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We develop a general theory of the relation between quantum phase transitions (QPTs) characterized by
nonanalyticities in the energy and bipartite entanglement. We derive a functional relation between the
matrix elements of two-particle reduced density matrices and the eigenvalues of general two-body
Hamiltonians of d-level systems. The ground state energy eigenvalue and its derivatives, whose non-
analyticity characterizes a QPT, are directly tied to bipartite entanglement measures. We show that first-
order QPTs are signaled by density matrix elements themselves and second-order QPTs by the first
derivative of density matrix elements. Our general conclusions are illustrated via several quantum spin
models.
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Recently, a great deal of effort has been devoted to the
understanding of the connections between quantum infor-
mation [1] and the theory of quantum critical phenomena
[2]. A key novel observation is that quantum entanglement
can play an important role in a quantum phase transition
(QPT) [3–16]. In particular, for a number of spin systems,
it has been shown that QPTs are signaled by a critical
behavior of bipartite entanglement as measured, for in-
stance, in terms of the concurrence [17]. For the case of
second-order QPTs (2QPTs), the critical point was found
to be associated with a singularity in the derivative of the
ground state concurrence, as first illustrated, for the trans-
verse field Ising chain, in Ref. [3], and generalized in
Refs. [4–6] (see Refs. [7–11] for an analysis in terms of
other entanglement measures). In the case of first-order
QPTs (1QPTs), discontinuities in the ground state concur-
rence were shown to detect the QPT [12–14]. The studies
conducted to date are based on the analysis of particular
many-body models. Hence the general connection between
bipartite entanglement and QPTs is not yet well under-
stood. The aim of this work is to discuss, in a general
framework, how bipartite entanglement can be related to a
QPT characterized by nonanalyticities in the energy.

Expectation values and the reduced density matrix.—
The most general Hamiltonian of nonidentical particles, up
to two-body interactions, reads

H �
X
i��

�i��j�iih�ij �
X

ij���	

Vij���	j�iij�jih�ijh	jj; (1)

where fj�iig is a basis for the Hilbert space, �;�; �; 	 2
f0; 1; . . . ; d	 1g, and i; j enumerate N ‘‘qudits’’ (d-level
systems). Let E � h jHj i be the energy in a non-
degenerate eigenstate j i of the Hamiltonian. The two-
spin reduced density operator �̂ij is given by �̂ij �P
mhmj ih jmi, with m running over all the dN	2 ortho-

normal basis vectors, excluding qudits i and j. �̂ij has a
d2 
 d2 matrix representation �ij, with elements
�ij�	�� � h�i	jj�̂ijj�i�ji �

P
mh�i	jmj ih jm�i�ji �
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P
mh jm�i�jih�i	jmj i � h j�i�jih�i	jj i, where

we have used that h jm�i�ji are c numbers andP
mjmihmj � 1. Similarly, we can show that �̂i �

Trj��̂ij� has a d
 dmatrix representation �i with elements
�i�� � h�ij�̂ij�ii � h j�iih�ij i. Therefore, the energy
h jHj i is

E��ij� �
X
ij

TrU�ij��ij�; (2)

with U�ij� denoting a d2 
 d2 matrix whose elements are
U��;�	�ij� � �i��	

j
�	=Ni � Vij���	, where Ni is the num-

ber of qudits that qudit i interacts with, and 	j�	 is the
Kronecker symbol on qudit j. Clearly, Eq. (2) holds not
only for the Hamiltonian operator but for any observable.
Indeed, it turns out that the expectation value (or eigen-
value, for an eigenstate) of any two-qudit observable in an
arbitrary state j i is a linear function of the matrix ele-
ments of two-spin reduced density matrices. Moreover, it is
easy to show that Eq. (2) is also valid for a set of qudits
with distinct dimensions and for an arbitrary D-fold de-
generate energy level, where �ij � �1=D�

PD
p�1 �

ij
p , with

�ijp denoting the reduced density operator associated with
the degenerate eigenstate j pi. These results easily gener-
alize to the case of a Hamiltonian containing n-body terms,
e.g., for a three-body operator Ô, h jÔj i �P
ijkTrO�ijk��ijk�, etc., for higher-order interactions.

The above results hold for any value of d. Here we are
especially interested in d � 2, i.e., the qubit case. We then
use the standard basis fj00i; j01i; j10i; j11ig for any pair
�i; j� of spins, and denote �ij11 � h0i0jj�̂ijj0i0ji, �

ij
12 �

h0i0jj�̂
ijj0i1ji, etc.

QPT and the reduced density operator.—QPTs are criti-
cal changes in the properties of the ground state of a many-
body system due to modifications in the interactions
among its constituents, occurring at low temperatures T
where the de Broglie thermal wavelength is greater than
the classical correlation length of the thermal fluctuations
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(effectively T � 0) [2]. Typically, such a change is induced
as a parameter � in the system Hamiltonian H��� is varied
across a critical point �c. Because they occur at T � 0,
QPTs are purely driven by quantum fluctuations. They are
associated with level crossings which, in many cases, lead
to the presence of nonanalyticities in the energy spectrum.
We shall consider in this Letter only QPTs characterized by
nonanalytic behavior in the derivatives of the ground state
energy. For QPTs where this is not the case, see, e.g., Ref.
[18]. Specifically, a 1QPT is characterized by a finite
discontinuity in the first derivative of the ground state
energy. A 2QPT (or continuous QPT) is similarly charac-
terized by a finite discontinuity, or divergence, in the
second derivative of the ground state energy, assuming
the first derivative is continuous. These characterizations
are the T � 0 limits of the classical definition of the
corresponding phase transitions, given in terms of the
free energy [19].

Assume that �i�� and Vij���	 are smooth functions of a
set f�kg of couplings. If j i is an eigenstate of the
Hamiltonian, then, using @�h j i � 0 ) @�E �
h j@�Hj i, we have from Eq. (2)

@�E��
ij� � �1=N�

X
ij

Tr�@�U�ij���ij�; (3)

where E � E=N. It follows immediately from Eq. (3) thatP
ijTrU�ij��@��

ij� � � 0. The origin of a 1QPT can now
be seen to be the discontinuity of one or more of the �ij’s at
the critical point. The second derivative, obtained directly
from Eq. (3), reads

@2E��ij�

@�2
�

1

N

X
ij

�
Tr
�
@2U�ij�
@�2 �ij

�
� Tr

�
@U�ij�
@�

@�ij

@�

��
:

(4)

Since U�ij� is a smooth function of f�kg and �ij is finite at
the critical point � � �c; it can now similarly be seen that
the origin of the discontinuity or singularity of
@2E��ij�=@�2 is due to the fact that one or more of the
@�ij=@�’s diverge at the critical point.

QPTs from bipartite entanglement.—In order to discuss
the role of bipartite entanglement in a QPT we need
appropriate entanglement measures M��ij�: monotonic
functions ranging from 0 (no entanglement) to 1 (maximal
entanglement), invariant under local operations and clas-
sical communication [1]. We consider two such measures:
(i) concurrence [17]: C��ij� � max��ij1 	 �ij2 	 �ij3 	

�ij4 ; 0�, where the �ij� are the square roots, in decreasing
order, of the eigenvalues of the operator R��ij� � �ij� y �
 y��ij�� y �  y�, where �ij� denotes a complex conjuga-
tion of �ij in the standard basis fj00i; j01i; j10i; j11ig;
(ii) negativity [20]: N ��ij� � 2max0;	min��"

ij
���,

where "ij
� are the eigenvalues of the partial transpose

�ij;TA of the density operator �ij, defined as
h��j�TA j�	i � h��j�j�	i.
25040
It is now a simple matter to connect these measures to
the appearance of a QPT. From Eq. (2) we have E��ij� �P
ijTrU�ij��ij� �

P
ijTrUTA�ij��ij;TA�, where the matrix

elements of UTA�ij� are h��jUTA j�	i � h��jUj�	i. Let
Wij be the unitary matrix that diagonalizes �ij;TA . Then,
using Eq. (3), we obtain

@E��ij�
@�

�
1

N

X
ij

X4
��1

�
Wij @U

TA�ij�
@�

Wijy
�
��
"ij
�: (5)

Theorem 1: Assume conditions (a)–(c) below are satis-
fied. Then a discontinuity in (discontinuity in or divergence
of the first derivative of) the concurrence or negativity is
both necessary and sufficient to signal a 1QPT [2QPT].

(a) The 1QPT [2QPT] is associated to a discontinuity in
(discontinuity in or divergence of) the first (second) de-
rivative of the ground state energy, which originates ex-
clusively from the elements of �ij and not, for instance,
from the sum in Eq. (3) [Eq. (4)] itself. Similarly, a
discontinuity in (discontinuity in or divergence of the first
derivative of) the concurrence or negativity originates ex-
clusively from �ij and not from other operations such as
max or min.

(b) In the case of a 1QPT [2QPT] the discontinuous
matrix elements of �ij present in Eq. (3) [discontinuous or
divergent @�ij=@� present in Eq. (4)] do not either all
accidentally vanish or cancel with other terms in the ex-
pression for [the first derivative of] the concurrence or
negativity.

(c) In the case of a 1QPT [2QPT] the discontinuous
matrix elements of �ij present in (discontinuous or diver-
gent @�ij=@� present in the first derivative of) the con-
currence or negativity do not either all accidentally vanish
or cancel with other terms in Eq. (3) [Eq. (4)].

Conditions (a)–(c) above are meant to exclude artificial/
accidental occurrences of nonanalyticity. They are meant
to emphasize that the entanglement-QPT connection may
directly come from the ground state reduced density
matrix.

Proof: 1QPT: If condition (a) is satisfied then a 1QPT
must come from the discontinuity of one (or more) matrix
elements of �ij, as given by Eq. (3). Thus, taking into
account condition (b), the 1QPT will be associated to a
discontinuity in the concurrence or negativity, which is
therefore a necessary condition for the 1QPT. Suf-
ficiency: (i) Concurrence—taking into account condition
(a), if one (or more) of the eigenvalues �ij� of R��ij� is
discontinuous then one (or more) of the matrix elements of
�ij must be discontinuous. Assuming condition (c), a
1QPT then follows from Eq. (3). (ii) Negativity—the
negativity and @E��ij�=@� are both linear in min��"

ij
��.

Therefore if the coefficient in front of min��"
ij
�� in Eq. (5)

does not accidentally vanish, as ensured by condition (c), a
discontinuous negativity signals the 1QPT.

2QPT: Considering Eq. (4), if condition (a) is satisfied,
then a 2QPT must come from the discontinuity in or
4-2
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divergence of one (or more) @�ij=@�, since all the �ij are
assumed to be continuous for the case of a 2QPT. Thus,
taking into account condition (b), the 2QPT will be asso-
ciated with a discontinuity in or divergence of the first
derivative of the concurrence or negativity, which is there-
fore a necessary condition for the 2QPT. On the other
hand, we have @�M��ij� �

P4
a;b�1@M��ij�=@�ijab�@��

ij
ab.

Therefore, taking into account condition (a), discontinuity
in or divergence of @M��ij�=@���c must be caused by one
or more of the @�ijab=@���c . Assuming condition (c), this
singular behavior of @�ij=@� is then a sufficient condition
for a 2QPT, which follows from Eq. (4). �

Some further features following from this general analy-
sis are as follows: (1) If @M��ij�=@���c diverges, then the
maximal entanglement will not occur at the critical point
�c. (2) Concerning the behavior in the vicinity of the
critical point: our results above show that the speed of
divergence of both energy and the entanglement measures
is dominated by the fastest among the @�ijab=@� (as illus-
trated in Fig. 1). Therefore @M��ij�=@� should have simi-
lar divergent properties to the second derivative of energy.
This is indeed the behavior observed for the transverse field
Ising model in Ref. [3]. (3) Examples exist wherein the
max/min evaluations required by the definition of bipartite
entanglement measures generate a singularity related to the
derivative of these measures, without an associated QPT
[21]; condition (a) of our Theorem excludes such (artifi-
cial) singularities. Moreover max/min can also eliminate
singularities, a possibility which is excluded from consid-
eration through condition (c). Next we consider examples
to illustrate our general formalism.

Frustrated two-leg spin-1=2 ladder.—The Hamiltonian
for this model is Hladder �

P
hijiJij ~Si � ~Sj 	 h

PN
i�1 S

z
i ,

where ~Si is the spin operator vector at site i, the exchange
interaction along the rungs is Jij � JR, and both the intra-
chain nearest-neighbor and diagonal exchange interactions
0 0.5 1 1.5 2
λ

0

0.2

0.4

0.6

0.8

1

dρ
ab

 /d
λ

dρ
22

/dλ 
dρ

44
/dλ 

4 6 8
ln N

0

0.5

1

1.5

dρ22/dλ| λm

dρ44/dλ| λm

FIG. 1. First derivative of elements of the two-spin reduced
density matrix for the transverse field Ising model with N �
1000 sites. Inset: d�22=d� and d�44=d� diverge logarithmically
as a function of N. They are fitted by xablnN � const, with x22 �
0:135 and x44 � 0:024.
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are Jij � J. We further assume JR > �J, with � � 1:401
[12]. This model is exactly solvable and exhibits 1QPTs for
hc1 � JR and hc2 � JR � 2J. An analysis of pairwise en-
tanglement for this model can be found in Ref. [12]. For
h < hc1 , and in the limit N ! 1, the ground state is a
tensor product of (entangled) singlets, �j01i 	 j10i�=

���
2

p
,

along the rungs. When hc1 < h< hc2 , the ground state
consists of rungs which are alternately in singlet and (un-
entangled) Sz � 1 triplet spin configurations, j00i. For h >
hc2 , the ground state is a tensor product of all rungs in the
Sz � 1 triplet state. The density matrix elements of the
rungs are characterized by the following step-function
discontinuities at the two critical points:

�ri22 � �ri33 � 	�ri32 � 	�ri23 �
� 1
2 ; h < hci ;
0; h � hci ;

�ri11 �
�
0; h < hci ;
1; h � hci ;

(6)

where ri, with i � 1; 2, denotes rungs that transition to the
Sz � 1 configuration at the critical point hci . All other
density matrix elements for the rungs vanish. The ground
state of the system is twofold degenerate when hc1 � h <
hc2 . The density operator for a rung is then represented by a
statistical mixture of the broken-symmetry states �r1 and
�r2 , with equal probabilities. Indeed, for a general value of
h, we can write the rung density matrix as �r � ��r1 �
�r2�=2. Below hc2 , the ground state energy is given by the
sum of the energies of each rung, due to the fact that all
couplings proportional to J vanish when acting on a sin-
glet. Using Eq. (2) the energy density can be then written,
for h < hc2 , as E � 1

2 f
JR
4 �

r
11 	 �r22 	 �r33 � �r44 �

2��r32 � �r23�� 	 h��r11 	 �r44�g. For h � hc2 , contributions
of the J sector must be considered in the expression above.
However the quantity @E=@h, which characterizes the
1QPTs in this model, can be obtained directly from
Eq. (3) for any h, resulting in @hE � 	 1

2�
r
11 � 	 1

4 ��
r1
11 �

�r211�, where we have used that �r44 � 0. It then follows
from Eq. (6) that @hE is discontinuous at both hc1 and hc2 .
The same discontinuous behavior is immediately revealed
in the bipartite entanglement of the spins sharing a rung.
For these pairs a direct calculation shows that the negativ-
ity and concurrence (which here turn out to be equal) read
N � C � 1	 �r11 � 1	 1

2 ��
r1
11 � �r211�, which, there-

fore, are discontinuous functions at both h � hc1 and h �

hc2 . We thus find the remarkably simple result @E=@h �

�N 	 1�=2, which can also be seen as a general conse-
quence of Eq. (5). This expression exemplifies how entan-
glement directly detects a 1QPT.

Permutation invariance and the transverse field Ising
chain.—We consider now the case of Hamiltonians whose
ground states are invariant under a permutation Pik of an
arbitrary pair �i; k� of spins. In this case Pikj i � �j i so
that j ih j � PkiPljj ih jPljPki. Therefore, from the
general expression for the two-spin reduced density opera-
4-3
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FIG. 2 (color online). Finite-size scaling of @��22 with the
number N of sites for the transverse field Ising chain. @��22 is a
function of N1=4��	 �m� only, with the Ising model critical
exponent 4 � 1, and �m being the position of the maximum of
�22�N;��. All the data from N � 50 to N � 3050 collapse onto
a single curve. Inset: @��22 before scaling, showing an increase
in singular peak sharpness with N and shift of �m.
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tor �̂ij, h�i	jjb�ijj�i�ji � P
mh�i	jmj ih jm�i�ji �P

mh�k	lmj ih jm�k�li � h�k	ljb�klj�k�li, i.e.,
�ij � �kl. If only a constant nearest-neighbor interaction
is taken into account, then U�i; i� 1� � U�j; j� 1� � U
�8i; j�. Then, denoting �i;i�1 � �j;j�1 � � �8i; j�, we
have E��� � Tr�U��. As a specific example, consider the
transverse field Ising chain with constant nearest-neighbor
interactions, whose Hamiltonian is H �
	J

PN
i�1�� 

x
i 

x
i�1 �  zi �, where N is the number of spins

along the chain,  �i are the Pauli operators for a spin at site
i, and we use periodic boundary conditions. Setting J � 1,
we obtain from Eq. (2) that E��� � 	h j zj i 	
2���14 � �23�, where the site-independent ground state
expectation value of  z is h j zj i � �11 	 �44. This
model presents a 2QPT at �c � 1 [2]. This can be identi-
fied within our framework by taking the second derivative
of E���, yielding

@2E���

@�2
� 	2

1

�
@
@�

��22 � �44�; (7)

where we used
P
ijTrU�ij��@�

ij=@��� � 0 and Tr� � 1.
We have calculated the �ij using the standard method of
fermionization and a Bogoliubov transformation [2]. At the
critical point �c, Eq. (7) displays a divergence in the limit
of an infinite chain. This 2QPT originates from the singular
behavior of @��22 and @��44, as shown in Fig. 1. It is clear
from this figure that @��22 is dominantly responsible for
the divergence.

Now, concerning the ground state nearest-neighbor bi-
partite entanglement, the global 2-rotation invariance of
the model about the spin z axis (Z2 symmetry) and a
detailed computation of the density matrix elements leads
to C � N � 2��41 	 �22�. As shown in Ref. [22], the
concurrence in this case is not modified by spontaneous
symmetry breaking. In the limit N ! 1, �@C=@��j�c is
25040
logarithmically divergent [3]. This result is here seen to be
a direct consequence of the singular behavior of @��22, just
as in the second derivative of energy, since @��41 is a
smooth function of �. Therefore @2E=@�2 and @C=@�
exhibit similar critical behavior through their dependence
upon @�22=@�, whose finite-size scaling is shown in Fig. 2.
The conclusion of [3], that the concurrence detects the
phase transition in the Ising model, is thus simply ex-
plained within our framework.
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