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It is argued that the partition of a quantum system into subsystems is dictated by the set of
operationally accessible interactions and measurements. The emergence of a multipartite tensor product
structure of the state space and the associated notion of quantum entanglement are then relative and
observable induced. We develop a general algebraic framework aimed to formalize this concept.
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Suppose one is given a four-state quantum system. How
does one decide whether such a system supports entan-
glement or not? In other words, should the given Hilbert
space (C4) be viewed as bipartite (�C2 � C2) or irreduc-
ible? In the former case, there exists a tensor product
structure (TPS) that supports two entangleable qubits.
In this case, one finds a sharp dichotomy between the
quantum and classical realms, as perhaps most dramati-
cally exemplified in quantum information processing [1].
In the irreducible case there is no entanglement and,
hence, none of the advantages associated with efficient
quantum information processing [2].

Here we propose that a partitioning of a given Hilbert
space is induced by the experimentally accessible ob-
servables (interactions and measurements) (see also
Refs. [3–5]). Thus, it is meaningless to refer to a state
such as the Bell state j��i � �j0i � j0i � j1i � j1i�= ���

2
p

as entangled [6], without specifying the manner in which
one can manipulate and probe its constituent physical
degrees of freedom. In this sense entanglement is always
relative to a particular set of experimental capabilities.
Before introducing a formalization, let us illustrate these
ideas with a simple example.

Example 0: Bell basis.—Let jxi � jyi � jx; yi (x; y 2
f0; 1g) be the standard product basis for a two-qubit
system. Each qubit forms a subsystem. With respect
to (wrt) this bipartition, the Bell-basis states j��i �
�j00i � j11i�= ���

2
p

and j��i � �j01i � j10i�= ���
2

p
are maxi-

mally entangled. Now note that these can be rewritten as
j��i :� j�i � j�i, where � � �;� and � � �;	. With
respect to this new bipartition the Bell states are by
definition product states, and the subsystems are the �
and � degrees of freedom. On the other hand, some
separable superpositions of the states jx; yi are now en-
tangled and can be used for entanglement-based quantum
information protocols such as teleportation [1]. This
striking difference can be highlighted by considering
the SWAP operator S, which is nonentangling in the usual
x; y bipartition, but, in the �; � bipartition, one has
Sj�; �i � �	1���j�; �i. Thus, S realizes a controlled
phase shift over j11i :� j�	i, and in the new decompo-

sition SWAP is a maximally entangling operator. Which
then is the correct characterization of the TPS and the
associated entanglement? The answer depends on the set
of accessible interactions and measurements. In stating
that the Bell states are entangled, one is implicitly assum-
ing that there is experimental access to (local) observ-
ables of the form f�� � 1g and f1 � ��g (where �;� 2
fx; y; zg and � are the Pauli matrices). But this assumption
may not always be justified. For example, in quantum dot
quantum computing proposals utilizing electron spins
[7], it is more convenient to manipulate exchange inter-
actions than to control single spins [8,9]. In such cases the
accessible interactions may be nonlocal, and this is pre-
cisely the situation that favors the �; � bipartition that
then acquires the same operational status as the standard
x; y one.

General framework.—We now lay down a conceptual
framework aimed to capture in its generality and rela-
tivity the notion of ‘‘induced tensoriality’’ of subsys-
tems. Our definitions are observable based and mostly
involve algebraic objects [10]. Let us consider a quan-
tum system with finite-dimensional state space H , a
subspace C 
 H , and a collection fAigni�1 of sub-
algebras of End�C� satisfying the following three
axioms: (i) Local accessibility: Each Ai corresponds to
a set of controllable observables. (ii) Subsystem inde-
pendence: �Ai;Aj� � 0 (8 i � j). (iii) Completeness:
_n
i�1Ai � �n

i�1Ai � End�C�.
Notice that the standard case of N qudits (d-level

systems) C � H � �Cd��N is the case Ai � Md 8 i
acting as the identity over all factors (subsystems) but
the ith one. Now we discuss the physical meaning of the
axioms (i)–(iii).

Axiom (i) simply defines the basic algebraic ob-
jects at our disposal. These objects are controllable
observables (Hamiltonians with tunable parameters and
measurements). Axiom (ii) addresses separability. In or-
der to claim that a system is composite it must be possible
to perform operations manipulating a well-defined set of
degrees of freedom while leaving all the others unaf-
fected. Typically this is achieved by having individually
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addressable, spatially separated subsystems i (e.g., a
single excess electron per quantum dot [7]), but as we
shall see this is certainly not the only possibility. Axiom
(iii) is the crucial one in order to ensure that our observ-
able-based definition of multipartiteness induces a corre-
sponding one at the state-space level. Its meaning will
follow from Proposition 1 below: all the operations not
affecting the state of a subsystem (its symmetries) are
realized by operators corresponding to nontrivial opera-
tions only over the degrees of freedom of the other sub-
systems. All symmetries are then physical operations, and
no superselection rules [11] are present when a suitable
state space C is chosen. When C is a proper subspace of
H , we are dealing with an ‘‘encoding,’’ a notion that has
proved useful, e.g., in quantum error correction and
avoidance [12,14,15] and encoded universality [8,9].
Generalizing Ref. [3] we have the following central result.

Proposition 1.—A set of subalgebras Ai satisfying
Axioms (i)–(iii) induces a TPS C � �n

i�1H i. We call
such a multipartition an induced TPS.

The proof is given in Ref. [16].
Example 1.—Assume that one is given the following set

of independently controllable two-body interactions
f�y � �z; �z � �z; �x � �y; �x � �xg. These interactions
generate the following subalgebras: A� :� f1; �x � 1;
�y � �z; �z � �zg, A� :� f1;1 � �z; �x � �y; �x � �xg.
These satisfy Axioms (i)–(iii) (with C � C4) and act,
respectively, as local identity and Pauli x, y, z matrices
on the � and degrees of freedom considered above. Thus,
by Proposition 1, A� and A� induce a TPS C4 � C2 �
C2, namely, the �; � bipartition.

Superselection.—An important example for which one
is led to consider nonstandard TPSs is a system exhibiting
superselection rules [11]. There the only allowed physical
operations correspond to operators commuting with a set
of superselection charges fQlgMl�1, e.g., particle num-
bers, which generate an Abelian algebra Q. Denoting
by �Q the projector over the commutant of Q, the
physically realizable subsystem operations are �Q�Ai�
(i � 1; . . . ; n). These projected algebras typically either
(a) define a new invariant subspace C0 with a new induced
TPS or (b) do not satisfy axioms (ii), (iii) anymore and
therefore fail to induce a proper TPS. The associated
notion of entanglement and entanglement-based protocols
then must be reconsidered [11].

Irreducible representations.—A prototypical way for
obtaining an encoded bipartite TPS is to consider the
decomposition of H into irreducible representations
(irreps) of a 
-subalgebra A [3]. In that case,

H � �JC
nJ �H J; (1)

where the H J are the dJ-dimensional irreps of A and
nJ their multiplicities. The algebra (commutant) can then
be written as A � �J1nJ �MdJ (A0 � �JMnJ � 1dJ
[15]. Upon restriction to a particular J sector, one has
A _A0 � MnJ �MdJ � A �A0. Then, according to

Proposition 1, A and A0 induce an (encoded) bipartite
TPS in each irreducible block.

Example 2: Encoded tensoriality.—As an example of
the above construction, let H N :� �C2��N denote an
N-qubit space, A1 the algebra of totally symmetric op-
erators in End�H N�, and A2 the algebra of permutations
exchanging the qubits. A1 is generated by the collective
spin operators, i.e., A1 � CfS� :� PN

i�1 �
�
i j� � x; y; zg,

and A2 � A0
1 is generated by Heisenberg exchange

interactions, A2 � Cf�i � �jg [� � ��x; �y; �z�]. In the
context of decoherence-free subspaces and subsystems
[14,15], A1 is the algebra of error operators (system-
bath interactions), and A2 is the algebra of allowed
quantum computational operations. Here our perspective
is quite different: we view both as algebras of accessible
interactions that induce a TPS. This is, in fact, an encoded
TPS, since one has (for even N) the Hilbert space decom-
position (1) with J�0; . . . ;N=2, H J�CdJ , dJ�2J�1,
and nJ�N�� �2J�1�N!=��N=2�J�1�!�N=2	J�!�. Each
summand in Eq. (1) is a code subspace with a bipartite
TPS. We stress the unusual feature of this example: the
two ‘‘qudits’’ (i.e., subsystems) composing the TPS need
not have the same dimension (though they do for J �
N=2	 1), and are manipulable by interactions of a physi-
cally distinct nature. The left (right) qudit is manipulated
by tuning only Heisenberg exchange couplings (global
magnetic fields). This example, therefore, has implica-
tions for spin-based quantum computation [7], where
single-spin addressing is technically very demanding.

Nested subalgebra chains.—The commutant construc-
tion illustrated above provides a general way to realize an
encoded bipartite TPS. In order to obtain encoded TPSs
with more than two subsystems, we consider a nested
chain of subalgebras:

B 0 � B1 � � � � � Bn: (2)

We assume that B0 acts irreducibly over H . Then H
typically will be reducible wrt Bi�1. In particular, wrt
B2: CdJ1 � �J2C

nJ2 � CdJ2 and B2 � �J1;J21nJ1
� 1nJ2

�
MdJ2

. By iterating over the subalgebra chain one obtains

H � �J1;...;Jn �n
k�1 C

nJk � CdJn : (3)

This is a sum over code subspaces H�J1; . . . ; Jn� :�
�n
k�1C

nJk � CdJn with a multipartite TPS. The nontrivial
ones are those for which at least one nJk > 1. Note that
while B2 has nontrivial action only on CdJ2 , B1 has non-
trivial action on CdJ1 � CdJ2 . So how does one operate on
a particular subsystem (qudit), say, CnJk ? We come to our
second main result.

Proposition 2.—Given a nested subalgebra chain as in
Eqs. (2) and (3), the subsystem algebras are given by

A i � B0
i \Bi	1 �i � 1; . . . ; n�: (4)

Conversely, when a set of subsystem algebras fAigni�1 is
given, the nested chain Bi :� _n

k�i�1Ak (i � 1; . . . ; n)
results.
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The proof is given in Ref. [17].
Example 3: Standard TPS.—The standard qubit-TPS

over H N corresponds to the chain Bi � 12i �M2n	i (i �
1; . . . ; n). In this case all the subalgebras are factors,
where one has a single H �J1; . . . ; Jn� term in Eq. (3),
with multiplicities nJi � 2 and dimensions dJi � 2n	i.

Example 4: Stabilizer codes.—Consider N qubits and
the following chain of nested algebras: B0 acts irre-
ducibly on �C2��N , B1 acts trivially on the first qubit
but irreducibly on the rest, etc. To realize such a chain
let fX1; . . . ; Xkg be a set of N-qubit, mutually commut-
ing operators, and let Bi � �CfX1; . . . ; Xig�0 (i � 1; . . . ; k).
Further assume that the Xi are unitary, traceless, and
square to the identity. Then the corresponding Hilbert
space decomposition is H � �C2��i � �C2���n	i�, where
the first i C2 factors correspond to the 2i possible ei-
genvalues of X1; . . . ; Xi 2 B0

i. When the Xi’s are gener-
ators of an Abelian subgroup of the Pauli group, one
recovers the stabilizer codes of quantum error correc-
tion [12].

Example 5: Multipartite encoded TPS.—Let us revisit
Example 2 and show how a multipartite encoded TPS is
induced. Consider N � n2K qubits, and the chain B0 :�
EndH N , Bi :� C�SN=2i	1��2i	1

, i � 1; . . . ; K, where S
denotes the symmetric group. Conceptually, we have 2K

blocks of n qubits each, and the subalgebra chain corre-
sponds to operating on these blocks with increasing levels
of resolution. By Proposition 2 we should find a K �
1-partite encoded TPS. To see this, recall that the state
space H N � �C2��N of N qubits splits wrt SN exactly as
in the su(2) case (Example 2) except that by the duality
between SN and su(2), the role of nJ and dJ is inter-
changed, while J remains an su(2) irrep label. For ex-
ample, for N � 6 (K � 1 and n � 3) we have H 6 �
�3
J�0C

�nnJ �C
�ddJ �H0�C5�H1�C9�H2�C5�H3�C,

where now ~nnJ � 2J� 1,~ddJ � nJ�6�, and HJ :� C2J�1,
J � 0; 1; 2; 3. The chain then consists of B0 �
End�H 6�, B1 � CS6, and B2 � C�S3 � S3�, i.e., ex-
changes between the first three � second three qubits.
From Proposition 2 this algebra chain defines the encoded
TPSs with algebra subsystems given by A1 :� B0

1 �
totally symmetric operators (recall Example 2) and
A2 � B0

1 \B0, where B0
1 are block-symmetric opera-

tors, so that A1 � linear combination of permutations,
symmetrized wrt S3 � S3, e.g., elements of the form
�2�3i � �3�3i � �3�3i � �1�3i (i � 0; 1). Decomposing
the C

~ddJ factors wrt S3 � S3 we find, e.g., for the H1 �
C9 term that it describes a qubit times a qutrit [13].

Returning to the case of K blocks, one can see how an
encoded multipartite TPS will emerge. For example, with
n � 3 and K � 2 we have the chain B0 � CS12 � B1 :�
C�S6 � S6� � B2 :� C�S3 � S3 � S3 � S3�. By com-
paring the decompositions of H 12 wrt B1 and B2, one
can identify the tripartite encoded TPS.

Example 6: Tripartite hybrid TPS.—Let us exhibit an
unusual example of a TPS, where each factor is of a
different physical nature. We consider H :� �C2��4 and

B1 � 1 � End�C2��3 (full operator space over the last
three qubits), B2 � 1 � CS3 (permutations exchanging
the last three qubits). B1 is a factor, and one obtains the
decomposition H � C2 � C8. The three-qubit space
splits wrt S3 as C4 � C � C2 � C2. It follows that
�C��4 � C2 � C4 � C � C2 � C2 � C2. The last term cor-
responds to a tripartite system in which the first subsys-
tem is a ‘‘standard’’ qubit, the second is acted upon by
collective interactions over the last three ‘‘physical’’ qu-
bits, while the third is acted upon by the algebra of
permutations of S3. Interestingly, this hybrid tripartite
system has already been realized experimentally in the
context of noiseless subsystems [18].

TPS morphing.—So far we have emphasized kine-
matics. Next we show that an induced TPS can change
dynamically, depending on the algebras of available in-
teractions. Let fAigni�1 and f ~AAig~nni�1 define two TPSs over
H . Suppose one has the following Hamiltonian:

H��;�� �
Xn

i�1

X

�

��
i H

i
� �

X~nn

i�1

X

�

��
i
~HHi
�; (5)

where Hi
� 2 Ai, ~HHi

� 2 ~AAi (i � 1; . . . ; n), and all cou-
pling constants �i, �i are independently tunable. By
setting all the �i (�i) to zero the first (second) TPS is
induced. Therefore, dynamical control of the Hamil-
tonian allows one to switch among different induced
multipartitions, possibly with a different number of sub-
systems, in a sort of continuous fashion. We call this
‘‘TPS morphing.’’ For example, consider three qubits
with a controllable Hamiltonian given by H���t�; ��t�� �P

3
i;j�1 �

ij
1 �i � �j �

P
��x;y;z�

�
2 S

� �P
3
i�1

P
��x;y;z �

�
i �

�
i ,

where S� � P
3
i�1 �

�
i (� � x; y; z). The first two terms

induce the (encoded) bipartite TPS described in
Example 2, whereas the last term induces the standard
tripartite structure.

Stroboscopic entanglement.—A TPS can even be
switched on and off under appropriate circumstances.
Suppose that the algebra of available interactions does
not induce a TPS [e.g., since it is � End�H �]. Now
suppose that one can turn on an additional interaction
that allows one to refocus (see, e.g., [9]) some of these
interactions, so that the remaining interactions do in-
duce a TPS. Then at the end of each refocusing period a
TPS appears. We call this ‘‘stroboscopic entanglement.’’
For instance, and referring back to Example 1, suppose
that the controllable Hamiltonian is given by H �P

X2A�;Y2A�
JXX� JYY, where the two-body terms are

always on and the one-body terms are controllable. This
H mixes the subalgebras A� and A�, so that there is no
TPS as long as the two-body terms are present. However,
a series of � pulses in terms of �x � 1 (1 � �z) will
refocus, i.e., turn off, the two-body terms in the A�
(A�) term, thus decoupling the two subalgebras at the
end of each refocusing period. In this manner, the � and �
factors can be separately manipulated; i.e., the TPS has
reappeared.
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Conclusions.—We have shown that the TPS of quantum
mechanics acquires physical meaning relative only to the
given set of available interactions and measurements.
These induce a TPS through their algebraic structure.
The induced TPS may contain factors (qudits) of a differ-
ent physical nature, and can be dynamical.

A few concluding comments are in order. First, note
that while we have given criteria for the appearance of an
induced TPS and the associated entanglement, we have
deliberately not addressed the issue of efficiency in quan-
tum information processing (QIP) [1], in particular, in
relation to the question of resource cost. Indeed, it is
simple to construct a set of subalgebras satisfying axioms
(i)–(iii), thus inducing a TPS for a ‘‘structureless’’ Hilbert
space such as energy levels of a Rydberg atom, while the
associated cost of performing a quantum computation
scales exponentially in some resource such as spectro-
scopic resolution [2]. Second, and again in the context of
QIP, in order to exploit a given induced TPS for perform-
ing quantum computation, one has to be able to imple-
ment, along with the local operations Ai, at least one
entangling transformation E in End�C� � �iAi. The
new set ffAig; Eg, in the prototypical situation of inter-
est in QIP, will be (encoded) universal, i.e., will allow
any transformation in End�C� to be generated by compo-
sition of elementary operations involving ffAig; Eg. This
will allow access to other TPSs than the original, induced
one [e.g., in the case of Example 0 one could argue that
access to both the standard and the �; � bipartitions is
available once all SU(4) transformations can be gener-
ated]. The key point is that there is a hierarchy of TPSs:
the ‘‘natural’’ one is the one that is induced by the directly
accessible observables Ai. The ‘‘lower-level’’ ones are
those that are visible only by composition of the elemen-
tary observables ffAig; Eg. Third, it is important to em-
phasize that both interactions and measurements are
involved in inducing a TPS, and must be compatible,
i.e., induce the same TPS, for this TPS to be both manipu-
lable and observable.
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