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Abstract We show that the problem of designing a quantum information processing
error correcting procedure can be cast as a bi-convex optimization problem, iterating
between encoding and recovery, each being a semidefinite program. For a given encod-
ing operator the problem is convex in the recovery operator. For a given method of
recovery, the problem is convex in the encoding scheme. This allows us to derive new
codes that are locally optimal. We present examples of such codes that can handle
errors which are too strong for codes derived by analogy to classical error correction
techniques.

Keywords Quantum error correction · Convex optimization

1 Introduction

Quantum error correction is essential for the scale-up of quantum information process-
ing devices. A theory of quantum error correcting codes has been developed, in anal-
ogy to classical coding for noisy channels, e.g., [7,8,15,16]. Recently error correction
design has been cast as an optimization problem with the design variables being the pro-
cess matrices associated with the encoding and/or recovery channels [4,10,14,17].1
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Using fidelity measures leads naturally to a convex optimization problem, specifi-
cally a semidefinite program (SDP) [2]. The advantage of this approach is that noisy
channels which do not satisfy the standard assumptions for perfect correction can be
optimized for the best possible encoding and/or recovery.

Here we apply convex optimization via SDP, and iterate between encoding and
recovery. For a given encoding operator the problem is convex in the recovery. For a
given method of recovery, the problem is convex in the encoding. We further make use
of Lagrange Duality to alleviate some of the computational burden associated with
solving the SDP for the process matrices. The SDP formalism also allows for a robust
design by enumerating constraints associated with different error models. We illustrate
the approach with an example where the error system does not assume independent
channels.

An intriguing prospect is to integrate the results found here within a complete
“black-box” error correction scheme that takes quantum state (or process) tomography
as input and iterates until it finds an optimal error correcting encoding and recovery.
A similar idea was proposed in [3] for determining bang-bang control pulses.

2 Quantum error correction

2.1 Standard model

A standard model [13, §10.3] of an error correction system as shown in the block
diagram of Fig. 1 is composed of three quantum operations: encoding C, error E , and
recovery R.

The input, ρS , is the nS × nS dimensional density matrix which contains the quan-
tum information of interest and which is to be processed. We will refer to ρS as the
system state or the unencoded state. The output of the encoding operation is ρC , the
nC × nC dimensional encoded state. The error operator, which is also the source of
decoherence, corrupts the encoded state and returns σC , the nC ×nC “noisy” encoded
state. Finally, ρR is the nR ×nR dimensional recovered state. The objective considered
here is to design (C,R) so that the map ρS → ρR is as close as possible to a desired
nS × nS unitary L S . Hence, ρR has the same dimension as ρS , that is, nR = nS . For
emphasis we will replace ρR with ρ̂S .

Although it is possible for E to be non-trace preserving, in the model considered
here, all three quantum operations are each characterized by a trace-preserving oper-
ator-sum-representation (OSR):

ρC = C(ρS) =
∑

c
CcρSC†

c ,
∑

c
C†

c Cc = InS

σC = E(ρC ) =
∑

e
EeρC E†

e ,
∑

e
E†

e Ee = InC

ρ̂S = R(σC ) =
∑

r
RrσC R†

r ,
∑

r
R†

r Rr = InC (1)

1 The current paper appeared as the preprint quant-ph/0606078. It was followed by [10], where we intro-
duced the “indirect fidelity maximization method”, which has some advantages over the “direct” method
we use here. These advantages are explained in [10].
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Fig. 1 Standard encoding-error-recovery model of an error correction system

with OSR matrix elements Cc ∈ CnC ×nS , Ee ∈ CnC ×nC , and Rr ∈ CnS×nC . These
engender a single trace-preserving quantum operation, S, mapping ρS to ρ̂S ,

ρ̂S = S(ρS) =
∑

r,e,c

Srec ρS S†
rec, Srec = Rr EeCc (2)

Before we describe our design approach we make a few remarks about the error source
and implementation of the encoding and recovery operations.

2.2 Implementation

Any OSR can be equivalently expressed, and consequently physically implemented,
as a unitary with ancilla states [13, §8.23]. An equivalent system-ancilla-bath repre-
sentation of the standard error correction model of Fig. 1 is shown in the block diagram
of Fig. 2.

For the encoding operator, C, the encoding ancilla state, |0C A〉, has dimension nC A,
and hence, the resulting encoded space has dimension nC = nS nC A. The encoding
operation is determined by UC , the nC ×nC unitary encoding operator which produces
the encoded state σC = UC (ρS ⊗ |0C A〉〈0C A|)U †

C .
Here we will ignore complications associated with an infinite dimensional bath. The

error system is thus equivalent to the nE ×nE unitary error operator UE with uncoupled
inputs, the encoded state ρC , and ρB , the nB × nB bath state. Thus, nE = nSnC AnB .

Fig. 2 System-ancilla-bath representation of standard encoding-error-recovery model of error correction
system
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Fig. 3 System-ancilla-bath representation of error correction system

The noisy encoded state σC , is the nC × nC reduced state obtained by tracing out the
bath from the output of UE , that is, σC = TrB UE (ρC ⊗ ρB)U

†
E .

The recovery system R has an additional ancilla |0R A〉 of dimension nR A. UR is
the nR ×nR unitary recovery operator with nR = nSnC AnR A and with σR the nR ×nR

full output state σR = UR(σC ⊗ |0R A〉〈0R A|)U †
R . The nS × nS reduced output state,

ρ̂S , is given by the partial trace over all the ancillas, the bath having been traced out
in the previous step. Specifically, ρ̂S = TrA σR .

Caveat emptor The “real” error correction system is unlikely to be perfectly repre-
sented by the system shown in Fig. 2, but rather by a full system-ancilla-bath interaction
[1]. As shown in the block diagram in Fig. 3, UQ AB is the nQ AB × nQ AB unitary sys-
tem-ancilla-bath operator, |0C A0R A〉 is the total ancilla state of dimension nC AnR A

and ρB is the bath state. The reduced system output state, ρ̂S , is obtained from the
full output state ρQ AB by tracing simultaneously over all the ancilla and the bath,
ρ̂S = TrAB ρQ AB . At this level of representation, there is no distinction between the
nC A ancilla states used for encoding and the nR A ancilla states used for recovery. The
internal design, however, may be constructed with such a distinction.

2.3 Optimal error correction: maximizing fidelity

As stated, the goal is to make the operation ρS → ρ̂S be as close as possible to a desired
unitary operation L S . Measures to compare two quantum channels are typically based
on fidelity or distance, e.g., [5,9]. Let S denote a trace-preserving quantum channel
mapping n-dimensional states to n-dimensional states,

S(ρ) =
∑

k

SkρS†
k ,

∑

k

S†
k Sk = In (3)

The fidelity of the channel compared to identity can be measured in a number of ways,
for example:

fmixed = minρ
∑

k
|Tr Skρ|2
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fpure = min|ψ〉
∑

k
|〈ψ |Sk |ψ〉|2

favg = 1

n2

∑
k
|TrSk |2 (4)

All are in [0,1] and equal to one if and only if S(ρ) = ρ. From (2), S = L†
SREC

with OSR elements Sk = Srec = L†
S Rr EeCc ∈ CnS×nS . Thus favg = 1 if and only if

REC = L S , i.e., the channel reproduces the desired unitary.
Given S, not all these fidelity measures are easy to calculate. Specifically, fmixed

is a convex optimization over all density matrices, that is, over all ρ ∈ Cn×n, ρ ≥
0, Tr ρ = 1, and hence, can be numerically obtained. Calculation of favg is direct.
Calculating fpure is, unfortunately, not a convex optimization over all pure states
|ψ〉. If, however, the density matrix associated with fmixed is nearly rank one, then
fmixed ≈ fpure.

As a practical matter, when dealing with small channel errors, it does not matter
which fidelity measure is used. Therefore it is convenient to use favg, as it is already in
a form explicitly dependent only on the OSR elements. In [14] favg was also used as
the design measure, but specific convex optimization algorithms were not proposed.
In [17] a similar optimization was proposed using a distance measure to obtain the
recovery given the encoding.

We now focus on the optimization problem,

maximize favg(R, C) = 1
n2

S

∑
r,e,c

∣∣∣TrL†
S Rr EeCc

∣∣∣
2

subject to
∑

r R†
r Rr = InC ,

∑
r C†

c Cc = InS

(5)

The optimization variables are the OSR elements {Cc} and {Rr }. As posed this is
a difficult optimization problem. The objective function is not a convex function of
either of the design variables and the equality constraints are quadratic, hence, not con-
vex sets. The problem, however, can be approximated using convex relaxation, where
each non-convex constraint is replaced with a less restrictive convex constraint [2].
This finally results in a bi-convex optimization problem in the encoding and recovery
operator elements which can be iterated to yield a local optimum. As we show next,
iterating between the two problems is guaranteed to increase fidelity of each of the
relaxed problems. When the iterations converge, all that can be said is that a local
solution has been found. However, each relaxed solution is in fact optimal, i.e., given
an encoding the relaxed recovery is optimal, and conversely, given a recovery the
relaxed encoding is optimal.

3 Optimal error correction via bi-convex relaxation

3.1 Process matrix problem formulation

Following the procedure used in quantum process tomography [13, §8.4.2], [11] we
expand each of the OSR elements Rr ∈ CnS×nC and Cc ∈ CnC ×nS in a set of basis
matrices, respectively, for CnS×nC and CnC ×nS , that is,
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Rr = ∑
i xri BRi

Cc = ∑
i xci BCi

(6)

where
{
BRi ∈ CnS×nC , BCi ∈ CnC ×nS | i = 1, . . . , nSnC

}
and the {xri } and {xci } are

complex scalars. Problem (5) can then be equivalently expressed as,

maximize favg(X R, XC ) = ∑
i jk�(X R)i j (XC )k�Fi jk�

subject to
∑

i j (X R)i j B†
Ri BR j = InC∑

k� (XC )k� B†
Ck BC� = InS

(X R)i j = ∑
r xri x∗

r j
(XC )k� = ∑

c xck x∗
c�

Fi jk� = ∑
e gik g∗

j�/n2
s

gik = Tr L†
S BRi Ee BCk

(7)

The optimization variables are the nSnC × nSnC process matrices X R and XC and
the scalars {xri } and {xci }. The problem data which describes the desired unitary and
error system is contained in the

{
Fi jk�

}
. The equality constraints (X R)i j = ∑

r xri x∗
r j

and (XC )k� = ∑
c xck x∗

c� are both quadratic, exposing again that this is not a convex
optimization problem.

3.2 Design of R given C and E

In this section and in the remainder of the paper we set the desired logical oper-
ation to identity, i.e., L S = IS ; just error correction, not correction and computa-
tion. This is without loss of generality as a desired logical operation can be added
everywhere.

Suppose the encoding C is given (and L S = IS). Then optimizing only over R in
(7) can be equivalently expressed as,

maximize favg(X R, C) = Tr X R WR(E, C)
subject to

∑
i, j (X R)i j B†

Ri BR j = InC

(X R)i j = ∑
r xri x∗

r j
(WR(E, C))i j = ∑

c,k,� xck x∗
c� Fi jk�

= ∑
k,� (XC )k� Fi jk�

(8)

The optimization variables are the matrix X R ∈ CnSnC ×nSnC and the scalars {xri }. The
problem data is contained in the positive semidefinite matrix WR(E, C) ∈ CnSnC ×nSnC .
The objective function is now linear in X R , which is of course a convex function. How-
ever, each of the equality constraints, (X R)i j = ∑

r xri x∗
r j is quadratic, and thus does

not form a convex set. This set of quadratic equality constraints can be relaxed to the
matrix inequality constraint, X R ≥ 0, that is, X R is positive semidefinite, a convex
set in the elements of X R . A convex relaxation of (8) is then,
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maximize Tr X R WR(E, C)
subject to X R ≥ 0,

∑
i, j (X R)i j B†

Ri BR j = InC

(9)

This class of convex optimization problems is referred to as an SDP, for semidefinite
program [2].2 For a given encoding C (or XC ), the optimal solution to the relaxed
problem (9), X rlx_opt

R , provides an upper bound on the average fidelity objective in (5)
or (7). From the fidelity inequalities, we can derive a lower bound. Specifically, the
(unknown, possibly unknowable) solution to the original problem (5), is bounded as
follows:

fmixed(Rrlx_opt, C) ≤ maxR fpure(R, C)
≤ favg(Rrlx_opt, C) (10)

where Rrlx_opt is the OSR with elements
{

Rrlx_opt
r

}
obtained from X rlx_opt

R via the

singular value decomposition,

X rlx_opt
R = V SV †

⇓
Rrlx_opt

r = √
sr

∑nSnC
i = 1 Vir BRi , r = 1, . . . , nSnC

(11)

where V ∈ CnSnC ×nSnC is unitary, S = diag(s1 · · · snSnC ) with singular values in
decreasing order, s1 ≥ s2 ≥ · · · ≥ snSnC ≥ 0.

3.3 Design of C given R and E

Repeating the previous steps, optimizing only over C in (7) can be equivalently
expressed as,

maximize favg(XC ,R) = Tr XC WC (E,R)
subject to

∑
k,� (XC )k� B†

Ck BC� = InS

(XC )k� = ∑
c xck x∗

c�
(WC (E,R))k� = ∑

r,i, j xri x∗
r j Fi jk�

= ∑
i, j (X R)i j Fi jk�

(12)

The optimization variables are the matrix XC ∈ CnSnC ×nSnC and the scalars {xci }
with all the problem data contained in the symmetric positive semidefinite matrix
WC (E,R) ∈ CnSnC ×nSnC . In this case, however, the basis matrices, {BCi } are nC ×nS .
Repeating the previous procedure of relaxing the quadratic equality constrain to XC ≥
0, we obtain the convex relaxation of (7) as the SDP,

2 A standard SDP is to minimize a linear objective function subject to convex inequalities and linear
equalities. The objective function in (9) is the maximization of a linear function which is equivalent to the
minimization of its negative, and hence, is a linear objective function.
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maximize Tr XC WC (E,R)
subject to XC ≥ 0,

∑
i, j (XC )i j B†

Ci BC j = InS

(13)

Analogously to (11), for a given recovery R, the (unknown, possibly unknowable)
solution to the original problem (5), is bounded as follows:

fmixed(R, Crlx_opt) ≤ maxC fpure(R, C)
≤ favg(R, Crlx_opt)

(14)

where Crlx_opt is the OSR with elements
{

C rlx_opt
c

}
obtained from X rlx_opt

C via the

singular value decomposition,

X rlx_opt
C = V SV †

⇓
C rlx_opt

c = √
sc

∑nSnC
i=1 Vic BCi , c = 1, . . . , nSnC

(15)

where V ∈ CnSnC ×nSnC is unitary, S = diag(s1 · · · snSnC ) with singular values in
decreasing order, s1 ≥ s2 ≥ · · · ≥ snSnC ≥ 0.

3.4 Iterative bi-convex algorithm

Proceeding analogously as in [14], the two separate optimizations for C and R can be
combined into the following iteration.

initialize encoding Ĉ and stopping level ε
repeat
1. optimize recovery

(a) compute X�R as solution to:

maximize Tr X R WR(E, Ĉ)
subject to X R ≥ 0,

∑
i, j (X R)i j B†

Ri BR j = InC

(b) use (11) to compute R� from X�R
2. optimize encoding

(a) compute X�C as solution to:

maximize Tr XC WC (E,R�)

subject to X R ≥ 0,
∑

i, j (XC )i j B†
Ci BC j = InS

(b) use (15) to compute C� from X�C
3. compute change in fidelity

� favg = favg(R�, C�)− favg(R�, Ĉ)
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4. reset

Ĉ = C�

until

� favg < ε

The algorithm returns (R�, C�). The optimization in each of the steps is a convex opti-
mization and hence fidelity will increase in each step, thereby converging to a local
solution of the joint relaxed problem. This solution is not necessarily a local solution
to the original problem (5) or (7). However, the upper and lower bounds obtained will
apply. The optimization steps can be reversed by starting with an initial recovery and
then starting the iteration by optimizing over encoding. We remark again, that via (11)
each relaxed solution produces an equivalent OSR, and hence the relaxed solution is
optimal in each iteration between encoding and recovery.

3.5 Decoherence resistant encoding

If the sole purpose of encoding is to sustain the information state ρS , then the desired
operation is the identity (L S = IS). For a given error E , finding an optimal encoding
by solving (13) is equivalent to finding a decoherence-resistant-subspace. If there is
perfect error correction, then we have found a decoherence-free-subspace [12]. In
[18], this problem was considered using fpure, the pure state fidelity.

Usually in this case the recovery operation in Fig. 1, which we refer to as the Nom-
inal recovery, is simply the partial trace over the encoding ancilla, that is,

ρ̂S = R(σC )

= TrC A σC =
⎡

⎢⎣
Tr (σC )[1,1] · · · Tr (σC )[1,nS]

...
...

...

Tr (σC )[nS ,1] · · · Tr (σC )[nS ,nS ]

⎤

⎥⎦ (16)

where the (σC )[i, j] are the n2
S sub-block matrices of σC , each being nC A ×nC A. Hence,

the OSR elements of the nominal recovery are given by

(Rr )i j =
{

1 j = (i − 1)nC A + r
0 else

r = 1, . . . , nC A, j = 1, . . . , nS

(17)

4 Robust error correction

The bi-convex optimization can be extended to the case where the error system is one
of a number of possible error systems, that is,
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E ∈ { Eα |α = 1, . . . , � } (18)

where each Eα has OSR elements {Eαe}. The worst-case fidelity design problem, by
analogy with (7), is then:

maximize minα
∑

i jk� (X R)i j (XC )k� Fαi jk�

subject to X R, XC constrained as in (7)
Fαi jk� = ∑

e gαik g∗
α j�/n2

s

gαik = Tr L†
S BRi Eαe BCk

(19)

Iterating as before between R and C results again in separate convex optimization
problems, each of which is an SDP. Specifically, for a given encoding C, a robust
recovery is obtained from,

maximize minα Tr X R WR(Eα, C)
subject to XC ≥ 0,

∑
i, j (XC )i j B†

Ci BC j = InS

(20)

Similarly, for a given recovery R, a robust encoding is obtained from,

maximize minα Tr XC WC (Eα,R)
subject to X R ≥ 0,

∑
i, j (X R)i j B†

Ri BR j = InC

(21)

5 Computing the solution via Lagrange Duality

The main difficulty with embedding the OSR elements into either X R or XC is scaling
with qubits. Specifically, the number of design parameters needed to determine either
XC or X R scales exponentially with the number of qubits. Although exponential scal-
ing at the moment seems unavoidable, we show in this section that solving the dual
SDPs associated with either (9) or (13) requires fewer parameters, and thus engenders
a reduced computational burden.

The convex optimization problems (9) and (13) are both SDPs of the form,

maximize Tr X W
subject to X ≥ 0,

∑
i j Xi j B†

i B j = Im
(22)

with optimization variable X = X† ∈ Cn×n , n = rm for some integer r , and with
each basis matrix Bi ∈ Cr×m . We will refer to this as the primal problem. Accounting
for the linear (matrix) equality constraint and the Hermiticity of X , the number of real
optimization variables in the primal problem (22) is p = n2 − m2 = (r2 − 1)m.

Solving (9) for X R , gives n = nSnC , r = nS, m = nC = nSnC A for pR =
(n2

S−1)n2
C primal parameters. Solving (13) for XC , gives n = nSnC , r = nC , m = nS

for pC = (n2
C − 1)n2

S primal paramters. Exponential growth in computation occurs
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because each of these dimensions are exponential in the number of qubits, i.e., nS =
2qS , nC = 2qS+qC A , and so on.

The computational burden can be somewhat alleviated by appealing to Lagrange
Duality Theory [2, Ch. 5]. In the Appendix we show that the dual problem associated
with the primal problem (22) is also an SDP, specifically,

minimize Tr Y
subject to K (Y )− W ≥ 0, Ki j (Y ) = Tr B†

j Bi Y
(23)

with optimization variable Y = Y † ∈ Cm×m . The number of (real) optimization vari-
ables for the dual problem is then at most d = m2. The reduction of primal to dual
parameters is thus p/dp = r2 − 1. Solving for the recovery dual gives the reduction
as n2

S − 1 and for the encoding dual as n2
C − 1. We show in the Appendix that if

(Xopt,Y opt) solve the primal and dual problems, respectively, then:

Tr XoptW = Tr Y opt

(K (Y opt)− W )Xopt = 0 (24)

The second equation above together with the linear equality constraint in (22) can be
used to obtain the primal solution Xopt from the dual solution Y opt. That is, solve for
Xopt from the set of linear equations,

(K (Y opt)− W )Xopt = 0∑
i j

Xopt
i j B†

i B j = Im (25)

As is well known, very efficient methods exist for solving linear equations [6]. We
remark again that the “indirect method” presented in [10] has some inherent compu-
tational advantages over the direct method presented here.

6 Example

In this illustrative example, the goal is to preserve a single information qubit using
a single ancilla qubit. Thus, the desired logical gate is the identity, that is, L S = I2,
with nS = nC A = 2, and hence, nC = 4. We made two error systems, Ea and Eb, by
randomly selecting the unitary bath representation as shown in Fig. 2 as follows: Each
error system has a single qubit bath state, |0〉B , thus nB = 2. The Hamiltonian for
each system, HE = H†

E ∈ CnE ×nE , nE = nC nB = 8, was chosen randomly and then
adjusted to have the magnitude (maximum singular value) ‖HE‖ = δE = 0.75. Then
the unitary representing the error system was set to UE = exp(−i HE ) and from this
the corresponding OSR E was computed. The OSR elements to three decimal points
for the two random systems are as follows.
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OSR elements ofEa

Ea1 =

⎡

⎢⎢⎣

0.9 − 0.049i 0.193 + 0.194i −0.161 + 0.039i −0.135 + 0.156i
−0.159 + 0.148i 0.887 − 0.046i 0.148 − 0.025i −0.168 − 0.081i
0.167 + 0.061i −0.07 + 0.004i 0.905 + 0.161i 0.16 + 0.125i
0.124 + 0.137i 0.167 − 0.155i −0.203 + 0.118i 0.844 − 0.26i

⎤

⎥⎥⎦

Ea2 =

⎡

⎢⎢⎣

0.053 − 0.063i −0.034 + 0.082i 0.148 − 0.085i 0.13 − 0.076i
−0.168 − 0.01i 0.141 + 0.073i 0.008 + 0.091i −0.074 − 0.024i
0.119 + 0.053i 0.207 − 0.02i 0.043 + 0.01i −0.063 − 0.21i
0.123 + 0.066i 0.027 + 0.008i 0.07 − 0.058i 0.098 − 0.11i

⎤

⎥⎥⎦

OSR elements of Eb

Eb1 =

⎡

⎢⎢⎣

0.943 + 0.018i −0.14 − 0.024i 0.076 − 0.081i 0.04 − 0.163i
0.107 + 0.062i 0.876 + 0.068i −0.06 − 0.021i −0.127 + 0.06i
−0.025 − 0.042i 0.122 + 0.073i 0.889 − 0.035i 0.043 − 0.078i
−0.017 − 0.094i 0.095 + 0.035i −0.032 − 0.089i 0.88 + 0.113i

⎤

⎥⎥⎦

Eb2 =

⎡

⎢⎢⎣

0.07i −0.2 − 0.082i 0.028 − 0.083i 0.179 + 0.206i
−0.003 − 0.147i 0.138 − 0.155i 0.202 + 0.306i 0.045 − 0.134i
0.049 + 0.084i −0.149 + 0.217i 0.143 − 0.04i 0.024 + 0.174i
−0.191 + 0.095i −0.081 − 0.097i 0.007 − 0.127i 0.035 − 0.167i

⎤

⎥⎥⎦

Neither of these error systems is of the standard type, e.g., there is no independent
channel structure. The choice of δE = 0.75 is perhaps extreme, but is motivated here
by our desire to demonstrate that the optimization procedure can handle errors that are
beyond the range of classically-inspired quantum error correction. For this particular
set of error systems, we do not know if there exists an encoding/recovery pair limited
to using a single encoding ancilla state which can bring perfect correction. This also
motivates the search for the still elusive black-box error correction discussed in the
introduction.

For each of the error systems we ran the bi-convex iteration 100 times starting
with the initial recovery operator R0 given by the partial trace operation (17). Denote
(Ra1, Ca1) and (Ra100, Ca100) as the 1st and 100th iteration pairs optimized for Ea , and
similarly (Rb1, Cb1) and (Rb100, Cb100) as the 1st and 100th iteration pairs optimized
for Eb. Table 1 shows the average fidelities favg(R, E, C) for some of the possible
combinations.

As Table 1 clearly shows, fidelity tuned for a specific error, either Ea or Eb in this
example, saturated to the levels shown (0.9997) in about 100 iterations. However,
as is clearly indicated in the table, neither of the optimized codes is robust to both
Ea and Eb. That is, each does very poorly when the error Hamiltonian HE changes
even though its magnitude δE remain unchanged. The codes, however, are not overly
sensitive to small changes in the error magnitude δE , provided that the structure of
the Hamiltonian HE remains unchanged. However, robust codes can be obtained by
optimizing over the set of errors as described in Sect. 4 and illustrated in the example to
follow.
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Table 1 Average fidelities

Type R, C Ea Eb

Optimal encoding (Ea ) R0, Ca1 0.9686 0.7631

Nominal recovery

Optimal encoding (Ea ) Ra1, Ca1 0.9719 0.7805

Optimal recovery (Ea )

1 iteration

Optimal encoding (Ea ) Ra100, Ca100 0.9997 0.6261

Optimal recovery (Ea )

100 iterations

Optimal encoding (Eb) R0, Cb1 0.7445 0.9091

Nominal recovery

Optimal encoding (Eb) Rb1, Cb1 0.7843 0.9441

Optimal recovery (Eb)

1 iteration

Optimal encoding (Eb) Rb100, Cb100 0.7412 0.9997

Optimal recovery (Eb)

100 iterations

The optimal encodings and recoveries are based on using error models either Ea or Eb as indicated. When
the code is optimized for Ea (upper three rows) the fidelities are high (column 3) but are considerably lower
when the same code is applied to Eb (column 4). The same applies reversley when the code is optimized
for Eb (bottom three rows)

By raising the number of ancillas it is of course possible to make the system robust.
This, however, introduces considerable complexity. What the table suggests is that
an alternate route is to tune for maximal fidelity, say, in a particular module. This of
course can only be done on the actual system.

For each of the optimizations, the 8 × 8 process matrices XC and X R , associ-
ated, respectively with each C and R were of reduced rank. For all the optimized
C, each process matrix XC was found to have a single dominant singular value, and
hence, there is a single dominant 4 × 2 OSR element which characterizes C. For the
optimized R, each X R was found to have two dominant singular values, and hence,
there are two dominant 2 × 4 OSR elements which characterize R. For example, the
recovery/encoding pair (Ra100, Ca100) has the OSR elements:

C1 =

⎡

⎢⎢⎣

−0.629 0.189 − 0.332i
0.455 + 0.378i 0.207 + 0.24i
0.42 + 0.063i −0.425 − 0.358i
0.13 + 0.233i 0.626 + 0.226i

⎤

⎥⎥⎦

R1 =
[−0.707 0.532 − 0.342i 0.194 − 0.175i 0.103 − 0.138i

0.134 + 0.087i 0.009 − 0.166i −0.103 + 0.404i 0.833 − 0.276i

]

R2 =
[−0.603 −0.528 + 0.461i −0.262 − 0.131i 0.172 − 0.163i

0.313 − 0.103i 0.259 + 0.104i −0.374 − 0.728i 0.174 − 0.333i

]
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Fig. 4 Magnitudes of primal-dual pairs (XC , YC ) and (X R , YR) corresponding to (Ra100,Ca100)

optimized for Ea

It is not obvious that these correspond to any of the standard codes. Since C†
1C1 =

I2 and
∑2

i = 1 R†
i Ri = I4, we can construct the encoding and recovery unitaries in

Fig. 2 as,

UC = [C1 C2] , UR =
[

R1
R2

]

where C2 ∈ C2×2 is arbitrary as long as UC is unitary, or equivalently, C†
1C2 = 0 and

C†
2C2 = I2. Observe that UR is already a 4 × 4 unitary.
Bar plots of the magnitude of the elements in the primal-dual pairs (XC ,YC ) and

(X R,YR) corresponding, respectively to (Ra100, Ca100) and (Rb100, Cb100) are shown
in Figs. 4 and 5. From many of such similar plots we have observed some common
structure which may be used to reduce the computational burden. For example, the
dual encoding process matrix YC is nearly diagonal while the dual recovery process
matrix YR is block diagonal.

We also computed a robust encoding and recovery for the error set {Ea, Eb} by
iterating between (20) and (21). The resultant average fidelities are in Table 2.
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Fig. 5 Magnitudes of primal-dual pairs (XC , YC ) and (X R , YR) corresponding to (Rb100,Cb100) opti-
mized for Eb

Table 2 Average robust fidelities

Type R, C Ea Eb

Robust encoding R0, Cab1 0.8840 0.8840

Nominal recovery

Robust encoding Rab1, Cab1 0.9284 0.9284

Robust recovery

1 iteration

Robust encoding Rab100, Cab20 0.9576 0.9576

Robust recovery 100

Iterations

Here the codes are optimized to handle both error systems Ea and Eb

Comparing Tables 1 and 2 clearly shows that a robust design is possible although
at a cost of performance. Also in this case after 100 iterations the robust fidelity
did not increase. In addition, the rank of the process matrices XC and X R remained
as before at 1 and 2, respectively, and the resulting OSR elements do not appear
standard.

123



R. L. Kosut, D. A. Lidar

7 Conclusions

We have shown that the design of a quantum error correction system can be cast
as a bi-convex iteration between encoding and recovery, each being a semidefinite
program (SDP). The SDP formalism also allows for a robust design by enumerating
constraints associated with different error models. We illustrated the approach with
an example where the error map does not assume independent channels. The example
data as seen in Table 1 shows that the codes are not robust to structural changes in
the Hamiltonian even though the error magnitude δE remains unchanged. Although
no measure of robustness is specifically put forward, when we optimize over a set of
errors as seen in Table 2 a robust code is obtained for the set of errors. At present,
formulating a precise measure of robustness seems to be an open question.
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Appendix: dual problem

We apply Lagrange Duality Theory [2, Ch.5]. Write the primal problem (22) as a
minimization,

minimize −Tr X W
subject to X ≥ 0,

∑
i j Xi j Ci j = Im

(26)

with optimization variable X = X† ∈ Cn×n . The Lagrangian for (26) is,

L(X, Z ,Y ) = −Tr X W = Tr X Z − Tr Y (Im −
∑

i j
Xi j B†

i B j )

=
∑

i j
Xi j (−W ji − Z ji + Tr Y C ji )− Tr Y (27)

where Z = Z† ∈ Cn×n and Y = Y † ∈ Cm×m are Lagrange multipliers associated
with the (Hermitian) inequality and equality constraints, respectively. The Lagrange
dual function is then,

g(Z ,Y ) = inf X L(X, Z ,Y )

=
{−Tr Y Z ji = Tr Y Ci j − W ji

−∞ otherwise
(28)

For any Y and Z ≥ 0, g(Z ,Y ) yields a lower bound on the optimal objective
−Tr XoptW . The largest lower bound from this dual function is then
max { g(Z ,Y ) | Z ≥ 0 }. Eliminating Z , this can be written equivalently as,

minimize Tr Y
subject to K (Y )− W ≥ 0, Ki j (Y ) = Tr Y Ci j

(29)
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with optimization variable Y = Y † ∈ Cm×m . This is precisely the result in (23).
Because the problem is strictly convex, the dual optimal objective is equal to the pri-
mal optimal objective as stated in the first line of (24). The complementary slackness
condition gives the second line in (24).
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