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Entanglement and area law with a fractal boundary in a topologically ordered phase
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Quantum systems with short-range interactions are known to respect an area law for the entanglement entropy:
The von Neumann entropy S associated to a bipartition scales with the boundary p between the two parts. Here
we study the case in which the boundary is a fractal. We consider the topologically ordered phase of the toric code
with a magnetic field. When the field vanishes it is possible to analytically compute the entanglement entropy for
both regular and fractal bipartitions (A,B) of the system and this yields an upper bound for the entire topological
phase. When the A−B boundary is regular we have S/p = 1 for large p. When the boundary is a fractal of the
Hausdorff dimension D, we show that the entanglement between the two parts scales as S/p = γ � 1/D, and
γ depends on the fractal considered.
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Entanglement is certainly one of the most striking aspects of
quantum theory. Not only is it the key ingredient for protocols
ranging from quantum teleportation to cryptography, but it
also has an important role in the study of condensed matter
and many-body systems [1]. Quantum phase transitions can
be understood in terms of entanglement [2] and new exotic
states of matter that defy description in terms of local order
parameters show a signature of topological order in the global
pattern of their entanglement [3,4]. Moreover, the analysis of
the scaling of entanglement in the ground state of condensed
matter systems has shed new light on the question of their
simulability [5].

Especially for the last reason, one is interested in knowing
how entanglement scales with the size of the system. If
there is a gap, all correlations decay exponentially with the
distance in units of the length scale [6]. In this case, one
also expects the entanglement to be short ranged, so that
only the degrees of freedom of the boundary of the system
contribute to the total entanglement. This is the so-called area
law for the entanglement (see Ref. [7] for a comprehensive
review).

In this work we study the case of a topologically ordered
state, the ground state of the toric code [8]. For this state—and a
class of topologically ordered states—the entanglement can be
computed exactly [3]. For a bipartition with a regular boundary
p, the entanglement measured by the von Neumann entropy
S is exactly S = p − 1, where the correction −1 is due to a
topological contribution to the entanglement [3,4]. Obviously,
γ := S/p is 1 in the limit of large p. If we add perturbations to
the model, topological order is not destroyed until a quantum
phase transition happens. Throughout the entire topological
phase the entanglement is upper bounded by its value in the
unperturbed model [9].

Here we study the case in which the boundary of the
system is a fractal curve of the Hausdorff dimension D.
This situation arises under a large variety of experimental
conditions in two-dimensional systems [10]. The scaling of
entanglement for self-similar systems is important also in view
of devising efficient algorithms that use the renormalization

group for computing the ground states of quantum systems in
two dimensions [5]. One can expect that, as the boundary of
the system becomes less regular, the entanglement increases
with the length p of the boundary, as in the case of fermions
[11]. In contrast to the fermionic case, we find that for
topologically ordered spin systems the entanglement decreases
with p. The length of a fractal curve—and consequently the
entanglement—diverges in the limit of exact fractality [12].
However, for every step n of the iteration of the fractal, the
length of the curve is a finite number p(n), which increases
with n. In contrast to regular boundaries, for fractal boundaries
γ is a fractional number: We can speak of fractal entanglement.
Moreover, we shall see that γ � D−1.

Consider a unitary representation of a group G acting on
spin-1/2 degrees of freedom with Hilbert space H. Since we
wish to compute the entanglement entropy associated to a
bipartition of the system we are interested in the properties of
the group when we split the Hilbert space as H = HA ⊗ HB .
We assume that there exists a product state |0〉 = |0A〉 ⊗
|0B〉 ∈ H. We can now define the (normalized) G-state as
|�G〉 := ∑

g∈G α(g)g|0〉. If all the coefficients are equal, we
call the state a G-uniform state |G〉 := |G|−1/2 ∑

g∈G g|0〉,
where |G| is the order of G. Note that |G〉 is stabilized by
the group G. Let us now define the two subgroups of G that
act trivially on the subsystems A and B, respectively, GA :=
{g ∈ G | g = gA ⊗ 1B} and similarly for GB . By defining
the quotient group GAB := G/(GA × GB), we can write G

as the union over all elements of GAB : G = ⋃
[h]∈GAB

{(gA ⊗
gB)h| gA ⊗ 1B ∈ GA, 1A ⊗ gB ∈ GB}. The state can thus be
written as |�G〉 = |G|−1/2 ∑

gA⊗gB ∈GA×GB
h∈GAB

α(gA ⊗ gB, h)hA ⊗
hB ⊗ (gA ⊗ gB)|0〉. If the coefficients α in the expression
for |�G〉 satisfy the separability condition α(gA ⊗ gB, h) ≡
α(gA ⊗ gBhg) = αA(gA)αB(gB)β(hg) for every g ∈ G, then it
is possible to prove [13] that the von Neumann entropy of the
G-state corresponding to the bipartition (A,B) is S(|�G〉) =
−∑

[h]∈GAB
|NANBβ(h)|2 log2 |NANBβ(h)|2, where N2

X :=∑
gX∈GX

|αX(gX)|2, for X = A,B. By the convexity of S we
have S(|�G〉) � S(|G〉) = log2 |GAB |.
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This formalism is remarkably well suited to describing
topologically ordered states. In many quantum spin systems
topological order arises from a mechanism of closed string
condensation and the group G is the group of closed strings on
a lattice [14]. An important example of a topologically ordered
system is given by Kitaev’s toric code, which provides a
model for which, at zero temperature, topological memory and
topological quantum computation are robust against arbitrary
local perturbations [8]. The model is defined on a square lattice
with spin-1/2 degrees of freedom on the edges and periodic
boundary conditions. To every plaquette p we associate the op-
erator product of σx on all the spins that comprise the boundary
of p (i.e., Xp = ∏

j∈p σ z
j ). To every vertex s we associate the

product of σ z on all the spins connected to s: Zs = ∏
j∈s σ x

j .
The operators Xp generate a group G of closed string nets. The
Hamiltonian of the toric code in an external magnetic field is

Htoric = −
∑

p

Xp − λ
∑

s

Zs + (1 − λ)
∑

j

σ z
j , (1)

where we introduced a control parameter λ. A second-order
quantum phase transition at λc ∼ 0.7 separates a spin-
polarized phase (0 � λ < λc) from a topologically ordered
phase (λc < λ � 1) [9,15]. The ground state of Htoric is a
G-state throughout the entire topological phase. It is
G-uniform at the toric-code point λ = 1 and becomes less
uniform as λ decreases to λc.

We now wish to argue that the separability condition for
α(g) is satisfied throughout the entire topological phase and
hence by convexity Sλ � S(|G〉) = log2 |GAB | for λc < λ �
1, with the bound saturated at the toric-code point. At λ = 0,
the ground state is the uniform superposition of closed strings.
The λ term in Eq. (1) is a tension for the strings. As we increase
λ, larger strings become less favored in the ground state.
Everywhere in the topological phase, that is, for sufficiently
small λ, the ground state is still the superposition (with positive
coefficients [9]) of closed strings g ∈ G. The expectation value
〈g〉 of any closed string g ∈ G of length l (a Wilson loop) can
be written as 〈g〉 = C2

t e
(1−λ)l(g), where Ct is a constant that

does not depend on g (due to translational invariance). Simi-
larly, in the polarized phase we have 〈g〉 = C2

pe−λa(g), where a

is the area enclosed by the string [16]. Now, we know that 〈g〉 =
|α(g)|2 at any point in the topological phase since the ground
state is a G-state and does not contain any open strings. Since
the length l for a given string g = gA ⊗ gBhg can be decom-
posed as a sum of the corresponding substrings l = lA + lB +
lAB , we have α(g) = Cte

−l(g)/2 = Cte
−lA/2e−lB/2e−lAB/2 ≡

αA(gA)αB(gB)β(hg), that is, we have separability.
Henceforth we consider the toric-code point λ = 1, where

S = log2 |GAB |. We define bipartitions by drawing strings
along the edges of the lattice. One can prove [3] that log2 |GAB |
is the number of independent plaquette operators Ap acting on
both subsystems A and B, which, in turn, are the number of
squares that have at least one side adjacent to the boundary p

of the region A, see Fig. 1. How do we measure p? We shall
show that the support of the mixed part of the reduced density
matrix is given exclusively by the spins on the boundary. This
mixed part is the only part contributing to the entanglement
between the A and B partitions. Therefore, we define the
length p as the number of boundary spins. Indeed, letting

FIG. 1. (Color online) The drawings show different bipartitions
of the system. The subsystem A consists of all the spins marked
by the (black) squares. The entanglement is given by the number of
plaquette operators acting on both subsystems, marked by (red) dots.
For a regular figure (left), this number coincides with the perimeter
p, which is the number of spins along the boundary (in bold, yellow).
Every time there is an inward angle there is one such operator for
three units of length. The well (middle) contains two inward angles. A
hole (right) of size one accounts for four units of length and contains
only one star operator.

QX = |GX|−1/2 ∑
gX∈GX

gX, with X = A,B, the ground state
can be written as |G〉 = |GAB |−1/2 ∑

h∈GAB
hAhBQAQB |0〉.

It follows from the definition of GAB that we can pick hA

up to local transformations of the loops inside A and B.
Specifically, we can pick hA as acting only on the spins
on the boundary. Since QA and QB are local operators, the
reduced density matrix of the A subsystem is equivalent to
one separable as TrB[|G〉〈G|] = |ψ〉〈ψ | ⊗ ρ̃A, where |ψ〉 is
a pure state describing A’s bulk, while the mixed part is
ρ̃A = |GAB |−1 ∑

h∈GAB
hA|0〉〈0|hA, where hA acts exclusively

on the spins along the boundary of A [17]. Thus S/p is the
average entanglement per spin in the support of ρ̃A.

We now consider the case of a bipartition defined by a
closed fractal curve. Since the model studied here is defined on
a square lattice, we consider bounded regions of Z2 depending
on a parameter n, denoted byAn. Here n represents the number
of steps in the iteration generating the fractal curve. The
perimeter of An is denoted by p(An). The number of squares
of size one adjacent to the boundary of An is the entanglement
S(An) associated to the bipartition (An,Bn). We are interested
in the large n limit of the ratio between the entanglement and
perimeter: γ (A) := limn→∞ S(An)/p(An). One might expect
the scaling law S = p − 1 to be independent of the geometric
properties of the bipartition, but this is not the case. From Fig.
1, we see that when the boundary of A has some inward angles,
or wells, or other “kinks,” the number of squares adjacent to it
is less than the length of the boundary around it. For instance,
an inward angle, a well, and a hole all have just one adjacent
square of side 1 but they have lengths 2, 3, and 4 in the lattice
spacing unit, respectively. We call α and h the number of
inward angles and holes, respectively. It is not hard to show
that [18]

S = p − α − 3h. (2)

We wish to study how these numbers scale for a fractal expan-
sion and find the corresponding scaling of the entanglement.

In the following, we shall compute γ for several fractal
curves. The results are summarized in Table I. The main result
is that, depending on the fractal region, γ can be a fractional
number. The Hausdorff dimension D of the fractal does not
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TABLE I. Fractal entanglement γ , perimeter p(n), and entropy
of entanglement S(n) for a state in L for several fractal bipartitions
(A,B) of the square lattice. Here D is the Hausdorff dimension of
the curve separating the regions An and Bn. For p(n) and S(n) only
the leading term is shown.

Fractal γ p(n) S(n) D

1. Sierpinski carpet 99
224

4
5 8n 99

280 8n log 8
log 3

2. Greek Cross 1
2 8n 4n 2

3. Minkowski Sausage 1
2 4 × 3n 2 × 3n log 5

log 3

4. Vicsek Snowflake 1
2 4 × 5n 2 × 5n log 5

log 3

5. Quadratic Koch 58
125 4 × 5n 232

125 5n log 5
log 3

6. Moore Polygon 4
5 2 × 4n+1 32

5 4n log 9
log 6

7. T-Square 1
2 16 × 3n 92

9 3n 2

8. Chessboard 1
4 8n2 2n2 2

uniquely determine the value of γ , but (in all the examples
considered) we have the bound γ � D−1.

The Sierpinski carpet on Z2, denoted by Sn, is a bounded
region of Z2 defined iteratively in the following way: (i)
S1 is a 3 × 3 square without the central 1 × 1 square.
The Sierpinski carpet S1 has a single square hole and (ii)
Sn+1 is a bounded region inscribed on a 3n × 3n square
on Z2. This is obtained by placing eight copies of Sn on
all quadrants of the square but the central one (see Fig.
2). Given the recursive structure of Sn, direct calculations
show that α(Sn) = 1

14 8n − 4
7 . The number of equal holes of

side 3i is 8n−1−i , so h(n) = 8n−1. Observe that the external
perimeter of Sn is 4 × 3n. Then the perimeter p(n) is p(Sn) =
4[3n + 3n−1 +∑n−2

i=0 (3i × 8n−1−i)] = 4(4 × 3n + 8n)/5. With
this information, from Eq. (2) we obtain γ (Sn) = 99/224.

The Greek cross on Z2, denoted by Gn, is a polygon
in Z2 defined by a closed path of length p(Gn) = 8n + 8,
including the point (0, n) and the step {(0, n), (1, n)}. The path
maximizes the number of inward angles over all the closed
paths of the same length including the point (0, n). Figure 2
gives the first few instances. It is then evident that α(Gn) = 4n.

FIG. 2. (Color online) Top, left to right: Sierpinski carpet S3,
Greek cross G3, type-2 quadratic von Koch curve (Minkowski
sausage) I3, and T-square E4. Bottom, left to right: Moore polygons
M3, Vicsek fractal V3, half perimeter of the Koch polygon K5, and
4 × 4 chessboard C4.

For this polygon, h(n) = 0 and thus from Eq. (2) we have
S(n) = p(n) − α(n). Therefore, γ (Gn) = 1/2.

The type-2 quadratic von Koch curve (Minkowski sausage)
In is a polygon in Z2 defined as follows: (i) I0 is a square of
side one and (ii) In+1 is obtained by replacing each side of In

by a path of length three. The angles in the path are determined
by the position of the side in In. The first and third segments
of the path follow the direction of the replaced side. The two
angles are first left then right. Analogously, we can construct
In+1 by attaching to the sides of In four of its copies (see
Fig. 2). The polygon In can be used to tessellate the plane.
From the definition we can determine p(In) = 4 × 3n and
α(In) = 2 × 3n − 2. Here also we have S(n) = p(n) − α(n).
Hence, γ (In) = 1/2.

The Moore polygon Mn is a “closed version” of the
Moore curve. It is a polygon in Z2 defined by a closed
path expressed as an L system. A Lindenmayer system (for
short, L system) [19] is a quadruple 〈V,C,A,R〉, where
V is a set of variables, C a set of constants, A a set
of axioms, and R a set of production rules. An L system
allows the recursive construction of words (or equivalently,
sequence of symbols) whose letters are elements from V

and C. An axiom is a word at time t = 0. At each time
step t + 1, the production rules are applied to the word
given by the L system at time t . Only variables are replaced
according to the production rules. On the basis of these
definitions, we can write Mn = 〈V,C,A,R〉, where V =
{a, b}, C = {+,−}, A = {aFa + F + aFa}, and R = {a →
−bF + aFa + Fb−, b → +aF − bFb − Fa+}. The letter
F indicates a segment of length one in Z2. The first segment of
M0 specified by the axiom in A is {(0, 0), (1, 0)}. The symbols
+ and − mean “turn left in Z2” and “turn right in Z2,” respec-
tively. The sequences −+ and +− have no meaning and can
be deleted. For instance, the polygon M1 is then given by the
the following word: −bF + aFa + Fb − F − bF + aFa +
FbFbF + aFa + Fb − F − bF + aFa + Fb − F . Notice
that to close M1 we need to replace · · · + Fb − F with
· · · + FbF in the obtained word. This operation is required
for every n. Once we generate the polygon, we blow it up by
replacing each square of side one with a square comprising
four of its copies. The amount of occurrences of letter F

in the word produced by M1 is 16. In general, the number
of occurrences of F in the word produced by Mn equals
the perimeter of Mn. From the definition, this is p(Mn) =
2 × 4n+1, taking into account the blowing up operation. The
number of − (“turn right”) symbols, excluding the initial one,
in the word produced by Mn, is exactly equal to the number
of inward angles of Mn: α(Mn) = 2

5 (−1)n + 8
5 4n − 2. From

S = p(Mn) − α(Mn), we can compute γ (Mn) = 4/5.
The Vicsek fractal (or Vicsek snowflake) on Z2, denoted by

Vn, is a bounded region of Z2 defined iteratively as follows:
(i)V0 is a single 1 × 1 square and (ii) we obtainVn+1 by attach-
ing four copies of Vn to its corners (see Fig. 2). Each square
comprising Vn has side one. For this fractal we have p(Vn) =
20 × 5n−1 and α(Vn) = 2 × 5n − 2. The number of adjacent
squares is S(n) = p(n) − α(n), which gives γ (V) = 1

2 .
The quadratic Koch polygon Kn is a polygon in Z2 based

on the Koch curve. Essentially, it consists of a region bounded
by two mirroring copies of the Koch curve. As in the Moore
polygon, Kn is defined by an L system and specified by a
path. The path giving rise to K0 is given axiomatically as
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{(0, 0), (1, 0)}. ThenK0 is a square of side one. The production
rule is F → F + F − F − F + F , where F indicates again
a segment of length one in Z2. The fractal has a pattern
similar to that of the Vicsek snowflake and indeed has the
same Hausdorff dimension (see Table I). Nevertheless, the
results for the scaling of the entanglement are different.
The perimeter can be computed as p(n) = 4 × 5n. The number
h(n) of holes is h = 18

125 × 5n + 1
3 3n − 1, for n � 3. One can

easily see that α = (p − 4h)/2 and therefore from Eq. (2)
S = p

2 − h = 232
125 5n − 1

3 3n + 1. In the limit of large n, we
obtain γ = 58/125.

The T-square polygon on Z2, En, is obtained by
superimposing four copies of En−1 on the corners of a square of
side 2n+1. The area covered by each copy is exactly a square of
side 2n. The perimeter of En is p(En) = 16 × 3n − 8 × 2n. We
have S(E0) = 4, S(E1) = 24, and S(En) = 3S(En−1) + 2n+1 −
8 = 80

9 3n + 2n+1 − 8 + 24 × S(n, 3) = 92
9 3n − 4 × 2n + 4,

where S(n, 3) := (1 + 3n−2 − 2n−1)/2 is the nth Stirling
number of the second kind. Hence γ = 1/2.

The chessboard Cn is the bounded region of Z2 defined as
follows. Let C1 be a 2 × 2 square with two holes in the upper
right and bottom left corners. Then Cn+1 is obtained by placing
four copies of Cn on all the quadrants of a 2n × 2n square onZ2.
The perimeter is p = 2n. The number of adjacent squares is
exactly h = n/2. Therefore it is immediate that γ = Ns/p =
1/4 for every size n. It is obvious that this is a lower bound
for the entanglement on the square lattice for a state in L since
the chessboard maximizes the number of holes of side one.

This work explores the relationship between entanglement
entropy and the fractality of the bipartition in a spin system.
We calculate the scaling of entanglement S with the length p

of the boundary in the ground state of the Z2 topological phase

associated with the toric code for various fractal boundaries.
We show that this provides an upper bound on the entanglement
in the entire topological phase. Unlike the case of a regular
boundary, the ratio γ = S/p for large p is not exactly 1 but a
smaller fraction, so that the general bound for the area law is
still obeyed. The fractal nature of the bipartition is revealed in
the total amount of entanglement present in the system. There
is less entanglement in a fractal bipartition. We also find that
the ratio γ is always, at most, the inverse of the Hausdorff
dimension D. We conjecture this last claim to hold, in general,
for topologically ordered states. Moreover, different fractals
with the same Hausdorff dimension can have different γ , so
that this is a useful quantity to classify fractals with. We chose
the toric code because in this case it is simple to compute the
entanglement. It will be interesting to consider other types of
topologically ordered states and explore whether the behavior
we observe is general for any quantum system with a finite
correlation length. Finally, since the scaling of entanglement
with the boundary of the system is less than one, we believe that
a renormalization group algorithm based on blocks of spins
that grow like fractals, might be potentially more efficient.
Indeed, in this regard the chessboard appears to be the most
attractive of all the fractals we consider.

Research at Perimeter Institute for Theoretical Physics
is supported in part by the Government of Canada through
NSERC and by the Province of Ontario through MRI. D.A.L.’s
work was supported by NSF under Grant Nos. CCF-726439,
PHY-802678, and PHY-803304. D.A.L. acknowledges the
hospitality of IQI-Caltech where part of this work was
performed. Research at IQC is supported by DTOARO,
ORDCF, CFI, CIFAR, and MITACS.

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys.
80, 517 (2008).

[2] A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature (London)
416, 608 (2002); T. J. Osborne and M. A. Nielsen, Phys. Rev.
A 66, 032110 (2002); G. Vidal, J. I. Latorre, E. Rico, and
A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003); F. Verstraete,
M. Popp, and J. I. Cirac, ibid. 92, 027901 (2004); L. A. Wu,
M. S. Sarandy, and D. A. Lidar, ibid. 93, 250404 (2004).

[3] A. Hamma, R. Ionicioiu, and P. Zanardi, Phys. Lett. A337, 22
(2005); Phys. Rev. A 71, 022315 (2005).

[4] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006);
M. Levin and X. G. Wen, ibid. 96, 110405 (2006).

[5] G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).
[6] M. B. Hastings and T. Koma, Commun. Math. Phys. 265, 781

(2006).
[7] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. e-print

arXiv:0808.3773v3.
[8] A. Y. Kitaev, Ann. Phys. (NY) 303, 2 (2003).
[9] A. Hamma, W. Zhang, S. Haas, and D. A. Lidar, Phys. Rev. B

77, 155111 (2008).
[10] O. Malcai, D. A. Lidar, O. Biham, and D. Avnir, Phys. Rev. E

56, 2817 (1997).
[11] D. Gioev and I. Klich, Phys. Rev. Lett. 96, 100503 (2006).

[12] M. Barnsley, Fractals Everywhere (Academic Press, New York,
1988).

[13] A. Hamma, R. Ionicioiu, and P. Zanardi, Phys. Rev. A 72, 012324
(2005).

[14] X. G. Wen, Quantum Field Theory of Many-Body Systems,
(Oxford University Press, Oxford, 2004).

[15] A. Hamma and D. A. Lidar, Phys. Rev. Lett. 100, 030502 (2008);
S. Trebst, P. Werner, M. Troyer, K. Shtengel, and C. Nayak, ibid.
98, 070602 (2007).

[16] B. Kogut, Rev. Mod. Phys. 51, 659 (1979).
[17] S. T. Flammia, A. Hamma, T. L. Hughes, and X. G. Wen, Phys.

Rev. Lett. 103, 261601 (2009).
[18] The entanglement S is the number of squares in the dual lattice

that have at least one side adjacent to the boundary of the region
A. For a figure that is a square of perimeter L with a 1 × 1
hole in the bulk, the total perimeter is p = L + 4. The number
of adjacent squares is S = L + 1 because there are L adjacent
squares on the external boundary and one inside. Thus S =
p − 3. With h holes we have p = L + 4h and S = L + h, so
that S = p − 3h. A similar counting argument that accounts for
inward angles leads to Eq. (2).

[19] G. Rozenberg and A. Salomaa, The Mathematical Theory of
L Systems (Academic Press, New York, 1980).

010102-4


