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Pattern formation and a clustering transition in power-law sequential adsorption
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We present a model that describes adsorption and clustering of particles on a surdacgeAngtransition
is found that separates between a phase of weakly correlated particle distributions and a phase of strongly
correlated distributions in which the particles form localized fractal clusters. The order parameter of the
transition is identified and the fractal nature of both phases is examined. The model is relevant to a large class
of clustering phenomena such as aggregation and growth on surfaces, population distribution in cities, and
plant and bacterial colonies, as well as gravitational clustefl@063-651X99)50404-2

PACS numbg(s): 64.60.Ak, 61.43.Hv, 68.55.a, 82.20.Mj

Many of the growth and pattern formation phenomena inrounded by low density areas or voids. Other examples of
nature occur via adsorption and clustering of particles orclustering appear in the distribution of mass in the universe
surfaceq1,2]. The richness of these phenomena may be atf17], in dissipative gases and granular flpi8], as well as in
tributed to the great variety of structures and symmetries o$tep bunching on crystal surfaces during grofit8] and due
the adsorbed particles and substrates. Nonequilibrium growtt® electromigratiorf20]. The phenomenon of cluster forma-
models often give rise to fractal structures, which are statistion is therefore generic in a broad class of systems in spite
tically self-similar over a range of length scalgd]. In a  Of the fact that the pattern-forming dynamical processes may
large class of surface adsorption systems, the dominant dyary substantially from system to system. This richness of
namical process is thdiffusion of the adsorbed particles, clustering phenomena is not yet fully backed up by appro-
which hop randomly on the surface until they nucleate intoPriate models. _
immobile clusters[2]. The formation offractal clusters In this paper, we present the power-law sequential-
which are typical in these systems, can be described by thdsorption(PLSA) model, which describes a variety of sur-
diffusion-limited aggregatiofDLA) procesg4]. In DLA a faqe adso_rpt|on and clustering processes. This model Iea_ds to
cluster of particles grows due to a slow flux of particles that@ rich variety of structures, many of which are fractal, which
diffuse as random walkers until they attach to the clustermimic the experimental morphologies found in the examples
The model describes a great variety of aggregation processéied above. In particular, it exhibits a uniqaleisteringtran-
such as island growth in molecular-beam epitfg}; elec- ~ Sition that separates between a weakly correlated phase in
trodeposition, viscous fingering, dielectric breakdown, andvhich the adsorbed particles are distributed homogeneously
various biological systemi]. In many other physical sys- On the surface and a strongly correlated phase in which they
tems, once an adsorbed particle sticks to the surface it bdorm clusters.
comes immobile. These systems can be described by In the PLSA model, circular particles of diameterare
random-sequential-adsorptidRSA) processeg6]. Within ~ randomly deposited on a two-dimensiortaD) surface one
the RSA processes, one should distinguish between systerdé @ time. The deposition process starts from an initial state
in which particles cannot overlap and systems in which theyvhere there is one seed particle on the surface. The sticking
can adsorb on top of each other. Systems in which particleBrobability 0<p=<1 of a newly deposited particle is deter-
cannot overlap tend to reach a jamming limit, in which themined by the distance from its center to the center of the
sticking probability of a new particle vanishég]. Models n_earest particle already on the surface. This probability is
that allow multilayer growth describe a large class of physi-given by
cal systems, including deposition of colloids, liquid crystals
[8], polymers, and fiber particl¢9,10]. Recently, the case of 1 r<d
power-law distribution of particle sizes was studied both for p(r)= (@) r>d
uncorrelated adsorptiofill] and for nonoverlapping par- '
ticles [12]. In the case of uncorrelated adsorption, it was
found that the boundary of the particle clusters is frajctd].  where the exponer®=0 is a parameter of the model. The
For nonoverlapping particles, it was found that the area thamodel thus exhibits a positive feedback clustering, like many
remains exposed is fractgl?2]. of the clustering phenomena listed above. The random depo-

Models that describe growth dynamics have been emsition process is repeated until the desired number of par-
ployed in recent years in a vast range of scientific fields asiclesM stick to the surface. Since the sticking probability is
diverse as city organization and growfth3,14], city and given by a power-law function, which is of a long range
highway traffic[15], and growth of bacterial coloni¢$6]. A nature, this process should have been studied, in principle, in
common feature is the tendency of the basic objects to fornthe infinite system limit. Numerical simulations, however,
clusters of high densitytypically of fractal shapg sur- are done on a finite system of aflex L, whereL/d>1. The
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coverage is given byy=A/L?, whereA is the total area
covered by the particles. Also, lety= m(d/2)>M/L2.

The limit of uncorrelated adsorptignin which the stick-
ing probability is uniformlyp=1 is obtained fore=0. This
limit was studied recently using fractal analysis, and the box-
counting and Minkowski functions were calculated analyti-
cally [21]. It was found that for a range of low coverages,
apparent fractal behavior is observed between physically rel-
evant cutoffs. The lower cutoff, is given by the particle
diameterro=d while the upper cutoffr, is given by the
average gap between adjacent particles, nanmghy,p 2
—d, wherep=M/L? is the particle density.

The limit of strongly correlated adsorptiois obtained for
a—o0. In this case only a single, connected cluster is gener-
ated on the surface. The perimeter of this cluster grows
slowly when new patrticles are deposited on its edge, while it
becomes more dense insidg10].

We will now examine the morphological properties of the b
configurations of adsorbed particles for the full range of O ( )
<a<x using fractal analysis. For this analysis we use the .
box-counting(BC) procedure in which one covers the plane T
with nonoverlapping boxes of linear size. The box- %
counting functionN(r) is obtained by counting the number
of boxes that have a nonempty intersection with (finectal)
set. A fractal dimensiorDgc, is declared to prevail at a
certain range of length scales if a relation of the type
Ngc(r)~r~Pec holds or, equivalently, if the slope of the
log-log plot

Dgc=—slopdlogr,log Ngc(r) 1} 2

is found to be constant over that range.

Two configurations of particles, randomly deposited and
adsorbed according to E€l) onto the unit squarel(=1), FIG. 1. Particles adsorbed on the surface of a unit squiare (
are shown in Fig. 1 forp,=0.01. Fora=1.5 the particle =1) according to the PLSA model fof,=0.01.(a) Fora=1.5 we
distribution exhibits local density fluctuations but on largerobserve density fluctuations at small scales; however, at larger
scales it is rather homogeneous and extends over the entipgales the distribution is rather homogeneous and extends over the
system[Fig. 1(a)]. For «=2.5 we observe a strongly clus- entire system(b) For «=2.5 we observe a strongly clqstergd struc-
tered structur§Fig. 1(b)]. This structure resembles the set of {Uré and vacant area elsewhere. The number of particles in(@oth
turning points of a Ley flight random walkef22]. In fact, a  2nd(b) is 3184 and their diameter &=0.002.

Levy flight corresponds to the special case in which the

sticking probability of the next deposited particle depends To obtain the fractal dimensions of the sets from the box-
only on the position of the latest particle adsorbed on thecounting functions, one should identify the relevant range of
surface. Unlike Ley flights, which typically describe dy- length scales over which the linear fit should be done. For
namic behavior, our model describes clustering in spatiathe weakly correlated distributions the relevant range of
structures. It is also related to other models of spatial struclength scales spans the range frog=d to ri=p -d
tures such as the continuous percolation model, which is ag21]. For the strongly correlated distributions where clusters
proached when the interaction is suppressedy-at0. An-  are formed, the relevant range is limited from above by the
other related model, which describes the growth of dinear size of the entire cluster. The quality of the linear fit is
percolation cluster and exhibits power-law correlations bemeasured by the coefficient of determinati®? [21]. In
tween growth sites is presented in Rgf3]. both cases, given a desired value ®f one can further

The box-counting functions for the configurations gener-narrow the range within the cutoffs described above to find
ated by the PLSA model are shown in Fig. 2. It is observedhe broadest range {,r) within which the linear regression
that for «<2 the box-counting function resembles the shapemaintains the given value 622 [24].
obtained for the uncorrelated cafg#l]. This indicates that The fractal dimensioD as a function ofa is shown in
the basic features of the model studied in R21] are main-  Fig. 3 for 7,=0.1, 0.01, and 0.001. Two domains are iden-
tained not only for short range correlations but for an entiretified: a plateau of low dimension for the weakly correlated
class of long range correlations. The box-counting functionrcase and a plateau of high dimension for the strongly corre-
for @>2 exhibits a nearly linear behavior for the entire lated case.
range from the particle size to the cluster size. Consider a seed particle located at the origin of an infinite




RAPID COMMUNICATIONS

PRE 59 PATTERN FORMATION AND A CLUSTERING . .. R4715

58 |
54 | j 07 L
50F ',

46 | o,
42| Tleleg
38 | : Cd
34 |
30

05

log N(r)

03

Order Parameter

22 | o
18| .
14| . ° . ] ] 01 |
1.0 | 1 L. .
06 | -

0.2 . . . : : : : ‘ 0.1

-3.8 -3.4 -3.0 -2.6 -2.2 -1.8 -1.4 -1.0 -0.6 -1.0 0.0 1.0 20 3.0 4.0 5.0
o

logr

FIG. 4. The order parameter of the clustering transitivn,
=(7mo— 1)/ 19, is shown as a function af for 7,=0.01. It repre-
sents the fraction of the total area of the adsorbed particles lost due
to overlap. Forpy<1, this order parameter vanishes tex<2 and
ﬁﬁcreases abova=2.

FIG. 2. The box-counting function for four configurations with
170=0.01, anda=0 (empty circle$, 1.5 (full circles), 2.5 (empty
squarey and 3.5(full squares. It is observed that fow<<2 the
shape of this function resembles that of the uncorrelated case. F
a>2, where strongly clustered distributions arise, there is a broa

scaling range. The units are dimensionless and the logarithms are in s
base 10. 2/(d\
P(r>r¢)= - .

I

4
plane. Particles are randomly deposited one at a time accord-

ing to the PLSA madel L”.‘F” one partic_le sticks to the SU™ Therefore, in the infinite system limit of the weakly corre-
face. Consider the probability that the distandeetween the lated phase ¢<ay), the probability that the next particle

first particle that sticks and the seed particle_at the ori_g_in WiIIvviII stick within any finite distance from an existing cluster
be larger than some valug, wherer;>d. This probability is zero[25]. In the strongly correlated phase® a,), the

is given by probability that the next particle will stick within a finite
o o distancer; from the cluster can be made arbitrarily close to
P(r>r )= fffzm(d/r) dr 3) one, by an adjustment aof; according to Eq.(4) [26]. In
f f827-rrdr+f§27rr(d/r)“dr' general, the value of. for which the clustering transition
takes place is equal to the space dimension.
One readily verifies that fon<<2 the probabilityP(r>ry) The order parameter of the clustering transition\is
=1 for any finiter;. For a>2, on the other hand, this prob- =(70— 7)/ 70, namely, the fraction of the total area of the
ability is given by adsorbed particles lost due to overlap. Consider a finite num-
berM of particles of diameted=1 adsorbed on the surface
2.1 . ‘ ‘ . . ‘ in the infinite system limit (—o0). For <2, in this low
9l coverage limit overlaps are negligible andg=0. For a>2,
o e clusters become more dense and overlaps more dominant as
v . ] a increases. Our numerical studies are done on a finite sys-
15} G 1 tem of sizeL =1 for a range of coverages. The order param-
b5 ’ eterV as a function ofw, for 7,=0.01, is shown in Fig. 4.
@ 13 . . . . . e s
é . To examine the critical behavior in the infinite system
5 11 i limit, we performed analytical calculations in one dimension
8 00| . ] (1D). In 1D the configuration is fully specified by the or-
« .o dered list ofM — 1 gaps between thie particles. For the 1D
o7 . ] case, we have obtained the critical expongribr the order
05 o 1 parametel ~ (a— a¢)”? in the L—oe limit by constructing
03 | the probability distributionP;, i=0,... M that the next
particle that sticks will stick within the gagy (whereg, and
0,5 00 0 20 3.0 20 50 5.0 gm are the two semi-infinite gaps on both sigé&he overlap
o was then calculated as a weighted average over all gaps. The

FIG. 3. The fractal dimension of the configurations produced by'€Sult we obtain is that the exponefit=1. We also found
the PLSA model as a function af (in dimensionless unijsfor that the fractal dimension exhibits critical behavior of the

70=0.1 (empty circley, 0.01 (full circles), and 0.001(empty form D~(a—ac)?, wherea,=1 with the exponenty=1.
squares A plateau of low dimension is found for the weakly cor- For the weakly correlated phase @+ 1 the fractal dimen-
related limit and a plateau of high dimension for the strongly cor-sion in theL —c is D=0 while for a>2 the dimension is
related limit. D=2.
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In summary, we present a model for random sequentiajenerated. We thus identified a broad class of distributions
adsorption characterized by a power-law distribution ofthat maintain the basic properties of the weakly correlated
sticking probabilities. This model exhibits a continuousrandom structures studied in R€21] and found the border-
phase transition between weakly correlated adsorption, ifine between this class and the class of strongly correlated
which the particle distribution is homogeneous on largestructures that exhibit clustering phenomena. The model
scales and extends over the entire system, and strongly cashould be useful in the study of a great variety of clustering
related adsorption, in which a highly clustered structure igproblems.
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