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Abstract
Within quantum information, many methods have been proposed to avoid or
correct the deleterious effects of the environment on a system of interest. In this
work, expanding on our earlier paper (Paz-Silva et al 2012 Phys. Rev. Lett. 108
080501), we evaluate the applicability of the quantum Zeno effect as one such
method. Using the algebraic structure of stabilizer quantum error correction
codes as a unifying framework, two open-loop protocols are described which
involve frequent non-projective (i.e. weak) measurement of either the full
stabilizer group or a minimal generating set thereof. The effectiveness of the
protocols is measured by the distance between the final state under the protocol
and the final state of an idealized evolution in which system and environment
do not interact. Rigorous bounds on this metric are derived which demonstrate
that, under certain assumptions, a Zeno effect may be realized with arbitrarily
weak measurements, and that this effect can protect an arbitrary, unknown
encoded state against the environment arbitrarily well.

PACS numbers: 03.67.−a, 03.65.Xp, 03.67.Pp, 03.65.Yz

1. Introduction

Decoherence of a quantum system of interest through interaction with an uncontrolled
environment is a key obstacle to realizing practical quantum information processors. A number
of methods have been proposed to help deal with this problem, including error avoidance
methods such as decoherence free subspaces [2–4], closed-loop suppression methods such as
quantum error correction (QEC) [5–7], and open-loop suppression methods such as dynamical
decoupling (DD) [8–10] and the quantum Zeno effect (QZE) [11–14]. The typical setting for
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the QZE is a sequence of frequent projective measurements of an observable. When the
frequency of measurements is high enough, this has the effect of forcing the evolution to
remain within the eigenspaces of the observable. With appropriate choices of the observable,
the QZE can be exploited to decouple the system from the environment [15, 16].

In spite of the fact that one method uses fast unitary operations while the other uses
frequent measurements, there is a conceptual similarity between DD and QZE protection of
quantum states, in that both are feedback-free methods. Indeed, in the ‘bang-bang’ limit of
arbitrarily strong and fast pulses or measurements, it has been shown that DD and the QZE
are formally equivalent [13, 17]. However, strong projective measurements are an idealization
of more realistic, generalized measurements, and likewise, real dynamical decoupling pulses
are subject to constraints of finite bandwidth. It has been shown that DD can work to suppress
decoherence while allowing for universal quantum computation even with pulses constrained
by finite width and repetition rate [18–20]. Until recently, an analogous result was lacking for
the QZE.

In our earlier paper [1] we showed how the assumption of projective measurements
can be relaxed and replaced with weak, non-projective, measurements. Weak measurements
extract less information from the system than the corresponding projective measurements,
and consequently do not fully collapse the state [21, 22]. In the present work, significantly
expanding on our earlier paper [1], we analyze protocols for realizing a QZE using frequent,
weak measurements that are also non-selective, meaning that outcomes are not recorded, with
the effect that the state after measurement is the ensemble average over all of the possible
outcomes. We will show that these protocols can be used to protect arbitrary, unknown states
encoded within a stabilizer QEC code, arbitrarily well. This will be referred to as the weak
measurement quantum Zeno effect (WMQZE). Since our protocols involve measuring the
stabilizers of QEC codes—a capability that is taken for granted in QEC theory [23, 24]—but
we do not assume that we can observe or use the measured syndrome, our assumptions are
weaker than those of QEC, and hence the ability to perform QEC implies the ability to perform
our protocols.

Weak measurements are in some sense the analogue of finite bandwidth DD and are both
more realistic and more general than strong, projective measurements. They capture a large
variety of experimental imperfections and uncertainties [25]. However, here, as in our earlier
analysis, the measurements are treated as instantaneous, and a generalization to measurements
of finite duration is still lacking.

The paper is organized as follows. Section 2 gives essential background on weak
measurements, reviews the WMQZE protocols introduced in [1], and states the main result we
prove in the paper: theorem 1, a distance bound quantifying the performance of the protocols.
Section 3 describes some algebraic structures associated with stabilizer QEC codes and the
behavior of weak measurements of the stabilizer elements with respect to these structures.
Section 4 is concerned with proving theorem 1. In section 5, some trade-offs are considered,
between the number of measurements M and the final time τ , as well as between M and
the measurement strength ε. Conclusions are presented in section 6. Several appendices offer
additional supporting mathematical details.

2. Background and statement of main result

2.1. Weak measurements

Consider a system with Hilbert space HS coupled to a bath with Hilbert space HB. The Hilbert
space of the system–bath composite is denoted H = HS ⊗ HB. Let B(H) denote the space
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of bounded linear operators on H. A measurement of the system can generally be expressed
as a positive operator-valued measure (POVM), comprising a set of ‘measurement operators’
{Mj∈ B(HS) ⊗ 1 ⊂ B(H)} acting on the system and satisfying the sum rule

∑
j M†

j Mj = 1,
which map a state � to � j = Mj�M†

j /p j with probability p j = Tr(Mj�M†
j ). The observables

that are to be measured in the encoded WMQZE protocols will be elements of the stabilizer
group of a given quantum error correcting code (QECC). As such, they are unitary involutions,
i.e. unitary operators S ∈ U(HS) ⊗ 1 ⊂ U(H) such that S2 = 1, and therefore have only two
possible outcomes (eigenvalues): ±1. The weak measurement of such an observable on a state
� may be parametrized by the measurement strength ε as [25]

PS,ε (�) = PS(ε)�PS(ε) + PS(−ε)�PS(−ε) (1)

where

PS(ε) := α+(ε)PS + α−(ε)P−S, (2a)

α±(ε) =
√

(1 ± tanh(ε))/2, (2b)

and

P±S := 1
2 (1 ± S) (3)

are orthogonal projections onto the ±1 eigenspaces of S. Since PS(ε)2 + PS(−ε)2 = 1, the
sum rule is satisfied, and PS,ε is a well-defined POVM for every ε ∈ (0,∞). Moreover,
PS,ε describes a parametrized curve through POVM space that interpolates between projective
measurement of S at ε = ∞, and no measurement at ε = 0. These weak, non-selective
measurements will form the building blocks of the WMQZE protocols to be described herein.
It may also be observed that this two-term POVM is unitarily equivalent [23] to the three-term
POVM with measurement operators

M1 =
√

1 − ζ

2
(1 + S), M2 =

√
1 − ζ

2
(1 − S), M3 =

√
ζ1 (4)

where ζ := 2α+(ε)α−(ε) = sech(ε). This three-term POVM may be interpreted as a
measurement with a particularly simple classical error, in which, with probability ζ , no
measurement takes place, and with probability 1 − ζ a projective measurement of S is
performed. It is a completely equivalent description of the non-selective weak measurement
PS,ε , although the selective measurements corresponding to these two POVMs are not
equivalent.

2.2. The WMQZE protocols

Previous WMQZE work applied mostly to particular states [26–29], with some exceptions [30].
In order to protect an arbitrary, unknown k-qubit state, as well as to facilitate the analysis that
is to come and to allow this WMQZE method to dovetail easily with other protection schemes
like QEC, we encode the state into an [[n, k, d]] stabilizer QECC [7, 23], with stabilizer group
S = {Si}Q

i=0, and where S0 ≡ 1. We assume that the code distance d � 2, i.e. the code is at least

error-detecting, with minimal generating set S̄ = {S̄i}Q̄
i=1 ⊂ S, where Q̄ = n − k. Then every

stabilizer element can be uniquely decomposed as Si = ∏Q̄
ν=1 S̄riν

ν , where riν ∈ {0, 1}, i.e. the
stabilizer elements are given by all possible products of the generators, whence Q + 1 = 2Q̄.
The encoded initial state �0 commutes with all stabilizer elements, and so is supported on the
simultaneous +1 eigenspace of all the elements of S. For a given measurement strength, a
weak measurement operator PS,ε may be generated for each S ∈ S as in equation (1). Since
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the stabilizer group S is Abelian, the measurements can be performed simultaneously, and
simultaneous measurement of the full stabilizer group can be described by the POVM

Pε :=
∏
S∈S

PS,ε . (5)

Similarly, we could measure just the generators S̄, whence we define

P̄ε :=
∏
S̄∈S̄

PS̄,ε . (6)

Thus we can now define a weak stabilizer group measurement protocol in which M evenly-
spaced measurements of the full group are performed over a time interval [0, τ ]. The state of
the system–environment composite then evolves as (PεU (τ/M))M (�SB),

(PεU (τ/M))M := PεU (τ, τM−1)PεU (τ j−1, τ j−2) · · ·PεU (τ1, 0), (7)

where �SB is the initial state of the system–bath composite, {τ j = jτ/M}M
j=1 are the instants

at which the measurements are applied, U (t, t ′) is the unitary evolution superoperator of free
evolution over [t, t ′], i.e.

U (t, t ′)(·) = T exp

(∫ t

t ′
L(s) ds

)
(·) = U (t, t ′)(·)U†(t, t ′), (8)

where U (t, t ′) is the solution of the differential equation d
dt U (t, t ′) = −iH(t)U (t, t ′),

with the boundary condition U (t, t) = 1, and T denotes time-ordering. Here H(t) is the
Hamiltonian of the system–bath composite, i.e. H(t) ∈ B(H), and the superoperator generator
isL(t) = −i[H(t), ·]. Note thatPε in equation (7), and more generally S, has non-trivial action
on the system only.

In QEC one measures not the full stabilizer group, but rather its generators, in order
to extract an error syndrome [7]. It has been recognized that these syndrome measurements
implement a QZE [31, 32]. A weak stabilizer generator measurement protocol comprises M
evenly-spaced measurements of the generating set over a time interval [0, τ ], so that the state
evolves as

(
P̄εU (τ/M)

)M
(�0),

(P̄εU (τ/M))M := P̄εU (τ, τM−1)P̄εU (τ j−1, τ j−2) · · · P̄εU (τ1, 0). (9)

This can obviously be an important saving over a full stabilizer group measurement (Pε).
If the measurement is performed, e.g., by attaching an ancilla for each measured Pauli
observable (as in a typical fault-tolerant QEC implementation [23]), then this translates into
an exponential saving in the number of such ancillas. We shall consider both protocols in our
general development below.

2.3. Distance bounds

To quantify the behavior of these protocols, we use a distance metric as the figure of merit:

D[�S(τ ), �0
S(τ )] = 1

2‖�S(τ ) − �0
S(τ )‖1, (10)

where the norm is the trace norm (sum of the singular values), �S(τ ) = TrB[�SB(τ )] is
the reduced density matrix of the system at time τ after application of one of the two
WMQZE protocols and �0

S(τ ) = TrB[�0
SB(τ )] is the final state of the system under the

idealized circumstance that the system retains its internal Hamiltonian evolution, but does not
interact with the environment. We shall also require the Schatten ∞ operator norm ‖ · ‖ (the
maximal singular value).

The principal results in this paper will be the proof and analysis of the following upper
bound on D[�S(τ ), �0

S(τ )].
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Theorem 1. Assume an arbitrary pure state �S = |ψS〉〈ψS| is encoded into an [[n, k, d]]
stabilizer QECC with stabilizer group S. Assume further that the (possibly time-dependent)
Hamiltonian H = HS + HB + HSB, where HS and HB represent the system and bath
Hamiltonians and HSB the system–bath interaction, is such that H11 = HS + HB commutes
with the stabilizer (i.e. is a linear combination of stabilizer elements and logical operators)
and that the interaction term HSB = ∑

g�=11 Hg is a linear combination of error terms detected
by the code. Let J0 = 2‖H11‖ and J1 = 2‖HSB‖, where J0 and J1 are assumed to be finite.
Finally, let Q = 2n−k − 1 and q = (Q + 1)/2. Then the stabilizer group measurement protocol
(PεU (τ/M))M protects �S up to a deviation that converges to 0 in the large-M limit:

D[�S(τ ), �0
S(τ )] � [1 + 	11(M)]M − 	−(M)

	11(M)
[1 + 	+(M)]M + 	g(M)A+(M)γ M−1

+ (M)

+	g(M)A−(M)γ M−1
− (M) − eτJ0 =: B, (11)

where the bound B can be expanded in powers of 1/M as

B =
[

eτJ0

(
Qτ 2J2

1

4

)
+ eτJm

QτJ1

2
(1 + τJm)

ζ q

1 − ζ q

]
1

M
+ O

(
1

M2

)
, (12)

where

ζ := sech(ε) (13a)

β(M) :=
{
	11(M) J0 � J1

	g(M) J0 � J1
(13b)

	11(M) := 1

Q + 1
e

τJ0
M
(
e

τQJ1
M + Qe− τJ1

M
) − 1 (13c)

	g(M) := 1

Q + 1
e

τJ0
M
(
e

τQJ1
M − e− τJ1

M
)

(13d)

γ±(M) := 1

2
(1 + β + (1 + Qβ)ζ q) ± 1

2

√
(1 + β − (1 + Qβ)ζ q)2 + 4Qβ2ζ q (13e)

A±(M) := Qβζ q(γ± + β) + (1 + β)[(1 + β) − γ∓]

β(γ± − γ∓)
(13 f )

Jm := max{J0, J1} (13g)

	+ :=
{
	11(M) J0 � J1

	g(M) J0 � J1
(13h)

	− :=
{
	g(M) J0 � J1

	11(M) J0 � J1
. (13i)

For the generator measurement protocol
(
PεU (τ/M)

)M
, replace q by 1 in equations (12), (13e)

and (13i). In the strong-measurement limit (ε → ∞), both protocols yield the distance bound

D[�S(τ ), �0
S(τ )] � eJ0τ

⎡
⎣(

Qe− J1τ

M + e
J1τQ

M

Q + 1

)M

− 1

⎤
⎦ . (14)
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3. Stabilizer QECCs and induced structures

A large class of QECCs can be described by the stabilizer formalism [7, 23], which we briefly
review. A stabilizer S is an Abelian subgroup of the Pauli group Gn on n qubits that does
not contain the element −1. The Pauli group consists of all possible n-fold tensor products
of the Pauli matrices σ x ≡ X , σ y = Y , σ z = Z together with the multiplicative factors ±1,
±i. All elements of Gn are unitary and either Hermitian or skew-Hermitian. Since −1 /∈ S,
all elements of S must be unitary and Hermitian, and therefore are involutions [S2 = 1 for
all S ∈ S]. The stabilizer code C corresponding to S is the subspace of all states |ψ〉 which
are invariant under the action of every operator in S (S|ψ〉 = |ψ〉, ∀S ∈ S). The stabilizer of
a code encoding k logical qubits into n physical qubits has Q̄ = n − k generators, and S has
Q = 2Q̄ elements. A set of errors {Ei} in Gn is correctable (detectable) by the code if and only
if E†

i E j (Ej) anticommutes for all i and j (for all j) with at least one element of S, or otherwise
belongs to S. The normalizer N(S) := {N | NS = SN ∀S ∈ S} ⊂ Gn is the set of logical
operations on the code.

We now fix a minimal set S̄ = {S̄1, . . . , S̄Q̄} of generators of the stabilizer group. This

generating set defines a group isomorphism B : Z
Q̄
2 → S by B(b1, . . . , bQ̄) = ∏Q̄

j=1 S̄
b j

j , where
Z2 = {0, 1} is the additive group of integers mod 2. The inverse function B−1(S) identifies
the subset of generators whose product comprises S, namely generator S̄ j participates in the
product iff b j = 1. Define for each g ∈ S a group homomorphism σg : S → Z2 by

σg(S) := 〈B−1(S), B−1(g)〉 (mod 2), (15)

where 〈·, ·〉 denotes the dot product of the two binary vectors. This homomorphism σg then
counts (mod 2) the number of generators shared by S and g. It is symmetric in that

σS(g) = σg(S). (16)

We recall some basic properties of homomorphisms of finite groups [33]. First, a group
homomorphism φ : G → H is a map satisfying the property φ(g1g2) = φ(g1)φ(g2). This
implies, in particular, that φ(1G) = 1H . Both the kernel K = φ−1(1H ) ⊂ G and the image
φ(G) ⊂ H of a homomorphism are subgroups of their respective groups. If φ(g1) = φ(g2)

then φ(g1g−1
2 ) = 1H , so if φ−1(h) is nonempty for some h ∈ H, then φ−1(h) = Kg for any

g ∈ φ−1(h). In other words, all non-empty fibers of φ are cosets of the kernel K. Therefore
all non-empty fibers have the same cardinality as the kernel, so either |φ−1(h)| = |K| or
|φ−1(h)| = 0.

Lemma 1.

σS(g) = 0 ∀ g ∈ S iff S = 1, (17)

and for S �= 1,

|σ−1
S (0)| = |σ−1

S (1)| = |S|/2 = 2Q̄−1 = q. (18)

Consequently, σS = σS′ if and only if S = S′. So {(−1)σS(·) : S ∈ S} is the set of all 2Q̄

complex irreducible representations of S [34].

Proof. Since B(0, . . . , 0) = 1, B−1(1) = (0, . . . , 0), which yields zero when dotted with any
binary vector B−1(g). So σ11(g) = 0 for all g. If S �= 1, then S = S̄ j1 · · · S̄ jk for some subset
of distinct generators S̄ j1 , . . . , S̄ jk . Then σS(S̄ ji ) = 1 for all 1 � i � k. So σS(g) = 0 for all
g ∈ S if and only if S = 1. In the case S �= 1, the image of σS is all of Z2. Then, the fibers
K = σ−1

S (0) and σ−1
S (1) are both nonempty and therefore are cosets of the kernel K [33] and

6
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partition the group S. Thus, |K| = |σ−1
S (0)| = |σ−1

S (1)| and |S| = |σ−1
S (0)∪σ−1

S (1)| = 2|K|.
Finally, if σS(g) = σS′ (g) for all g ∈ S, then

σSS′ (g) = σg(SS′) = σg(S) + σg(S
′) = σS(g) + σS′ (g) = 0 (19)

for all g ∈ S, which, by the arguments above, holds if and only if SS′ = 1, i.e. if and only if
S = S′. �

3.1. Isotypical decompositions

The fact that the homomorphisms {(−1)σg(·) : g ∈ S} are the irreducible representations of
S � Z

Q̄
2 leads to a natural and well known orthogonal decomposition of the state space H into

code subspaces [7].

Lemma 2. The isomorphism B : Z
Q̄
2 → S is a faithful unitary representation of Z

Q̄
2 in terms of

operators on H = HS ⊗HB, where HS � C
2n

. There is then a unique isotypical decomposition
[34] of H into subspaces

H =
⊕
g∈S

Vg, Vg = V̂
⊕ag

g , ag = 2k dim(HB), (20)

where each Vg is an invariant subspace of the representation B and the projection of B onto
any one-dimensional subspace V̂g thereof is the irreducible representation (−1)σg(·), i.e. for

any |ψ〉 ∈ Vg, S|ψ〉 = (−1)σg(S)|ψ〉. Since each V̂g is one-dimensional (because S � Z
Q̄
2

is Abelian), the exponent ag is the dimension of the subspace Vg. With Tr(1) = 2n and all
other elements of S traceless, ag = 2n−Q̄ dim(HB) = 2k dim(HB) for all g. The 2k dim(HB)-
dimensional subspaces Vg are all orthogonal, and V11 is the subspace stabilized by S.

Proof. The isotypical decomposition is a standard result in representation theory, following
from Schur’s lemma [34]. If |ψ〉 ∈ Vg, then S|ψ〉 = (−1)σg(S)|ψ〉 because (−1)σg(·) is the
irreducible representation associated to Vg. By [34, corollary 2.16],

ag = 1

2Q̄

∑
S∈S

Tr(S)(−1)σg(S) = 2n−Q̄ dim(HB)

= 2k dim(HB) (21)

using the fact that S = 1 has Tr(1) = 2n, and all other S ∈ S have zero trace. If |ψg〉 ∈ Vg and
|ψh〉 ∈ Vh, then since S ⊂ U(H),

〈ψg|ψh〉 = 〈Sψg|Sψh〉 = (−1)σg(S)+σh(S)〈ψg|ψh〉
= (−1)σgh(S)〈ψg|ψh〉 (22)

for all S ∈ S. If gh �= 1, i.e. if g �= h, then by lemma 1, |σ−1
gh (1)| = |S|/2, so there exists

S ∈ S such that σgh(S) = 1. Therefore 〈ψg|ψh〉 must be zero and the subspaces Vg form an
orthogonal decomposition of H. �

In the language of QEC [7], each of the subspaces Vg can be thought of as encoding
k qubits, but only V11 is stabilized by S (i.e. S|ψ〉 = (−1)σg(S)|ψ〉 = |ψ〉 ∀S ∈ S iff
σg(S) = 0 ∀S ∈ S ⇔ g = 1 by lemma 1). Hence V11 is typically chosen as the stabilizer
QECC. With this choice, the remaining isotypical subspaces are interpreted as ‘syndrome’
subspaces, where g labels the syndrome. Namely, after an error that is detectable by the code
takes place, it maps V11 to one of the other subspaces Vg. A measurement of all the stabilizer
generators reveals the label g, in that g = B(b1, . . . , bQ̄), where b j ∈ Z2 is 0 (1) if the
measurement of generator S̄ j yielded eigenvalue +1 (−1), with j ∈ {1, . . . , Q̄}.

7
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Using the group action of conjugation by S, the space B(H) of all linear operators
(complex matrices) on H = HS ⊗ HB and the space M(H) of Hermitian operators may be
similarly decomposed into isotypical subspaces indexed by S which are orthogonal under any
inner product invariant under conjugation by S (such as the Hilbert–Schmidt inner product).
Then

B(H) =
⊕
g∈S

W C

g M(H) =
⊕
g∈S

Wg, (23)

where, for any g ∈ S, the subspace W C
g (respectively Wg) is the space of all operators (resp.

Hermitian operators) Ag with the defining property that they satisfy SAgS = (−1)σg(S)Ag for
all S ∈ S. From this description, it is clear that Wg ⊂ W C

g for all g ∈ S. For more on these
decompositions, see appendix A.

Lemma 3. The isotypical decompositions in equation (23) impart to B(H) the structure of
an S-graded associative algebra [35] and to M(H) the structure of an S-graded Lie algebra
(under the Lie bracket A, B �→ i[A, B]).

Proof. For any g, h ∈ S and any Ag ∈ W C
g and Ah ∈ W C

h ,

SAgAhS = SAgSSAhS = (−1)σg(S)+σh(S)AgAh

= (−1)σgh(S)AgAh, (24)

so that AgAh ∈ W C

gh, and therefore W C
g W C

h ⊂ W C

gh. Likewise for any Ag ∈ Wg and Ah ∈ Wh,

S
(
i[Ag, Ah])S = i[SAgS, SAhS]

= (−1)σg(S)+σh(S)i[Ag, Ah]

= (−1)σgh(S)i[Ag, Ah], (25)

so that i[Ag, Ah] ∈ Wgh, and therefore i[Wg,Wh] ⊂ Wgh. �
Finally, we can define the orthogonal projections into these isotypical subspaces as follows.

Lemma 4. For any g ∈ S, the operator P̂g : B(H) → W C
g defined by

P̂g(A) := 1

|S|
∑
S∈S

(−1)σg(S)SAS (26)

is the orthogonal projection into the subspace W C
g . Restricted to M(H), this same operator

defines the orthogonal projection into Wg.

Proof. For any A ∈ B(H), and any g, S′ ∈ S

S′(P̂g(A)
)
S′ = 1

|S|
∑
S∈S

(−1)σg(S)S′SAS′S

= 1

|S|
∑
S∈S

(−1)σg(S′S)SAS

= (−1)σg(S′) 1

|S|
∑
S∈S

(−1)σg(S)SAS

= (−1)σg(S′)P̂g(A), (27)

so that P̂g(A) ∈ W C
g . Moreover, we find

∑
g∈S

P̂g(A) = 1

|S|
∑
S∈S

(∑
g∈S

(−1)σg(S)

)
SAS = A, (28)

8
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since by lemma 1,
∑

g∈S(−1)σg(S) = 0 for S �= 1 and equals |S| when S = 1. Therefore,

since the subspaces W C
g are mutually orthogonal, the operators P̂g are orthogonal projections.

Finally observe that if A is Hermitian, then P̂g(A) is Hermitian as well, so P̂g also describes
the orthogonal projection M(H) �→ Wg. �

Note that equation (27) shows that P̂g(A) coincides with the defining property of the
operators Ag (Hermitian or not), so that we can equivalently define Ag := P̂g(A).

3.2. Measurement operators

With respect to these isotypical decompositions, the actions of the measurement operators
defined in section 1 take particularly simple forms. Recalling equations (1) and (2a), for any
S ∈ S and ε > 0, the effect of the weak measurement of the stabilizer S is given by

PS,ε (A) := PS(ε)APS(ε) + PS(−ε)APS(−ε) (29)

=
∑

b=±1

∑
s1,s2=±

αs1 (bε)αs2 (bε)Ps1SAPs2S

for any A ∈ B(H). Then

Lemma 5. For any g, S ∈ S, any Ag ∈ W C
g , and any ε > 0,

PS,ε (Ag) = ζ σS(g)Ag, (30)

where ζ = sech(ε), and therefore, using equation (28),

PS,ε=
∑
g∈S

ζ σS(g)P̂g =
∑

g∈σ−1
S (0)

P̂g + ζ
∑

g∈σ−1
S (1)

P̂g

=PS,∞ + ζ (1 − PS,∞) = (1 − ζ )PS,∞ + ζ1. (31)

Proof. Observe first that, from the definition of W C
g ,

AgPs2S = 1
2 Ag(1 + s2S) = 1

2 (1 + s2(−1)σS(g)S)Ag

= Ps2(−1)σS (g)SAg, (32)

so that, using the facts that P2
±S = P±S, PSP−S = P−SPS = 0 (in equation (33c)), PS + P−S = 1,

α2
±(ε)+α2

±(−ε) = 1, and α+(ε)α−(ε)+α+(−ε)α−(−ε) = sech(ε) = ζ (in equation (33e)),

PS,ε (Ag) =
∑

b=±1

∑
s1,s2=±

αs1 (bε)αs2 (bε)Ps1SPs2(−1)σS (g)SAg (33a)

=
∑

b=±1

∑
s1,s2=±

αs1 (bε)αs2(−1)σS (g) (bε)Ps1SPs2SAg (33b)

=
∑

b=±1

∑
s=±

αs(bε)αs(−1)σS (g) (bε)PsSAg (33c)

=
⎧⎨
⎩

∑
b=±1

∑
s=±

α2
s (bε)PsSAg if σS(g) = 0∑

b=±1
α+(bε)α−(bε)

∑
s=±

PsSAg if σS(g) = 1
(33d)

=
{

Ag σS(g) = 0
ζAg σS(g) = 1

, (33e)

which proves equation (30). Equation (31) follows from the observation that
∑

g∈σ−1
S (0) P̂g

is the projection into the subspace of operators that commute with S (the commutant or

9
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centralizer of S), which is precisely the strong (von Neumann) non-selective measurement
of S, PS,∞. �

We are now ready to see the effect of the complete POVM defined in equations (5) and (6).

Lemma 6. For any g ∈ S, Ag ∈ W C
g , and ε > 0, the weak measurement Pε of the full stabilizer

group has the effect

Pε (Ag) =
{

Ag g = 1
ζ qAg else.

(34)

so that the weak measurement may be written as

Pε = P̂11 + ζ q
∑
g�=11

P̂g = P̂11 + ζ q(1 − P̂11)

= (1 − ζ q)P̂11 + ζ q1 = (1 − ζ q)P∞ + ζ q1. (35)

Proof. Since P̂gP̂h = 0 for g �= h,

Pε =
∏
S∈S

PS,ε =
∏
S∈S

∑
gS∈S

ζ σS(gS )P̂gS =
∑
g∈S

∏
S∈S

ζ σg(S)P̂g

=
∑
g∈S

ζ |σ−1
g (1)|P̂g, (36)

and from lemma 1,

|σ−1
g (1)| =

{
0 g = 1
q else

, (37)

which proves equation (34). Equation (35) follows from the same reasoning as used for
equation (31) in the previous lemma. �

Lemma 7. For any g ∈ S, Ag ∈ W C
g , and ε > 0, the weak measurement Pε of the generators

of the stabilizer group has the effect

Pε (Ag) = ζ |S̄∩σ−1
g (1)|Ag (38)

so that the generators-only weak measurement may be written as

Pε = P̂11 +
∑
g�=11

ζ |S̄∩σ−1
g (1)|P̂g

= P̂11 +
Q̄∑

c=1

ζ c
∑

g∈{h∈S : |S̄∩σ−1
h (1)|=c}

P̂g

= P̂11 +
Q̄∑

c=1

ζ c
∑

1� j1<···< jc�Q̄

P̂S̄ j1 ···S̄ jc
. (39)

Proof. Since P̂gP̂h = 0 for g �= h,

Pε =
∏
S̄∈S̄

PS̄,ε =
∏
S̄∈S̄

∑
gS̄∈S

ζ σS̄(gS̄ )P̂gS̄
=

∑
g∈S

∏
S̄∈S̄

ζ σg(S̄)P̂g

=
∑
g∈S

ζ |S̄∩σ−1
g (1)|P̂g, (40)

10
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and from lemma 1 and the definition of σg,

|S̄ ∩ σ−1
g (1)|

{= 0 g = 1
∈ {1, . . . , Q̄} else.

(41)
�

We note that the result of lemma 7 is stronger than that reported in our earlier work [1],
where we used the lower bound 1 for g �= 1 in place of equation (41).

4. Analysis of the distance upper bound

In this section, we analyze the behavior of the distance D[�S(τ ), �0
S(τ )] (equation (10)) and

show that it converges to 0 in the limit of large numbers of measurements. The Hamiltonian is
orthogonally decomposed as H(t) = ∑

g∈S Hg(t), where Hg(t) is the component of H(t) lying
in the isotypical (error syndrome) subspace Wg. This yields the superoperators Lg = i[Hg, ·].
We also write HSB = ∑

g�=11 Hg, and define J0 = 2‖H11‖∞ and J1 = 2‖HSB‖∞, where ‖ · ‖∞
denotes the L∞ norm, i.e. ‖H11‖∞ = ess supt∈[0,τ ]‖H11(t)‖ in which ess sup denotes the
essential supremum and ‖ · ‖ denotes the Schatten ∞ norm, i.e. the maximum singular value.
This guarantees that ‖L11‖∞ � J0 and ‖Lg‖∞ � J1 for all g �= 1 in S. These finite bound
conditions may also be shown to imply rapid decay of the noise spectrum at high frequencies,
guaranteeing an effective spectral cutoff; conversely, an insufficiently rapidly decaying noise
spectrum implies that our finite bound conditions are not satisfied (see appendix E).

Let N = {1, 2, 3, . . .} and N0 = {0, 1, 2, . . .} and observe that the unitary superoperator (8)
describing the joint system–bath evolution between successive measurements can be written
as

U
(

j

M
τ,

j + 1

M
τ

)
= 1 +

∫ j+1
M τ

j
M τ

L(t1) dt1 +
∫ j+1

M τ

j
M τ

∫ t1

j
M τ

L(t1)L(t2) dt2 dt1 + · · · (42a)

=
∞∑

k=0

∑
�α∈Sk

Lk
j(�α) (42b)

by the Dyson expansion and by the isotypical decomposition L = ∑
g∈S Lg, where Sk is the

set of all k-tuples of stabilizer group elements, L0
j = 1, and for any k > 0 and any �α ∈ Sk,

Lk
j(�α) :=

∫ j
M τ

j−1
M τ

∫ t1

j−1
M τ

· · ·
∫ tk−1

j−1
M τ

Lα1 (t1)Lα2 (t2) · · · · · ·Lαk (tk) dtk · · · dt2 dt1. (43)

Lemmas 3 and 6 imply that

P i j
ε L

l j

M+1−i1−···−i j
(�α j) · · · Llη

M+1−i1−···−iη
(�αη)(�SB)

= ζ i jμ jL
l j

M+1−i1−···−i j
(�α j) · · · Llη

M+1−i1−···−iη
(�αη)(�SB), (44)

where μ j = υ
[(

α
j
1 · · ·α j

l j

) · · · (αη

1 · · · αη

lη

)]
and υ : S → {0, 1} is defined by

υ(g) = 0 for g �= 1 and υ(1) = 1. (45)

This follows from the fact, implied by lemma 3, that a composition of Hamiltonian
superoperators Lα1 · · ·Lαk will map the initial density matrix (an element of the isotypical
space W11) to the isotypical space Wα1···αk , and that this space, by lemma 6, determines the
action of the measurement Pε . Then it is found that

11
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�SB(τ ) = PεU
(

M − 1

M
τ, τ

)
PεU

(
M − 2

M
τ,

M − 1

M
τ

)
· · ·PεU

(
0,

1

M
τ

)
�SB

= �SB +
M∑

η=1

∞∑
l1,...,lη=1

∑
�i∈N

η

‖�i‖1�M

∑
�α j∈Sl j

j=1,...,η

P i1
ε L

l1
M−i1+1(�α

1) · · ·P iη
ε L

lη
M+1−i1−···−iη

(�αη)(�SB)

(46a)

= �SB +
M∑

η=1

∞∑
l1,...,lη=1

∑
�i∈N

η

‖�i‖1�M

∑
�α j∈Sl j

j=1,...,η

ζ
Q+1

2

(
�i·�μ

)

× L
l1
M−i1+1(�α

1) · · · Llη
M+1−i1−···−iη

(�αη)(�SB), (46b)

where �μ ∈ {0, 1}η, μ j = υ(gηgη−1 · · · g j), and g j = α
j
1 · · · α j

l j
. Then

D[�S(τ ), �0
S(τ )] = 1

2

∥∥TrB
[
�SB(τ ) − �0

SB(τ )
]∥∥

1

= 1
2‖W + S‖1, (47)

where

W := TrB

[
M∑

η=1

∞∑
l1,...,lη=1

∑
�i∈N

η

‖�i‖1�M

∑
�α j∈Sl j

j=1,...,η where �μ �=0

ζ
Q+1

2

(
�i·�μ

)

×L
l1
M−i1+1(�α

1) · · · Llη
M+1−i1−···−iη

(�αη)(�SB)

]
(48)

and

S := TrB

[
�SB +

M∑
η=1

∞∑
l1,...,lη=1

∑
�i∈N

η

‖�i‖1�M

∑
�α j∈Sl j

j=1,...,η where �μ=0

L
l1
M−i1+1(�α

1) · · · Llη
M+1−i1−···−iη

(�αη)(�SB) − U0(τ )(�SB)

]
, (49)

with U0(τ ) the system–bath unitary evolution superoperator generated solely by H11.

4.1. The ‘weak’ term

The ‘strong’ term S represents the strong-measurement limit of the norm argument, i.e. the
limit as ε → ∞. The behavior of ‖S‖1 will be analyzed in section 4.3 and shown to vanish as
M → ∞. In the remainder of this section, we study the behavior of the ‘weak’ term ‖W‖1.
To that end, observe that for any 1 � j � M and any �α ∈ Sk,

‖Lk
j(�α)‖ � ‖Lα1‖∞ · · · ‖Lαk‖∞

∫ j
M τ

j−1
M τ

∫ t1

j−1
M τ

· · ·
∫ tk−1

j−1
M τ

dtk · · · dt2 dt1

= ‖Lα1‖∞ · · · ‖Lαk‖∞
(τ/M)k

k!
, (50)

12
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where ‖Lαi‖∞ := ess sup0�t�τ‖Lαi (t)‖, so that

‖W‖1 �
M∑

η=1

∞∑
l1,...,lη=1

∑
�i∈N

η

‖�i‖1�M

∑
�α j∈Sl j

j=1,...,η where �μ �=0

ζ
Q+1

2

(
�i·�μ

)

‖Ll1
M−i1+1(�α

1)‖ · · · ‖Llη
M+1−i1−···−iη

(�αη)‖ (51a)

�
M∑

η=1

∑
�i∈N

η

‖�i‖1�M

∑
�μ∈{0,1}η

�μ �=0

ζ
Q+1

2

(
�i·�μ

) ∞∑
l1,...,lη=1

(τ/M)l1+···+lη

l1! · · · lη!

∑
g1,...,gη∈S

υ(gη ···g j )=μ j

η∏
j=1

γl j (g j),

(51b)

where γl(g) is defined by

∑
�α∈(0,...,Q)l

Sα1 ···Sαl =g

‖Lα1‖∞ · · · ‖Lαl ‖∞ � γl(g) :=
l∑

s=0

(
l

s

)
Js

0Jl−s
1 fl−s(g), (52)

in which fl(g) denotes the number of ways of generating g ∈ S from l non-identity group
elements (i.e. g = Sα1 · · · Sαl ). We have used in equation (51) the triangle inequality and
submultiplicativity

‖AB‖ � ‖A‖‖B‖, (53)

(for any pair of operators A and B) and the fact that if � is a normalized state then ‖�‖1 = 1.
We have also used the norm inequalities

‖AB‖1 � ‖A‖‖B‖1 and ‖TrB [A] ‖1 � ‖A‖1, (54)

valid for any operators A and B acting on HS ⊗ HB [36, 37].
To find a closed expression for fl(g), first note that fl(g) is constant over all g �= 1. Then

for any g = Sα1 · · · Sαl �= 1 it may be observed that g′ = Sα1 · · · Sαl−1 can be anything other
than g (otherwise Sαl = 1, which is forbidden) and then g′ and g uniquely define Sαl . One such
choice of g′ is g′ = 1, the other Q − 1 choices are non-identity. The same logic applied to the
case g = 1 shows that all Q possible choices for g′ are non-identity. It follows that the quantity
fl(g) satisfies

fl(g) =
∑
g′ �=g

fl−1(g
′) = (Q − 1) fl−1(g) + fl−1(1) (55a)

fl(1) =
∑
g′ �=11

fl−1(g
′) = Q fl−1(g). (55b)

Therefore fl(g) satisfies the linear recurrence (see appendix B)

fl(g) = (Q − 1) fl−1(g) + Q fl−2(g). (56)

The characteristic polynomial of this recurrence, x2 − (Q − 1)x − Q = 0, has roots −1 and
Q, so fl(g) has the general form fl(g) = AQl + B(−1)l . It is easily seen that f0(g) = 0 and
f1(g) = 1, so A and B may be found by solving the linear system

A + B = 0 (57a)

AQ − B = 1, (57b)

13
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which yields

A = 1

Q + 1
B = − 1

Q + 1
(58)

so that

fl(g) = Ql − (−1)l

Q + 1
for g �= 1 fl(1) = Ql + Q(−1)l

Q + 1
. (59)

Now, since
l∑

s=0

(
l

s

)
Js

0Jl−s
1 al−s = (J0 + aJ1)

l , (60)

for any fixed a ∈ R, it is readily seen that

γl(g) = (J0 + QJ1)
l − (J0 − J1)

l

Q + 1
for g �= 1 (61a)

γl(1) = (J0 + QJ1)
l + Q(J0 − J1)

l

Q + 1
. (61b)

Defining

	g(τ/M) :=
∞∑

l=1

(τ/M)lγl(g)

l!
, (62)

we have

	g(τ/M) = e
τJ0
M

[
e

τQJ1
M − e− τJ1

M

Q + 1

]
for g �= 1 (63a)

	11(τ/M) = e
τJ0
M

[
e

τQJ1
M + Q e− τJ1

M

Q + 1

]
− 1. (63b)

Observe that for g �= 1,

	11(τ/M) − 	g(τ/M) = e
τ (J0−J1 )

M − 1{
� 0 for all τ � 0 when J0 � J1

� 0 for all τ � 0 when J0 � J1.
(64)

In addition, for a given binary vector �μ ∈ {0, 1}η, the cardinality of the set of η-tuples
(g1, . . . , gη) such that υ(gη · · · g j) = μ j for all j is Q‖�μ‖1 , because g j must equal gη · · · g j+1

when μ j = 0, and g j may be any of the Q other elements of S when μ j = 1. Therefore,
∞∑

l1,...,lη=1

(τ/M)l1+···+lη

l1! · · · lη!

∑
g1,...,gη∈S

υ(gη ···g j )=μ j

η∏
j=1

γl j (g j) =
∑

g1,...,gη∈S
υ(gη ···g j )=μ j

η∏
j=1

	g j (τ/M) (65a)

�
{

Q‖�μ‖1	g(τ/M)
[
	11(τ/M)

]η−1
J0 � J1

Q‖�μ‖1
[
	g(τ/M)

]η
J0 � J1,

(65b)

since each product in the sum contains at least one 	g (g �= 1). Let

φ(M) :=
M∑

η=1

β(τ/M)η−1
∑

�μ∈{0,1}η
�μ�=0

∑
�i∈N

η

‖�i‖1�M

ξ �μ·�iQ‖�μ‖1 (66)

14



J. Phys. A: Math. Theor. 46 (2013) 075306 J M Dominy et al

• • • • • •

Figure 1. Example partition of six elements into three sets by choosing the positions of two
separators from among the five possible gaps between adjacent elements.

ξ := ζ
Q+1

2 , (67)

β(τ/M) :=
{

	11(τ/M) = 1
Q+1 e

τJ0
M

(
e

τQJ1
M + Qe− τJ1

M

) − 1 J0 � J1

	g(τ/M) = 1
Q+1 e

τJ0
M

(
e

τQJ1
M − e− τJ1

M

)
J0 � J1.

Therefore we have

‖W‖1 � 	g(τ/M)φ(M). (69)

A closed form will now be derived for 	gφ and shown to converge to zero as M−1 for
arbitrary fixed τ > 0 and ξ ∈ (0, 1) as M → ∞. To that end, let r represent the number of
non-zero elements in the �μ vector, and u represent �μ ·�i. Then

∑
�μ∈{0,1}η

�μ �=0

∑
�i∈N

η

‖�i‖1�M

ξ �μ·�iQ‖�μ‖1 =
η∑

r=1

Qr

(
η

r

) M−(η−r)∑
u=r

ξ u#{ordered r-partitions of u}

×#{ordered (η − r)-partitions of M − u or less}, (70)

where an ordered k-partition of n is an ordered set of k positive integers that sum to n:
j1 + · · · + jk = n. The number of such partitions is

(n−1
k−1

)
, as may be seen by casting the

question as an occupancy problem [38] by considering the placing of k −1 physical separators
between a linear arrangement of n physical objects (see figure 1). Moreover, by the same
reasoning, the number of ordered k-partitions of n or less is

(n
k

)
, seen by considering the

placing of k separators between n + 1 objects, yielding j1 + · · · + jk+1 = n + 1, and then
discarding jk+1. So

∑
�μ∈{0,1}η

�μ�=0

∑
�i∈N

η

‖�i‖1�M

ξ �μ·�iQ‖�μ‖1 =
η∑

r=1

Qr

(
η

r

) M−(η−r)∑
u=r

ξ u

(
u − 1

r − 1

)(
M − u

η − r

)
, (71)

and we find that φ(M) in equation (66) is equal to

φ(M) =
M∑

η=1

β(τ/M)η−1
η∑

r=1

Qr

(
η

r

) M−(η−r)∑
u=r

ξ u

(
u − 1

r − 1

)(
M − u

η − r

)
(72a)

=
M∑

η,u,r=1

β(τ/M)η−1ξ uQr

(
η

r

)(
u − 1

r − 1

)(
M − u

η − r

)
, (72b)

where the limits have been extended to 1, . . . , M since the additional terms are all zeros.

4.2. Linear recurrences

Let � be the summand of equation (72), i.e.

�(M, u, η, r) := βη−1ξ uQr

(
η

r

)(
u − 1

r − 1

)(
M − u

η − r

)
, (73)
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where we regard β as a fixed quantity for the moment (its M dependence will be
reintroduced later). It may be observed that � is hypergeometric in all four variables,
i.e. �(M + 1, u, η, r)/�(M, u, η, r) is a rational function of M, u, η and r; likewise for
the corresponding shift ratios on u, η and r. As a result, � admits a linear recurrence
relation such that the coefficients are independent of u, η and r, and the recurrence may
be found algorithmically [39]. Wegschaider’s MultiSum package [40, 41] for Mathematica,
implementing a version of Sister Celine’s method [39], yielded the following telescoping linear
recurrence for this summand:

ξ (1 + β + Qβ)�(M − 2, u, η, r) − (1 + β + (1 + Qβ)ξ )�(M − 1, u, η, r) + �(M, u, η, r)

= �u[β�(M − 1, u, η, r + 1) + �(M − 1, u, η + 1, r + 1)

−�(M, u, η + 1, r + 1)] + �η[−ξ�(M − 2, u, η, r + 1) + (1 + ξ )

×�(M − 1, u, η, r + 1) − �(M, u, η, r + 1)]

+�r[−(1 + β)ξ�(M − 2, u, η, r) + (1 + β + ξ )

×�(M − 1, u, η, r) − �(M, u, η, r)], (74)

where �η is the forward shift difference operator on the variable η: �ηX (M, u, η, r) =
X (M, u, η + 1, r) − X (M, u, η, r) for any expression X ; likewise for �r and �u. The
recurrence (74) may be verified by expanding the � expressions and collecting terms, leading
to the equivalent equation

0 = Qβξ�(M − 2, u, η, r) + βξ�(M − 2, u, η, r + 1) + ξ�(M − 2, u, η + 1, r + 1)

−Qβξ�(M − 1, u, η, r) − ξ�(M − 1, u, η + 1, r + 1)

−β�(M − 1, u + 1, η, r + 1) − �(M − 1, u + 1, η + 1, r + 1)

+�(M, u + 1, η + 1, r + 1). (75)

Dividing equation (75) by Q�(M − 2, u, η, r) and multiplying by the common denominator
r(r + 1)(M − u − η + r − 1), equation (74) is then found to be equivalent to

0 = βξr(r + 1)(M − u − η + r − 1) + βξ (η − r)2(u − r)

+βξ (η + 1)(u − r)(M − u − η + r − 1) − βξ [r(r + 1)

+(η + 1)(u − r)](M − u − 1) − βξ (η − r)2u

−βξ (η + 1)u(M − u − η + r − 1) + βξ (η + 1)u(M − u − 1), (76)

which is easily verified to be true.
Now we wish to turn this recurrence on the summand �(M, u, η, r) into a recurrence

on the sum φ(M). Doing this requires summing both sides of equation (74) and using the
fact that the right-hand side leads to telescoping sums:

∑n
k=1 �kX (k) = X (n + 1) − X (1).

This computation, carried out in appendix C, results in the inhomogeneous linear recurrence
relation (with constant coefficients)

(1 + β + Qβ)ξφ(M − 2) − (1 + β + (1 + Qβ)ξ )φ(M − 1) + φ(M) = Qβ(1 + β)M−2ξ .

(77)

This recurrence for the sum has the characteristic polynomial

x2 − (1 + β + (1 + Qβ)ξ )x + (1 + β + Qβ)ξ = 0 (78)

with roots

γ± := (1 + β + (1 + Qβ)ξ )

2
±

√
(1 + β + (1 + Qβ)ξ )2 − 4(1 + β + Qβ)ξ

2
(79a)
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= (1 + β + (1 + Qβ)ξ )

2
±

√
(1 + β − (1 + Qβ)ξ )2 + 4Qβ2ξ

2
. (79b)

Furthermore, by plugging a sequence of the form φ(M) = a(1 + β)M into equation (77),
it may be seen that − (1+β)M

β
is a particular solution to the inhomogeneous recurrence. Thus

equation (77) admits the general solution

φ(M) = A+γ M−1
+ + A−γ M−1

− − (1 + β)M

β
(80)

for some coefficients A+ and A−. The initial values of φ(M) may be worked out to be

φ(1) = Qξ (81a)

φ(2) = Qξ (1 + 2β + (1 + Qβ)ξ ). (81b)

Thus, we seek A+ and A− such that A+ + A− = Qξ + (1 + β)/β and A+γ+ + A−γ− =
Qξ

(
1 + 2β + (1 + Qβ)ξ

) + (1 + β)2/β. Solving this linear system for A+ and A− yields

A± = Qβξ (γ± + β) + (1 + β)[(1 + β) − γ∓]

β(γ± − γ∓)
. (82)

With these values for A+ and A−, and now regarding β, γ±, and A± all as functions of M,
equation (80) is an exact closed expression for the sum φ(M). So we finally conclude that

‖W‖1 � 	g(M)

β(M)
[β(M)A+(M)γ M−1

+ (M) + β(M)A−(M)γ M−1
− (M) − (1 + β(M))M], (83)

where

β(M) =
{
	11(M) J0 � J1

	g(M) J0 � J1.
(84)

4.3. The ‘strong’ term

Following arguments similar to those elaborated thus far, we may now readily compute an
upper bound for the ‘strong’ term ‖S‖1. Explicitly,

‖S‖1 =
∥∥∥∥∥TrB

M∑
η=1

∞∑
l1,...,lη=1

∑
�i∈N

η

‖�i‖1�M

∑
�α j∈Sl j

�μ=0 but not all α
j
k=11

L
l1
M−i1+1(�α

1) · · · Llη
M+1−i1−···−iη

(�αη)(�SB)

∥∥∥∥∥
1

(85a)

�
M∑

η=1

∞∑
l1,...,lη=1

∑
�i∈N

η

‖�i‖1�M

∑
�α j∈Sl j

�μ=0 but not all α
j
k=11

∥∥Ll1
M−i1+1(�α

1)
∥∥ · · · ∥∥Llη

M+1−i1−···−iη
(�αη)

∥∥

(85b)

�
M∑

η=1

∞∑
l1,...,lη=1

∑
�i∈N

η

‖�i‖1�M

(τ/M)l1+···+lη

l1! · · · lη!

[
η∏

j=1

γl j (1) − Jl1+···+lη
0

]
(85c)
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=
M∑

η=1

(
M

η

)
[	η

11(τ/M) − (eτJ0/M − 1)η] (85d)

= [1 + 	11(τ/M)
]M − eτJ0 (85e)

= eτJ0

⎡
⎣
(

e
QτJ1

M + Qe− τJ1
M

Q + 1

)M

− 1

⎤
⎦ . (85f)

4.4. Total distance upper bound

Combining the results for the ‘weak’ and ‘strong’ terms, and recalling that A±(M) and γ±(M)

depend on the form of β(M)

β(M) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

	11(M) = e
τJ0
M

[
e

τQJ1
M + Q e− τJ1

M

Q + 1

]
− 1 J0 � J1

	g(M) = e
τJ0
M

[
e

τQJ1
M − e− τJ1

M

Q + 1

]
J0 � J1,

(86)

with q = |S|/2 = (Q + 1)/2, Jm = max{J0, J1}, and

	+ :=
{
	11(M) J0 � J1

	g(M) J0 � J1
	− :=

{
	11(g) J0 � J1

	11(M) J0 � J1,
(87)

we obtain, using equations (83) and (85e), the upper bound on the distance metric

D[�S(τ ), �0
S(τ )] � 1

2

(‖S‖1 + ‖W‖1
)

� [1 + 	11(M)
]M − 	−(M)

	11(M)
[1 + 	+(M)

]M − eτJ0

+	g(M)A+(M)γ M−1
+ (M) + 	g(M)A−(M)γ M−1

− (M) (88a)

=
∞∑
j=1

B j
1

M j
, (88b)

where

B1 =
[

eτJ0

(
Qτ 2J2

1

4

)
+ eτJm

QτJ1

2
(1 + τJm)

ζ q

1 − ζ q

]
. (89)

The detailed asymptotic analysis leading to equations (88b) and (89) is carried out in
appendix D. This completes the proof of theorem 1. It may be observed that the rate of
convergence (i.e. the coefficient of M−1) blows up as τ → ∞ and also as ζ → 1 (i.e. the weak
measurement limit as ε → 0).

In the next section we analyze the conditions under which the distance bound converges
to zero.

5. Parameter trade-offs

5.1. Trade-off between τ and M

The asymptotic behavior of the distance upper bound, presented in section 4.4 and derived in
appendix D, shows that the bound converges to zero as 1/M when the time τ is held fixed.
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Here we consider how the number of measurements needed for convergence depends upon the
final time τ . In order to address this question, we consider the convergence of the bound when
τ is allowed to increase with M. If τ increases too quickly, the distance upper bound will no
longer converge, so we seek the fastest growing function f (M) such that when τ = f (M), the
bound still converges to zero.

Lemma 8. Allowing only τ and M to vary, the distance upper bound (88b) converges to zero
as M → ∞ provided

τJ0 = a log(M)

⎧⎨
⎩

a < 1 if J0 � J1

a <
J0

J1
if J0 � J1

. (90)

Proof. Suppose that τJ0 = a log(M) for some a > 0. Then defining λ = J1/J0,

	11(M) = e
a log(M)

M

(
e

Qλa log(M)

M + Q e− λa log(M)

M

Q + 1

)
− 1

= a log(M)

M
+

(
1 + Qλ2

)
a2 log2(M)

2M2
+ O

(
log3(M)

M3

)
(91a)

	g(M) = e
a log(M)

M

(
e

Qλa log(M)

M − e− λa log(M)

M

Q + 1

)

= λa log(M)

M
+

(
2λ + (Q − 1)λ2

)
a2 log2(M)

2M2
+ O

(
log3(M)

M3

)
. (91b)

Repeating the analysis of appendix D with the general form

β(M) = X
log(M)

M
+ Y

log2(M)

M2
+ O

(
log3(M)

M3

)
(92)

yields

D[�S(τ ), �0
S(τ )]

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Qλ2a2 log2(M)

4
+ Q

2

(
λa log(M) + λa2 log2(M)

) ζ
Q+1

2

1 − ζ
Q+1

2

]
1

M1−a
+ O

(
log3(M)

M2−a

)

if J0 � J1(
λ2a2 log2(M)

4M1−a

)
+

[
Q

2
(λa log(M)

+λ2a2 log2(M)
) ζ

Q+1
2

1 − ζ
Q+1

2

]
1

M1−λa
+ O

(
log3(M)

M2−λa

)

if J0 � J1.

(93)

Because of the M1−a in the denominator of the leading order terms, the bound for J0 � J1

converges to zero as M → ∞ if a < 1 and diverges if a � 1. In the case J0 � J1, where λ > 1,
the bound converges if a < 1/λ and diverges if a � 1/λ. �

The closer a is to the cutoff value of either 1 or 1/λ, the slower the convergence of the
bound becomes. We can conclude that equation (90) is a sufficient condition for convergence
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of the upper bound. Divergence of the upper bound does not preclude the distance D from
converging to zero in the limit of a large number of measurements, and additional analysis is
required to settle whether this is possible. The difference between the J0 � J1 and J0 � J1

cases can be understood intuitively in terms of the relative importance of the ‘perturbation’
(coupling of the system to the bath, J1) and the ‘unperturbed’ evolution (J0). It is to be expected
that protection via the Zeno effect should be more effective when the perturbation is ‘weak’,
and as we have seen, indeed the cutoff value of a is larger in this case.

5.2. Trade-off between ε and M

Another important trade-off is between the strength of the measurements ε and the number of
measurements required for effective convergence.

Lemma 9. Allowing only ε and M to vary, the distance upper bound (88b) converges to zero
as M → ∞ provided

ε > Ma−1/2 (94)

for some a > 0.

Proof. Consider the large M, small ε regime, where the bound (88b) is approximately B1/M.
Then, since ζ q/(1 − ζ q) is large when ε is small (recall that ζ = 1/ cosh(ε)), we can neglect
the constant first term in equation (89),

eτJm
QτJ1

2B1
(1 + τJm) ≈ 1 − ζ q

ζ q
= 1

ζ q
− 1

≈ q(1 − ζ ), (95)

so that

ζ ≈ 1 − eτJm
QτJ1

2qB1
(1 + τJm) , (96)

and therefore, since ζ ≈ 1 − ε2/2 in this regime,

B1
1

M
≈ 1

ε2M
eτJm QτJ1 (1 + τJm) /q

< M−2a, (97)

where in the last line we used equation (94). �

This quantifies the previously mentioned trade-off that the weaker the measurements, the
greater M must be to compensate, i.e. the slower the convergence rate as M → ∞. Conversely,
we can interpret equation (94) as saying that the measurement strength may not decline faster
than the inverse square root of the number of measurements.

5.3. Fixed nonzero measurement interval

As an alternative analysis of the time-scaling issue, fix some �τ > 0 such that the
measurements are separated by an interval �τ , so that τ = M�τ . Under these conditions,
what value of M minimizes the distance upper bound? Let δ = J0�τ and λ = J1/J0 and
consider first the strong-measurement limit:

‖S‖1 � f (M) := eδM

[(
eQλδ + Q e−λδ

Q + 1

)M

− 1

]
. (98)
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Then, taking M to be a continuous variable for a moment,

d f

dM
= δ f (M) + log

(
eQλδ + Q e−λδ

Q + 1

)
( f (M) + eδM ). (99)

Observe that since Q = 2Q̄ − 1 � 1,

eQλδ + Q e−λδ

Q + 1
= 1 +

∞∑
k=2

Q
(
(−1)k + Qk−1

)
Q + 1

(τJ1/M)k

k!

> 1, (100)

the logarithm in equation (99) is positive, as are all the other terms in (99), so d f /dM > 0
for all M > 0. Therefore on the domain of positive integers M, f (M) is minimized at M = 1.
Thus, if laboratory conditions dictate a minimum interval between measurements, the upper
bound on the distance indicates that the best strategy for minimizing the distance is not to
let M → ∞ seeking eventual convergence (which will never come under these assumptions),
but rather to endure only one such interval, terminating with a single measurement event. The
resulting bound (for M = 1) is then

‖S‖1 � f (1) = eδ

[(
eQλδ + Q e−λδ

Q + 1

)
− 1

]

= Qλ2

2
(δ2 + δ3) + O(δ4)

= Q

2
(J1�τ )2(1 + J0�τ ) + O[(J0�τ )4] (101)

so that minimization of the bound can only be accomplished by minimizing either �τ or J1.
This result does not mean that the Zeno effect fails to provide protection beyond M = 1,

but rather that (our bound on) the protection quality gradually declines as the elapsed time
grows. The relevant yardstick for comparison is then the distance between the ideal and
actual state in the absence of any protection. This distance is easily estimated using first
order perturbation theory (the Dyson series) to be O(J1�τ ). Since equation (101) shows that
a single measurement already modifies the distance to O[(J1�τ )2], protection is achieved
provided J1�τ < 1. Subsequent measurements, or longer evolution times in the case without
measurement, modify these estimates to O[(J1M�τ )2] and O(J1M�τ ), respectively, so that
the conclusion about the possibility of an advantage from measurements with finite and fixed
�τ are unchanged.

6. Conclusion

Two protocols have been presented for the protection from the environment of an arbitrary,
unknown state encoded in some stabilizer quantum error correction (or detection) code. These
protocols involved frequent weak non-selective measurement of either all elements of the
stabilizer group of the code, or of just a minimal generating set. Rigorous upper bounds were
obtained on the distance between the final state under these protocols and the idealized final
state in the absence of any interaction with the environment. The bounds demonstrate that the
protocols exhibit the desired protection in the limit of many measurement cycles. Moreover,
the bounds offer information about the degree of protection attainable with finite resources
(e.g., finitely many measurement cycles), as well as trade-offs among the various relevant
physical parameters.

Future research in this area may proceed along different lines. First, while the protocols
based on non-selective measurements presented herein are well-suited to protecting ensembles
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from the environment, they may not be ideal for protecting individual quantum systems. Further
investigation is needed to determine whether (and in what sense) the corresponding protocols
based on weak selective measurements realize a Zeno effect resulting in protection from the
environment. A result in this direction would more directly relate the Zeno effect to traditional
quantum error correction. Additionally, it may be interesting and fruitful to expand the class
of error correcting codes on which the protocols are based, perhaps to include non-Abelian
codes. For example, a Zeno protocol based on the Bacon–Shor code [42] may have advantages
in that the measurements need be only 2-local.
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Appendix A. Isotypical decompositions induced by the stabilizer group

Lemma 10. Let M(H) denote the space of Hermitian operators on H = HS ⊗ HB. The
stabilizer group acts on M(H) by conjugation (i.e. the adjoint action AdS(A) �→ SAS), which
describes a representation of S (� Z

Q̄
2 ). There is then a unique isotypical decomposition of

M(H) into subspaces Wg:

M(H) =
⊕
g∈S

Wg =
⊕
g∈S

Ŵ
⊕bg
g , (A.1)

where each Wg is an invariant subspace of the representation, comprising bg copies of the
one-dimensional irreducible representation Ŵg, such that for any Hermitian matrix A ∈ Wg,

SAS = (−1)σg(S)A. Since each Ŵg is one-dimensional (because S � Z
Q̄
2 is Abelian), the

exponent bg is the dimension of the subspace Wg. With Tr(1) = 2n and all other elements of
S traceless, bg = 22n−Q̄(dim(HB))2 = 22k+Q̄(dim(HB))2 for all g. The 22k+Q̄(dim(HB))2-
dimensional subspaces Wg are all orthogonal under any Ad(S ⊗ 1B)-invariant inner product
on W.

Proof. By [34, corollary 2.16],

bg = 1

2Q̄

∑
S∈S

Tr(AdS)(−1)σg(S) = 22n−Q̄(dim(HB))2

= 22k+Q̄(dim(HB))2 (A.2)

under the assumption that only S = 1 has non-zero trace and Tr(1) = dim(H) = 2n dim(HB),
so that Tr(Ad11) = [Tr(1)]2 = 22n dim(HB)2.

If Ag ∈ Wg and Ah ∈ Wh, then, using the Ad(S)-invariance of the inner product (invariance
with respect to conjugation by S), we get

〈Ag, Ah〉 = 〈SAgS, SAhS〉 = (−1)σg(S)+σh(S)〈Ag, Ah〉
= (−1)σgh(S)〈Ag, Ah〉 (A.3)
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for any S ∈ S. If g �= h, lemma 1 shows that there exists an S ∈ S such that σgh(S) = 1. It must
therefore hold that 〈Ag, Ah〉 = 0, so Wg and Wh are orthogonal subspaces. �

Appendix B. Solving linear recurrences

In this appendix, we review a simple method for solving a class of second order inhomogeneous
linear recurrences with constant coefficients. Let fk − a1 fk−1 − a2 fk−2 = gk be the linear
recurrence with inhomogeneity gk = bck for real numbers a1, a2, b, and c, and given initial
conditions f0 and f1. Define the characteristic polynomial to be p(x) = x2 − a1x − a2. The
class of problems we will consider are those for which the characteristic polynomial admits
two distinct roots, i.e. where a2

1 + 4a2 > 0, and where c is different from both roots. As in the
theory of linear differential equations, we solve such problems by finding all solutions to the
homogeneous problem fk − a1 fk−1 − a2 fk−2 = 0, then seeking a particular solution for the
inhomogeneous problem, and finally identifying within the resultant affine space of solutions,
the unique solution that satisfies the initial conditions. To that end, let

�wk =
[

fk+1

fk

]
, and A =

[
a1 a2

1 0

]
. (B.1)

Then the homogeneous linear recurrence may be written �wk = A�wk−1 = Ak�w0. It may
be noted that the characteristic polynomial of the matrix A is identical to the characteristic
polynomial for the recurrence, p(x), defined above. The assumption that p have distinct roots,
then implies that A has distinct eigenvalues λ±, with associated eigenvectors �v±. It follows
that �w0 can be decomposed as �w0 = α�v+ + β�v−, yielding �wk = Ak �W 0 = αλk

+�v+ + βλk
−�v−.

Then fk = wk
2 = αv+

2 λk
+ + βv−

2 λk
−, so the solutions to the homogeneous recurrence are of the

form fk = γ+λk
+ + γ−λk

− for some coefficients γ±.
For the particular solution to the inhomogeneous problem, let us postulate an ansatz of

fk = b′ck. Plugging this into the recurrence and dividing by ck−2 yields b′(c2−a1c−a2) = bc2.
Since by assumption c is not a root of the characteristic polynomial, c2 − a1c − a2 �= 0, so
fk = b′ck with b′ = bc2/(c2 −a1c−a2) is a particular solution to the inhomogeneous problem.
Then the affine space of all solutions to the inhomogeneous problem is given by

fk = γ+λk
+ + γ−λk

− + bck+2

c2 − a1c − a2
(B.2)

for coefficients γ±. These two coefficients may now be determined from the given initial
conditions f0 and f1 by solving the system of equations

f0 = γ+ + γ− + bc2

c2 − a1c − a2
(B.3a)

f1 = γ+λ+ + γ−λ− + bc3

c2 − a1c − a2
, (B.3b)

which may be rewritten[
1 1
λ+ λ−

][
γ+
γ−

]
=

[
f0 − bc2

c2−a1c−a2

f1 − bc3

c2−a1c−a2

]
, (B.4)

yielding

γ± = ± 1

λ+ − λ−

(
f1 − λ∓ f0 − (c − λ∓)

bc2

c2 − a1c − a2

)
. (B.5)
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Appendix C. Inhomogeneity of the linear recurrence

We seek a simple form for the inhomogeneous term in the linear recurrence for the sum φ(M)

(72). This requires summing both sides of (74) and using the fact that the right-hand side leads
to telescoping sums:

∑n
k=1 �kX (k) = X (n + 1) − X (1). Since the limits of summation are

different for φ(M − 2), φ(M − 1), and φ(M), we will sum (74) over η, r = 1, . . . , M and
u = 1, . . . , M − 2, and add in the remaining pieces of φ(M − 1) and φ(M) separately.

(1 + β + Qβ)ξφ(M − 2) − (1 + β + (1 + Qβ)ξ )φ(M − 1) + φ(M)

=
M−2∑
u=1

M∑
η=1

M∑
r=1

[ξ (1 + β + Qβ)�(M − 2, u, η, r) − (1 + β + (1 + Qβ)ξ )

×�(M − 1, u, η, r) + �(M, u, η, r)]

+
M∑

η,r=1

[−(1 + β + (1 + Qβ)ξ )�(M − 1, M − 1, η, r)

+�(M, M − 1, η, r) + �(M, M, η, r)] (C.1a)

=
M∑

η=1

M∑
r=1

[
β�(M − 1, M − 1, η, r + 1) + �(M − 1, M − 1, η + 1, r + 1)

−�(M, M − 1, η + 1, r + 1)
]

+
M∑

η=1

M−2∑
u=1

[
(1 + β)ξ�(M − 2, u, η, 1) − (1 + β + ξ )�(M − 1, u, η, 1)

+�(M, u, η, 1)
]

+
M∑

η=1

M∑
r=1

[
− (

1 + β + (1 + Qβ)ξ
)
�(M − 1, M − 1, η, r)

+�(M, M − 1, η, r) + �(M, M, η, r)
]

(C.1b)

= Q
M−2∑
u=1

M∑
η=1

[
(1 + β)βη−1ξ u+1η

(
M − u − 2

η − 1

)

+ −(1 + β + ξ )βη−1ξ uη

(
M − u − 1

η − 1

)
βη−1ξ uη

(
M − u

η − 1

)]

+
⎡
⎣−

M−1∑
η=2

βηξM−1Qηη

(
M − 2

η − 1

)⎤⎦ + [−(
β + (1 + Qβ)ξ

)

×
M−1∑
η=1

βη−1ξM−1Qη

(
M − 2

η − 1

)

+
M∑

η=2

βη−1ξM−1Qη−1η

(
M − 2

η − 2

)
+

M∑
η=1

βη−1ξMQη

(
M − 1

η − 1

)⎤⎦ (C.1c)
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= Q
M−2∑
u=1

β(1 + β)M−u−2ξ u(1 + β − ξ ) + QβξM−1 = Qβ(1 + β)M−2ξ . (C.1d)

Appendix D. Asymptotic analysis of the distance bound

Expand β = β(M) as

β(M) = X

M
+ Y

M2
+ O

(
1

M3

)
(D.1)

for some constants X � 0 and Y � 0. Then

(1 + β)2 = 1 + 2X

M
+ X2 + 2Y

M2
+ O

(
1

M3

)
(D.2a)

1 + β + (1 + Qβ)ξ = (1 + ξ ) + (1 + Qξ )β

= (1 + ξ ) + (1 + Qξ )X

M
+ (1 + Qξ )Y

M2
+ O

(
1

M3

)
(D.2b)

1 + β − (1 + Qβ)ξ = (1 − ξ ) + (1 − Qξ )β

= (1 − ξ ) + (1 − Qξ )X

M
+ (1 − Qξ )Y

M2
+ O

(
1

M3

)
(D.2c)

(
1 + β − (1 + Qβ)ξ

)2 + 4Qξβ2 = (1 − ξ )2 + 2(1 − ξ )(1 − Qξ )X

M

+ (1 + Qξ )2X2 + 2(1 − ξ )(1 − Qξ )Y

M2
+ O

(
1

M3

)
. (D.2d)

Then using the fact that

√
a + x = √

a + x

2
√

a
− x2

8a3/2
+ O(x3) (D.3)

we can compute√(
1 + β − (1 + Qβ)ξ

)2 + 4Qξβ2 = (1 − ξ ) + X (1 − Qξ )

M

+
[
Y (1 − Qξ ) + 2QX2 ξ

(1 − ξ )

]
1

M2
+ O

(
1

M3

)
(D.4a)

γ+ = 1 + X

M
+

[
Y + QX2 ξ

(1 − ξ )

]
1

M2
+ O

(
1

M3

)
(D.4b)

γ− = ξ + QXξ

M
+

[
QYξ − QX2 ξ

(1 − ξ )

]
1

M2
+ O

(
1

M3

)
(D.4c)

which yields

γ+(γ+ − γ−) = γ+
√(

1 + β − (1 + Qβ)ξ
)2 + 4Qξβ2

= (1 − ξ ) + X
(
2 − (Q + 1)ξ

)
M

+ O

(
1

M2

)
(D.5a)
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γ−(γ− − γ+) = −γ−
√(

1 + β − (1 + Qβ)ξ
)2 + 4Qξβ2

= − ξ (1 − ξ ) − Xξ (Q + 1 − 2Qξ )

M
+ O

(
1

M2

)
. (D.5b)

And using the expansion

1

a + x
= 1

a
− x

a2
+ x2

a3
+ O(x3) (D.6)

it may be seen that

1

γ+(γ+ − γ−)
= 1

1 − ξ
− X

(
2 − (Q + 1)ξ

)
(1 − ξ )2M

+ O

(
1

M2

)
(D.7a)

1

γ−(γ− − γ+)
= − 1

ξ (1 − ξ )
+ X (Q + 1 − 2Qξ )

ξ (1 − ξ )2M
+ O

(
1

M2

)
. (D.7b)

Moreover,

Qβξ (γ+ + β) = QXξ

M
+ O

(
1

M2

)
(D.8a)

Qβξ (γ− + β) = QXξ 2

M
+ O

(
1

M2

)
(D.8b)

(1 + β)
[
(1 + β) − γ+

] = O

(
1

M2

)
(D.8c)

(1 + β)
[
(1 + β) − γ−

] = (1 − ξ ) + X (2 − (Q + 1)ξ )

M
+ O

(
1

M2

)
, (D.8d)

so, assembling the pieces, we get

βA+
γ+

= 1 + QXξ

(1 − ξ )M
+ O

(
1

M2

)
(D.9a)

βA−
γ−

= − QXξ

(1 − ξ )M
+ O

(
1

M2

)
. (D.9b)

Turning now to the expressions γ M
± and (1 + β)M , observe that

e− X
M = 1 − X

M
+ X2

2M2
+ O

(
1

M3

)
(D.10a)

γ+e− X
M = 1 +

[
Y + X2

(
Qξ

1 − ξ
− 1

2

)]
1

M2
+ O

(
1

M3

)
(D.10b)

γ M
+ e−X = 1 +

[
Y + X2

(
Qξ

1 − ξ
− 1

2

)]
1

M
+ O

(
1

M2

)
(D.10c)

γ−e− QX
M ξ−1 = 1 +

[
QY − X2

(
Q

1 − ξ
+ Q2

2

)]
1

M2
+ O

(
1

M3

)
(D.10d)
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γ M
− e−QXξ−M = 1 +

[
QY − X2

(
Q

1 − ξ
+ Q2

2

)]
1

M
+ O

(
1

M2

)
(D.10e)

(1 + β)e− X
M = 1 +

[
Y − X2

2

]
1

M2
+ O

(
1

M3

)
(D.10f)

(1 + β)Me−X = 1 +
[
Y − X2

2

]
1

M
+ O

(
1

M2

)
(D.10g)

Then,

βA+γ M−1
+ = βA+

γ+
γ M

+ = eX

{
1 +

[
Y + Q(X + X2)

ξ

1 − ξ
− X2

2

]
1

M

}
+ O

(
1

M2

)
(D.11a)

βA−γ M−1
− = βA−

γ−
γ M

− = O

(
ξM+1

M

)
(D.11b)

(1 + β)M = eX

{
1 +

[
Y − X2

2

]
1

M

}
+ O

(
1

M2

)
(D.11c)

and therefore

φ(M) = 1

β(M)

{[
QeX

(
X + X2

) ξ

1 − ξ

]
1

M
+ O

(
1

M2

)}
. (D.12)

Then since
1

M
X β

= 1

1 + Y/X
M + O

(
1

M2

) = 1 − Y/X

M
+ O

(
1

M2

)
(D.13a)

1

β
= M

X
− Y

X2
+ O

(
1

M

)
(D.13b)

and

β(M) =

⎧⎪⎨
⎪⎩

	11(M) = 1
Q+1 e

τJ0
M

(
e

τQJ1
M + Q e− τJ1

M

)
− 1 = τJ0

M + τ 2
(

J2
0 +QJ2

1

)
2M2 + O

(
1

M3

)
J0 � J1

	g(M) = 1
Q+1 e

τJ0
M

(
e

τQJ1
M − e− τJ1

M

)
= τJ1

M + τ 2
(

2J0J1+J2
1 (Q−1)

)
2M2 + O

(
1

M3

)
J0 � J1,

(D.14)

it follows that
	g(M)

β(M)
=

{ J1
J0

+ O
(

1
M

)
J0 � J1

1 J0 � J1
. (D.15)

Recalling that ξ = ζ q the upper bound on the ‘weak’ term is given by

‖W‖1 � 	g(M)φ(M)

= 	g(M)

β(M)

[
β(M)A+(M)γ M−1

+ (M) + β(M)A−(M)γ M−1
− (M) − (1 + β(M))M

]
(D.16a)

=

⎧⎪⎪⎨
⎪⎪⎩

[
Q eτJ0

(
τJ1 + τ 2J0J1

)
ζ q

1−ζ q

]
1
M + O

(
1

M2

)
J0 � J1

[
Q eτJ1

(
τJ1 + τ 2J2

1

)
ζ q

1−ζ q

]
1
M + O

(
1

M2

)
J0 � J1,

(D.16b)
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and the upper bound

‖B‖1 � [1 + 	11(τ/M)]M − eτJ0 (D.17a)

= eτJ0

[
τ 2QJ2

1

2

]
1

M
+ O

(
1

M2

)
. (D.17b)

Appendix E. Correlation functions, spectral densities and bath norms

Consider the Hamiltonians HSB = ∑
Sα ⊗ Bα and HB = I ⊗ B0. The pure-bath unitary

evolution operator is UB(t) = exp(−itB0). The bath-interaction picture bath operators are

Bα(t) = UB(t)Bα(0)U†
B (t), Bα(0) = Bα. (E.1)

Equivalently

Ḃα = − i[B0, Bα(t)], Bα(0) = Bα (E.2a)

Ḃ†
α = −i[B0, B†

α(t)], B†
α(0) = B†

α. (E.2b)

It follows that after differentiating n times w.r.t. t:
∂n

∂tn
B†

α(t) = (−i)n[nB0, B†
α(t)], (E.3)

where [nB, A] := [B, [n−1B, A]], [0B, A] := A.
Now consider the correlation function

〈B†
α(t)Bβ〉 := Tr[�BB†

α(t)Bβ], (E.4)

where �B is the initial bath state. The bath spectral density is the Fourier transform

Sαβ (ω) = 1

2π

∫ ∞

−∞
eiωt〈B†

α(t)Bβ〉 dt, (E.5)

so that

〈B†
α(t)Bβ〉 =

∫ ∞

−∞
e−iωtSαβ (ω) dω. (E.6)

Differentiating both sides n times yields

〈[nB0, B†
α(t)]Bβ〉 =

∫ ∞

−∞
ωn e−iωtSαβ (ω) dω, (E.7)

and in particular at t = 0:∫ ∞

−∞
ωnSαβ (ω) dω = 〈[nB0, B†

α]Bβ〉. (E.8)

This last result allows us to bound the spectral densities in terms of the bath operator
norms. One can show that |〈AB〉| � ‖A‖ ‖B‖, where the norm is the sup-operator norm [43,
appendix D]. Thus∣∣∣∣

∫ ∞

−∞
ωnSαβ (ω) dω

∣∣∣∣ = ∣∣〈[nB0, B†
α]Bβ〉∣∣ (E.9a)

�
∥∥[nB0, B†

α]
∥∥ ∥∥Bβ

∥∥ (E.9b)

� (2 ‖B0‖)n
∥∥B†

α

∥∥ ∥∥Bβ

∥∥ . (E.9c)

Thus, as long as ‖B0‖ and ‖Bα‖ are finite for all α, the bath spectral densities Sαβ (ω)

must decay faster than any rational function as |ω| → ∞. Conversely, divergence of any of the
moments of the spectral density implies the divergence of at least one of the bath operators. For
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example, all the n � 1 moments of a Lorentzian spectral density S(ω) = γ

(ω−ω0)2+γ 2 diverge.
This spectral density arises from exponentially decaying correlation functions, i.e. its Fourier
transform is F (0)(t) ∝ exp(−itω0 − γ |t|).
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