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We discuss the detection of entanglement in interacting quantum spin systems. First, thermodynamic
Hamiltonian-based witnesses are computed for a general class of one-dimensional spin-1 /2 models. Second,
we introduce optimal bipartite entanglement observables. We show that a bipartite entanglement measure can
generally be associated with a set of independent two-body spin observables whose expectation values can be
used to witness entanglement. The number of necessary observables is ruled by the symmetries of the model.
Illustrative examples are presented.
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Entanglement is a striking feature of quantum mechanics,
revealing the existence of nonlocal correlations among dif-
ferent parts of a quantum system. Entanglement has been
recognized as an essential resource for quantum-information
processing �1�. This has provided strong motivation for stud-
ies probing for the presence of naturally available entangle-
ment in interacting spin systems �2,3�. Moreover, the realiza-
tion that entanglement can also affect macroscopic properties
�such as the magnetic susceptibility� of bulk solid-state sys-
tems �4,5� has increased the interest in characterizations of
entanglement in terms of macroscopic thermodynamical ob-
servables. An observable which can distinguish between en-
tangled and separable states in a quantum system is called an
entanglement witness �6�. Several different methods for ex-
perimental detection of entanglement using witness operators
have been proposed �7�. Entanglement witnesses have re-
cently been obtained in terms of expectation values of ther-
modynamical observables such as internal energy and mag-
netization �8–10� and magnetic susceptibility �5�.

Our aim in this work is twofold: first, we find an entangle-
ment witness for a broad class of interacting spin-1 /2 par-
ticles, thus generalizing the result of Refs. �8–10�. This is an
entanglement witness for all spin-1 /2-based solid-state quan-
tum computing proposals, such as electron spins in quantum
dots �11� and P donors in Si �12�. While this approach is very
general, its drawback is that it is suboptimal, in the sense that
it does not detect all entangled states. In contrast, in the
second part of this work, we introduce the concept of an
optimal bipartite entanglement observable. This allows us to
construct optimal bipartite-entanglement witnesses for qubit
systems. The essential idea here is to directly relate bipartite
entanglement measures and the expectation value of spin ob-
servables �13�.

Hamiltonian-based entanglement witnesses. An important
class of spin-based solid-state quantum computing proposals

is approximately governed by diagonal exchange interac-
tions �involving only �i

�� j
� terms, where �� �x ,y ,z� and �i

�

is the Pauli matrix for spin i� �11,12�. However, spin-orbit
coupling introduces off-diagonal terms into the exchange
Hamiltonian �14�. In this case previous results concerning
Hamiltonian-based entanglement witnesses �8–10� do not
apply, since they are restricted to the diagonal case. Here
we construct an appropriately generalized entanglement
witness.

The most general Hamiltonian describing N nearest-
neighbor coupled spin-1 /2 particles in one dimension �1D� is
of the form H=�i��,���x,y,z�gi,i+1

�� �i
��i+1

� , where gi,i+1
��

= �gi,i+1
�� �*. There are thus nine independent parameters for

each pair of spins i , i+1. It is convenient to reexpress H in
terms of a scalar part and symmetric and antisymmetric
parts. In addition we allow for the presence of a global ex-
ternal magnetic field B:

H = − B · �i=1

N
�i + �i=1

N ��=x,y,z
J��i

��i+1
� + �i=1

N
A · ��i

� �i+1� + �i=1

N
�C · �i��C · �i+1� ,

where �i= ��i
x ,�i

y ,�i
z� , J� are exchange coupling constants,

and we assume periodic boundary conditions ��N+1��1�.
The anisotropic term involving A �the Dzyaloshinskii-
Moriya vector in solid-state physics� typically arises due to
spin-orbit coupling; 	A	 /J has been estimated to be in the
range 0.01–0.8 in coupled quantum dots in GaAs �14�. The
vector C can arise also due to dipole-dipole coupling and
other sources.

We now derive a thermodynamical entanglement witness
for a system governed by H. Let J=max��	J�	� and A
=max��	A�	�. Let 
X��Tr��X�, with � the system density
matrix. Let u= 
H� /N be the per-spin internal energy and
m= �mx ,my ,mz� the magnetization vector with components
m�=�i=1

N 
�i
�� /N. Then H yields
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N	u + B · m	 � ��
i=1

N

�
�=x,y,z

J�
�i
��i+1

� ��
+ ��

i=1

N


A · ��i � �i+1���
+ ��

i=1

N


�C ·�i��C · �i+1��� .

Consider an arbitrary separable density matrix �=�kpk�k
1

� �k
2

� ¯ � �k
N, where �kpk=1 and all pk�0. It has been

shown for such �, using the easily verified facts 
�i
��i+1

� �
= 
�i

��
�i+1
� � and ��=x,y,z
�i

��2�1 and the Cauchy-Schwarz
�CS� inequality 	�iaibi	� ��iai

2� jbj
2�1/2, that 	�i=1

N Jx
�i
x�i+1

x �
+Jy
�i

y�i+1
y �+Jz
�i

z�i+1
z �	�NJ �8,9�. We therefore obtain

bounds for the remaining two terms. Let xi�
�i
x� , �xy�i

�
�i
x�i+1

y �, etc. Using again the above facts and the CS in-
equality we have

��
i=1

N


A · ��i � �i+1��� � �
i=1

N

	
A · ��i � �i+1��	 � 2A�
i=1

N

	�yz�i + �zx�i + �xy�i	 = 2A�
i=1

N

	yizi+1 + zixi+1 + xiyi+1	

� 2A�
i=1

N


�
�


�i
��2�1/2
�

�


�i+1
� �2�1/2

� 2NA .

Note that if we assume no symmetry breaking—i.e., 
�i
��

�
���—then in fact 	�i=1
N 
A · ��i��i+1��	=0.

We now obtain an upper bound for the third term. In the
standard Bloch-sphere parametrization for the individual
spin density matrices we have �= 1

2 �I+n ·��, where 	n	�1.
Then 
C ·��=C ·n� 	C		n	� 	C	. Therefore,

��
i=1

N


�C · �i��C · �i+1��� � �
i=1

N

	
�C · �i��C · �i+1��	

= �
i=1

N

	
C · �i�		
C · �i+1�	 � N	C	2.

These upper bounds combine to yield the entanglement
witness

W � 	u + B · m	/�J + 2A + 	C	2� . �1�

The numerator consists of macroscopic, observable quanti-
ties. The denominator consists of material parameters. We
have seen that separability implies W�1. Therefore, if
W�1, the system is entangled. When J��J and the aniso-
tropic terms in H are entirely due to the spin-orbit interac-
tion, it is possible to relate H to the isotropic Heisenberg
Hamiltonian via a unitary transformation �14,15�. Applying
this transformation to the examples of entangled states that
are detected by W in the case A=C=0, found in Refs. �8,9�,
yields examples of nontrivial entangled states detected by W
when A ,C�0. The importance of the witness W is that it is
directly applicable to a wide class of spin-1 /2-based solid-
state quantum computing proposals �11,12�, where the effect
of spin-orbit coupling is known to be non-negligible �14�.

Spin-based entanglement witnesses. Let us turn now to
the construction of optimal bipartite-entanglement witnesses,
based on spin observables. Consider a general two-body ob-

servable R̂=�R��	
�ij�	��i	�� j
		i

	 j, where �	��i� is a basis

for the Hilbert space, i , j enumerate d-level systems, and

� ,� ,	 ,
� �0,1 ,… ,d−1�. The expectation value of R̂ can
generally be written as �16�


R̂� = �
ij

Tr�R�ij��ij� , �2�

where R�ij� are d�d matrices with elements R��	
�ij� and
�ij is the two-body reduced density matrix. Equation �2�
holds for any mixed state and for any d. Here we are espe-
cially interested in d=2—i.e., the qubit case. We then use the
standard basis �	00� , 	01� , 	10� , 	11�� for any pair �i , j� of
spins and denote �11

ij = 
0i0 j	�̂ij	0i0 j� , �12
ij = 
0i0 j	�̂ij	0i1 j�, etc.

For an operator R̂ displaying a constant interaction between
nearest-neighbor particles, the nonvanishing matrices R�ij�
are given by R�i , i+1��R �∀i�. Moreover, if translation in-
variance is assumed in the system, then �i,i+1��. Hence we
can rewrite Eq. �2� as


R̂� = Tr�R�� , �3�

where R̂= R̂ /N, with N the number of nearest-neighbor pairs
in the system.

A convenient bipartite entanglement measure is the nega-
tivity �17�, ranging from 0 �no entanglement� to 1 �maximal
entanglement�, defined as follows:

N��� = 2 max„0,− min
�

����… , �4�

where �� are the eigenvalues of the partial transpose �TA of
the two-particle reduced density operator �, given by

��	�TA		
�= 
	�	�	�
�. We denote the lowest eigenvalue of
�TA by �m which, for composite systems of dimensions
2�2 and 2�3, is non-negative if and only if the state is
separable �18,19�. Thus, from Eq. �4�, one can see that sepa-
rability implies vanishing negativity �13�.
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The eigenvalue �m, which is the key object of our frame-
work, is generally a nonlinear function of the matrix ele-
ments of the density operator. However, let us first consider
the linear case, which occurs for several interesting quantum
spin systems, as will be illustrated later. In this case, we
can directly relate �m to a single observable which plays
the role of an entanglement witness. Indeed, assume that
�m=�a,b=1

4 fab�ab, where fab are constants. Then, defining the

matrix elements of R̂ as Rab= fba we obtain

�m = Tr�R�� = 
R̂� . �5�

Therefore, the observable R̂ directly detects the existence of

bipartite entanglement in the system. 
R̂��0 implies bipar-
tite entanglement, while otherwise the state is separable.

Equation �5� can also be established, formally, for those
cases where �m depends nonlinearly on �. Indeed, from Eq.
�3� it follows that


R̂� = Tr�RTA�TA� = �
�=1

4

�WRTAW†�����, �6�

where the matrix RTA is defined through 
��	RTA		
�
= 
	�	R	�
� , W is a unitary matrix which diagonalizes �TA

�note that �TA is Hermitian �18��, and the ���� denote the

four eigenvalues of �TA. If we choose R̂ such that

WRTAW† = diag�e1,e2,e3,e4� , �7�

where e�=1 for the value of � such that ��=�m and e�=0

for the other ones, then as desired 
R̂�=�m. Hence the ex-

pectation value of R̂ can be used in general as a criterion of

separability. However, in the nonlinear case, if we define R̂
through Eq. �7�, R̂ itself will be a function of the density
matrix �since W is�. One would then need to measure a com-

plete set of observables to find R̂, which just corresponds to
quantum-state tomography �1�. We show below that in the
presence of symmetries the number of measurements re-

quired to construct R̂ can be drastically reduced.
XYZ spin chain in a magnetic field. In order to provide an

example of spin-based witnesses in quantum spin chains, let
us consider a parametric family of spin Hamiltonians

H = �i=1

N
Hi,i+1��i,�i+1� ,

where

Hi,i+1��i,�i+1� = U��i�U��i+1�Hi,i+1U†��i+1�U†��i�, U��i�

= exp�i�i · �i� ,

and

Hi,i+1 = Jx�i
x�i+1

x + Jy�i
y�i+1

y + Jz�i
z�i+1

z + Jxy�i
x�i+1

y

+ Jyx�i
y�i+1

x + h�i
z, �8�

with periodic boundary conditions assumed—i.e., �N+1
�

=�1
�. Observe that a large class of one-dimensional

spin models is covered by the Hamiltonian �8�. This family
of Hamiltonians obeys the constraint �H ,�i

z�i+1
z �=0

and belongs to the subalgebra su�2� � su�2��su�4�.
Defining Ti

±� 1
2 ��i

x�i+1
x ±�i

y�i+1
y �, Ri

±� 1
2 ��i

x�i+1
y ±�i

y�i+1
x �,

and Zi
±� 1

2 ��i
z±�i+1

z �, one of the su�2� terms is generated by
the set of operators �Ti

+ ,Ri
− ,Zi

−� �respectively, with coeffi-
cients Jx+Jy, Jxy −Jyx, and h, in H� and preserves the two-
dimensional subspace spanned by �	01� , 	10��. The other
su�2� is generated by �Ti

− ,Ri
+ ,Zi

+� �respectively, with coeffi-
cients Jx−Jy, Jxy +Jyx, and h, in H� and preserves the other
two-dimensional subspace spanned by �	00� , 	11��. The
Hamiltonian Hi,i+1��i ,�i+1� has the same entanglement prop-
erties as Hi,i+1 since they are connected through local unitary
transformations. Therefore, assuming that the initial state has
the same symmetry as the Hamiltonian �no symmetry break-
ing�, the nearest-neighbor reduced density matrix for an ar-
bitrary mixed state reads, in the standard
�	00� , 	01� , 	10� , 	11�� basis,

� = �
a 0 0 y

0 b z 0

0 z* c 0

y* 0 0 d
� . �9�

Positivity of � implies that ad� 	y	2 and bc� 	z	2, with
a ,b ,c ,d�0. Computing the eigenvalues of �TA leads to two
independent possibilities for the lowest eigenvalue �m:

�m
�1� = �a + d − ��a − d�2 + 4	z	2�/2, �10�

�m
�2� = �b + c − ��b − c�2 + 4	y	2�/2. �11�

The condition for entanglement �m�0, together with posi-
tivity of �, yields the restrictions

�m
�1� � 0 ⇒ ad � bc , �12�

�m
�2� � 0 ⇒ bc � ad . �13�

Note that, since �m is nonlinear in the density matrix ele-

ments, the resulting witness R̂, obtained from Eqs. �6� and
�7�, will be density matrix dependent. Indeed, for �m=�m

�1�,

R̂ = Im�f�R− + Re�f�T+ −
1

2

�a − d�
��a − d�2 + 4	z	2

Z+

+
1

4
�I � I + �z

� �z� , �14�

where f �−z /��a−d�2+4	z	2 and R−, T+, and Z+ were de-
fined above. It is seen from this result that the state depen-
dence can be removed if the following constraints are
obeyed: a=d and z is either real or imaginary. These con-
straints are obeyed, e.g., for the isotropic Heisenberg model
�see below�. In this case we need to measure just one observ-
able in order to determine the entanglement properties of the
system. Analyzing the second possibility—i.e.,
�m=�m

�2�—we obtain
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R̂ = − Im�g�R+ + Re�g�T− −
1

2

�b − c�
��b − c�2 + 4	y	2

Z−

+
1

4
�I � I − �z

� �z� , �15�

where g�−y /��b−c�2+4	y	2 and R+, T−, and Z− were de-

fined above. Similarly, R̂ is state independent in Eq. �15� for
b=c and y either real or imaginary. An example of this case
is given by the transverse field Ising model �see below�. But
even in the case of the rather general Hamiltonian �8�, it is
clear that instead of full-scale quantum-state tomography, it
suffices to measure the elements �a ,d ,z� or �b ,c ,y�, in order

to construct the witness operator R̂.
Heisenberg model. Let us consider the constraints Jx=Jy

=Jz�J�0 and Jxy =Jyx=h=0 in Eq. �8�. Then we have the
antiferromagnetic Heisenberg chain, whose Hamiltonian
reads H=J�i=1

N ��i
x�i+1

x +�i
y�i+1

y +�i
z�i+1

z �. H is invariant under
cyclic spin translations and has SU�2� symmetry, with H
commuting with the total spin components �i�i

� , �
� �x ,y ,z�. The elements of � in Eq. �9� then obey further
constraints—namely, y=0, z=z*�0, a=d=1+ 
�i

z�i+1
z �, and

b=c=1− 
�i
z�i+1

z �, with 
�i
z�i+1

z ��0 �2,13�a��. It then follows
from Eq. �11� that the eigenvalue �m

�2� is always non-
negative, whence entanglement is determined by the eigen-
value �m

�1�, given by Eq. �10�. Thus, the witness comes from

the observable in Eq. �14�, which becomes R̂= ��i
x�i+1

x

+�i
y�i+1

y +�i
z�i+1

z + I� /4 �for any site i�. This yields the en-

tanglement witness 
R̂�= 1
4 �u /J+1�, where we have used

that, due to the translation invariance and SU�2� symmetry,
the correlation functions satisfy the relations 
�i

x�i+1
x �

= 
�i
y�i+1

y �= 
�i
z�i+1

z �=u / �3J� �13�a��. Remarkably, this spin-
based witness is �up to an irrelevant prefactor� precisely the
Hamiltonian-based entanglement witness found in Ref. �8�
�and in our generalized Hamiltonian-based result above�.
Since our spin-based approach is optimal for bipartite en-
tanglement �
R̂� is essentially the negativity�, this is a proof
that the Hamiltonian-based witness �8� detects all bipartite
entangled states.

Transverse field Ising model. As a final example we ana-
lyze the ferromagnetic one-dimensional Ising chain in the
presence of a transverse magnetic field. This model corre-
sponds to taking Jx=−
J and h=−J in Eq. �8�, with J�0 and
all the other couplings vanishing: H=−J�i=1

N �
�i
x�i+1

x +�i
z�.

Then y=y* �Z2 symmetry of H� and b=c �translation sym-
metry of H� �16�. From the analysis of the thermal correla-
tion functions, which can be obtained analytically �20�, it can
be shown that, in contrast to the Heisenberg case, entangle-
ment is now determined by the eigenvalue �m

�2� in Eq. �11�.
From Eq. �15�, our spin-based entanglement observable is

then R̂=− 1
4 ��i

x�i+1
x −�i

y�i+1
y +�i

z�i+1
z −1� for any site i. The

expectation value of this observable can be determined from
measurements of the nearest-neighbor spin-spin correlations

�i

��i+1
� �. This can be done, e.g., by inelastic neutron scatter-

ing �21�. We note that it was shown in Ref. �5� that spin-spin
correlation functions can act as entanglement witnesses in

bulk solids. Our witness operator R̂ is optimal, so that it can,
moreover, yield precise macroscopic predictions. For in-
stance, we plot in Fig. 1 the witness as a function of
�=1/kT for several values of 
, where k is the Boltzmann
constant and T is the temperature. From this figure, we can
obtain the exact critical temperature Tc for the entanglement-
separability transition. For 
=1, we have �c�1.93 or
kTc�0.51 �in units such that J=1�. This temperature can be
compared to the value 0.41 obtained in Ref. �9� by using an
energy witness. The reason for the small difference is that the
energy witness of Ref. �9� is derived from an entanglement
bound and, despite being a good approximation, neglects

some entangled states which are detected by R̂.
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