some time t :Usfd
=T expf−ie0

t Kst ,Jddtg, where T denotes time ordering. In
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our analysis below we only deal with piecewise constant
Hamiltonians, then the angle(s) f=tJ. An initial state r
transforms asr→rsfd=UsfdrUsfd†. We now assume that

f is Gaussian distributed with meanf̄ (the desired angle)
and standard deviation(SD) l :f,Nsf̄ ,ld. This may be the
outcome of Gaussian noise inJ, t, or both. Thus, under a
noisy control the actual transformation is

r → rnoisysl,f̄d =
1

Î2pl
E

−`

`

e−fsf − f̄d2/2l2grsfddf. s2d

Below we takeK to be either an exchange Hamiltonian with
noisy coupling constantsJa

i j (in which case we assume for
simplicity an equal SD, denoted asV), or a noisy single-
qubit Hamiltonian needed to refocus an always-on exchange
Hamiltonian(and denote the SD asL).

Case (i): Tunable Ising interaction. In the Ising model,
the exchange Hamiltonian takes the formHZZ= 1

4Jsz
1sz

2

=JSz
1Sz

2. Consider the preparation of a maximally entangled
state, starting from the initial stateri = u00lk00u, in the pres-
ence of noisy interactions[13]. Without noise, application of
the Hadamard transformUHspd=exps−ipSyd on both qubits,
followed by

UZZspd = expS− iE
0

t 1

4
Jsz

1sz
2dtD = e−isp/4dsz

1sz
2
,

prepares the maximally entangled pure stateujl= 1
2su00l

+ i u01l+ i u10l+ u11ld. In the presence of noise, the action of
both UH and UZZ must be averaged over a distribution of
angles, as in Eq.(2). The noisy Hadamard transform is a
rotation about they axis with average anglep and SDl,
resulting in the mixed state

r0sld = s1/Î2pld E e−fsu − pd2/2l2gfUHsudriUHsud†gdu,

which can be easily evaluated. The mixedness ofr0 is mea-
sured by its von Neumann entropy:Msrd=−Trfr log2 rg, as
a function of the noise parameterl. Msrd=0 for a pure state,

Msrd=2 for a maximally mixed state. In the present case the
entropy rises rapidly from zero(at l=0) and reaches its
maximum of 2 forl<2. Next we apply the noisy version of
the UZZ gate, with angleJt,Nsp ,Vd. The resulting density
matrix rsl ,Vd is easily computed but is not particularly il-
luminating; instead, we present the result of using the partial
transposition test for entanglement[14]: a 2^ 2 state is en-
tangled if and only if it has negative partial transpose(NPT).
One then arrives at the following condition for inseparability
for the density matrixrsl ,Vd:

e−l2
+ 2e−s1/2dfl2+V2/4g . 1. s3d

Figure 1 illustrates this condition. Observe that there is a
significant region of entanglement in parameter space, with a
tradeoff between the tolerated level of noise in state prepa-
ration and interaction. Interestingly, except along the cutl
=0, the transition from entangled to separable is sharp.
Solving the inequality(3), we find that the condition for
entanglement is

l ø h− 2 logfse−sV2/4d + 1d1/2 − e−sV2/8dgj1/2. s4d

The finite range of the state preparation parameterl indi-
cates thatthe purity of the initial state is crucial. However,
with a high quality interaction a significantly mixed initial
state can be tolerated: From the above follows that if the
interaction is perfect(V=0) then lmax=f−2 lnsÎ2−1dg1/2

=1.327, meaning that even an initial mixed state with en-
tropy 96% as high as the maximally mixed state would still
enable entanglement generation. Conversely, if the initial
state preparation does not involve any noisesl=0d, then the
interaction, no matter how noisy, will be able to produce
some entanglement. Finally, note that for 2^ 2 systems of
the type we are considering here, if a state is entangled then
it is distillable as well, i.e., one can extract pure states from
such noisy states using local operations and classical com-
munication[15]. In particular, Eq. (4) therefore guarantees
that a state is useful for teleportation and all other QIP
primitives.

Case (ii): Untunable Ising interaction.Now we do not
assume the ability to switch the interaction off(as, e.g., in
NMR). It is therefore necessary to refocus the interaction
using single-qubit operations[16]. This is done by pulsing an
external magnetic field along thex axis (we choose the first
qubit for this operation). We assume that such pulses can be
made very fast and strong compared to the interaction[16].
Formally, letX,Y,Z be operators satisfyingsu(2) commuta-
tion relations:fX,Yg= iZ and cyclic permutations(e.g., the
angular momentum operatorsSa). Then it follows from the
Baker-Campbell-Hausdorff formula that upon “conjugation
by w:” CZ

w +X;exps−iwZdX expsiwZd=X cosw+Y sin w.

Note further thatUeAU†=eUAU†
for unitary U and arbitrary

A. Thus, CZ
w + expsiuXd=exps−iwZdexpsiuXdexpsiwZd

=expfiusX cosw+Y sin wdg. One application is “time-
reversal,” which results from conjugation byp,

CZ
p + eiuX = e−iZpeiuXeiZp = e−iuX. s5d

We then haverst2d=URspdr0URspd†, where

FIG. 1. Condition for entanglement as a function of interaction
error V and preparation errorl in the Ising model. Plotted is the
PPT criterion[Eq. (3)]. The transition line between entanglement
and separability is clearly visible, with the region above the hori-
zontal plane correponding to entanglement.
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URspd = FCSx
1

p
+ expS− iE

t1

t2

JSz
1Sz

2 dtDG
3expS− iE

0

t1

JSz
1Sz

2 dtD
= e−isp/4dsz

1sz
2
,

which in conjunction with our Hadamard-state preparation,
yields the desiredCPHASEgate. The parameters must satisfy
the conditionJs2t1−t2d=p. In the noisy scenario, the recou-
pling step is implemented with a rotation around thex axis
by an angleu,Nsp ,Ld (where L2=L1

2+L2
2, with Li the

SD’s of the independent Gaussian-random variablesJti, i
=1,2, J fixed); the only change is thenURspd°URsud,
and the final state is given by rst2,l ,Ld
=s1/Î2pLdee−fsu −pd2/2L2gfURsudr0URsud†gdu, which can be
analytically evaluated. The inseparability condition, obtained
using the partial transposition criterion, yields the same form
as the tunable case[Eq. (3)], provided we replaceV /2 by L.
Note that this is by no means ana priori obvious substitu-
tion: V is the two-body interaction strength error, whereasL
is the error in the single-body coupling parameter.

Case (iii): Tunable XYZ Hamiltonians. We now consider
theXYZmodelHXYZ=oa=x,y,z JaSa

1Sa
2, of which, in the noise-

less case, the XXZ, XY, and Heisenberg models are special
cases. As in the Ising case we assume the initial state isri
= u00lk00u [17]. In the noiseless scenario, we first apply
UXspd=exps−ipSxd on the second qubit, yielding
r0= u01lk01u. This is followed by UXYZsux,uy,fd
=exps−ie0

t HXYZ dtd, where ux,y=Jx,yt, f=Jzt. Letting
ux+uy=p /4 and leaving f arbitrary, this prepares the
maximally entangled pure stateujl=s1/Î2dsi u01l+ u10ld.
Thus in the noiseless case, and for all the exchange models
considered here, there is no dependence onJz. In the noisy
scenario, we first applyUXsvd=exps−ivSxd, where v
,Nsp ,ld. Then, r0sld is a mixture of the statesu00l , u01l
with respective weightsf17exps−l2/2dg /2. Note that now,
in the worst case scenariosl→`d r0 can only be 50% as
mixed as the totally mixed state, whereas in the Ising model
abover0 could be fully mixed(or 96% mixed if we insist on
entanglement generation).

The unitarily transformed density matrix is given
by r0sld°UXYZsux,uy,fdr0sldUXYZ

† sux,uy,fd=rsl ,u+,u−d,
whereu±=ux±uy, whose explicit form can be found without
much difficulty, and again is independent off (i.e., Jz), now
even when the initial state is noisy. We next integrate over

u+,Nsp /4 ,Vd and u−,Nsu−̄ ,Vd, where V=sVx
2+Vy

2d1/2,
and whereVi are the SD’s ofui. Upon applying the partial
transposition criterion we find the condition for inseparabil-
ity

uzu . f1/b2 − s1 + ad2/s1 − ad2g1/2, s6d

wherea=e−1/2l2
, b=e−2V2

, z=coss2u−̄d. This condition, plot-
ted in Fig. 2, depends on the noise parametersl ,V (as in the
Ising case), but also periodically on the(mean) coupling con-

stants through the distance between exchange modelsu−̄

=sJx−Jydt. From 0ø uzu ,a,bø1, we have the following suf-
ficient conditions for[inseparability right-hand side(RHS) of
Eq. (6) ,0]: b. s1−ad / s1+ad (curve atuzu=0 in Fig. 2), and
separability [RHS of Eq. (6) .1]: b, s1−ad /Î2s1+a2d
(curve at uzu=1 in Fig. 2). Thus we find that that theXYZ
model with JxÞJy, similarly to the Ising model,exhibits a
sharp entanglement/separability transition as a function of
preparation and interaction noise. However, in contrast to
the Ising model, in general there is also a dependence on a
third parameter, the(noisy) interaction distanceJx−Jy, so the
XYZ model belongs to a distinct class.

Case (iv): Tunable XY, XXZ, and Heisenberg Hamilto-
nians. Note that because of the integration over the distribu-
tion of Jx−Jy above wecannotspecialize to theXY, XXZ,
Heisenberg models(Jx=Jy;J case). Repeating the calcula-
tions above now withJ,Nsp /4 ,Vd we find that the final
state rsl ,Vd is a mixture of the statesu00l and uC±l
=s1/Î2dsu01l± u10ld, with respective weights1

2s1−e−l2/2d
and 1

4f1+e−s1/2dl2
gs17e−V2/2d. Such states are always en-

tangled as long as the proportions of the statesuC±l are dif-
ferent, which clearly holds in our case forl ,V,`. Hence,
the final state in the tunable XY, XXZ, and Heisenberg mod-
els is always entangled for all practical purposes. This, then,
is a third class.

Case (v): Untunable XYZ, XY, XXZ, and Heisenberg
Hamiltonians. Since the interaction is always on, we need to
apply external single-qubit refocusing operations. This is
done by pulsing an external magnetic field along thez axis
(we choose the first qubit for this operation). After a lengthy
calculation we find from the partial transposition criterion,
for the XYZmodel, the inseparability condition

sA + Bmd2s1 − hd2sCm − Dd2 − 1
4m4s1 + hd2 , 0, s7d

where m=e−L2/2,h=e−s1/2dl2
, A=cosb cosd ,B

=sin b sin d ,C=sin b cosd ,D=cosb sin d, b=Dp /2,d

FIG. 2. Plot of the inseparability condition Eq.(6). Entangle-
ment in the noisy tunableXYZ model is the region whereuzu is
above the surface shown and,1.
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=Dp /4, andD=sJx−Jyd / sJx+Jyd. TheXY, XXZ, and Heisen-
berg modelssJx=Jyd correspond toB=C=D=0. Interest-
ingly, not only this is achieved whenJx=Jy but XYZmimicks
XY, XXZ, and Heisenberg also whenD=4n, with n being an
integer. It can be shown that the inequality(7) is satisfied as
long asL ,l,`. Hence, in all these exchange models the
final state is always entangled for all practical purposes.In
contrast to the tunable case, the untunableXYZ, XY, XXZ,
and Heisenberg Hamiltonians all lie in the same class.

IV. LAPLACIAN FLUCTUATIONS

As a test of the robustness of our Gaussian-model based
conclusions, we have repeated the above analysis when the
flucutuations in control parameters obey a Laplace distribu-
tion: under a noisy control the actual state transformation is
now

r → rnoisysv,f̄d =
1

4v
E

−`

`

e−suf−f̄u/2vdrsfddf. s8d

While we find quantitative differences compared to the
Gaussian model, the qualitative behavior is identical, thus
bolstering the universality of the classes obtained. To illus-
trate this fact let us reconsider the Ising case. Letv=l (V)
be the SD of the noisy parameter controlling state prepara-
tion (interaction) in both the tunable and nontunable cases.
We find, repeating the procedure above, that the condition of
inseparability can be given forboth the tunable and nontun-
able cases as

4l2sV2 + 2l2 + 2l2V2d , 1. s9d

Recall that, similarly, in the Gaussian case the inseparability
condition of the tunable case can be obtained by appropriate

rescaling of the SD. Further, note that as in the Gaussian
model, when the initial state is perfectsl=0d the state re-
mains inseparable for all practical purposes. By solving in-
equality (9) the inseparability condition can be written as
l,

1
2hf(1+s1+V2d2)1/2−V2g / s1+V2dj1/2, which shows that,

again as noticed in the Gaussian case, the purity of the initial
state is crucial and actually even more so in the Laplace case.
Indeed, if the interaction is perfect, we obtain the insepara-
bility condition l,Î41/8=0.5946, in contrast to the Gauss-
ian case where the the threshold value ofl in the no-noise
interaction scenario is as high as 1.327.

V. CONCLUSIONS

The sharp transition found in the Ising andXYZmodels is
reminiscent of the thermal entanglement transition[18], and
suggests an interesting avenue for further research. The sur-
prising robustness of entanglement to noise bodes well for
quantum-information processing with reduced demands on
error correction. Another interesting implication of our work
concernsentanglement verification: Knowing the underlying
two-body interaction Hamiltonian and corresponding level of
control, an experimentalist can confidently characterize the
degree of entanglement his/her system can generate, without
needing to perform a direct, and often difficult, measurement
of entanglement[1].
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