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Theory of decoherence-free fault-tolerant universal quantum computation

J. Kempe'34D. Bacon'? D. A. Lidar,'* and K. B. Whaley
Department of Chemistry, University of California, Berkeley, California 94720
2Department of Physics, University of California, Berkeley, California 94720
3Depar’[,ment of Mathematics, University of California, Berkeley, California 94720
“Ecole Nationale Superieure desl&ommunications, Paris, France
(Received 19 April 2000; revised manuscript received 5 September 2000; published 20 Marth 2001

Universal quantum computation on decoherence-free subspaces and subgigi&gss examined with
particular emphasis on using only physically relevant interactions. A necessary and sufficient condition for the
existence of decoherence-fremiselesssubsystems in the Markovian regime is derived here for the first time.

A stabilizer formalism for DFSs is then developed which allows for the explicit understanding of these in their
dual role as quantum error correcting codes. Conditions for the existence of Hamiltonians whose induced
evolution always preserves a DFS are derived within this stabilizer formalism. Two possible collective deco-
herence mechanisms arising from permutation symmetries of the system-bath coupling are examined within
this framework. It is shown that in both cases universal quantum computation which always preserves the DFS
(natural fault-tolerant computatiprcan be performed using only two-body interactions. This is in marked
contrast to standard error correcting codes, where all known constructions using one- or two-body interactions
must leave the code space during the on-time of the fault-tolerant gates. A further consequence of our univer-
sality construction is that a single exchange Hamiltonian can be used to perform universal quantum computa-
tion on an encoded space whose asymptotic coding efficiency is unity. The exchange Hamiltonian, which is
naturally present in many quantum systems, is thus asymptotically universal.
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I. INTRODUCTION the decoherence-free subspéb&S) approachalso referred
to as “error avoiding,” or “noiseless” quantum codegsl6—

The discovery that information encoded over quantum?9]. In contrast to the active mode of QECC, DFS theory can
systems can exhibit strange and wonderful computationabe viewed as providing a passive approach, where a specific
[1,2] and information theoretif3,4] properties has led to an symmetry of the system-bath coupling is employed in order
explosion of interest in understanding and exploiting theto seek out a quiet corner of the system’s Hilbert space
“quantumness” of nature. For the use of quantum informa-which does not experience decoherence. Information en-
tion to progress beyond mere theoretical constructs into theoded here over a subspace (asually entangledsystem
realm of testable and useful implementations and experistates is robust against a specific form of decoherence. We
ments, it is essential to develop techniques for preservinghall refer to this as the “DFS supporting decoherence
guantum coherences. In particular, the coupling of a quanmechanism.” When this is the dominant form of decoher-
tum system to its environment leads to a process known asnce in the physical system, there are major gains to be had
decoherence, in which encoded quantum information is losby operating in the DFS. Previous work has shown that col-
to the environment. In order to remedy this problem activelective decoherence of the type experienced in condensed
quantum error correction codéQECCS [5—9] have been phase systems at low temperatures can be successfully elimi-
developed, by analogy with classical error correction. Thes@ated in this way30,31]. Further research showed that DFSs
codes encode quantum information over an entangled set afre robust to perturbing error proces§24,27], and are thus
code words, the structure of which serves to preserve thieleally suited for concatenation in a QEQZ5].
quantum information, when used in conjunction with a fre- A third approach to decoherence explored recently em-
quently recurring error correcting procedure. It has beerploys dynamic decouplin32—34 or related symmetriza-
shown that when the rate of decoherence is below a certaition procedure$35]. An interesting connection between alll
threshold, fault tolerant quantum information manipulation isthree of these methods to combat decoherdactve, pas-
possible[10—15. Since it is believed that there are no sys-sive, and symmetrizatiorwas established in Reff36].
tems for which the decoherence mechanism entirely van- In this paper we address the problem of employing the
ishes, QECCs will be essential if quantum information ma-decoherence-free subspace approach and generalizations of
nipulation is to become practical. this to perform quantum computation. The motivating goal

An alternative approach has been proposed and developéghind the DFS approach is to use symmetry first. Thus one
recently, in which the central motivation is the desire to re-first identifies a DFS for the major sources of decoherence,
duce the effect of a specific decoherence mechanism. This ida the symmetry of the interaction with the environment.

One then proceeds to use the DFS states as a basis for a
QECC which can deal with additional perturbing error pro-
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tion on the encoded states. Towards this end, certain existeonf these issues are explored in a separate publicf4iéh

tial results[37] have been derived showing that in principle  Previous work established that DFSs correspond to the
universal quantum computation can be performed on anglegenerate component of a QE{X5,47]. A second purpose
DFS. Constructive results for a set of universal quantunof this work is to present new results on a recently discov-
gates on a particular class DFSs were subsequently cogred generalization of DFSs, which has been termed “noise-
structed in[26] using known QECC constructions. However, |ess subsystems,” and arises from a theory of QECC for
these gates were constructed in such a way that during ”Uéneral decoherence mechanisiu8,49. In line with our
operation of the gate, states within a DFS are taken OUtSidﬁreviously established terminologi24] we will refer to

of this subspace. Thus these gates would necessarily needifase as “decoherence-free subsystems,” where we take the
operate on a time scale faster than the DFS supporting dec@sym “decoherence” to mean both dephasifig) and dis-
herence mechanism, in order to be applied efficiently to &;jpation (T,). Essentially, the generalization corresponds to
concatenated DFS-QECC sche?’n&mﬂarly, a universal  glowing for information to be encoded into states transform-
computation result on DFSs for atoms in cavities was reing according to arbitrary-dimensional irreducible represen-
cently presented by Beiget al. in [38,39. It assumes that tations(irreps of the decoherence-operators’ algebra, instead
the interaction driving a system out of the DFS is muchyf just one-dimensional irreps as in the decoherence-free
weaker than the coupling of non DF-states to the environg,pspace cageve will present precise definitions later in this
ment. It is then possible to make use of an environmentyapey, These results all arise from a basic theorem on alge-
induced quantum Zeno effect. In order to make use of thg a5 that are closed under the Hermitian conjugation opera-
robustness condition Wlthoqt resorting to gates which can bggp, (“t-closed algebras), and thereby unify the role of
made faster than the main DFS supporting decoherenc& mmetry in both decoherence-free subspaces and quantum
mechanism, one would prefer to explicitly construct a set Ofgrror correction. In this paper we extend the decoherence-
Hamiltonians which can be used to perform universal quangee sybsystem concept to situations governed by essentially
tum computation, but which never allow states in the DFS tq,_+ .closed evolution. Such situations arise from non-

leak out of the DFS. Imperfections in these gates may bgjermitian terms in the system-bath interaction, which may
dealt with by the concatenation technique of R&5] (see  ,ccyr, e.g., in generalized master equation and conditional

also Ref.[28]). _ o Hamiltonian representations of open quantum dynafpies

In addl_tlon,_one Wo_uld,_from a practical standpomt_, like to |, particular, we derive an if and only {iff) condition for
use Hamiltonians which involve at most two-body interac-ihe existence of decoherence-free subsystems with dynamics
tions (under the assumption that any three-body interactiongsyemed by a semigroup master equation. This is important
will be weak and not useful for operations which must com-pacause it is well-known in decoherence-free subspace

pete with the decoherence ratén [40] such Hamiltonians  heqry that such non-t-closed evolution can support different
were used for the important decoherence mechanism kNOW§Ess than in the t-closed case. A similar result is now

as "collective decoherence,” on a system of four physicalshoywn here to hold for the decoherence-free subsystems.
qubits. In collective decoherence the bath cannot distinguish ' gyistential results for universal quantum computation on
bet\{veen individual system .qubits, and thus couples in a colyecoherence-free subsystems also e@6l. The universal
lective manner to the qubits. The corresponding two-body, . antym computation results we obtain in this paper extend
Hamiltonians used to implement universal quantum COMPUpeyond decoherence-free subspaces: we show how to
tation are those that preserve the collective symmetry. Thesg-hieye constructive universal quantum computation on the
consist of the exchange interaction between pairs of qubityjgcoherence-free subsystems supported under collective de-
The first and main purpose of this paper is therefore 10 exgoperence. This most significant achievement of our paper

tend the constructive results obtained4@] to other forms  geyjes the question of universal quantum computation under
of collective decoherence and to larger DFSs. Two different,jective decoherence using realistic Hamiltonians.

forms of collective decoherence are considered here, and Another aim of this paper is to elucidate the close link

constructive results are obtained for these on DFSs of arbianveen DFS and QECC. [@5,47] it was shown that DFSs
trary numbers of qubits. These results have implications thaére in fact maximally degenerate QECCs. This result was
extend far beyond the problem of dealing with collective yeriyeq from the general condition for a code to be a QECC
dec_ohere_znce. Si_nce the_y imply that the exchange interacti%]_ A very fruitful approach towards QECC has been the
by itself is sufficient to implement universal quantum Com-giapijizer formalism developed {i9] which led to the theory
putation on a subspace, it follows that using encoiather ¢ niversal fault-tolerant computation on QEC{EL]. In
than physical qubits can be advantageous when resourcefg) e considered DFSs as Abelian stabilizer codes. Here
for physical operations are limited. After all, the standardy e generalize the stabilizer-frameworkron-Abelianstabi-
results for universal quantum computation employ either argzers - and show that in general DFSs are stabilizer-codes
bitrary single-qubit operations in addition to a nontrivial \h4t protect against errors in the stabilizer itself. This per-
two-qubit gate(e.g., a controlledioT), or at least two non-  gpective allows one in return to view QECCs as DFSs
commuting two-qubit Hamiltoniar{gt1—49. The beginnings  5qainst a certain kind of errors, and establishes a kind of

duality of QECCs and DFSs.
The paper is structured as follows: In Sec. Il we review
INote that QECC fault-tolerant gates are also required to operatdecoherence-free subsystems and place them into the context
faster than the decoherence time of the main error process. of the Markovian master equation. For decoherence-free sub-
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spaces this has been dond24,27]. These earlier results are into states of the system Hilbert space remains encoded in
therefore generalized here to subsystems. In Sec. Il we irthe system Hilbert space ifl,=0. However, in the case
troduce a generalized stabilizer-formalism for DFS, and conwhen the interaction Hamiltonian contains nontrivial cou-
nect to the theory of stabilizers on QECC developefi9h  plings between the system and the bath, information that has
This allows us to treat DFS and QECC within the samebeen encoded over the system Hilbert space does not remain
framework. It also sheds some light on the duality betweerencoded over solely the system Hilbert space but spreads out
DFS and QECC, in particular on the performance of a DFSnstead into the combined system and bath Hilbert space as
viewed as a QECC and vice versa. In Sec. IV we deal wittthe time evolution proceeds. Such leakage of quantum infor-
universal computation on DFS within both the stabilizer-mation from the system to the bath is the origin of the deco-
framework and the representation-theoretic approach. Whkerence process in quantum mechanics.

derive fault-tolerance properties of the universal operations. | et 7/ be a subspace of the system Hilbert space with a

In particular, we show how to obtain operations that keep the i<y Ut f h il it
states within a DFS during the entire switching-time of a%fglgg >|f an:()ezr:llslf:‘l(?)n of such a subspace will be unitary

gate. Further we define the allowed compositions of opera-
tions and review results on the length of gate sequences in
terms of the desired accuracy of the target gates. In Sec. V
we introduce the model of collective decoherence. Section o~ . ]
VI explicitly deals with the Abelian case of weak collective for all [1) e Hs and for allS,, (ii) Hs does not mix states
decoherence in which system-bath interaction coupling inWithin the subspace with states that are outside of the sub-
volves only a single system operator. Stabilizer and errorspace (j'|Hg/1)=0 for all [1) in the subspace and djl")
correcting properties are developed for this case, and it igytside of the subspace{szﬁs@ HS, whereﬁs acts only

shown_ how universal computgtion can be achieved. Th%tn the subspace ar‘r?ilg acts only outside of the subspace
oAb 1 v SEnera oo Shd (i) systom and bath are il decoupio0)
strong collective decoherence we show how to fault-__ ps(0)® pg(0). Wecall a subspace of the system's Hilbert

tolerantly encode into and read out of the respective DFSszﬁggSa\gggES;um"S these requirements a decoherence-free

Z:] da”y'EchgsaTglﬁgkg] tﬁi% \rqgrgorvgbtosf(;n?;i?at;? Ir:bSr? The above formulation of DFSs in terms of a larger closed
Q u gal perturbi gystem is exact. It is extremely useful for finding DFSs, pro-

errors(as proposed ifi25]) and show how the universality iding often the most direct route via simple examination of

results can be applied to achieve fault-tolerant univers he system components of the interaction Hamiltonian. In
computation on these powerful concatenated codes. We COB’ractical situations, however, the closed-system formulation

clude in Sec. IX. Derivations and proofs of a more technicalys pegq g often too strict. This is because the closed-system
nature are presented in the appendixes.

formulation incorporates the possibility that information
which is put into the bath will back-react on the system and
Il. OVERVIEW OF DECOHERENCE-FREE SUBSPACES cause a recurrence. Such interactions will always occur in the
AND SUBSYSTEMS closed-system formulatiofdue to the the Hamiltonian being
Hermitian. However, in many practical situations the likeli-

. _ hood of such an event is extremely small. Thus, for example,
Consider the dynamics of a systerithe quantum com-  an excited atom which is in a “cold” bath will radiate a
puten coupled to a batlfB via the Hamiltonian photon and decohere but the bath will not in turn excite the

_ atom back to its excited state, except via teetremely long

H=Hs2lp+Is®Hg+H, @ recurrence time of the emission propcess. In these situations a
more appropriate way to describe the evolution of the system
is via a quantum dynamical semigroup master equation
[52,53. By assuming thati) the evolution of system density
matrix is a one-parameter semigrouip) the system density
matrix retains the properties of a density matrix including
“complete positivity,” and(iii) the system and bath density
matrices are initially decoupled, Lindbld®2] has shown
tHat the most general evolution of the system density matrix
ps(t) is governed by the master equation

S.J1y=c,[1), c,eC (3)

A. Decoherence-free subspaces

whereHg (Hg) [the system(bath Hamiltonian acts on the
system(bath Hilbert spaceHs (Hg), |5 (Ig) is the identity
operator on the systeiibath Hilbert space, andi,, which
acts on both the system and bath Hilbert spdg¢e® Hg, is
the interaction Hamiltonian containing all the nontrivial cou-
plings between system and bath. In genéfatan be written
as a sum of operators which act separately on the syste
(S,’s) and on the bathRg,’s):

= dpg(t
Hi=2 8.8 @ P8 iHs s+ Lolps(h)],
In the absence of an interaction Hamiltoniad, €0), the LM
evolution of the system and the bath are separately unitary:L == = HE+1F t) F'
U(t)=exf —iHt]=exd —iHgt]@ exf —iHgt] (we setfi=1 olps(t]=3 a%:ﬂ Aupl[Faps(OFIF[Faps(t).FyD),
throughout. Information that has been encodéaapped (4)
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whereHg is the system Hamiltonian, the operatéis con-  such operator algebras which include the identity operator
stitute a basis for th&l-dimensional space of all bounded states that, in generall will be a reducible subalgebra of the
operators acting off{s, anda, are the elements of a posi- full algebra of operators oft{s [55]. This means that the

tive semidefinite Hermitian matrix. As above, Iéts be a  algebra is isomorphic to a direct sum dfxd; complex

subspace of the system Hilbert spakig with a basis[1). ~ Matrix algebras, each with multiplicity, :
The evolution over such a subspace is then unitady iff A= @ InJ®M(dJ ). (6)
FuD=ca), coeC (5) 7

_ Here J is a finite set labeling the irreducible components of

for all [1) and for allF,,. While this condition appears to be 4, andM(d;,C) denotes al;x d; complex matrix algebra.

identical to Eq.(3), there is an important difference between It is also useful at this point to introduce the commutalit

the S,’s and theF,’s which makes these two decoherence-of A. This is the set of operators which commutes with the

freeness conditions different. In the Hamiltonian formulationalgebra. 4, A'={X:[X,A]=0VAe A}. They also form a

of DFSs, the Hamiltonian is Hermitian. Thus the expansiont-closed algebra, which is reducible to

for the interaction Hamiltonian E2) can always be written

such that theS, are also Hermitian. On the other hand, the A'= & M(n;,0)®lq, )

F,'s in the master equation, E¢4), need only be bounded JeJ

operators acting oft{g and thus the~,’s need not be Her-

mitian. Because of this difference, E¢p) allows for a The structure implied by Eq6) is illustrated schemati-
broader range of subspaces than ). For example, con- }
cally as follows, for some system operafy:

sider the situation where there are only two nonzero terms in
a master equation for a two-level system, corresponding to _ .
F,=0_ and F,=0, where o_=|0)(1| and o,=|0)(0] J=1
—|1)(1] (e.g., cooling with phase dampingin this case
there is a DFS corresponding to the single staje In the J=2
Hamiltonian formulation, inclusion 0§,=o¢_ in the inter- S, =
action Hamiltonian expansion E@2) would necessitate a (8
second term in the Hamiltonian wigy= o' , along with the
S,= o, as above. For this set of operators, however, (Bg. J=1J|
allows for no DFS. o H

In this block diagonal matrix representation, a typical block
B. Decoherence-free subsystems with givenJ may have a further block diagonal structure,

If one desires to encode quantum information over a subf - .
. . . . . for a givenJ:

space and requires that this information remains
decoherence-free, then Eq8) and (5) provide necessary . y
and sufficient conditions for the existence of such DFSs. The
notion of a subspace which remains decoherence-free A=0
throughout the evolution of a system is not, however, the M,
most general method for providing decoherence-free encod-
ing of information in a quantum system. Recently, Knill, 7
Laflamme, and Viola[48] have discovered a method for
decoherence-free coding into subsystems instead of into sub- 0
spaces.

Decoherence-free subsystefd8,36,54 are most easily M, :
presented in the Hamiltonian formulation of decoherence. A=1 (g
Let A denote the associative algebra formed by the system dj—1
HamiltonianHg and the system components of the interac-
tion Hamiltonian, theS,’s. To simplify our discussion we w0 - dy—1
will assume that the system Hamiltonian vanishss easy
to incorporate the system Hamiltonian into tBg's when
one desires that the system evolution preserves the
decoherence-free subsyste¢ml/e also assume that the iden- M,
tity operator is included a§;=15 and By=1g. This will A =n;
have no observable consequence but allows for the use of an
important representation theorem.consists of linear com-
binations of products of th8,’s. Because the Hamiltonian is
Hermitian theS,’s must be closed under Hermitian conjuga- Here A labels the different degenerate sub-blockss\XL
tion: A is a t-closed operator algebra. A basic theorem of<nj and n labels the states inside each sub-block A4

over the same basis a&in Eq. (6).
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<d,. Associated with this decomposition of the algebtas  resentation theorem E¢6) is hence not directly applicable.

the decomposition over the system Hilbert space: We will show, however, that the master equation analog of
Eq. (11)
d
He= 2>, (M (%, (10) 3
s Ej Falhu)= 2 Mo\, (12)
n'=1

Decoherence-free subsystems are defined as the situationdfovides a necessary and sufficient condition for the preser-
which information is encoded in a Slngle Subsystem SpacQation of decoherence-free Subsystems_

(™ of Eg. (10) (thus the dimension of the decoherence-free  As above, we consider a subspace of the system Hilbert
subsystem is;). The decomposition in Ed6) reveals that space spanned W,), with 1<A<nj and I=u<d;. Our
information encoded in such a subsystem will always be afnotation will be significantly simpler if we explicitly write

fected as identity on the subsystem sp&tg and thus this oyt the formal tensor product over this subspdae) =|\)
information will not decohere. It should be noted that the®|,bb> In the Subsystem notation, we claim that the

tensor product nature which gives rise to the name subsysteflecoherence-free subsystem condition is

in Eq. (6) is a tensor product over a direct sum, and therefore

will not in general correspond to the natural tensor product Fo M@ u)=|N)OM,|u). (13

of qubits. Further, it should be noted that the subsystem na-

ture of the decoherence implies that the information should® proper decomposition of the system Hilbert space requires,

be encoded in a separable way. Over the tensor structure 86 noted above, that the system density matrix is a tensor

Eg. (10) the density matrix should split into two valid density product of two valid(Hermitian, positive density matrices:

matrices: ps(0)=p®y, where p is the decoherence-free

subsystem ang is the corresponding component of the den- _ .

sity matrix which does decohere. Finally it should be pointed 0 M%M/ P (0) 7 (O =p(0) & 1(0),

out that not all of the subsystems in the different irreducible (14

representations can be simultaneously ugeldase decoher-

ence will occur between the different irreducible componentgvhere p(0) contains the information which will remain

of the Hilbert space labeled hye 7. For this reason, from decoherence-free, ang(0) is an arbitrary but valid density

now on we restrict our attention to the subspace defined by Batrix.

givenJ. In general the operatofs, will not be decomposable as a
Decoherence-free subspaces are now easily connected $thgle tensor product correspondingd(0)® y(0). Rather,

decoherence-free subsystems. Decoherence-free subspatit@y Will be a sum over such tensor products, corresponding

correspond to decoherence-free subsystems possessing offe-an expansion over an operator bastg=X,NioM?.

dimensional irreducible matrix algebrast(1,C). The mul-  The decohering generator of evolutioh thus becomes

tiplicity of these one-dimensional irreducible algebras is the 1

dimension of the decoherence-free subspaces. In fact it is . + t

easy to see how the decoherence-free subsystems arise out arolpsl01=5 % a“‘*% (2NGp(OING ®ME¥(O)M

a noncommuting generalization of the decoherence-free sub- : ‘

space conditions. Lef{\ )}, 1<\<n; and I=p=<d, de- —N3'N2p(0)@ME'ME ¥(0)

note a subspace Gis with givenJ. Then the condition for + +

the existence of an irreducible decomposition as in(Bgis _p(O)N% NG® Y(O)Mqﬁ M2). (19

Tracing over they component, and using the cyclic nature of

& the trace allows one to factor out a comman®?
Suz A = M I o N, y 11 . . ap
N M,Ezl ol M) (1) ETr,/(ng(O)MqBT), yielding:
. . 1
forall S,, A, andu. Notice thatM , . , is not dependent on Trilolps(0)}== > a,zmP%(2NPp(0)NY!
\, in the same way that, in Eq. (3) is not the same for all VImPHS 2afpq P b
[1) (therex=1 and fixed. Thus for a fixed\, the subspace _ N%TNﬁp(O)—p(O)N%TN‘;).

spanned b)k)\”) is acted upon in some nontrivial way. How-

ever, becaus#l . , is not dependent on, each subspace The evolution of thep component of the density matrix thus
defined by a fixedx and running oveh is acted upon in an  gatisfies the standard master equatidn for which it is

identical manner by the decoherence process. known that the evolution is decoherence-ff24] if and only
At this point it should be noted that the generalization ofjs

the Lindblad master equation Ed) with a decoherence-free

subspace to the corresponding master equation for a Ng|7\>=ca,q|>\> Ya. (16)
decoherence-free system is not trivial. This is because, as

above, the=, operators in Eq(4) are (for all practical pur-  This implies that the necessary and sufficient condition for a
poses$ not required to be closed under conjugation. The repdecoherence-free subsystem is
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studied are subgroups of the Pauli-grdtgnsor products of
Fo=2 Cogl®Mi=122> ¢, MI=18&M,, (170 | X,Y,Z). Since any two elements of the Pauli group either
a a commute or anticommute, the stabilizer, in this case is al-
which is the claimed generalization of the Hamiltonian con-Ways Abelian(26]. The code is thus the common eigenspace
dition of decoherence-free subsystems, @). of the stabilizer elements with eigenvalue 1.

We will use the acronym DFS to denote both Ingeneral an error-process can be described by the Kraus
decoherence-free  subsystems and their restrictiorpPerator-sum formalism [56,8: p—3,A,pAl. The
decoherence-free subspaces, whenever no confusion cHiaus-operatorsA, can be expanded in a bas{E,}
arise. When we refer to DF subspaces we will be specificall@f “errors.” The standard fault-tolerant QECC model as-
referring to the one-dimensional version of the DF sub-sumes that errors affect single qubits independently. QECC

systems. can also deal with higher-order correlations by using a code
which is suitably constructed for the particular error model

IIl. THE STABILIZER FORMALISM AND ERROR- assumed. Therefore the theory of QECCS has focused on
CORRECTION searching for codes that make quantum information robust

against 1,2. . ., ormore erroneous qubits, as this is the most
In the theory of quantum error correcting cod@E=CCS  reasonable model when one assumes spatially separated qu-
it proved fruitful to study properties of a code by consideringbits with their own local environments. Detection and cor-
its stabilizerS. This is the group formed by those system rection procedures must then be implemented at a rate higher
operators which leave the code words unchanged, i.e., thejtan the intrinsic error rate. In the QECC error-model, the
“stabilize” the code. Properties of stabilizer codes and theindependent errors are spanned by single-qubit elements
theory of quantum computation on these stabilizer codegl,X,Y,Z). An analysis of the error-correction properties can
have been developed [51]. In the framework of QECCs, then be restricted to correction of combinations of these ba-
the stabilizer allows on the one hand to identify the errors theic errors(which are also members of the Pauli grpapting
code can detect and correct. On the other hand it also permits a certain number of qubits simultaneously.
one to find a set of universal, fault-tolerant gates by analyz- The distanceal of a QECC is the number of single-qubit
ing the centralizer of, defined as the set of operations thaterrors that have to occur in order to transform one code word
commute with all elements i§ (equal to the normalizer, the in C to another code word i@. An error E is detectable if it
set of operations that presenfeunder conjugation, in the takes a code word to a subspace of the Hilbert space that is
case of the Pauli groypin the context of QECCs, the sta- orthogonal to the space spannedythis can be observed
bilizer S is restricted to elements in the Pauli group, i.e., theby a nonperturbing orthogonal von Neuman measurement
group of tensor products dfX,Y,Z, and is a finite Abelian A distanced code can detect up @— 1 errors. In order to be
group. able to correct an error on a certain code word the €upr
The extension of stabilizer theory yields much insight intoto a degenerate action of different erjoedso needs to be
DFSs. We do this here by defining a non-Abelian, and inidentified, so that it can be undone. Hence errors on different
certain cases infinite stabilizer group. The observation thatode words have to take the code words to different orthogo-
DFSs are highly degenerate QEC[25] will appear natu- nal subspaces. The above translates to the QECC-condition
rally from this formalism. Such a generalized stabilizer haq8]:
already been defined in previous work dealing with A QECCC can correct error§={E,} if and only if
decoherence-free subspadd§], and its normalizer shown
there to lead to identification of local gates for universal (V||ELEL¥)=C,pd; VE, Egel. (19
computation. A key consequence of this approach was the
observation that the resulting gates do not take the system The stabilizer of a QECC offers a systematic analysis of
out of the DFS during the entire switching time of the gate.the errors which the code can detect and corf8¢t Two
We now review and extend the results[#0] to analyze types of errors can be dealt with by stabilizer codBserrors
the error detection and correction properties of DFSs anff,Ez#| that anticommute with ae S, and(ii) errors that
QECCs. We shall incorporate DFSs and QECCs into a uniare part of the stabilizelH, € S). It is straightforward to see
fied framework, similarly to the representation-theoretic ap-that both(i) and(ii) imply the QECC condition Eq19). For
proach off48,36. The question of performing quantum com- case (i), if E/E;S=—SEE;, then (W|ELE,|¥;)
putation on a specific DFS will be addressed in the next=(W;|ELE,S|W;)=— (W |SELE,| V)= —(¥;[ELE,| V).
section. Hence(\lfj|EI;Ea|\Ifi>=0 andc,z= 6,5 Errors of typeii),
E,e S, leave the code words unchanged and therefore trivi-
A. The stabilizer-general theory ally lead to Eq(19). The first classi), are errors that require
; ; " . active correction. The second class), are “degenerate”
An operatorS is said to stabilize a code f errors that do not affect the code at all. QECCs can be re-
|[WyeC iff J¥)=|P) VSeS. (18 garded ag(passive DFSs for the errors in their stabilizer
[26]. Conversely, being passive, highly degenerate codes
The set of operatorsS} form a groupS, known as the sta- [25,57, DFSs can be viewed as a class of stabilizer codes
bilizer of the codg51]. Clearly, S is closed under multipli- that provide passive protection ty@e errorsfi.e., where the
cation. In the theory of QECC the stabilizers that have beed, are linear combinations of elements generatedder
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multiplication) by the stabilize}, and can detect and be used those which it avoid$passive error correctionThe continu-
to correct the(usually small set of errors that anticommute ous stabilizer provided in Eq21) will be sufficient to study
with the DFS stabilizer. The stabilizer thus provides a unifiedthese errors.
tool to identify the errors that a given code can deal with, as As mentioned in the previous subsection, errgss (i)
a DFS and as a QECC. An analysis of the properties of DFSthat anticommute with an element in the stabilizer will take
with a stabilizer in the Pauli group has been carried out incode words to subspaces that are orthogonal to the code.
[26]. These errors will be detectabland correctable iE}E, an-
ticommutes with a stabilizer eleme®]. In order to identify
B. DFS-stabilizer the QECC properties of a DFS, it will be convenient to look

Most of the DFSs stemming from physical error-models/0r €léments of the Pauli group among Bév).
will not have a stabilizer in the Pauli group, i.e., they are A codeC with stabilizerD(v) will avoid errors of type(ii)
nonadditive codes. The stabilizer may even be infinite. Inn its stabilizer in the sense that, if all of the Kraus operators
particular, the codes obtained from a noise model where ef a given decoherence process can be expanded over stabi-
rors arise from a symmetric coupling of the system to thelizer elementsA,(t) = [ ne;(v,t)D(v)do, then
bath and that form the focus of this paper, are of this type.

As discussed in the previous section, a DFS is completely

i . 2
specified by the condition: p(t)ZZ Ai(t)p(O)AiT(t)=2 U ei(z;,t)dlj p(0).
i i cN
Sa|/’(’>®|)\>:|lu’>®Ma|)\>l (20) (24)

arising from the splitting of the algebra generated by the

Sy'st A= @ gln, @ M(d;,C). This splitting of the algebra  The normalization conditiorE; A;(t) TA;(t) =1 then implies

has allowed both DFSs and QECCs to be put into a similathat =;|f ne;(v,t)dv|2=1. Consequently, as expected, the
framework[48,36. We will now show that the DFS condi- DFS does not evolve. Hence we see that the stabilizer pro-
tion on the algebrad generated by th&, can be converted vides an efficient method for identifying the errors which a
into a stabilizer condition on the complex Lie algebra genercode avoids. In later sections we analyze the concrete form
ated by theS,’'s. We define the continuous DFS-stabilizer of the stabilizer Eq(21) for the error models studied in this

D(v) as paper.

D(vy,vp, ... ,vN)=eXF{Z V(S| ®Ma)}, v,eC. IV. THE COMMUTANT AND UNIVERSAL QUANTUM
« (21) COMPUTATION ON A DFS

) N ) ] A DFS is a promising way to store quantum information
Clearly, if the DFS condition Eq20) is fulfilled for a set of i 4 robust fashiorf27]. From the perspective of quantum

states| 1) ®|\), then computation, however, it is even more important to be able
R R to controllably transform states in a DFS, if it is to be truly
D(v)|uwy@[N)=|u)®[\) Vv,ev. (22)  useful for quantum information processing. More specifi-

. cally, to perform quantum algorithms on a DFS one has to be
Thus the DFS condition implies that tfi&(v) stabilize the able to perform universal quantum computation using
DFS. Further if Eq(22) holds then in particular it must hold decoherence-free states. The notion of universal computation
for a v which has only one nonvanishing component. is the following: with a restricted set of operations or inter-
Thus Eq.(22) implies thatD(0, . .. ,0p 4,0, . .. 0) ) ®|N) actions at hand, one wishes to implement any unitary trans-
=|u)@|\). Recalling that exp] is a one-to-one mapping formation on the given Hilbert space, to an arbitrary degree
from a neighborhood of the zero matrix to a neighborhood oPf accuracy. From a physical implementation perspective it
the identity matrix, it follows that there must exist a small Seems clear that the operations uégates should be limited
enoughv, such that Eq(22) implies the DFS condition Eq. to at most two-body interactions. In particular we wish to
(20). Thus we see that we can convert the DFS condition intddentify a finite set of such gates that is universal on a DFS.
a condition on the stabilizer of the complex Lie algebra gen- Since we do not wish to implement active QECC, we
erated by thes,— @M ’s: impose a very stringent requirement on the operations we
allow for computation using DFSs: we do not allow gates
|W)eDFS iff D(v)|¥)=|¥) VveCN (23  that ever take the decoherence free states outside the DFS,
where the states would decohere under the noise-process
In some cases we will be able to pick a finite subgroup fronﬁOﬂSidere&-AS a first step towards this goal we thus need to
elements ofD(J) which constitutes a stabilizer. We will be able to identify the physical operations which perform

mention these instances in the following sections. Howeverransformations entirely within the DFS.
apart from the conceptual framework, our main motivation to
introduce the stabilizer for a DFS is to be able to analyze the
errors which a DF$i) detects/correctéas a QECG, and(ii) 2We shall lift this requirement in Sec. VIII.
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A. Operations that preserve the DFS Theorem 1 A sufficient condition for the generating

There are essentially two equivalent approaches to iderd@miltonian to keep a state at all times entirely within the
tify the “encoded” operations that preserve a DFS. One isDFS isHD(v)=D(v'(v))H wherev’(v) is one-to-one and
via the normalizer of the stabilizer of a co#0]; the second time mdependenp _ )
is via the commutant of thé-closed algebra generated by ~ For most applications we will only need gates that com-
the error operatorg48]. Both will be briefly reviewed here. mute with all stabilizer elements. The condition for the gen-

erating Hamiltonian then simplifies td8D(v) = D(v)H.
1. Computation on a stabilizer DFS

The stabilizer formalism is very useful for identifying al- 2. Computation on irreducible subspaces

lowed gates that take code words to code wdisls. An We can derive conditions to identify allowed gates on a
operationU keeps code wordg?') inside the code space, if DFS by using the representation theoretic approach devel-
and only if the transformed staté| W) is an element of the oped in[48], [36], and Sec. II. Recall that the decomposition
codeC. Thus using the stabilizer conditiofi8) for codes of the algebrad=@;_ /I nJ®/\/l(dJ,C) generated by the er-

with stabilizerS andC={|¥):SW¥)=|¥) VSe S}, we have  yors {S,} induces a spliting of the Hilbert spack(s
=EJEJC”J®C"J into subspaces possessing a tensor product
Ulw)ec iff SUW)=U|¥) VSeS. (25)  structure suitable to isolate decoherence-free subsystems.
The set of operators in the commutant o, A’
={X:([X,A]=0VAeA=A"=®;. M(n;,0)®l4, obvi-
ously generate transformations that affect the code space
only. In particular, they take states in a DFS to other states in
that same DFSA’ is generated by operators which commute
with the S, . Again, our goal is to find gates that act within a

This impliesU™1SUW)=|¥) and soU~'SUe S: Allowed
operationdJ transform stabilizer elemen&by conjugation
into stabilizer elementg; is in the normalizer ofS (if Sis a
group. If we restrict the allowed operations to gates in the

Pauli group(as is done in51]), then the allowed gateld X g L X .

will fix the stabilizer pointwise(element by elemejtin the DFS dur_mg t_he entlr(_e_swnchmg time, a,nd to this end we
) ) AP need to identify Hermitian operatoks$ in A’ to generate an

case of DFS with a continuous stabilizB(v), the above evolutionU(t) = exg —itH] on the DFS.

translates to the following conditio0] Theorem 2A sufficient condition for a Hamiltoniahl to

generate dynamidd(t) =exgd —itH] which preserves a DFS
UD(0)UT=D@’ (1)), (26) is thatH be in the commutant of the algebra
However, because we can only use one particular DFS
o (corresponding to a specifi€ € 7) to store quantum infor-
together with the requirement thBX(v'(v)) must covers. mation (the coherences between superpositions of different
To satisfy the covering condition, it is sufficient to have DFSs are not protectgdthe operators which commute with
J’(J) be a one-to-one mapping. the S,’s are not the only operators which perform nontrivial
Equation(26), derived by generalizing concepts from the operations on a specific DFS. The operationslinpreserve
theory of stabilizers in the Pauli group, is a condition thatall DFSs in parallel. However, if we restrict our system to
allows one to identify gate® that transform code words to 0nly one such DFS, we do not need any constraints on the
code words. In a physical implementation these gates will b&volution of the other subspaces. It is then possible to con-
realized by turning on Hamiltoniart$ between physical qu- Struct a necessary and sufficient condition for a Hamiltonian
bits for a certain timé: U(t)=e """, So far we only required by modifying the commutant to:
that the action of the gate preserve the subspace at the con- i .
clusion of the gate operation, but not that the subspace be I= (M(nK*L)(@IdK)@M(d_dKnK 0, (27)
preserved throughout the entire duration of the gate opera- ) ) -
tion. The stabilizer approach allows us to further identify thewhere dy=dim(Hs) and just leaves the specific DRE)
more restrictive set of Hamiltonians that keep the stategvariant. o -
within the DFS throughout the entire switching time of the ~Theorem 3 A necessary and sufficient condition for a
gate. As a result, in the limit of ideal gates, the entire systenfiamiltonianH to generate dynamics which preserves a DFS
is free from noise at all times. This is different from QECC, corresponding to the irreducible representatioa 7, is H
since there errors continuously take the code words outsid& Z-
of the code spadé8], and hence error correction needs to be  We will use both the stabilizer and the commutant ap-
applied frequently even in the limit of perfect gate opera-Proaches to find a set of universal gates for decoherence
tions. Imperfections in gate operations can be dealt with irProcesses of physical relevance. In the cases discussed in this
the DFS approach by concatenation with a QE[26], as  Paper, any one of the two approaches is clearly sufficient and
shown explicitly for the exchange interaction[i28]. we dg n?]t need all the?rfems in fUI|(| QegeLa”'CY- TOWQVQV, (\J’IVG
- " ~ provide here a general framework and the tools required to
BX, »rewrltlng .condltlon . (2.6) .as u(HB() analyze DFS and QECC stemming from any error model.
=D’ (v,1)U(1), taking the derivative with respect tand Finally we should point out again that from a practical
evaluating at t=0 we obtain HD(v)=D('(v.0)H  perspective, it is crucial to look for the Hermitian operations
+i(aD/dv")(dv'/dt)|;—¢, SO that: which perform nontrivial operations on the DFS and which
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correspond to only one- or two-body physical interactionsAgain, the gatee("'!Hi-Hil) can be implemented to high
Without this requirement, it is clear that one can alwgg/g precision by alternately switching on and off the appropriate
construct a set of Hamiltoniar(satisfying the conditions of two interactions with a specific duration rafio.

Theorem 2 which span the allowed operations on a DFS. A (4) Conjugation by unitary evolution: Another useful ac-
primary goal of this paper is therefore to construct such onetion in constructing universal sets of gates comes from the
and two-body Hamiltonians for specific decoherence mechasbservation that if a specific gateand its invers&)™ can be
nisms, in order to achieve true universal computation on thémplemented, then any Hamiltonidth which can be imple-

corresponding DFSs. mented can be modified by performibigbefore andJ™ after
the gate expfitH). This gives rise to the transformed
B. Universality and composition of allowed operations Hamiltonian

Using the tools developed in the previous section, we can i N ) . _
now find local one-and-two qubit gates that represent en- U exp(—itH)U'=exp(—itUHU") =exp( —itHes).
coded operations on DFSs. However, in general, a discrete (30)
set of gates applied in alternation is not sufficient to generate
a universal set of gates. Nor is it sufficient to obtain every Note that the law$1)—(3) correspond to closing the set of
encoded unitary operation exactly. Furthermore, for analysiallowed Hamiltonians as a Lie algebiscalar multiplication,
of the complexity of computations performed with a given addition, and Lie commutators can be obtained out of the
universal set of gates, it is essential to keep under control thgiven Hamiltoniang
number of operations needed to achieve a certain gate within If (a subset ofthe composition law§l)—(4) acting on the
a desired accuracy. In the theory of universaligyy.,[12])  setH give rise to a set of gates that is dense in the group
the composition laws of operations have been analyzed exsU(d) (via successive application of these gateseredy
tensively. We will review the essential results relevant foris the dimension of the DFS, then we shall refelHas a
our purposes here. universal set of generators. Equivalently, this means lthat

Let us assume that we have a set(op to two-body  generates the Lie algebra si) (traceless matricévia sca-
HamiltoniansH={H;:i=1, ... M} that take DFS states to |ar multiplication, addition, Lie commutators, and conjuga-
DFS states. We will construct gates using the following com+jon by unitaries. The generators of this algebra can be ob-
position laws: tained fromH by these operations.

(1) Arbitrary phases: Any interaction can be switched on  For all practical applications and implementations of al-
for an arbitrary time. Thus any gate of the for(t)  gorithms, we will only be interested in approximating a cer-
=exp(—itH;) can be implemented. tain gate sequence with a given accuracy. Note that the com-

(2) Trotter formula: Gates performing sums of Hamilto- position laws(2) and (3) use only repeated applications of
nians are implemented by using the short-time approxima¢1) in order to approximate a certain gate. We can replace the
tion to the Trotter formula efpt;Hi+t,H;)]  requirement to perform an arbitrary pha&b, by noting that
=lim,,_..[exp((ty/MH;)exp((ta/n)H;)]": e'Mi is generically dense in the Abelian grodipxp(tH;)}.
Repeated application of that gate can then approximate an
arbitrary phase to any desired accuracy. Thus we can in prin-
ciple restrict our available gates {exp(H;)}. Repeated ap-
plication of these gates can then be used to approximate any
This is achieved by quickly turning on and off the two inter- operation in SUf) to arbitrary accuracy. .

In order to prove that a sét generates a universal set of

actionsH; ,H, with appropriate ratios of duration times. An Hamiltonians, we use the fact that a large group of universal
alternative, direct, way of implementing this gate is to SWItChsetS have already been identifiee8,44,59. It suffices to

on the two interactions simultaneously for the appropriate .
time intervals y PPropRateow thatH generates one of these sets, in order to prove

(3) Commutator: It is possible to implement the commu-thatH is a universal set of generators. We will use the fact

tator of operations that are already achievable. This is a co \[/]v?)t ;Tgi ;gtr O];(;)tr;?ig#sb:/t\/i?ﬁ?rrgtli(; r;zlehﬂzgfn;ﬁjﬁg ?v}\;oa%n—
sequence of the Lie product formula y P ’

parallel axes. Alternatively, if we are given these two rota-
tions with any phase, then an Euler-angle construction can be

ol (t1Hi T taH)/n — gitgH IngitaH In 4 o : (28)

n2

exp{H; ,Hj1= lim [exp(iH; /Vn)exp(iH; /\n) used to yield any gate in SP) by application of a small
= number of rotationgthree if the axes are orthogonaln
X exp —iH, /\/ﬁ)exp(—iHj /\/ﬁ)]n’ addition we will use(and prove a lemma(enlarging lemma,

Appendix Q that allows extension to sn{-1) of a given
which has the short-time approximation

1 ®Note that in order to implemert ""* we would usee'**=1 and
— . implemente'(?~94 instead. This depends ok having rationally
n\/ﬁ related eigenvalues, which will always be the case for the Hamilto-

(29 nians of interest to us.

et[Hi ,Hj]/nz eitHi /\’ﬁeltH] /\ﬁe*ItHl /\,ﬁe*ItHl /\ﬁ+ (e)
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su(n) acting on am-dimensional subspace of a Hilbert spaceis proportional to the erroA ¢ of the product of coupling
of dimensionn+ 1, with the help of an additional &2). strength and interaction time. This translategrearly lin-
In order to use this approach to universality, it is crucial toear behavior in the desired final accuracy
have bounds on the length of the gate sequences approximat-
ing a certain gate in terms of the desired accuracy. This is all V. COLLECTIVE DECOHERENCE
the more important if one universal set is to be replaced by . . .
any other with only polynomial overhead in the number of W& now focus on a particularly interesting and useful
gates applied, for otherwise the complexity classes would ndfedel of a DES. This is the case of collective decoherence
be robust under the exchange of one set for another. TH N qubits. We distinguish between two forms of collective
whole notion of universality would then by questionable. d€coherence. The first, and simpler, type of collective deco-
The following key theorem proved independently by go-herence is weak collective decohererf?®¢CD). We define
lovay and Kitaev(see[12]) establishes the equivalence of h€ collective operators as
universal sets, and provides bounds on the length of gate n
sequences for a desired accuracy of appro>_<imati0n. In order S,= > Uja, (32)
to quantify the accuracy of an approximation, we need to j=1
define a distance on matrices. Since our matrices act in a _
space of giverfinite) dimensiond, , any metric is as good Wherea’, denotes a tensor product of thd" Pauli matrix,
as any other. For example, we can use the trace-norm=X.,Y,Z,
d(U,V)=1—(1/d )R Tr(U™V)]. A matrix V is then said

to approximate a transformatids to accuracye if d(U,V) o= 01 o= 0 —i o= 10
<e. *\1 0/’ Y \i o)’ Z\lo -1
Theorem (Solovay-KitaeviGiven a set of gates that is (33

dense in SU(® and closed under Hermitian conjugation, . )
any gateU in SU(2) can be approximated to an accuracy (N the basis spanned by, eigenstate$0) and|1)) operat-
with a sequence of paljog(l/e)] gates from the set. ing on Fhejth qubit, and the identity on aII_ of the_other
DFS-Corollary to the Solovay-Kitaev Theoresssume ~ qubits, i.e..oc,=I®l®®0,®:--®l. WCD is the situa-
that the DFS encodesdy-dimensional system into physi-  tion in which only one collective operat@, is involved in
cal qubits. Given that one can exactly implement the gate séhe %ouplmg tg the bath, '-9H||23a® ? ' decon
itiH. e s — - The second, more general type of collective decoherence
{e'tiMi:H; e H}, [t; are(fixed) irrational multiples ofw, and ) !
H is a universal generating geét is possible to approximate f[‘:’] strong C?”(.a‘tCt'\t’? d?COhﬁ.rinqui' Wet.defme S_E:D.as .
any gate in SUd) (any encoded operatipnusing m e genera_3| ga ion in which the interaction Hamiltonian is
= poly[log(1/e)] gates given byH, =27 _,S,®B,. TheS, provide a representation

Furthermore, if we can only implement the given gatesC! the Lie algebra s@):

approximately, say to an accurady we will still be able to Y
approximate the target gate: It is known that a sequence of [Sa:Sg] 2l €apySy- (34)

m S-imprecise unitary matrices ién some norm at most  The g 's are not required to be linearly independent.
distancemé from the desired gate. If a sequence of exactly Both of these collective decoherence mechanisms are ex-
implemented gates , . .. Uy approximates a target gatt  pacted to arise from the physical condition that the bath can-
up toe, and instead ob,, ... Uy, we use gates that are at ot gistinguish the system qubfts6,17,21,2% If there aren
most some distanc&apart, then the total sequence will be at qpjts interacting with a bath, the most general interaction
moste+mad= e+ poly[log(1/e) ] 6 apart fromU. If we make  Hamiltonian linear in thes. is given by
sure thatd<<epoly| log(1/e)] then thes-faulty sequence will “
still approximateU to a precision 2. n '
If we further assume that the physical interaction that we H=> 2 0,®B,, (35)
switch on and off is given by the device and is unlikely to =1 a=xyz
change its form, then the imprecision of the gate comes en- -
tirely through the coupling strength and the interaction time,Wh.ere theB, , are bath operator.s. If the bath cannot distin-
i.e., a faulty gate is of the forn;=e'(?*49H whereU guish bet_ween the system q.Ub'tS’ théy), should not de-
=e'" is the unperturbed gate. The distance pend oni and the Hamiltonian becomes, =2,y ;S,
®B,, i.e., strong collective decoherence.
1 As a concrete example of such collective decoherence,
d(U,Up) = \/1_ — R Tr(e'2?H)] consider the situation in which the bath is the electromag-
dy netic field, and the wavelength of the transition between the
1 states of the qubits is larger than the spacing between the
= \/1_ — R Tr(cosA¢l+isinA¢H)] qubits. The electromagnetic field will interact with each of
dx these qubits in an identical manner, because the field strength
over a single wavelength will not vary substantially. This

Ag e ;
= J1—cosAd=2SiNAd/2)~—=¢5 (31 gives rise to the well-known phenomena of Dicke super- and
P=2siMA 412 N By sub-radiancg60]. Whenever the bath is a field whose energy

aBy
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is dependent on its wavelength and this wavelength is much A. The stabilizer and error correction properties

greater than the spacing between the qubits, one should ex- £qjioying the formalism developed in Sec. Il we find,

pect col[ective Qecoherence to be the QOminant decoheren%%ing Eq.(21) with v=i6 (6 can be complex the stabilizer

mechanism. It is natural to expect this to be the case fof, he weak case corresponding to a DFS with eigenvalue

condensed-phase high-purity materials at low temperaturei.K to be

However, to the best of our knowledge at present a rigorous

study quantifying the relevant parameter ranges for this in- Z"(0)=exdif(S,— )]

teresting condition to hold in specific materials is still lack-

ing (see Refs[30,31 for an application to quantum dots, _ ;) e \kO(1 coso+ i sing)
z

though. k=1

VI. THE ABELIAN CASE: WEAK COLLECTIVE =e MIp(g)°n, (39

DECOHERENCE
where

For a decoherence mechanism with only one opergior
coupling to the bath, the implementation and discussion of e’ 0
universal computation with local interactions is simpler than P( 0):< 0 ei")'
in the general case, because we can work in the basis that
diagonalizesS, (S, is necessarily Hermitian in the Hamil-
tonian model we consider her@ he algebra generated 8y
is Abelian and reduces to one-dimensiofigkeducible sub-

a_If\c_]eb”rasJZOLrespcl)ndm/g\]/lto)\the elrg]gen\)/\altj_e%?flz/'l[ﬁre_spe- that the errors which are protected against are contracting
cifically, A;= @y, In, ® M(Ak), wherehc is theKth eigen- o0 ive errors of the form diagl,e %), i.e., they result in

value with degeneracyn, and M(\g) is the algebra |oss of norm of the wave function. Any physical process with
generated byn. M(Nk) acts by multiplying the corre-  Kraus operators that are linear combinations of these errors
sponding vector by . In this situation the DF subsystems wjil| therefore not affect the DFS.

are only of the DF subspace type. This simpler case of weak This is the right framework in which to present another
collective decoherence allows us to present a treatment witfhrm of the stabilizer. We note that in the case of weak
examples that will make the general case of strong collectivgollective decoherence, we can find a stabilizer group with a
decoherencéSCD) more intuitive. finite number of elements. Define

In the following we will, without loss of generality, focus

(39

For strictly real § some of the errors which are protected
against are simply collective rotations about theaxis (and
an irrelevant global phageFor strictly imaginaryd we find

on the caseSaESfEE:la‘; 4 This operator is already di- 21i
agonal in the computational basithe eigenstates are bit- 2 i ex n 0
strings of qubits in eithej0) or |1)). Sincec acting on the Zin ex;{ a’z> = o
kth qubit contributes 1 if the qubit i®), and—1 if the qubit 0 ex;{ _ l')
is [1), the eigenvalue of a bitstring i&lumber of 0's — n
number of 1'3, and the eigenvalues o8, are {n,n (40)
-2,...,—n+2,—n}.
The degeneracyy of the eigenspace corresponding to anThen, the n-®er1gment group Z, generated b,y
eigenvalue exp(—i2m\/n)Zy,, is a stabilizer for the DFS corresponding
to the eigenvalue.x . To see that
27T|)\K ®n 3
is exp — — ZiNwy=|¥) iff |¥)eDFS\g),
(41
3
Ny =
KTIK note that aZ,;, acting on a|0) contributes exp(2i/n) to

) o ) , , the total phase, whereag,;,, acting on all) contributes
(the numl?er of different bitstrings with—K 0 s an_dK 1's). exp(—2miln). SoZE" gives a total phase of epri (number
The Apellan algebra genergted I8y thus splits into one- of 0's— number of 1'3/n)=exp(2rirg/n) when acting on a
dimensional subalgebras with degeneragy. The largest jqping. This stabilizer and Eq41) provide a simple crite-
decoherence-free subspaces in this situation correspond o+ check whether a state is in a DFS or not.
the space spanned by bitstring vectors where the number of | o+ s now briefly comment on the error-correction and

0's and the number of 1's are either the samee{/en, or  jetection properties of the code in the WCD case. The sta-
differ by one @ odd. bilizer elements are all diagonal, and equal to a tensor prod-
uct of identical 1-qubit operators. The eleméit" is in the
stabilizer and anticommutes with odd-numbérandY er-
“The casese=x (y) follow by applying a bitwise Hadamard rors. So odd-number qubit bit-flips are detectable errors.
(Hadamare-phasé transform to the code. However, the code is not able to detect any form of error
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involving Z’s and even-numbeX’s andY'’s, since any such dim =
error commutes with all elements in the stabilizer. K 0
' T
4
B. Nontrivial operations 1> /T
Observe that the algebré in the WCD case is generated / B
entirely by S,. Hence by Theorem 2, the DFS-preserving 2 o
operations are those that are in the commutan$,of For a1 B
single-body Hamiltonians it is easy to see that the only non- 1| |, i
trivial such set is formed by interactions proportionalotp = .
operators. As for two-qubit Hamiltonians, it is simpler to use S - 3 4 5 n
Theorem 1 and the expressi@B) for the stabilizer. We are -1
then looking for 4< 4 Hermitian matrices that commute with path 4
P(6)®?; these are of the form 2
3 5
zz 0 0 O
H 0 z h O -4 \
T:i(21,25,23,24,h) = , 42
|]( 1:62,43:44 ) 0 h* Z3 0 ( )
0 0 0 2z FIG. 1. Graphical representation of DFS states for weak collec-

tive decoherenc@/CD). The horizontal axis marks the number of
whereT;; acts on qubits andj only. Herez; is real,h is  qubits. The vertical axis showsumber of 0's-number of 1’3 in
complex, and the row space is spanned by itheand jth each stateK ). Each state in the standard basis thus corresponds to
qubit basis{|00),|01),|10),|11)}. We note that systems with a path from the origin which follows the indicated arrows. The
an internal Hamiltonian of the Heisenberg type, dimension of a DFS corresponds to the multiple pathways through
which one can arrive at the sardg. The DFSs are labeled by their
n 10 values ofn and K,, as DF§(K,). The insert shows the matrix
Hpeis= > €; oz > Kij(;i . (;j , (43)  structure of operators acting on DES), in terms of Top(T) and
=1 2= Bottom (B) stategsee text for definition of thegeNote that there is
only one T-state entering DES), whence the action of exchange
have exactly the correct form for any pair of sping. In-  is represented by a>1 block.
deed, it is not hard to see th@H,S,]=0 [28]. The
Heisenberg Hamiltonian is ubiquitous, and appears, e.g., im the following we show that these special interactions are
NMR. This means that the natural evolution of NMR sys- sufficient to obtain a universal generating set operating en-
tems under WCDOwhich is not necesarily the correct deco- tirely within a weak-collective DFS.
herence model for NMR systemsreserves the DFS, and
implements a nontrivial computation.

. C. Universal quantum computation inside
The specific case 9 P

the weak-Collective DFS

Let DFS,(K) denote the decoherence-free subsystem on
physical qubits with eigenvalu€. We show here that

EijETij(l,O,o,l,]): , (44)

H:{Ei,i+luTiP,i+1'T8i+l:i:11 LoN—1Z5 (47)

o O O -
O »r O O
o O +—» O
r O O O

is a universal generating set for any of the DFSs occurring in
which flips the two state1) and|10) of qubitsi andj and & system ofn physical qubits. It is convenient to work di-
leaves the other two states invariant, is especially importantectly with the Hamiltonians, and to show thamgives rise to
it is the exchange interaction. The other interactions we emthe Lie algebra sulk) on each DFK) [via scalar multi-
ploy are plication, addition, and Lie commutator; see the allowed
compositions of operationd)—(3) in Sec. IV B]. Exponen-
TEET”(1,o,o,o,Q:diaql,oyo,Q, tiation then gives the group Sd{) on the DFS. We will
proceed by induction om, the number of physical qubits,
building the DFS states af qubits out of DFS states far
—1 qubits. A graphical representation of this construction is

o useful (and will also generalize to the strong case presented
which introduce a phase on the st§d€) (P) and|11) (Q) iy sec. VI): see Fig. 1.

T3=T;;(0,0,0,1,0=diag0,0,0,3, (45

of qubitsi andj; and We have seen that in the WCD case the DFS states are
- simply bitstrings ofn qubits in eithef0) or |1). The differ-
Z,,=T450,0,1,0,0=diag 0,0,1,0. (46) entn-qubit DFSs are labeled by their eigenvalue
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A= (number of 0’s-number of 1'$=K,. (48 In the following we show how this construction general-
izes ton>2 qubits, by proving the following theorem:
To obtain a DFS state af qubits out of a DFS state af Theorem 4For anyn=2 qubits undergoing weak collec-

—1 qubits corresponding t,,_; we can either add theth  tive decoherence, there exist sets of Hamiltoniblﬁ§ [ob-
qubit as|0) (K,=K,_;+1) oras|1) (K,=K,_1;—1). Each tained fromH of Eq. (47) via scalar multiplication, addition,
DFS state can be built sequentially from the first qubit on-and Lie commutatdracting as sufk ) on the DFS corre-
ward by adding successivel9) or[1), and is uniquely de-  gnonding to the eigenvalui,. Furthermore each set acts
fined by a sequenc&y, ... K, of eigenvalues. In the independently on this DFS only.e., with zeroes in the ma-
graphical representation of Fig. 1 the horizontal axis markgyiy representation corresponding to their action on the other
n, the number of qubits up to which the state is already builtprgg,

and the vertical axis shows,, the difference(number of Before proving this theorem, we first explain in detail the
0’'s—number of 1'$ up to thenth qubit. Adding 8|0) at the  gteps taken in order to go from the=2 to then=3 case, so

n+ 1th step will correspond to a line pointing upwards, add-as to make the general induction procedure more transparent.

ing a|1) to a line pointing down. Each DFS staterofjubits The structure of the DFSs far=2 and 3 qubits is
having eigenvalua =K, is thus in one-to-one correspon-

dence with a path on the lattice from the origin [ K,,). |01)
Consider the first nontrivial case=2, which gives rise DFS,(2)={|00)}, DFS,(0)= 110/
to one DFS qubit: DFg0). This corresponds to the two
states|0,)=|01) [path 2 in Fig. 3 and|1,)=|10) (path 3 DFS,(—2)={|1D)},
with K,=0. The remaining Hilbert space is spanned by the
one-dimensional DFE$2) |00) (path 1 corresponding to |001)
K,=2, and DF$(—2) |11) (path 4 corresponding tK,
=—2. The exchang€&,;, flips |0, ) and|1,) (paths 2 and B DFSy(3)={|000}, DFSy(1)=1 (010,
and leaves the other two paths unchanged. The interaction [100)
A1,=diag(0,0,1,0) induces a phase [dn)=|10) (path 3.
Their commutator forms an encoded, acting entirely |012)
within the DFS(0) subspace. Its commutator with;, in DES.(—1)={ |10 DESJ(—3)={|11 1
turn forms an encoded, with the same property. Together S(-1) 1109, S(-3)={[119}. (D
they form the(encoded Lie algebra s(2) acting entirely 1110

within this DFS. The Lie algebra is completed by forming DFS,(3) is obtained by appending t0) to DFS,(2)
the commutator between the¥eandZ operations. To sum- Similarly DFS,(—3) is obtained by appending H) t(;

marize: DFS,(—2). Graphically, this corresponds to moving along

the only allowed pathway from DRE&) [DFS,(—2)] to

00 0 0 DFS;(3) [DFS;(—3)], as shown in Fig. 1. The lowest and
_ _ 0 0 —-i O highest\ ¢ for n qubits will always be made up of the single
Y1o=1[AEp]= 0 i ol (490 pathway connecting the lowest and highegtfor n—1 qu-

0 0 0 bits. The structure of DR$%= 1) is only slightly more com-

plicated. DFg(1) is made up of one stat¢p01), which
comes from appending i) (moving down to DFS,(2).
Z1,=i[E12.Y1al, We call |001) a “Top-state” in DFS(1). The two other
states,|010) and|100), come from appendingd) (moving
up) to DFS(0). Similarly, we call |010 and |100)
“Bottom-states” in DFS(1). DFS$(—1) is constructed in

) ) o . an analogous mannéFig. 1).
We call the property of acting entirely within the specified  \ye showed above that it is possible to perform indepen-

DFS independence, meaning that the corresponding Hamiljant s(2) operations on DF0). DFS(=2) are also both
tonian has zero entries in the rows and columns correspondistaq upon independently, but because they are one-
ing to the other DFSYDFS,(2)=|00) and DF$(-2)  gimensional subspaces, independence implies tfa} sp-
=[11) in this cas¢ When the Hamiltonian is exponentiated, qrations annihilate them. Since the statg610),/100)}

the corresponding gate will act as identity on all DFSs except. DFS;(1) and the state§|011),|101)} e DFS;(—1) both
DFS(0). _ , , _ have{|01),|10)} e DFS,(0) as their first two qubits, one im-

To summarize these considerations, the Lie algebrayegiate consequence of the independent action or,@FS
formed by Hj={X,Z} is su2), and generates SB) on s that one can simultaneously perform(Zuoperations on
DFS,(0) by exponentiation. In addition, this is an indepen-the corresponding daughter subspaces created by expanding
dent SU2), namely, these operations act as identity on theDFS,(0) into DFS(*1). The first step in the general induc-
other DFSs: when written as matrices over the basis of DF$ive proof is to eliminate this simultaneous action and to act
states, their generators I3 have zeroes in the rows and independently on each of these subspagke “indepen-
columns corresponding to all other DFSs. dence step). To see how this is achieved, it is convenient to

X12=1[Y12,Z1]. (50
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represent the operators acting on the eight-dimensional Hike., this commutator acts as an encodeg inside the
bert space of 3 qubits in the basis of the 4 DFSs: {/100),|010} subspace of DF$1). Similarly, Z{100, 010}

000|001 010 100/011 101 110|111 =(1/2)[Y{j100,/010} X2zl Together — {Yy100, 010},
Z{j100),j010p generate s@) acting independently on the
M; {]100),|010} subspace of DR$1), which we achieved by
subtracting out the action on DES-1).

In an analogous manner, an independef)scan be pro-
duced on th¢|011),|101)} subspace of DR%— 1) by using
M, the Hamiltonians acting on DE) in conjunction withT,
to subtract out the $8) action on DF$(1).° Thus we can
obtain independent action for each of the daughters of
DFS,(0), i.e., separate actions on the subspace spanned by
{|010,/100} and{|011),|101)}.

Having established independent action on the two sub-
M_, spaces of DF1) and DF3(—1) arising from DF$(0),
we need only show that we can obtain the full action on
DFS;(1) and DFQ(—1). For DF$(1) we need to mix the
subspac€|010,|100)} over which we can already perform
M_5 independent 9@), with the |001) state. To do so, note that
the effect of the exchange operati&g; is to flip |001) and
|010), and leave 100) invariant. Thus the matrix represen-
tation of E,g is

The simultaneous action on DES 1) can now be visu-

alized in terms of botiM .. ; being nonzero. Let us show how
) . . . : 0 1
to obtain an action where, say, jugt; is nonzero. This can
be achieved by applying the commutator of two operators Mi(Ex=|1 O . (55
with the property that their intersection has nonvanishing 1

action just onM,. This is true for theT 5, and X;, Hamilto-
nians: T5; annihilates every state except those that|@®  Unfortunately, E,; has a simultaneous action on
over qubits 2 and 3, namelj100 € DFS;(1) and[0000  DFS,(—1). This, however, is not a problem, since we have
€ DES,,(3). This implies that the only nonzero blocks in its already constructed an independent2swon DFS,(1) ele-
matrix are ments. Thus we can eliminate the simultaneous action by
simply forming commutators with these(2uelements. The
0 0 Lie algebra generated by these commutators will act inde-
Py_ P\_ pendently on all of DF1). In fact we claim this Lie alge-
Ma(Tog =1, My(To9=| O O ' (52 bra to be all of s(B) (see Appendix B for a general prgofn
1 other words, the Lie algebra spanned by th&pelements
o {oy,0y,0,} acting on the subspad¢100),/010)}, together
On the other handX;, is nonzero only on those states that with the exchange operatidg,;, generate all of S@) inde-
are |01) or |10) on qubits 1 and 2. Therefore it will be pendently on DF8). A similar argument holds for
nonzero on all 3-qubit states that hg@d) or |10) as “par- DFS;(—1). This construction illustrates the induction step:
ents.” This means that in its matrix representatdn ;=0  we have shown that it is possible to perform independent
and su(dyk) actions on all four of the DR$K) (K==*3,£1),
given that we can perform independent action on the three
0 0 1 DFS(K) (K==*=1,0). In Fig. 2 we have further illustrated
_ — these considerations by depicting the action of exchange on
M1(X1p)= 0 1], My(Xpp=(1 O : two of the 4-qubit DFSs. Let us now proceed to the general
10 0 proof.
(53 Proof: By induction.

Clearly, taking the product 01"5’3 and le leaves nonzero
just the lower 2< 2 block ofM 4, and this is the crucial point:  SSince TS, annihilates every state except those that|4® over
it shows that an independent action on QES can be ob- qubits 2 and 3, namely|011)eDFS(—1) and [111)
tained by forming their commutator. Specifically, since the e DFS;(—3), the only nonzero blocks in its matrix are
lower 2x 2 block of M{(T5) is just1(I—o): 1
o M_§TS)=1, M_y(TH=| 0 0
i[T55X121= Y {j100, 010} - (54 00
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So, U affects two DFSs simultaneously. In other words, the
set of valid Hamiltoniangd} % [acting onn—1 qubits and
generating sulk +1)] on DFS,_1(K+1), that we are given
by the induction hypothesis, induces a simultaneous action of
su(dk 1) on DFS(K) (on the paths coming from above
only) and DFS(K+2) (on the paths coming from below
only). Additionally, it does not affect any otherqubit DFS,
since we assumed that the action on PERK+1) was
independent, and the onlyn-qubit DFSs built from
DFS,_1(K+1) are DF$(K) and DF{(K+2). These con-
siderations are depicted schematically in Fig. 3.

We now show how to annihilate, for a given nontrivial
(i.e., dimension>1) DFS,(K), the unwanted simultaneous
action on other DFS¢the “independence step’’ Then we
proceed to obtain the full sdf), by using the sufx.;) on

FIG. 2. Graphical representation of the action of exchange ofPFS,_1(K*1) that are given by the induction hypothesis
DFS states for weak collective decoherence. Exchange acts to dithe “mixing step”).

multaneously flip different paths to a given DF&,). Axes and
labels are as defined in Fig. E;; denotes the exchange of thif

1. Independence

and jth qubits. The matrices displayed at right are the representa-

tions of Eg, on DFS(0) (lower) and DFS(2) (uppe).

The casen=2 already treated above will serve to initial-

Let us call all thet, paths converging on DEEK) from
above “Top-states,” or T-states for short, and the paths
converging from below “Bottom{or B) states” (recall that

ize the induction. Assume now that the theorem is true fothere is a one-to-one correspondence between paths and

n—1 qubits and let us show that it is then true fogubits as
well.

First note that each DREK) is constructed either from
the DFS_;(K—1) (to its lower lefy by adding g0) for the
nth qubit, or from DF{_;(K+1) (to its upper left by add-
ing a |1): the states in DEEK) correspond to all paths
ending in (1,K) that either come from beloyB) or from the
top (T). See Fig. 3.

If we apply a certain gatéJ=exp(Ht) to DFS,_(K
+1), then this operation will induce the samlg on
DFS,(K), by acting on all pathgstate$ entering DF{(K)
from above. At the same tim¥& is induced on DFgK
+2) by acting on all paths entering this DFS from below.

DFS, (K +2)

su(d,,): | DFS,_(K+1)
b “
|0}
DFS,_,(K) DFS, (K)
I /v
|0)
su(d,):|DFS,_ (K -1)

state$. The total number of paths converging on a given
DFS is exactly its dimension, sy =tk + by . By using the
induction hypothesis on DES;(K+1) we can obtain
su(tk) (generated byHR.}) on the T-states of DR$K),
which will simultaneously affect the B-states in the higher
lying DFS,(K+2) as subk,,) (note thatty=by,,). The
setH[}}ll is nonempty only ifn—3=K+1=—(n—3) [be-
cause the “highest” and “lowest” DFS are always one-
dimensional and su(¥0]. If this holds then DFJK +2)
“above” DFS,(K) is nontrivial (dimension>1), and there
are paths in DF§K) ending in|11) (“down, down”). This
is exactly the situation in which we can u$&_ 1n 10 wipe
out the unwanted action on DE& +2): recall thatTS_Ln
annihilates all states except those endinglity, and there-
fore affects nontrivially only these special T-states in each
DFS. Since the operations H',}jrll affect only B-states on
DFS,(K+2), TY ;, commutes withH},} on DFS(K
+2). Therefore the commutator @f;_,,, with elements in
-2 annihilates all states not in DEE&).® To show that
commuting TY ;,, with HE.} generates stg) on the
T-states of DFK) we need the following lemma, which
shows how to form su{) from an overlapping su(—1) and
su(2):

Enlarging Lemmalet H be a Hilbert space of dimension
dand let|i) e H. Assume we are given a set of Hamiltonians
H, that generates sd(-1) on the subspace ¢f that does
not contain|i) and another set, that generates §2) on the
subspace ofH spanned by{|i),|j)}, wherel|j) is another

FIG. 3. Detailed structure of the pathways connecting adjacent
DFSs in the weak collective decoherence case, with the action of *The argument thus far closely parallels the discussion above
the different su Lie algebras indicated by the superposed heavghowing how to generate an independert2son the{|011),|101)}

arrows. DF{(K) denotes the DFS arising fromqubits and having
eigenvalueK (see text

subspace of DR$—1), starting from the g@) on DFS(0) and
TS.
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state in{. Then[H,,H,] (all commutatorsgenerates saf) ~ Which we already have. We show how to obtain an indepen-
on’H under closure as a Lie algebiee., via scalar multipli- ~ dent su(2) between a T-state and a B-state. By the enlarging

cation, addition, and Lie commutajor lemma this generates si)). o
Proof: See Appendix C. Sincen=3 DFS,(K) contains states terminating |00)

: o\ - d/or|11). Let us assume, without loss of generality, that
Now consider two statef),|j) e DFS,(K) such that|i) an e
ends in|11) and|j) is a T-state, but does not end [ibl). states terminating if00) are present, and lgt) be such a

Then we can generate (&) on the subspace spanned by state(B-statg. Let ”? be a B_—state not terminating 1@0)_,
{li).li)} as follows: (i) We use the exchange interaction |a£“|j >Igt| |kg:(5n)—1|r;|d1>d (l'éz:a'”?’ t?\a:[r-scgtelhaLveet inliij:“e)rgldent
Xij=[i")(j'[+]j")(i’| [a prime indicates the bitstring with 1 TEh K ily checkedE 7 1=y P d
the last bit(a 1 in this casedropped in suf(ty) e Hy .} to su(x). Then as is easily checkedEn-1n,2;j1= Y, yields

generate a simultaneous action on RES and DF$(K %y betvvee_n|j>.and k) only.” In addition, Z;=(i/2)
+2). This interaction is represented by &2 o, matrixin ~ X[Eq-15,Yjk] giveso, betweenlj) and|k), thus complet-
the subspace spanned §y),|j)}. (i) TS, is represented ing a generating set for su(2) on the B-stgie and the
by the 2x2 matrix diag(1,0¥ (1 + o) in the same sub- T-state| k), that affects these two states only and annihilates

space, and commutes witk;, on DFS,(K +2) [since Z]_ all other states. This completes the proof.

affects only B-states in DESK +2), andTS , . is nonzero To summarize, we have shown constructively that it is
only on states ending ifL1)]. Thus,we ca?’;lljge it to create possible to generate the entire Lie algebradg)(on a given

- . _ weak collective-decoherence DKE) of dimensiondy,
an independent action on DRX) alone: Yi  fom the elementary composition of the operations of scalar

=i[TR 10 Xij)s Zy=1/20Y ;. X1 multiplication, addition, and Lie commutatofsonjugation
Together {Y;;,Z;;} generate s@) independently on by unitaries was not necessary in the WCD gabtoreover,
{]i),]j)} e DFS,(K). Since these operators vanish every-this su@y) can be generated independently on each DFS,
where except on DR$K), their commutators with elements implying that universal quantum computation can be per-
in HY, Y [acting as su)] will annihilate all other DFSs. formed inside each DREK). Naturally, one would like to
Therefore using the en|arging lemma, in this way all Opera_do this on the IargeSt DFS. Since given the number of qultS
tions in sufy) acting on DFS(K) only can be generated.  nthe dimensions of the DFSs alg= (i), the largest DFS is
So far we have shown how to obtain an independenthe decoherence-free subspace 0. In principle it is pos-
su(tx) on the T-states of DEK) using HZ 3L (for K<n  sible, by virtue of the independence result, to universally
—4). To obtain an independent 1) on the B-statesof ~ guantum compute in parallel on all DFSs.
DFS,(K) we use Hamiltonians in HE__ll [acting on
DFS,_1(K—1) — the DFS from beloy This will generate a
simultaneous sti) in DFS,(K) and sufx_,) in DFS,(K
—2). To eliminate the unwanted action on DR —2) we To make use of a DFS for encoding information in a
apply the previous arguments almost identically, except thaguantum computer, in addition to the universal quantum
now we useTr'Tiln to wipe out the action on all states except computation described above, it must also be possible to ini-
those ending imdo>_ We thus get an independent buj on tially prepare encoded states and to decode the quantum in-
DFS,(K). Together, the “above” and “below” construc- formation on the DFS at the end of a computation. Encoding
tions, respectively, provide independent tg)(and suby) requires that the density matrix of the prepared states should
on DFS,(K). Finally, note that we did not really need both have a large overlap with the DFS. Note that it is not neces-
TF andTS, since once we established independent action o' 10 prepare states that have support exclusively within
the T-states, we could have just subtracted out this actioff’® DFS, i-e., that have no component outside of the DFS.
when considering the B-states. Also, the specific choice of NiS follows from the fact that in our construction, while a
Tin,Q was rather arbitrargthough convenieftin fact almost computation is performed, there is no mixing of states inside

anv other diagonal interaction would do iust as well. andloutside of the DFS. If an initially prepared state is “con-
Y g : taminated” (has some support outside the DFS we want to

compute ol then the result of the computation will have the

D. State preparation and measurement on the weak collective
decoherence DFS

2. Mixing same amount of contamination, i.e., the initial error does not
In order to induce operations between the two sets ofPread.
paths (from “above” and from “below”) that make up For example, suppose we can prepare the statél

DFS,(K) consider the effect o,_;,. This gate does not —P)|¥){#|+p|s. )(¢.| where|) is a state of a particular
affect any paths that “ascend” two steps tn,(() (Corre_ DFS .and| ll’L) IS a State' outside of this DFS. Then the com-
sponding to bitstrings ending if00)) and paths that “de- Putation will proceed independently on the DFS and the
scend” two stepsgending in|11)), but it flips the paths that States outside of the DFS. Readout will then obtain the result
pass from (—2K) via (n—1K+1) with the paths from of the computation with probability + p. Repeated applica-
(n—2K) via (n—1,K—1) (see Fig. 3 It does this for all
DFSs simultaneously.

In order to get a full sufx) on DFS(K) we need to "Since E,_1,=i)(i|+|k)(j| +]j)(k| + O, where O is some ac-
“mix” su(tk) (on the T-statgsand suby) (on the B-states  tion on an orthogonal subspace.
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tion of the quantum computation will give the desired result dim =
to arbitrary confidence level. ]
There are many choices for the initial states of a compu-" 2

tation and the decision as to which states to prepare shoulis2
be guided by the available gates and measurements and tt
accuracy that is achievable. For efficient computation one 2
should try to maximize the overlap of the prepared state with
the desired initial DFS state. n

For the WCD case preparation of initial pure states is very
simple. Suppose we are concerned with $esrror WCD-

DFS. Pure state preparation into such a DFS then corre !
sponds to the ability to prepare a state which has suppor
over states with a specific number|6f and|1) (eigenstates 12
of the o, operato). This is particularly simple if measure-
ments in ther, basis (0),|1)) as well aso, gates(to “flip” 0
the bitg are available.

The second crucial ingredient for computation on a DFS FIG. 4. Graphical representation of DFS states for strong col-
(in addition to preparationis the decoding or readout of lective decoherencéSCD). The horizontal axis is the number of
guantum information resulting from a computation. Oncequbits,n, just as in Fig. 1 for WCD. The vertical axis is now the
again, there are many options for how this can be performedotal angular momentur obtained by summing angular momenta
For example, in the WCD case one can make a measureme®itn spin 1/2 particles representing thequbit, rather than just the
which distinguishes all of the DFSs and all of the statesz component of this. The DFSs are denoted by BB as before.
within this DFS by simply making a measurement in the Each state in the DFS is represented by a pathway from the origin
basis on every qubit. Further, all measurements with a giveﬁ'ong the arrows as indicated. The in§ert shows the matrix structure
number of distinct eigenvalues can be performed by first ro®f operators acting on DEEL), given in terms of TT-, TB-, BT-,
tating the observable into one corresponding to a measuré"d BB-states.
ment in the computational bagighich, in turn, corresponds
to a unitary operation on the DF&nd then performing the VII. STRONG COLLECTIVE DECOHERENCE
given measurement in the, basis, and finally rotating back.  strong collective decoherence nmubits is characterized
There are other situations where one would like tO, Sayby the three System operat(ﬁ%, Sy7 andsz_ These opera-
make a measurement of an observable over the DFS whiglgrs form a representation of the semisimple Lie algebra
has only two different eigenvalues. This type of measuresy(2). Thealgebra.A generated by these operators can be
ment can be most easily performed by a conjoined measurgtecomposed &s
ment[40]. In this scheme, one attaches another DFS to the

original DFS, forming a single larger DFS. Then, assuming n/2
universal quantum computation over this larger DFS one can A= o 1, ©9l(2J+1,), (56)
always perform operations which allow a measurement of J=0(1/2)

the first DFS by entangling it with the second DFS, and
reading out(destructively as described for the WCD abpve Where J labels the total angular momentum of the corre-
the second DFS. For example, suppose the first DFS encodéBonding Hilbert space decomposititend hence the 0 or
two bits of quantum informatiorjk,1), , k,I ={0,1}, and the 1/2 dependmg on whetheng even or odd, re.spect|ve)ljand
second DFS encodes a single bit of quantum informatior@!(2J+1.C) is the general linear algebra acting on a space of
{|0). ,]1),}. Then one can make a measurement of the obSIZ€ 2J+1. The resulting decomposition of the system Hil-
servableo,®| on the first DFS by performing an encoded Pert space
controlledNOT operation between the first and the second

. . 2
DFS, and reading out the second DFS in the encaded _ C. ®C

! . ; . = . ®C 5
basis. For the WCD case the ability to make this destructive Tts J:?il,z) FROCEE ®7
measurement on the ancilfaot on the codesimply corre-
sponds to the ability to measure singig operations. is exactly the reduction of the Hilbert states into different

_ Finally, we note that for a WCD-DFS there is a destruc-pjcke stateg60,61. The multiplicity for eachl is given by
tive measurement which distinguishes between dlfferenFm :

DFSs (corresponding to a measurement of the number o

|1)’s). One can fault-tolerantly prepare a WCD-DFS state by (23+1)n!
repeatedly performing such a measurement to guarantee that n;= .
the state is in the proper DFS. The conjoined measurement (n/z+J+ 1l (n/2=J)!
procedures described above for any DFS are naturally fault-

tolerant in the sense that they can be repeated and are non-

destructive[40,51]. Thus fault-tolerant preparation and de- SNote that as a complex algebf§, ,S,,S,} span all of gl2), not
coding is available for the WCD-DFS. just sy2).

(58)
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This multiplicity is just the degeneracy associated with thea|j=1/2m;=—1/2) particle in this decomposition although,
angular momentund. Equation(56) shows that given), a  of course, one should be careful to treat this labeling as
state|J,\,u) is acted upon as identity on its component. Strictly symbolic and not related to the physical angular mo-
Thus a DFS is defined by fixing and . As we will show  Mentum of the particles.

later, the degeneracy indéxcorresponds to the paths lead- The smallesh which supports a DFS and encodes at least

ing to a given point §,J) on the diagram of Fig. 4. In the a qubit of information isn= 3 [48]. For n=3 there are two

: ible val f th | angular momentus:3/2 or
strong collective decoherence case, we shall denote tfPeOSSbe alues of the total angular momentum:3/2 or J

. ) =1/2. The fourJ=23/2 states|J,\,u)=]3/2,0u) (u=m
n-qubit DFS labeled by a particular angular momentyby  _ + 35 + 1/2) are singly degenerate; tie= 1/2 states have

DFS,(J). . _ degeneracy 2. They can be constructed by either adding a

The DFSs corresponding to the differehtvalues for a  j,,=1 (triplet) or aJ;,=0 (single} state to al;=1/2 state.
given n can be computed using standard methods for therhese two possible methods of adding the angular momen-
addition of angular momentum. We use the convention thatum to obtain al=1/2 state are exactly the degeneracy of the
|1) represents § =1/2m;=1/2) particle and0) represents algebra, i.e.x=1,2. The fourJ=1/2 states are:

1o 1 1 1
E,o,o> =[0,0® 5,—§> —E(|010>—|100>)

|0)=1¢

1 B 11 _ 1
501)=[00® 5,5 —E(|01]>—|10]>),

r %,1,o> = i( —\2l1-1)e

11 1 1 _ 1
55 +|0,0>® 575 )—%(—2|001>+|010>+|100>)

3
|1,) =1 (59
E11>:i(ﬁ|1 He ! —1>—|1 o>®} E>):i(2|110>—|1017>—|011>)
L1277 B T2 2 202 /6 ’

where in the first column we indicated the grouping forming a logical qubit; in the second we ugédthe) notation; in the
third we used tensor products of the fo¢d12,mjlz>®|J3,mJ3>; and in the fourth the states are expanded in terms of the

single-particle|j = 1/2m;= +1/2) basis using Clebsch-Gordan coefficients. These states form a decoherence-free subsystem:
the decomposition of Eq$56) and (57) ensures that the stat€lg,0,0),|3,0,1)} are acted upon identically by ar§y,, i.e.,

they can be mixed among themselves but not with statdd,in The same holds for the stat¢s,1,0),|3,1,1)}. Thus
information of a qubite|0, )+ B|1) should be encoded into these states as
4\ J (60)

T v

—_— A
J

[(a*|0L>+:8*| 1L>)(a<0L| +:8<1L|)] [700|0><0| + 7’01|0><1|7’01+ 710| 1><0| + 711| 1><1|]

y3

where y;; form the components of a valid density matrix dimensional irreducible representations ofZu If these are
(unity trace and positive The important point to note is that the only error processer then the encoded information is
one encodes quantum information into the degeneracy indesompletely protected. These considerations are illustrated in
. Using Eq.(56) it follows that each of th&S,’'s act onp in  detail for the exchange interaction in Sec. VII C.

such a manner that only the component is changed. In-  The smallest decoherence-free subspé@se opposed to
deed, theS,’s act like a corresponding, in the u basis  subsystemsupporting a full encoded qubit comes about for
because this basis is two-dimensional, andare the two- n=4. Subspaces for the SCD mechanism correspond to the
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degeneracy of the zero total angular momentum eigenstatd@$us the{(S)?} can be used to label the SCD-DFSs by their
(there are also two decoherence-free subsystems with degesigenvaluesl,, .

eracy 1 and 3). This subspace is spanned by the states: In order to make the connection between the addition of
angular momentum and the Dicke states one should, how-
10.)=10,0,00=[0,0®|0,0 ever, use
—1|01 10))(Jo1)—|10 <1 1
=12 2«
1,)=10,1,0 . . . L
I10=] ) With this definition €)?=3,(s%)? is just the operator
1 whose eigenvalue for théth irrep of thek qubit case is
= ﬁ(|1’1>®|1’_ 1)-11,0 J(J+1). We label the basis determined by the eigenvalues
of (892 by
®[1,00+]1,-1)®|1,1)
131,32,33, ... Jn_1,d;my), (66)
1
:\/TZ(2|0011>+2|110()_|01O]> where
2 .
~|1010-(0110—|1003).  (61) (89791,32,33, - Jn-1,35my)

The notation is the same as in E&9), except that in the = I D1dz. 0, - Jneg, dimy), (67)
third column we have used the notatiol1,,M;,)  and where for consistency with tha, ), «) notation we use
®|Ja4,m;,,) Which makes it easy to see how the angularjfor J,. As in the WCD case, the degeneracy which leads to
momentum is added. One encodes iNnt@s in Eq.(60). the SCD-DFS can be put into a one-to-one correspondence
As seen from Eqgs(59) and (61), there is a variety of with a graphical representation of the addition of angular
useful bases which one can choose for the SCD-DFSs. Wmomentum, shown in Fig. 2. Here, however, each step does
now show how the generic bagid \,x) can be given both not simply correspond to adding@) or |1) state but instead
a graphical and an angular momentum interpretation. Consorresponds to combining the previous spiparticle with a
sider the addition of angular momentum as more particles argpin 1/2 particle to create &+ 1/2 or|J— 1/2| particle (note
included, similar to the construction we used in the WCDthe absolute value so that the total spin is posjtive the
case. To construct thequbit SCD-DFS for a specifid, one  graphical representation of Fig. 4 the horizontal axis counts
takes DF$S_,(J—1/2) and DF$_;(J+1/2), and uses the qubits, and the vertical axis corresponds to the total angular
angular momentum addition rules to add another qupit ( momentumJ; up to theith qubit(note the similarity to Table
=1/2). Table | presents the degeneracy ofdtfeirreducible  1). Each SCD-DFS state then corresponds to a path con-
representation fon qubits. The entries are obtained just as instructed by successively moving up or down 1/2 unit of an-
Pascal’s triangle, except that half of the trian¢lee bottom gular momentum, starting from a single qubit with=1/2 .
according to the scheme of Tablei$ missing. For example, the two DR$1/2) states are]|1/2,0,1/2;
Table | demonstrates how the degeneracies of the (+1/2),/1/2,1,1/2;=1/2)} (corresponding, respectively, to
—1)-qubit J+1/2 irreducible representatior@reps, i.e., the paths “up, down, up” and “up, up, down” and
the dimensions of DFS,(J*1/2), add to determine the m; _;,=*1/2), and the two DFRO0) states are

dimension of DF§(J). This method of addition of the angu- {|1/2,0,1/2,0;0,]1/2,1,1/2,0;0}. Clearly, the set of paths

lar momentum leads to a natural interpretation of thej ={J3,,3,,3;,...3,_1,J,} with fixed J, counts the de-
|J,\, 1) basis for the SCD-DFSs which we now present.  generacy of DFYJ,). Therefore we can identify the general
Define the partial collective operators degeneracy index (of |J,\,u)) with J,. Similarly, the
K dimensionality indexu can now be identified witann. Fi-
S‘;Es(al'z' o k)zz (Tia- (62) nally, as claimed abové is just the finald, .
i=1

. ' . A. The stabili d ti ti
This can be used to find a set of mutually commuting opera- © stabllizer and efror correction properties

tors for the SCD-DFSs: the partial total angular momentum Note from Eq.(62) that the system operatol$,=S, .

operators Therefore they can only affect the last componeit mJn)
of the DFS states. By the identification of the degeneracy
(§92= 3 (2. (63) index\ with the pathgJ,, ..., J,_1,J}, and from the gen-
asxyz eral expressiori56) for the action of theS, , we know that

) ) S, acts only on the dimensionality component:
As shown in Appendix A:

Sldis o dne 1, dim) =131, . e, DY@ (P, my)),
[(S9%,(S)%]=0 VKk,l. (64) |92 1 dimy)=1J; 1.9) | J>)(68)
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where theP, are a 2+1 dimensional representation of tions alone suffice to generate the entire BY(group on
su(2) acting directly on thém;) components of the DFS. eachN-dimensional DFS, in the SCD case.
The corresponding DFS stabilizer is

C. Quantum computation on then=3 and n=4
D<5>=D<vx,vy,vz)=exp[ D va(Se—18P,)|. qubit SCD-DFS
azxyz 69) We begin our discussion of universal quantum computa-
tion on SCD-DFSs by examining the simplest SCD-DFS

For theJ=0 DFSs this reduces to all collective rotations which supports encoding of quantum information: the3 .
+contractiong 27]: decoherence-free subsystem. We label these states as in Eq.

' (59 by |J,\,u). Recall that thel=3/2 irrep is not degener-

ate and thel=1/2 irrep has degeneracy 2. The 3/2 states

D(J)=exp{ > vasa} can be written a$3,0,u), with u=m,;==3/2,=1/2. Since
the action of exchange does not dependuwofrecall that it

n affects paths, i.e., the component onlyit suffices to con-

= ® exfuv- o] sider the action on the representative 3/2 only:|111). Let
=t us then explicitly calculate the action of exchanging the first
o _]en two physical qubits on this state and the fdur 1/2 states.
=| 1 codv|+ Tl sinjv]|| Using Eq.(59):
v

E12

3 3 3 3
where||v||=(Z ,v2)¥?> may be complex. Thus DFE) pro- §’0§> =B 11D = ‘E’O'§> '
tects against all processes described by Kraus operators that

are linear combinations of collective rotatiehsontractions

exfv-o]. The situation fod# 0 is more complicated to cal- Eio
culate analytically.
Let us now comment briefly on the error-correction and
detection properties of DEf0): Thestabilizer elements are
tensor products of identical 1-qubit operators, including the
following elements of the Pauli groupx®", Y®", andZ®".

1 1
510:0> = ElZEdOlO) - | 100>)

—i|1o ~|o1 ——Eoo>
_\/E( O> Q)_ 2 )

Thus for any odd-multiple R—1<n of single qubit errors 1 1
X, Y, andZ there is an element in the stabilizer that anti- E125.0.1 :E12E(|011>_|101>)
commutes with it: The code can detect any such error. The

J=0 SCD-DFS is an error correcting code of distance 2. 1

1
ﬁ<|1on>—|ou>>:—5,o,1>,

B. Nontrivial Operations

Are there any single-qubit operators which preserve a
SCD-DFS(and thus allow for nontrivial operations on the E;,
DF9S? There are no nontrivial single-qubit operators that
commute with allS, operators, since

1 1
E,1,o> = Elz%(—2|00]>+ 1010/ +|100)) = E,1,o> ,

1 1 1
E’l’l> = Elz%(2|110)—|10])— 01)) = ’5,1,1> .

(71)

Ei

[Sa,a};]:Zi [Uia,ffé]:ig Sieapyoy  (70)

which vanishes ifie= 8. Therefore there are no single-qubit Focusing just on thd=1/2 states, the exchange action on
operators which preserve all SCD-DFSs simultaneously. |\)®|u) can thus be written as

As for two-qubit operators, the only such Hermitian op-
erators which commute with thg, are those that are pro- Eio=—0,0l. (72
portional to the exchange interactifgq. (44)]: E;;|k);|l); _ _ _
=|1);|k); , wherei,j label the qubits acted updB7]. In both Since the action of th&, operators on thd=1/2 states is
the single- and two-qubit cases, there could be additiondl,,®9l(2) according to Eq(56), this explicit form forEj,
operators in the generalized commutaht(e.g., forn=4 confirms that is has the expected structure of operators in the
qubits there is an operator which mixes the differé&stand  commutant of the algebra spanned by 8e It can also be
preserves DE0): T=[J=1\;,u1)(J=2\1,u1|+H.c).  seen that quantum information should be encoded inXhe
We will not be concerned with such operations as they areomponent, as discussed before E&f).
not needed in order to demonstrate universality, and since we Using similar algebra it is straightforward to verify that
will show that the exchange operator is sufficient for anythe effect of the three possible exchanges onntke8 DFS
SCD-DFS. Our task is thus to show that exchange interacstates is given by:
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1 0 0 act as the corresponding su(2) Pauli operators on,DBS
1 0 o0 1 3 only. Further, the following operators act independently on
0 i _v the J=1-irreps(rows and columns are labeled hy=0,1,2.
Eo,=(0 —1 0], Eyx= 2 2 |, The action occurs simultaneously on all thggeomponents
0O 0 1 3 1 corresponding to a giveRn):
o 3 1
2 2 . 0 0 —i
i
Yis=——=[E;,,Ezq]=| 0 O 0 |,
1 0 0 13 2\/5[ 12 34] .
i 0 O
0 L B
Eqs= 2 2|, (73 : 0 01
i
0 E _ 1 X13:§[E12'Y13]: 00 ,
2 2 10
where the rows and columns of these matrices are labeled by _ 1 0 O
the basis element§J=3/2\=0),|J=1/2A=0),|J=1/2\ _ | _
. Z13==[Y13,X32]=| 0 0 O
=1)}. As expected from general properties of the commu- 1375 Y1a: Xaal ’
tant, the exchange operators do not mix the diffedanteps. 0 0 -1
Now,
o 0 0 O
i .
1 0 0 stzﬁ[Ezsyzla]: 0 0 —ilf. (76)
§(E12+E13+E23): 0 0 0f, 0 i O
0 These operators clearly generat¢3uy andhence we have
00 o an independent S3) action on DF$(1).
1
—(—EpptE;3+tEyxp=0 1 0 [, D. Universal quantum computation on then=5
2 0 -1 qubit SCD-DFSs
We are now ready to prove our central result: that using
0 0O only the two-body exchange Hamiltonians every unitary op-
1 E_Ea=|0 0 1 74 eration can be performed on a SCD-DFS. More specifically:
ﬁ( 137 Eag) = ' (74) Theorem 5 For anyn=2 qubits undergoing strong col-
010 lective decoherence, there exist sets of Hamiltonldh®b-

tained from exchange interactions only via scalar multiplica-
showing that the last two linear combinations of exchangesion, addition, Lie commutator, and unitary conjugation,
look like the Paulio, and o on DFS(1/2). Using a stan-  acting as suf;) on the DFS corresponding to the eigenvalue
dard Euler angle construction it is thus possible to performy. Furthermore, each set acts independently on this DFS only
any SU2) gate on this DFS. Moreover, it is possible to act(j.e., with zeroes in the matrix representation corresponding
independently on DF$3/2) and DFS(1/2). In other words, to their action on the other DFBs
we can perform () on DF$(3/2) alone, and S(2) on In preparation for the proof of this result let us note sev-
DF$;(1/2) alone. Note, however, that at this point we cannoteral useful facts:
yet claim universal quantum computation on a register com- (i) The exchange operators do not change the valua;of
posed of clusters of DR®J)’s (J constantbecause we have because they are in the commutant.4f{S,} [recall Eq.

not shown how to couple such clusters. (68)]. Therefore in order to evaluate the action of the ex-
For n=4 the Hilbert space splits up into orde=2-irrep
[DF$4(2)], three J=1-irreps [DFS4(1)], and two TABLE |. Strong collective decoherence DFS dimensions,

J=0-irreps[ DFS,(0)], see Table I. Direct calculation of the given by the degeneraay;, Eq. (58).
effect of exchange on these DFSs shows that we can inde

pendently perform su(1ji.e., zero, su(3), and su(2). In J=3 1
particular, we find thaf28,40: J=3 1
J=2 1 5
1 i J=32 1 4
X=-—=(Ey3—Ej3), Y=—=[Ey;—E;3,Ez4], =1 1
\/5 237 E13 2\/5[ 23~ E13,E34] J_l 3 9
J=3 1 2 5
i J=0 1 2 5
Z=§[Y,X]=—E12 (75) n=1 n=2 n=3 n=4 n=5 n==6
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change operators on the different DEH (n given) it is
convenient to fixm;y, and in particular to work in the basis
given by the maximaim; value (m;=J). Expressions for
these “maximal” states in terms df);,J,, ..., Jn_2;my) Je12
and the single qubit states of the last two qubits are given in
Appendix B.

(i) Every (82 can be written as a sum of exchange op-
erators and the identity operati@®8]. This follows from Eq.
(A1) and noting that the exchange operator can be expande
as J-1/2 T

SU(Ry410)

J T

1 S
Ej =§(| + ool + U'y(ri,+ a,0lh), (77

so that n-2 n-1 n

K FIG. 5. Scheme to visualize the inductive proof of universal

(sk)ZZk( 1— E) [+ E 2 E. (78) computation using only the exchange Hamiltonian, for the strong
4 2521 ! collective decoherence case. TB- and BT-states of [DFSare
indicated. suf;_q,) acts on DF§J—1) and on DF§J) via

Thus )2 is a Hamiltonian which is at our disposal. DFS;-1(J=1/2). See Sec. VII D for details.

We are now ready to present our proof by induction. Re-
call the DFS-dimensionality formula fany, Eg. (58). We  step we expand the set of operators which mix B- and
assume that it is possible to perform s on each of the T-states to cover all possible su(2) algebras between any two
different DFS_1(J) independently using only exchange op- B- and T-states. Finally, in the third step we apply a Mixing
erators and the identity Hamiltonian. Our construction abové.emma which shows that we can obtain the fulls)((i.e.,
proves that this is true for 3 and 4 qubits. The assumptioralso mix B-states and mix T-stajes
that the actions we can perform can be performed indepen- o
dently translates into the ability to construct Hamiltonians 1. T- and B-mixing
which annihilate all of the DFSs except a desired one on There are two simple instances where there is no need to
which they act as su(). show independent action in our prodaf) The (upped J

As in the WCD case a specific DFS) of dimensionn;  =n/2 -irrep is always one-dimensional, so the action on it is
splits into states which are constructed by the subtraction ddiways trivial (i.e., the Hamiltonian vanishes and hence the
angular momentum from DES;(J+1/2) (T-stateg, or by  action is independent by definitir(ii) For oddn the “low-
the addition of angular momentum to DES(J—1/2) (B-  est” DFS,(1/2) is acted upon independently by the rg)(
state$ (see Fig. 5. Performing suf;.1,) on DFS_;(J  from DFS,_,(0) [i.e., suf) cannot act “downward?]. In
+1/2) will simultaneously act on DF$J) and DFS(J order to facilitate our construction we extend the notion of T-
+1). In other words, su(y, 1/, on DFS_;(J+1/2) actson  and B-states one step further in the construction of the DFS.
both the B-states of DR&J+1) and on the T-states of TB-states are those states which are constructed from
DFS,(J). We split the proof into three steps. In the first stepT-states on 1G— 1)-qubits and from the B-states enqubit
we obtain an su(2) set of operators which acts only orstategsee Fig. 5. Similarly we can define the BT-, TT-, and
DFS,(J) and mixes particular B- and T-states. In the second3B-states:

j .

1
TT) = s Jnmsy Ju+ 1, Tn + 5, Jni g = Ja) :\\ (79

1
IBT> = ‘len’Jn—-San»Jn + 'Z'aJn;mJ = J’n> =/\

1
ITB) = |1,..., Jn-3,Jn, In — §,Jn;mJ =Jn) =\

1 (80)
[BB) = 11, Jamg, Jn = 1, n = 5, Jni g = Ju) ://
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Every DFS(J) can be broken down into a direct sum of
TT-, BT-, TB-, and BB-states; e.g., as seen in Fig. 4, in
DFS;(1) there are 1 TT, 3 TB, 3 BT, and 2 BB states. Note
that forJ=n/2—1 there are no TT-states, fdr=0 there are

PHYSICAL REVIEW A 63 042307

i[Enn-1,Cl=—sin(6))oy® 0,
=isin(6;)(—|aya’|+]a’)a|
+|b)(b"[—[b")(b]). (83

no BB- and BT-states, fa¥=1/2 there are no BB-states, and

otherwise there are as many TB as there are BT-states, Now let |c) be a TT-state of DF§J). Such a state always

At this point it is useful to explicitly give the action of gyists unlessi=n/2—1, which is covered at the end of the
exchange on the last two qubits of a SCD-DFS. Using Eqproof. Then there is an operat®=|a’)(a’|—|c)(c| in

(B8) we find (assuming the existence of the given_states, i'e'SU(nJ+1/z) 9t follows that
n large enough and not too large the representation

1 i ! !
1 0 0 O TT Xaa’E-—l[l[En,n—laC]rD]:|a><a |+a ><a|
sin( 6;)
£ 0 —cog60;41) sin(6;,1) 0BT (84)

n-1= : )
" 0 sinf4y) cos6;4,) O|TB acts like an encoded, on |a) and|a’) and annihilates all

0 0 0 1/ BB other states. Further, one can implement the commutator

(81)

Y. =i[Xaa ,D]=i(la)(a’|—|a’){al), (85)
where tan@;)=2.J(J+1). Thus exchange acts to trans- | . : -
form the BT- and TB-states entering a given DFS into linearV/Nich acts like an encoded, on |a) and|a’). Finally, one

combinations of one another, while leaving invariant the BB-C2" CONSHIUCZ 5o = [ Xaar , Yaar ]=[a)(a] |2 )(_a g Thus
and TT-states. we have shown that fod<n/2—1 we can validly(using

Let us now consider the action of su(,) from only exchange Ha_rr_1i|toniam$)erform/su(_2) operations_be-
DFS, ,(J—1/2) (see Fig. 5. It acts on DF(J—1) and tween |a), a specific B-state, anf’), its corresponding
DFS,(J) simultaneously. However, since the T-states of!-State, on DFRJ) only.

DFS,(J—1) and the B-states of DREJ) share the same set
of quantum numbergJy, ... J, 1}, the action of the
su(nj_y,) operators is identical on these two sets of states. We now show that by using the operation of conjugation

We first deal with the case where the number of BT-state®y a unitary we can construct su(2) between any two B- and
of DFS,(J) is greater than 1. As can be inferred from Fig. 4, T-states. To see this recall EQ0), which allows one to take
this condition corresponds th<n/2—1 andn>4. We will  a HamiltonianH and turn it via conjugation by a unitary gate
separately deal with thd=n/2—1 case at the end of the into the new Hamiltoniam=UHU". By the induction hy-
proof. Let|a) and |b) be any two orthogonal BT-states of pothesis we have at our disposal every SU gate which acts on
DFS,(J) (i.e., states differing only by the paths on the firstthe T-states of DF}J) [and simultaneously acts on the
n—2 qubits. Corresponding to these affa’),|b’)}: a pair ~ B-states of DFJJ+1)] and also every SU gate which acts
of orthogonal BT-states of DEGJ). One of the elements in on the B-states of DR$J) [and simultaneously acts on the
su(n;_y,) is the traceless operato€=|a)(a]—|b)(b|,  T-states of DF§J—1)]. Above we have shown how to con-
which we have at our disposal by the induction hypothesisstruct X, Y, and Z operators between specific T- and
Consideri[E, ,_1,C]: sinceE, ,_, acts as identity on BB- B-statesja’) and|a). Let|i’) and|i) be some other T- and
states, even thougd has an action on DR8J— 1) the com-  B-states of DFJ(J), respectively. Then we have at our dis-
mutator acting on the BB-states of DfS—1) vanishes. posal the gateP;,;=|a’)(i'|+]|i’){(a’|+|a)(i|+|i)(a|+O
The action ofi[E, ,—;,C] on the BT- and TB-states can be where O is an operator which acts on a DFS other than
calculated by observing, using E@®1), that the matrix rep- DFS,(J) (included to maké®;,; an SU operator It is simple
resentations of C and E,,.; are, in the ordered to verify that
{la").[b").[a),|b)} basis:

2. Extending the su(2)’s

Xi'i:Pi'iXaa'PiTri:“’><i|+|i><i'|v (86)
. 1
C=diag0,0,1-1)=5(1®0,~ 0,8 0), which acts as an encoded, betweenli’) and|i). Note that
becauseX,, only acts on DFJ), X;,; will also only act
on the same DFS. Similarly one can construet;

—cog6y) 0 sin(6;) _ 0 =PiiY a0 PiT,i andZ;i=P;iZ,a PiT,i which act, respectively,
B 0 —cog 6;) 0 sin(6;) as encodedr, ando, on|i’) and|i). Thus we have shown
Enn-1= sin( 8;) 0 cog ;) 0 that one can implement every su(2) between any two T-and
0 i o 0 p B-states in DFJ). Each of these su(2) operations is per-
sin(6,) cos 6y) formed independently on DEQ)).
=—co0g 0;) 0,91 +sin(0;)oy®1. (82
This yields We need to subtra¢t)(c| in order to obtain a traceless operator.
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3. Mixing T- and B-states DFS and a spit DFS simply corresponds to tensoring the
Next we use a lemma proved in Appendix C: two states. Note, however, that addition of two arbitrary DF

Mixing Lemma Given is a Hilbert spacé{="H,®H, subsystems into a larger DFS is not nearly as simple:
where dintH;=n;. Let {|i;)} and {|i,)} be orthonormal concatenation of twalJ#0 DFSs does not correspond to

bases forri, and #,, respectively. If one can implement tenFs’S:iangs.tate reparation for a SCD-DFS can thus be as
the operators X; i =[i)(iol+[i)(ial, i =ili))isl prep

S C S . simple as the ability to produce singlet states states
~iliz) (il andz; i, =[i1)¢i1| = [i2)(i2], then one can imple- ispalso possible g usgtﬂé,mf _%>: 10)® - -élngO) or
ment su@;+n;) onH. _ any of the otherlJ,m;) states plus singlets Other, more

Above we have explicitly shown that we can obtain everycomplicated pure state preparation procedures are also con-
Xijiy Yiji, and Zi i, acting independently on DR@J).  ceivable, and the decision as to which procedure to use is
Thus direct application of the Mixing Lemma tells us that we clearly determined by the available resources to manipulate
can perform suf;) independently on this DFS. guantum states. The pure state preparation of singlets and

Special case of 3n/2—1: We have neglected computational basis states has the distinct advantage that
DFS,(n/2—1) because it did not contain two different BT- verification of these states should be experimentally achiev-
states(nor a TT-statg The dimension of this DFS is—1.  able. Such verification is necessary for fault-tolerant prepa-
We now show how to perform saof 1) on this DFS using ration[51].
the fact that we have already establishednguf,_,) on Measurements on the SCD-DFS can be performed by us-
DFS,(n/2—2). First, note that by the induction hypothesising the conjoined measurement scheme detailed in the
we can perform su(;_,,-37) independently on WCD-DFS discussiofSec. VID]. In particular, by attach-
DFS,-1(n/2—3/2). As above, this action simultaneously af- ing a SCD-DF subspace ancilla via such conjunction, one
fects DF§(n/2—1) and DF$(n/2—2). However, since we Can construct any conjoined measurement scenario. All that
can perform suf;_,»—,) on DFS,(n/2—2), we can subtract remains to be shown is how to perform a destructive mea-
out the action of su{;_n»_3) on DFS(n/2—2). Thus we surement on such an ancilla. |A40,62 such schemes are
can obtain suf;_n,_32) on all of the B-states of presented for the=4 SCD-DF subspace which encodes a

DFS,](n/Z_ 1) But the exchange Opera‘[ﬁﬁ ne1 acts to mix Single qult of information. We will not I’epeat the details of
the B-states with the single T-state of DFS/2—1). Thus  these schemes here, but note that they involve measurements
we can construct an su(2) algebra between that single-9f single physical-qubit observables and thus are experimen-
state and a single B-state in a manner directly analogous {@lly very reasonable. Further, we note that the ability to

the above proof forJ<n/2—1. Finally, by the enlarging Perform a conjoined measurement scenario by conjoining an
lemma it follows that we can obtain su¢1) on ancilla DFS composed of a single encoded-qubit can be used

DFS,(n/2—1). to perform any possible conjoined DFS measurement sce-
This concludes the proof that the exchange interaction i§ario. As mentioned in the WCD case, the conjoined mea-
independent|y universal on each of the different Strong.surement procedureS are fault't()lerant: Thus we have. shown
collective-decoherence DESs. how to perform fault-tolerant preparation and decoding on

the SCD-DFS.

E. State preparation and measurement on the strong collective
decoherence DFS VIIl. UNIVERSAL FAULT-TOLERANT COMPUTATION

At first glance it might seem difficult to prepare pure ON CONCATENATED CODES

states of a SCD-DFS, because these states are nontrivially g tar we have shown how to implement universal com-

(b%tation with local Hamiltonians on a DFS corresponding to

contains a state which is a tensor product of singlet states:; gjngle block of qubits. This construction assumes that the

1 \"2 only errors are collective. This is a very stringent symmetry
|0p)=| —= ®]n/:21(|01>_|10>), (87)  requirement, which obviously becomes less realistic as the
V2 number of particles increases significantly. It is thus desir-

able to be able to deal with perturbations that break the
because these states have zero total angular momentugbllective-decoherenc@ermutation symmetry. To this end
Thus a supply of singlet states is sufficient to prepare DRve have previously studied the effect of symmetry-breaking
subspace states. Further, DF subsystems always containparturbations on decoherence-free subspg2gs and have
state which is a tensor product of a DF subspace and a pufgroposed a concatenation method to make DFSs robust in the
state of the form1)® - - - ®[1). This can be seen from Fig. presence of such perturbations. The method embeds DFS
4, where the lowest path leading to a specific DE$ is  blocks of four particlegeach block constituting a single en-
composed of a segment passing through a DF subgpade coded qubitinto a QECJ25]. The QECC in the outer layer
is thus of the form/0p)), and a segment going straight up then takes care of any single encoded-qubit errors on each of
from there to DF§(J). The corresponding state is equivalent its constituent DFS-blocks. In fact, such a code can correct
to adding a spin-@DF subspacdeand a spind DF subsystem for any “leakage” error taking a state outside of the DFS by
(the |3,m;=J) state of the latter is seen to be made up entransforming this into a single encoded qubit error on the
tirely of |1)®---®]|1)). In general, addition of a spin-0 outer QECC. By choosing an appropriate QECC it is thus
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possible to deal with any type of noncollective error on thescheme is not solely a result of properties of decoherence-
encoded DFS-qubits. In particular, by using the “perfect” free subsystems. Decoherence-free subsystems must be com-
5-qubit code[63] it is possible to correct all independent bined with quantum error correcting codes to achieve full
errors between blocks of four particles. In general, if one cafault tolerant quantum computation. However, until recent
robustly perform all of the operations needed to implement desults[25,27], as well as the results presented in this paper,
fault-tolerant quantum error correcting code on an encode#i was not clear that the methods needed to perform the op-
subsystem, then concatenation of this subsystem into such&@tions on the decoherence-free subsystem level would not
fault-tolerant quantum error correcting code will naturally destroy the higher threshold results of the fault-tolerant
produce fault-tolerance. Therefore concatenation can bguantum error correcting methods. This paper, along with
quite generally used with DFSs to deal with symmetry breakPrevious results, demonstrates how measurements, concat-
ing errors and to obtain fully fault-tolerant quantum compu-€nation, and computation can all be done with relative ease
tation, and is not limited to just the 4-qubit DFS proposed inON" & DFS in order to aid in the construction of a fully work-
[25]. able QECC-DFS scheme.

One problem with this construction to date was that, in
order to correct on the outer QECC, it is necessary to per-
form encoded operations on the constituent DFSs in a fault-
tolerant way, usingrealistig local interactions. Specifically, In this paper we have settled the issue of quantum com-
it is necessary to be able to implement all single encodedputation with realistic (few-body means on both
qubit operations on the DFS-qubits of the outer QECC, aslecoherence-free subspaces and decoherencétiseless
well as operations between two DFS-bloclsee[51] for  subsystem$DFS9 for two important forms of decoherence:
detaily. Consequently, given that one can perform singlecollective phase damping'weak collective decoherence”
qubit (or “qupit” for higher-dimensional DFSsoperations  and collective phase damping plus collective dissipation
on each DFS-block as we have shown earlier in this papef“strong collective decoherence!’ This resolves an out-
(Secs. VI and VI), the only additional gate necessary to standing question as to whether universal computation on
implement both error-correction and universal quantum comthese physically relevant DFSs by using just one- and two-
putation on a concatenated QECC-DFS is any nonseparabisdy Hamiltonians is possible. The answer is affirmative.
two-encoded-qubit gatié between any four states in the two  The implications of this result for the usefulness of DFSs
DFS-blocks. One such gate is provided by a controlled-phasere drastic. They put the theory of DFSs on an equal footing
operation which gives a phase efl to|0,0,) and leaves with the theory of quantum error correction, in that the full
all other states unchanged. In fact, it is sufficient to be able teepertoire of universal fault tolerant quantum computation is
perform this gateK between neighboring blocks only now available on DFSs for collective decoherence which is
[11,12,64. To construct such an encodéd between two the most important pertinent decoherence process. Moreover,
neighboring blocks, we assume that the corresponding physihe strict assumption of collective decoherence can be lifted
cal qubits are spatially close together during the switchingoy allowing for perturbing independent qubit errors. As we
time of the gate. Since the symmetry of collective decoherproposed earlier it is possible to stabilize DFSs against such
ence arises from the spatial correlation of the decoherencarrors by concatenation with a quantum error correcting code
process, we can further assume that during this switchingQECQ. However, to be able to implement error-correction
time, both DFS-blocks couple to the same bath mode. Thiand fault-tolerant universal computation on these concat-
assumption is physically motivated by the expectation thatnated codes a cruci@nd so far missingngredient was the
collective decoherence occurs in the analog of the Dickebility to perform encoded operations on the DFS-blocks
limit of quantum optics, where the qubits have small spatiafault-tolerantly. This paper settles that matter, showing con-
separations relative to the bath correlation leri@®. Then  structively that DFSs can be made robust.
the two DFS-clusters temporarily form a bigger DFS and we  Furthermore, this paper reports on a general framework
can use the universal operations we have constructed previincorporating both DFSs and QECCs, and generalizes the
ously on this big DFS to implement the desired giite theory of stabilizer codes to th@non-Abelian DFS-case.

Another issue arising with concatenation is the ability toThis framework enabled us to identify the allowed opera-
fault-tolerantly detect leakage errors on a DFS. Concatenaions on a DFS and to show that these operations can be
tion resulting in in unreliable leakage detection would beperformed while maintaining a very strong form of fault-
useless. However, this is not a problem here, since detectiaolerance: the states remain within the DFS during the entire
can easily be performed when one has the ability to makewitching time of the gate. Our formalism should be readily
some fault-tolerant measurements on the DFS and also tapplicable for other nonadditive codes.
perform universal manipulations over any combination of There is an interesting duality between QECCs which are
DFS states. Both of these are valid with the DFS-QECCGCdesigned to correct singler greatey qubit errors and DFSs.
concatenation, as we have summarized above. In particulain QECC the errors are all single body interactions. The
it is always possible to measure the relevant observables f@ECC condition therefore implies that any one- or two-body
leakage by(i) attaching ancilla encoded DFS statép, per-  Hamiltonian must take code words outside of the code space
forming the leakage syndrome detection routine onto the arbecause these interactions themselves look like errors.
cilla states, andiii ) fault-tolerantly measuring this ancilla. QECCs must leave their code space in order to perform

We reemphasize that the fault-tolerance in our proposeduantum computation on the encoded operations. This means

IX. SUMMARY AND CONCLUSIONS
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that QECCs must have gates which act much faster than thgood operator basis. Note first that
decoherence mechanism so that a perturbative treatment can
be carried out. QECC can correct small errors but the price K o
. . . 2__ (|
paid for this is that gates must be executed quidkigt to (9 —,2 E 00 (A1)
mention that fault-tolerant gates must also be usB&Ss on M=l a=xy.z
the other hand do not have the requirement of correctinq_hus
single qubit errors and we have found that a single two-body
interaction (exchange is sufficient to generate universal K |
quantum computation fault-tolerantly. DFS; haye larger er- [($92,(9)2]=| D o ol D 0202 '
rors but this allows for an economy of Hamiltonians. iT=1 a=xy.z mn=1 B=xy,z
As corollaries to our results on weak and strong collective (A2)
decoherence two additional properties of the corresponding
DFS encodings appear: Terms with = 8 obviously commute. Further, terms with
(1) One can work on all DFSs in parallel: Since we are(m=i,n=j), (m=j,n=i), or (i¥m,n,j#m,n), commute,
able to implement SU{,,) on each DFS(n=number of par- S0 we need only considef € m,j#n), (i=n,j#m) or (i
ticles) independently, we can in principle work on all DFSs #m,j=n), (i#n,j=m). In addition, assuming without loss
in parallel. This means that we can encode quantum inforof generality that =k, terms withm,n>k also commute.
mation into each of the DFSs and perform calculatippes- ~ Thus we are left with
sibly differen} on all of them at once.

(2) For the strong collective decoherence case the ex- K K S

change gate is asymptotically universal: It is well-known that (S92.(S)?]=2 > > > [o,0h.0503]

the encoding efficiency of the singlet space of the strong WL nEDEL pFamy

collective decoherence-DFS for large approaches unity k K o .

[21]. More precisely, lek be the number of encoded qubits +2.2 2 > [0,0% ,0p0%].

in the singlet §=0) sector of a Hilbert space of qubits, W=l mF)=1 pra=xy.z

then (A3)
i E:l_ § log, n. 88) Usiing thﬁ fact _thal[(r'aajof,O'r:éaz]=i§lysaﬁ70'y0'laag and
noe N 2 n [(Taaja,O'BUJﬁ]ZIEysaﬁyoaUﬁon:

k k

$9%(8)71=22 > 2 eapy0hohop

=1 n(=N=1 apy={xy.z
k k

We have established that the exchange gate alaith an
irrational phasgimplements universal computation on each [(
DFS, and on the singlet space in particular. Thus we find
that, for largen, in order to achieve universal computation . 4
with nearly perfect efficiency, all we need to be able to per- +2,2 2 2 Saﬁy(f'aagfflw
form is the exchange interaction. This result is very promis- b=l m(z)=1 afy={xy.2)

N9 f“’”? an experimental point of view, since the exchangeand both sums vanish due to the antisymmetric property of
interaction is prevalent whenever there is a Heisenberg cou-
pling between systemi228,40. We emphasize that regard- Eapy:

less of the decoherence mechanism, this implies that univer-

sal quantum computation can be achieved “asymptotically” APPENDIX B: MAXIMAL- m, STATES OF THE STRONG
using a single gatg62]. We conjecture that there are many COLLECTIVE DECOHERENCE DFS

more such two-body interactions which similarly provide

. . . - , We show how to recursively express theparticle total
such “asymptotic universality” on their own.

spin- states in terms ofr(— 1)-particle states. Let us focus
on DF§,(J) and in particular on the maximaty state in it:
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is that

APPENDIX A: THE PARTIAL COLLECTIVE ANGULAR 1
MOMENTUM OPERATORS ARE A SET m; ,1i_ =m;.
OF COMMUTING OBSERVABLES " 2

We prove here that the partial collective operat§fs  The B-state comes from adding a particle to the maximal
=g2.--W=3k & form a commuting set and hence, a state in DFS_,(J— 1/2), which is
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1 1 1
BY={Jy,...dn 2. d—=:m; =J-=]. (B2 D=3, - Joog, 4 13+ 5,.5m=J
2" 1 2
There is only one way to go frofiB) to | )z, namely to add 2‘H1| Jiy o delg dFlmy =J+1)
1/2 to mJIH:J—% in order to obtairm;=J. Thus 2J+3 -z
y 1 1>‘1 1 2J+1
R 2" 2/12" 2/ N(23+2)(23+3)
|¢>B_|B>§1§>v (B3)
><|J1, . ,\]n_3,\]+1;m‘]n72:\]>

where|3,3) is the single-particle spin-up state. The situation
is different for the T-state, which is constructed by adding a
particle to

1 1\|1 1 1 1\ |1 l)

2212272/ 22" 2)|2'2
2

"N2372)2373)

11\(11
><|Jl,...,Jn,s,J+1;mJn72=J—1>E,E =5

1 1
‘]11 C e ,Jnfz,\]‘i‘ E;m‘]n71: iz . (B4)

IT.)=

These two possibilities give: 22

11 11 BT)= 0y .. Jp 0,00+ 2. dimy=
) r=alT,) 273 +B|T-) 235/ (BS) [BT)=[J1, .- Jn-3,d, 2 M=
2J+1
To find the coefficientsr and 8, we use the collective rais- =— VZJ—+2|J1’ Ce ,Jn_s.J;mez:J)
ing operator Sy =s+is,, where we recall thats{¥
12" Since|y) is a maximalm; state it is annihi-

M 1> 1 1>+ 1
2'2/]2" 2 (23+2)(23+1)

lated bys+—s(a”). Similarly, |T.) is annihilated bys" ).
Therefore sinces, =s" Y+ 10" :

_ 4o 111
T2 1> e 1> XPas o dnss iy, =95 75|32
Sellte)5— 5/ =1e)|5:5
2" 2 2'2 X >3
V(2J+1)(23+2)
11 11
$:[T)|5.5)=V2I+1T) 5. 5), 11\[11
X[Jg, o dneg imy =J3-1) 335123/
where in the second line we used the elementary raising op-
erator formulaJ,|j,m)=[j(j+1)—m(m+1)]¥3j,m+1) 1
with j=J+3 andm=J—3. Application ofs, to Eq. (B5) |TB)=]J4, ... ,Jng,J,J—E,J;mJ=J>
thus yields:
B 2] _ 1
CZ+\/2J+1ﬁ:0 (BG) - 2J+1|‘]11 ---1Jn*31‘]1m‘]n_2_‘]>§1_§
Hence up to an arbitrary phase choice, we find that « E }> i 1
2°2)  \23+1
2J+1 1
__ ) _ 11\|11
The special cases af=0,n/2 differ only in that the corre- 1
sponding DFSs support just T- and B-states, respectively. |BB)=|J,, ..., J,_3,J—1J— E,J;mJ=J>
The calculation of the coefficients, therefore, remains the
same. 11
In a similar manner one can carry the calculation one =[Jq, ... ,Jn_S,J—l;mJn2=J—1>‘§,§>§,§>.
particle deeper. Doing this we find for the maxinmaj-states
(provided they exist (B8)
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Caution must be exercised in using these expressions near Mixing LemmaConsider the division of an dimensional
the boundary of Table I, where some of the states may ndtilbert space’H into a direct sum of two subspacés;

exist. ®H, of dimensionsn; and n,, respectively. Suppose that
lin) is an orthonormal basis fdk,,. Then the Lie algebras
APPENDIX C: PROOFS OF THE LEMMAS generated by X; ;. =[ip)(io|+[i)(ia], Yi i, =ilio)i2
Enlarging LemmalLet  be a Hilbert space of dimension ~iliz)ial, andZ,lin [1)(ia] =[i2)(i2| generate sup.

d and let|i) e H. Assume we are given a set of Hamiltonians _ Proof. We explicitly construct the elements of s)(
H, that generates sd 1) on the subspace 6% that does Consideri[X; ;.Y; ;1. Clearly, if i;#i#j,#], this
not contain|i), and another seatl, that generates su(2) on equals zero and if;=j; andi,=j, then this commutator is
the subspace dff spanned by([|i),|j)}, where|j) is another ~ —Z; ;.. If, however,i;=j; andi,# |, this becomes

state inH. Then[H;,H,] (all commutatorsgenerates sul)

on H under closure as a Lie algebra. i[Xi, i Yiy 0=~ li2)(ial —li2)i2l- (C3
Proof: We explicitly construct the Lie-algebra si)(with
the given Hamiltonians. Leék.C H be thed— 1 dimensional ~ Similarly:
subspacéd; acts on. Let us show that we can generate su(2) irx _| I+ ] )
betweenk) e 7 and|i). DXy i iy i) = [l
Thléﬁtx”_“x”ﬂjxl' & Ha andX =[]k +[k)(j € Hy. Thus every|ik)(j||+|j,)<ik| is in the Lie algebra. Similarly,
|[XIl i X, J2] yields
Yi=i[Xji, Xi; 1= —ifi)(k| +i[k)(i] (Cy _
_ o I[Xi, i, X0, ] =ili2) (G2l =ili2)al,

acts aso, on the state$i), k). Similarly

Xae=i[Yi Xy = [0k + k)i | (C2) i[Xi i X, i =il =il )il (CH

yields o, on the space spanned [y, k). These two opera- Thus everyili,){j;|—i|j;)(i\| is in the Lie algebra. Taking
tions generate su(2) di),|k) for all [k) in the subspace of the commutator of these with tha)(j,|+|j,){ix operators
H that does not contaifi). Now the Mixing Lemma gives finally yields everyli )(ji|—|j;){iy/. Since suq) can be de-
the desired result together with the observation that there weomposed into a sum of overlapping(8y's [65], the Lie
only use elements ipH;,H,]. algebra is the entire snj, as claimed.
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