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We present a near-optimal quantum dynamical decoupling scheme that eliminates general decoherence

of a qubit to order n using Oðn2Þ pulses, an exponential decrease in pulses over all previous decoupling

methods. Numerical simulations of a qubit coupled to a spin bath demonstrate the superior performance of

the new pulse sequences.
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Coherent quantum control such as quantum information
processing requires the faithful manipulation and preser-
vation of quantum states. In the course of a quantum
evolution, uncontrolled coupling between a quantum sys-
tem and its environment (or bath) may cause the system
state to decohere and deviate from its desired evolution.
Here we present a dynamical decoupling (DD) [1] scheme
designed to mitigate this effect. DD combats this decoher-
ence by suppressing the system-bath interaction through
stroboscopic pulsing of the system, an idea which can be
traced to the Hahn spin echo [2]. Recently, various DD
schemes have been put to experimental tests, successfully
suppressing qubit decoherence in a variety of different
systems [3,4]. Our new DD scheme is near optimal, and
provides an exponential improvement over all previously
known DD protocols utilizing instantaneous pulses. It sup-
presses arbitrary coupling between a single-qubit and its
environment to nth order in a perturbative expansion of the
total qubit-bath propagator, using Oðn2Þ pulses.

The most general interaction between a qubit and a bath
can be modeled via a Hamiltonian of the form H ¼ I �
BI þ X � BX þ Y � BY þ Z � BZ, where X, Y, and Z are
the Pauli matrices, I denotes the identity matrix, and B� are
arbitrary Hermitian bath operators. The term BI is the
internal bath Hamiltonian. Our scheme builds upon two
recent insights. The first is due to Uhrig [5], who—for
single-qubit decoherence consisting of pure dephasing er-
rors (HZ ¼ I � BI þ Z � BZ)—found a scheme (‘‘Uhrig
DD’’—UDD) which prescribes a sequence of X pulses
(� rotations around the x̂ axis) at times

tj ¼ Tsin2
�

j�

2nþ 2

�
; (1)

where T is the total evolution time and j ¼ 1; 2; . . . ; n, if n
is even, and j ¼ 1; 2; . . . ; nþ 1, if n is odd. These times
characterize a filter function [4] that removes the qubit-
bath coupling to nth order in a perturbative expansion of
the total system-bath propagator. UDD is provably optimal
in that it achieves the minimum number of pulse intervals,
nþ 1, required to accomplish this removal [6,7]. For

single-qubit decoherence consisting of pure spin-flip errors
(HX ¼ I � BI þ X � BX), UDD is still optimal, simply by
substituting Z pulses (� pulses around the ẑ axis) for X
pulses. However, for systems subject to general errors as
prescribed by H, DD schemes incorporating both X and Z
pulses are required. One such scheme, which provides our
second source of insight, is concatenated DD (CDD) [8]:
the CDD sequence is capable of eliminating arbitrary
qubit-bath coupling to order n at a cost of Oð4nÞ pulses
[9]. CDD works by recursively nesting a pulse sequence
found in Ref. [1], capable of canceling arbitrary decoher-
ence to first order. Uhrig recently introduced a hybrid
scheme (CUDD) which reduces the pulse count to
Oðn2nÞ for exact order n cancellation [10]. By appropri-
ately concatenating the UDD sequences for HZ and HX we
show here how arbitrary decoherence due to H can be
exactly canceled to order n using only ðnþ 1Þ2 pulse
intervals. A numerical search we conducted found that
this is very nearly optimal for small n, differing from the
optimal solutions by no more than two pulses.
Near-optimal pulse sequence construction.—The goal of

our construction is to integrate an X-type UDDn sequence,
which suppresses pure dephasing error to order n, with a
Z-type UDDn sequence, which suppresses longitudinal
relaxation to order n, so that the resulting sequence re-
moves arbitrary error to order n. Since the total time T in
Eq. (1) is arbitrary, what matters for error cancellation is
not the precise pulse times tj, but rather the relative sizes of

the pulse intervals �j � ðtj � tj�1Þ, for j ¼ 1; 2; . . . ; nþ
1. Thus, the most relevant quantities are normalized pulse
intervals,

sj �
tj � tj�1

t1 � t0
¼ sin

�ð2j� 1Þ�
2nþ 2

�
csc

�
�

2nþ 2

�
; (2)

again with j ¼ 1; 2; . . . ; nþ 1. Here we chose to normalize
with respect to the shortest pulse interval ðt1 � t0Þ ¼ t1, so
that �j ¼ sjt1, which has the important consequence that

the (normalized) total time grows with n, as pulse intervals
are added to address higher order error. This fixing of the
minimum pulse interval t1 corresponds to imposing a finite
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bandwidth constraint. Since any physical implementation
will not be able to shrink the pulse intervals arbitrarily, but
will be limited by the fastest pulsing technology available,
the change in perspective from fixed total time to fixed
minimum interval is appropriate. The total normalized
time of a UDDn sequence is then given by

Sn �
Xnþ1

j¼1

sj ¼ tnþ1

t1
¼ csc2

�
�

2nþ 2

�
; (3)

so that the total physical time is T ¼ Snt1.
Let Uð�Þ denote the joint unitary free evolution of a

qubit and its bath for a time �, subject to the Hamiltonian
H. A Z-type UDDn sequence then takes the form

Znð�Þ � ZnUðsnþ1�ÞZUðsn�Þ � � �ZUðs2�ÞZUðs1�Þ: (4)

Note that a final Z pulse is required for n odd. Define the
X-typeUDDn sequence Xnð�Þ similarly. It follows from the
proofs in [6] that the entire UDD sequence Xnðt1Þ can be
expressed as the propagator expð�iSnt1ðI � B0

I þ X �
B0
XÞ þOðð�Snt1Þnþ1ÞÞ (in units of @ ¼ 1), where ��

kHk, provided �Snt1 is sufficiently small to ensure con-
vergence of the time-perturbative expansion. The impor-
tant point here is that the resulting effective Hamiltonian
H0 ¼ I � B0

I þ X � B0
X is a purely spin-flip, analytically

time-dependent coupling [11]. The correction term
Oðð�Snt1Þnþ1Þ potentially contains all couplings with a
complicated time dependence, but is suppressed to order
n. Moreover, subject to the convergence condition, we are
free to choose the minimum interval arbitrarily without
impacting the validity of the proofs in [6]. This is the key to
correctly integrating the X-type and Z-type UDDn sequen-
ces. The desired error cancellation properties only require
that the normalized pulse intervals sj have the specified

structure. The precise physical timing is inconsequential.
Therefore, to integrate Xn and Zn sequences properly,
without breaking the delicate pulse timing structure re-
quired for error cancellation, we must scale the pulse
intervals of the inner sequences uniformly with respect to
the outer pulse sequence structure. Hence, if eachUðsj�Þ in
Eq. (4) is replaced by the time-scaled DD sequence
Xnðsj�Þ, then the outer Zn sequence suppresses the purely

spin-flip coupling H0 remaining after each Xnðsj�Þ se-

quence, producing general decoherence suppression to
order n with only ðnþ 1Þ2 pulse intervals. So the com-
bined, near-optimal ‘‘quadratic DD’’ (QDD) sequence,
takes the form

QDD nð�Þ � ZnXnðsnþ1�ÞZXnðsn�Þ � � �ZXnðs1�Þ; (5)

abbreviated by the notation QDDnð�Þ ¼ ZnðXnð�ÞÞ. Notice
how the relative scales of the pulse intervals are preserved.
In each of the inner Xnðsj�Þ sequences, the ratio between

successive intervals remains ðskþ1sj�Þ=ðsksj�Þ ¼ skþ1=sk,

and for the outer Zn sequence the ratio is
ðSnsjþ1�Þ=ðSnsj�Þ ¼ sjþ1=sj, thereby ensuring the error

cancellation properties of each sequence are left intact.

Of course, an equivalent QDDn sequence may be con-
structed as XnðZnð�ÞÞ. Moreover, though the inner
DD sequences must have an equal number of intervals,
they need not be the same length as the outer sequence,
but can instead be adjusted to more efficiently address
the dominant sources of error in any particular
implementation. In this way, QDDm;n ¼ ZmðXnð�ÞÞ is the
more general construction, where the inner sequences sup-
press one type of error to order n, while the outer se-
quence suppresses the remaining error to order m. As the
simplest explicit example, QDD1 ¼ ZX1ðs2�ÞZX1ðs1�Þ ¼
ZðXUðs22�ÞXUðs1s2�ÞÞZðXUðs2s1�ÞXUðs21�ÞÞ ¼ YUð�Þ �
XUð�ÞYUð�ÞXUð�Þ, which we recognize as the so-called
‘‘universal decoupler’’ sequence found in [1] and used as
the basis of the CDD sequence in [8].
It is worth noting that the construction of QDDn affords

a nice visualization. For � 2 fI; X; Y; Zg, define �ðsjÞ �
�Uðsj�Þ�, then consider,

Yðs2nþ1Þ Zðsnsnþ1Þ � � � Yðs2snþ1Þ Zðs1snþ1Þ Zðsnþ1Þ
Xðsnþ1snÞ Iðs2nÞ � � � Xðs2snÞ Iðs1snÞ IðsnÞ

..

. ..
.

Yðsnþ1s2Þ Zðsns2Þ � � � Yðs22Þ Zðs1s2Þ Zðs2Þ
Xðsnþ1s1Þ Iðsns1Þ � � � Xðs2s1Þ Iðs21Þ Iðs1Þ
Xðsnþ1Þ IðsnÞ � � � Xðs2Þ Iðs1Þ jc i

with the final QDDn pulse sequence formed by reading off
rows of the large upper square from top to bottom, or
columns from left to right. In other words, our construction
may be succinctly described as an outer product between
X-type and Z-type UDD sequences.
Also, note that the QDDn sequence requires a total

physical time of S2n�, and just as in the proofs [6] of order
n error suppression for the Zn sequence, the condition for
convergence of the perturbative expansion still remains,
namely, that �S2n� is sufficiently small. An immediate
consequence of this constraint is that there exists a maxi-
mal order of error n that can be suppressed for a given �,
beyond which the error cancellation properties of the se-
quence begin to break down. Conversely, if one hopes to
suppress error to some fixed order n, then this implies a
maximum pulse rate r ¼ 1=� which must be attained.
Specifically, a sufficient condition for convergence is
�S2n� < 1, hence r > �csc4ð�=ð2nþ 2ÞÞ.
Finally, we translate these results back into a precise

physical timing for the individual pulses. If the total time
for the sequence is T, then the outer Zn sequence requires
that Z pulses occur at the original Uhrig times prescribed in
Eq. (1), while the inner Xn sequences require X pulses
executed at the times, tj;k ¼ �jsin

2ð k�
2nþ2Þ þ tj�1, where j,

k ¼ 1; 2; . . . ; n if n is even and j, k ¼ 1; 2; . . . ; nþ 1 if n is
odd. When n is odd, X and Z pulses coincide at times tj, in

which case Y ¼ ZX pulses are used.
Numerical results.—We now present numerical results

that illustrate the efficiency of our new DD pulse sequences
in preserving arbitrary initial quantum states. In the full-
state quantum memory simulations that follow, the system
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and bath are initialized together as a (generally nonsepar-
able) random pure state jc i. The results presented involve
a single system qubit coupled to four bath qubits. While
this is clearly an unrealistically small bath, larger simula-
tions we performed indicate that the relevant error sup-
pression properties of our DD sequences are qualitatively
unaffected by bath size. Similarly idealized are the DD
pulses themselves, which we take to be infinitely strong
zero-width pulses, consistent with the analysis in [6]. The
evolution of the coupled system and bath in our simula-
tions is governed by the generic Hamiltonian H, with
additional parameters fJ; �g included to control the cou-
pling and bath strengths, respectively:

H ¼ �ðI � BIÞ þ JðX � BX þ Y � BY þ Z � BZÞ; (6)

where each bath operator is given by B� ¼P
i�j

P
k;l r

�
klð�k

i � �l
jÞ, with �, k, l 2 fI; X; Y; Zg, i, j in-

dexing the bath qubits, and randomly chosen coefficients
r�kl 2 ½0; 1�. Note that these bath operators include all

1- and 2-body terms, so that the system-bath Hamiltonian
includes 2- and 3-body terms, a worse-case scenario than
pure 2-body terms. The numerical simulations are run with
more than 100 digits of precision and results are averaged
over 10 random realizations, with each instance randomly
generating new bath operators and a new initial state. The
vertical axes in each of these plots quantifies the DD
sequence performance as log10ðDÞ, whereD is the standard
trace-norm distance 1

2 k�ðTÞ � �ð0Þk1 between the

evolved system state �ðTÞ ¼ trBðj�ih�jÞ, with j�i ¼
QDDnð�Þjc i, and the initial system state �ð0Þ ¼
trBðjc ihc jÞ. Here trB is the partial trace over the bath.
This distance measure bounds the usual Uhlman fidelity

F from above and below, 1�D � F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D2

p
, and is

itself bound by the norm of a perturbative expansion of the
propagator [12]. Indeed, in our simulations, D always
varies as the norm of leading order term, as one might
expect. Error bars are included at every point indicating the
maximum deviation from the average distance measured.

Figure 1 shows the performance of various DD schemes
plotted against the number of pulses each requires. PDDn is
the n-times repeated universal decoupling sequence found
in [1], requiring 4n pulses (this sequence is capable only of
first order decoupling); CDDn is the n-times concatenated
universal decoupling sequence, requiring 4n pulses [8];
CUDDn is concatenated Uhrig DD, combining an nth order
X-type Uhrig sequence with n concatenation levels of Z
pulses, requiring n2n pulses [10]. The coupling parameters
J and� are fixed so that J� ¼ �� ¼ 10�6, given a shortest
pulse interval �. Recall that since the shortest pulse interval
is held constant, the total evolution time grows with in-
creasing n. Specifically, for QDDn the total evolution time
is S2n�. The evolution times of the other DD sequences also
increase with n, but at different rates depending on how the
number of required pulse intervals scales with n. Notice the
two most visible consequences of increasing total time in
Fig. 1: (1) at n ¼ 0 the evolution time is only S20� ¼ �, so

the dominant contribution to the overall fidelity is J� ¼
10�6, which explains why the undecoupled evolution still
achieves excellent agreement with the initial state in this
plot; and (2) as the total time increases so does decoher-
ence, explaining why the performance of PDDn actually
degrades with large n.
Figure 2 shows QDDn performance as a function of J,

the system-bath coupling strength. As JS2n� approaches 1,
the qubit decoheres so rapidly that DD has essentially no
effect, and the distance between the initial and final states
approaches its maximum of 1. Again, the n ¼ 0 line rep-
resents undecoupled free evolution, for which JS2n� ¼ 1
when J� ¼ 1, corresponding to the point in this plot where
the log10ðDÞ becomes zero and subsequently stays there.
State preservation improves as n increases and another
order of error is suppressed, with the effect magnified as
J� decreases, though increasing total time counteracts the
overall performance gain. This is evidenced in how, at each
fixed J�, the magnitude of the improvement decreases as n
increases, or in other words, in how the gap between lines
narrows as n increases. The dotted line in both Figs. 2 and

FIG. 1 (color online). Performance comparison of various DD
schemes vs number of pulses required. QDDn dramatically out-
performs all known alternatives in both state preservation and
number of pulses. In this and the next two figures labels in the
legends are positioned in correspondence with the positions of
the curves they label.

FIG. 2 (color online). QDDn performance dependence on cou-
pling strength J, with fixed �� ¼ 10�6.
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3, indicates when J� ¼ ��. Across this transition point,
the slope increases as the leading order error term changes
from � to J dominated in Fig. 2, and vice versa in Fig. 3.
Indeed, when J < �, the leading order term contributes to

distance as ðnJ�nÞðS2n�Þnþ1

ðnþ1Þ! , which gives a slope of 1 as a

function of J for every n in Fig. 2. On the other hand,
when J > �, the dominant contribution to performance

becomes ðJS2n�Þnþ1

ðnþ1Þ! , explaining the observed slopes of nþ
1 in this plot.

Figure 3 shows the performance dependence of QDDn

vs �, the parameter which quantifies the pure bath en-
ergy scale. We again see the improvement with increas-
ing n. The obviously significant feature of this plot,
however, is the deviation, and then eventual returning, of
the evolved state relative to the initial state as ��
sweeps through the regimes: (1) �� < J� < S�2

n ,
(2) J� < �� < S�2

n , and (3) �� > S�2
n . This behavior is

similar to motional narrowing and can be understood
mathematically by considering an interaction picture with
respect to the pure bath dynamics, governed by HB ¼
�ðI � BIÞ, then expanding the other bath operators in the
BI eigenbasis. Using a Dyson series expansion with
JS2n� < 1, we find that when �� < J�, the distance varies

as ðJS2n�Þnþ1

ðnþ1Þ! , as in the previous plot, independent of �; when

J� < �� < S�2
n , the distance varies as ðnJ�nÞðS2n�Þnþ1

ðnþ1Þ! , giving

a slope of n as a function of �; and when �� > S�2
n , the

distance varies as ½ðC J
� þ 1Þ ðJS2n�Þnþ1

ðnþ1Þ! � (C is a constant),

which gives a slope of �1 until � is sufficiently large so
as to eliminate the contribution of the first term, leaving a
leading order term that goes again like the small � regime.

Conclusions.—We have presented a DD pulse sequence
construction that guarantees simultaneous cancellation of
both transverse dephasing and longitudinal relaxation to
order n using only ðnþ 1Þ2 pulse intervals, or Oðn2Þ
pulses, an exponential improvement over all previous
zero-width pulse DD methods. An exhaustive numerical
search we performed produced optimal pulse sequences of
lengths 7, 14, and 23, for n ¼ 2, 3, and 4, respectively, i.e.,

ðnþ 1Þ2 � 2 pulses. In view of this, we believe our con-
struction is very nearly optimal, in addition to having the
significant conceptual benefit of a simple algorithmic
description.
Finally, of particular importance will be generalizing

this work to incorporate finite width pulses, as it is well
known that the action of the system-bath interaction during
the pulse can have substantial modifying effects [13].
Proposals to systematically mitigate this effect in DD
have recently been put forth [14]. We look forward to
experimental tests of QDD.
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