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Several prominent proposals have suggested that spins of localized electrons could serve as quantum com-
puter qubits. The exchange interaction has been invoked as a means of implementing two qubit gates. In this
paper, we analyze the strength and form of the exchange interaction under relevant conditions. We find that,
when several spins are engaged in mutual interactions, the quantitative strengths or even qualitative forms of
the interactions can change. A variety of interaction forms can arise depending on the symmetry of the system.
It is shown that the changes can be dramatic within a Heitler-London model. Hund-Mülliken calculations are
also presented, and support the qualitative conclusions from the Heitler-London model. The effects need to be
considered in spin-based quantum computer designs, either as a source of gate error to be overcome or a new
interaction to be exploited.
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I. INTRODUCTION

The exchange interaction between electrons has been
studied since the early days of quantum mechanics1–3 and
has been reviewed in some classic references,4–6 as well as
textbooks.7 Recently, a promising proposal8 has emerged to
use the exchange interaction as a tunable qubit-qubit interac-
tion in a quantum computer, with the individual spins of
electrons acting as qubits. To satisfy the conditions for con-
structing a universal quantum computer, the exchange inter-
action can either be supplemented with single-qubit
operations,8 or can be used by itself to construct a universal
set of gates, in which case one encodes a logical qubit into
the state of several spins.9–12 (This alternative to the standard
universality scheme has been termed “encoded
universality.”13) Motivated by the proposal of Loss and
DiVincenzo,8 there have been a number of studies of the one-
and two-particle behavior of electrons localized on quantum
dots within a quantum computer.8,14–21Here, we expand on
our work22 considering the important situation of three or
more coupled dots. We show how both quantitatively and
qualitatively new interactions can appear, provide explicit
formulas for the magnitudes of these interactions, and note
consequences of breaking the symmetry of the system. These
effects require consideration if one intends to make a quan-
tum computer with more than two spins.

The exchange interaction between two localized electrons
arises as a result of their spatial behavior, but it can be ex-
pressed as an effective spin-spin interaction. In conditions of
rotation symmetry(i.e., neglecting external magnetic fields,
spin-orbit coupling, etc.), a purely isotropic form of this in-
teraction arises, which is known as Heisenberg exchange,

Hex = JSA ·SB. s1d

Here,S=sSx,Sy,Szd is a vector of spin-half angular momen-
tum operators, andA,B are indices referring to the location

of each electron.(We take spin operators to be dimensionless
in this paper —" is excluded from their definition.) This
Hamiltonian has a spin-singlet eigenstate and degenerate
spin-triplet eigenstates.1 The quantityJ is the exchange cou-
pling constant, given by the energy splitting between the
spin-singlet and spin-triplet states,1,14,16

J = et − es. s2d

To date, studies of the exchange interaction in quantum com-
putation have focused on the case of two quantum dots.8,14–21

Starting from the simplest case of two electrons in singly
occupied dots in the lowest orbital state, systematic generali-
zations have been introduced and their effect on the ex-
change interaction studied. In particular, researchers have
analyzed the effect of double occupation,16,19,21higher orbital
states,14,16 and many-electron dots.17 An accurate numerical
study reporting singlet-triplet crossing via magnetic field ma-
nipulation in a lateral double quantum dot can be found in
Ref. 23. Neglecting spin-orbit coupling, these studies have
found increasingly accurate expressions forJ, while focusing
on the definition of Eq.(2). In the presence of spin-orbit
coupling both rotation and inversion symmetry are broken,
and anisotropic corrections toHex arise.20,24,25

In this work, we undertake a study of the case of three or
four electrons, each in a quantum dot. Once the system in-
volves more than two electrons, simultaneous multipartite
exchanges can occur. For three coupled dots containing three
electrons, processes in which all three electrons exchange
contribute to a quantitative correction to the value ofJ. We
show explicitly that, for three identical dots arranged on the
corners of an equilateral triangle, the effective Hamiltonian
can still be written using a Heisenberg exchange interaction
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Hspin= K + JsSA ·SB + SB ·SC + SC ·SAd,

but thatJ is changed and is found to be influenced by three-
body exchange matrix elements. For four coupled dots con-
taining four electrons, the actual form of the interaction Eq.
(1) changes due to four-body effects. For identical dots ar-
ranged on the corners of a symmetric tetrahedron, the inter-
action takes the form

Hspin= K + J o
Aøi, jøD

Si ·Sj + J8fsSA ·SBdsSC ·SDd

+ sSA ·SCdsSB ·SDd + sSA ·SDdsSB ·SCdg,

where throughout this paper notation such asAø i øD
means thati takes the letter valuesA to D. According to our
Heitler-London(HL) calculations, the ratiouJ8 /Ju can reach
16 % in physically relevant parameter regimes.

Four-body exchange terms have been discussed in other
contexts—for example, in a perturbative treatment of the
two- and three-dimensional half-filled Hubbard models, four-
body interactions were shown to suppress the Néel tempera-
ture and the temperature of the paraferromagnetic phase
transition26,27 (see Appendix A). Here, we present a nonper-
turbative derivation of these terms, starting from a finite-
dimensional Hamiltonian and then highlighting their signifi-
cance for quantum computation. Interaction Hamiltonian
calculations such as ours are of significance in various quan-
tum computation contexts, including(i) the encoded univer-
sality paradigm, where in the most efficient implementations,
several exchange interactions are turned on
simultaneously9–13 (quantitative studies of parallel gate
sequences11 in particular may require revisiting in light of
our results, as well as the “supercoherent qubits” method for
reducing decoherence,28 where four- and eight-spin interac-
tions must be turned on simultaneously in order to enact
quantum logic gates between encoded qubits); (ii ) adiabatic
quantum computing,29 where the final Hamiltonian for any
nontrivial calculation inevitably includes simultaneous inter-
actions between multiple qubits;(iii ) fault-tolerant quantum
error correction, where a higher degree of parallelism trans-
lates into a lower threshold for fault-tolerant quantum com-
putation operations;30–34 (iv) the “one-way” quantum com-
puter proposal,35 where all nearest-neighbor interactions in a
cluster of coupled spins are turned on simultaneously in or-
der to prepare a many-spin entangled state; and(v) the search
for physical systems with intrinsic, topological fault toler-
ance, where systems with four-body interactions have been
identified as having the sought-after properties.36

We begin with a general description of a finite-
dimensional effective spin Hamiltonian in Sec. II.(This is
compared to the standard, perturbative derivation in Appen-
dix A.) Section III shows how to compute the parameters in
the effective spin Hamiltonian, with detailed consideration of
the two-electron, three-electron, and four-electron cases. We
introduce a specific model and calculate the parameters
quantitatively, for three and four electrons, in Sec. IV. Ap-
pendixes B and C contain relevant technical details.

II. ELECTRON-SPIN-OPERATOR HAMILTONIAN

In this section we present general arguments concerning
the form of the effective spin Hamiltonian, as it arises fromn
localized electrons interacting via the Coulomb force. We
start with the familiar electronic Hamiltonian

H = o
i=1

n
1

2m
pi

2 + Vsr id + o
i, j

e2

kur i − r ju
; o

i=1

n

hsr id + o
i, j

wsr i,r jd,

s3d

where the first term is the kinetic energy, the second is the
confining potential, and the third is the Coulomb interaction.
The confining potentialVsr d contains n energy minima,
which give rise to then dots. To understand the dynamics of
n electron-spin qubits inn quantum dots, it is desirable to
eliminate the spatial degrees of freedom, leaving an effective
Hamiltonian composed of electron-spin operators only.

The first step in changing Hamiltonian(3) to an electron-
spin-operator Hamiltonian is to fix a basis. We first consider
the case of two electrons in two dots, labeledA andB. We do
not allow for double occupancy of a dot and consider only a
single low-energy orbital per dot labeled asfAsr d;kr uAl
and fBsr d;kr uBl. Electrons 1 and 2 occupy these low-
energy orbitals. Each electron can have spin-up or spin-
down, hence each electron can represent a qubit. A state
with, for example, electron 1 in orbitalB with spin-up and
electron 2 in orbitalA with spin down is represented as
uBAlu↑ ↓ l. Since electrons are fermions, this state needs to be
antisymmetrized; the full state of the two electrons takes the
form of a Slater determinant

uCs↓↑dl = suABlu↓↑l − uBAlu↑↓ld ~ aA↓
† aB↑

† uvacl. s4d

Note that the order of spins in the state labelCs↓↑ d indicates
that the electron in orbitalA has spin down and the electron
in orbital B has spin up. In Eq.(4) we introduced second-
quantized notation(ignoring normalization), with aA↓

† creat-
ing an electron with spin down in orbitalA andaB↑

† creating
an electron with spin up in orbitalB. The four states
uCssA,sBdl form the two-electron basis. The same procedure
applies to three electrons in three dots. There is again a
single low-energy orbital per dot, labeled asfAsr d;kr uAl,
fBsr d;kr uBl, and fCsr d;kr uCl for dots A, B, and C, re-
spectively. Electrons 1, 2, and 3 occupy these low-energy
orbitals. A state with, for example, electron 1 in orbitalB
with spin up, electron 2 in orbitalA with spin down, and
electron 3 in orbitalC with spin up is represented as
uBAClu↑ ↓ ↑ l. This state is then antisymmetrized so that the
full state of the three electrons is the Slater determinant

uCs↓↑↑dl ; suABClu↓↑↑l + uBCAlu↑↑↓l + uCABlu↑↓↑l

− uBAClu↑↓↑l − uACBlu↓↑↑l − uCBAlu↑↑↓ld

~ aA↓
† aB↑

† aC↑
† uvacl. s5d

The order of spins in the state labelCs↓↑ ↑ d indicates that
the electron in orbitalA has spin down, the electron in orbital
B has spin up, and the electron in orbitalC has spin up. The
eight statesuCssA,sB,sCdl form the three-electron basis.
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The general case ofn electrons gives 2n fully antisymme-
trized basis vectors of the form

uCssA,sB,…,sZdl = o
P

dPPfuAB…lusAsB…lg, s6d

where the sum runs over all permutationsP of both orbitals
and spins, anddP=1s−1d if the permutation is even(odd). In
this basis, the Hamiltonian(3) takes the form of a 2n32n

Hermitian matrix. Like any 2n32n Hermitian matrix, the
Hamiltonian can be written as a sum

Hspin= o
i,j ,. . .=0

3

l i,j ,. . . sisAd ^ s jsBd ^ . . . s7d

of Hermitian spin matrices of the formsisAd ^ s jsBd ^ …,
each multiplied by a real coefficientl i,j ,. . . Here,sispd denotes
the Pauli matrixsi acting on the electron in dotp, with i
=0, 1, 2, 3 and withs0 equal to the identity matrix. There are
n factors in the tensor productsisAd ^ s jsBd ^ …, so that it
can be written as a 2n32n matrix, and there are similarlyn
subscripts on the coefficientl i,j ,. . . This decomposition(7)
into spin matrices produces an effective electron-spin Hamil-
tonian that conveniently describes the dynamics ofn qubits.

The procedure we have just described is framed within
the Heiter-London approximation.37 The approximation con-
sists of neglecting excited states and has been criticized on
the grounds that it does not produce the correct asymptotic
behavior in the limit of very large distances.4 However, in
the context of our system of interest, this asymptotic limit is
not a concern, and moreover, recent studies have verified the
utility of the approximation in the case of large(but not
infinite) interdot separation.16 We will thus proceed with the
HL approximation, which has the advantage of conceptual
simplicity and physical clarity. In the three-electron case, we
show that Hund-Mülliken (HM) calculations, in which
double occupation is permitted, support the conclusions of
our HL results.

Symmetry considerations fundamentally constrain the
form of the electron-spin Hamiltonian. The coordinate sys-
tem used to define↑ and↓ is arbitrary if there is no spin-orbit
coupling and no external magnetic field. In this case, the
effective spin-operator Hamiltonian has rotation, inversion,
and exchange symmetry. The coefficientsl i,j ,. . . in (7) are
strongly constrained by this symmetry. The Hamiltonian can
only be a function of the total spin squaredST

2=sSA+SB

+…d2, where

SA ; 1
2fs1sAdx̂+ s2sAdŷ+ s3sAdẑg ^ s0sBd ^ s0sCd ^ …,

SB ; s0sAd ^
1
2fs1sBdx̂+ s2sBdŷ+ s3sBdẑg ^ s0sCd ^ …, etc.

A pseudoscalar, such asSA·sSB3SCd, cannot appear in the
Hamiltonian because of inversion symmetry. We must have

Hspin= L0 + L1ST
2 + L2sST

2d2 + . . . , s8d

where L0,L1,L2,… are real constants with dimensions of
energy. The constantL0 is an energy shift. The term propor-
tional to L1 gives rise to the familiar Heisenberg interaction.
Here we see that, in principle, higher-order interactions may
be present in the spin Hamiltonian, starting with a fourth-
order term proportional toL2. In this highly symmetric situ-

ation, the eigenstates of the spin Hamiltonian are clearly just
eigenstates ofST.

III. COMPUTATION OF THE SPIN HAMILTONIAN
PARAMETERS

To compute the values ofL0,L1,L2,… we consider an
eigenstateuCl of ST

2, with known eigenvalueSTsST+1d. If
there aren electrons in the system, we writeuCl= uCST

n l. To
proceed, one(i) computes the expectation value of the effec-
tive spin Hamiltonian(8) in this state,(ii ) computes the ex-
pectation value of the spatial Hamiltonian(3) in this state,
and then(iii ) equates the two expectation values

kCuHspinuCl = kCuHuCl. s9d

This procedure is repeated for all eigenvalues ofST
2, thus

generating a set of linear equations for the parameters
L0,L1,L2,…, in terms of matrix elements ofH between dif-
ferent orbital states. Forn electrons the number of distinct
eigenvalues ofST

2 is bn/2c+1 (wherebn/2c denotes the great-
est integer less thann/2), so this is the maximum number of
distinct energy eigenvalues of the Hamiltonian(8). Thus, the
coefficientsLm for 0øm, bn/2c+1 have enough degrees of
freedom to completely and uniquely specify the matrix(8);
without loss of generality, we can setLm=0 for mù bn/2c
+1. We are led tobn/2c+1 coupled linear equations for the
nonzeroLm parameters. In the case thatn is even,ST takes on
the integer values0,1,… ,n/2. In the case thatn is odd,ST
takes on the half-integer values1/2,3/2,… ,n/2. We have

kCST

n uHspinuCST

n l = o
m=0

bn/2c
LmfSTsST + 1dgm. s10d

Having completed step(i) of our program, we now turn to
step(ii ), the calculation ofkCST

n uHuCST

n l. We make this cal-
culation separately for the cases of two, three, and four elec-
trons.

A. Two-electron case

As a simple illustration of our procedure we rederive the
well-known result for two electrons: the exchange constant
equals the difference between the(degenerate) triplet states
and the singlet state. The spin singletsST=0d and spin triplet
sST=1d states have eigenvalues ofST

2 equal to 0 and 2, re-
spectively. Thus, the Hamiltonian(8) can only have two dis-
tinct eigenvalues, and we need to solveb2/2c+1=2equations
for L0 andL1. A convenientST=1 eigenstate is the normal-
ized state uCST=1

n=2 l;NuCs↑↑ dl=NsuABlu↑ ↑ l− uBAlu↑ ↑ ld
=NsuABl− uBAldu↑ ↑ l. The normalization constantN has the
value

N = skABuABl + kBAuBAl − kABuBAl − kBAuABld−1/2.

Inserting this state into Eq.(9) yields

kCST=1
n=2 uHspinuCST=1

n=2 l = kCST=1
n=2 uHuCST=1

n=2 l .

The spin Hamiltonian’s expectation value is immediately
found to beL0+2L1, as can be seen from Eq.(10). Expand-
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ing out the spatial Hamiltonian’s expectation value gives

L0 + 2L1

=
kABuHuABl + kBAuHuBAl − kABuHuBAl − kBAuHuABl

kABuABl + kBAuBAl − kABuBAl − kBAuABl
,

s11d

which can be evaluated once a choice of orbital states is
specified; we do this in Sec. IV. To compare with Eq.(2), we
note that this equation specifies the triplet energyet;L0
+2L1. A second equation is found from theST=0
state uCST=0

n=1 l=NfuCs↑↓ dl− uCs↓↑ dlg=NsuABl+ uBAldsu↑ ↓ l
− u↓ ↑ ld, which leads to

L0 =
kABuHuABl + kBAuHuBAl + kABuHuBAl + kBAuHuABl

kABuABl + kBAuBAl + kABuBAl + kBAuABl
,

s12d

giving the singlet energyes=L0. To exhibit the exchange
coupling explicitly, we rewrite the Hamiltonian as

Hspin= L0 + L1SA
2 + L1SB

2 + 2L1SA ·SB ; K + JSA ·SB,

s13d

where K=L0+s3/2dL1 and J=2L1. Expression(2) follows
when we note thatL1=set−esd /2.

B. Three-electron case

1. Heitler-London model

In the three-electron case, the possible values that the total
spin can take areST=1/2 (with two, two-dimensional
eigenspaces) or ST=3/2 (with a four-dimensional eigen-
space). We, therefore, again need to solveb3/2c+1=2
equations, and it is sufficient to keep only two constants
L0 and L1 in Hspin, setting L2 and the rest to zero.
As a convenient state with knownST=3/2 we take the
normalized stateuC3/2

3 l~ uCs↑↑ ↑ dl, so that the energy
is E3/2;kC3/2

3 uHspinuC3/2
3 l=L0+L1s3/2ds5/2d. We use

uC1/2
3 l~ fuCs↑↓ ↑ dl− uCs↓↑ ↑ dlg /Î2 as a normalized state

with known ST=1/2, for which the energy is E1/2
;kC1/2

3 uHspinuC1/2
3 l=L0+L1s1/2ds3/2d. Then equating ex-

pectation values of Hamiltonian(3) and Hamiltonian(8), i.e.,
requiringkCST

3 uHspinuCST

3 l=kCST

3 uHuCST

3 l for each of our states
ST=1/2 andST=3/2 as in Eq.(9), we can solve forL0 and
L1. To do so we need to obtain more explicit expressions for
kCST

3 uHuCST

3 l. We assume thatfAsr d, fBsr d, and fCsr d are
real and satisfykAuAl=kBuBl=kCuCl and kAuBl=kAuCl
=kBuCl (this is consistent with our original assumption of
rotational invariance, inversion invariance, and equilateral
triangle geometry). First, let us normalizeuC3/2

3 l

uC3/2
3 l = NfuABCl + uCABl + uBCAl − uBACl − uCBAl

− uACBlgu↑↑↑l,

where the normalization constantN is given by

N =
1

Î6sp3 + 2p0 − 3p1d
.

The quantitiesp3, p1, andp0 are given by

p3 = kABCuABCl,

which is an overlap integral when all three electrons retain
the same state in the bra and ket,

p1 = kBACuABCl = kCBAuABCl = kACBuABCl,

which is an overlap integral when one electron has the same
state in the bra and ket, and

p0 = kCABuABCl = kBCAuABCl,

which is an overlap integral when zero electrons have the
same state in the bra and ket — all three electrons change
their states. In evaluating the matrix elementkC3/2

3 uHuC3/2
3 l

we use the notation

e0 = kCABuHuABCl = kBCAuHuABCl,

e1 = kBACuHuABCl = kCBAuHuABCl = kACBuHuABCl,

e3 = kABCuHuABCl,

where the physical interpretation is thatek involves 3−k
electrons exchanging orbitals(Fig. 1).

Computing the expectation value ofH in the stateuC3/2
3 l

then leads to the result

E3/2 = L0 +
15

4
L1 =

e3 + 2e0 − 3e1

p3 + 2p0 − 3p1
. s14d

For the caseST=1/2, using uC1/2
3 l an analogous calcula-

tion yields

FIG. 1. Matrix elements relevant to three-electron case. Arrows
indicate transition from localized state on initial dot to localized
state on final dot.
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E1/2 = L0 +
3

4
L1 =

e3 − e0

p3 − p0
. s15d

These equations giveL0 andL1 in terms of thepi andei.
To compute the usual exchange coupling, it is useful to

rewrite Hspin as

Hspin= SL0 + L1 o
AøiøC

Si
2D + 2L1 o

Aøi, jøC

Si ·Sj

; K + JsSA ·SB + SA ·SC + SB ·SCd, s16d

where

K = L0 + 9
4L1, s17d

J = 2L1. s18d

Solving for the exchange constantJ=2L1 we find, finally,

J = 2
3sE3/2 − E1/2d.

A couple of comments are in order concerning this result.
First, the energiesE3/2,E1/2 can be calculated once the orbit-
als are specified, as we do in Sec. IV below. We see that,
similar to the two-electron case, the physical interpretation of
the exchange constant is that(up to a multiplicative factor) it
is given by the energy difference between theST=3/2 and
ST=1/2 states. Second, note from Eqs.(14) and(15) that the
value of the exchange constantJ is determined in part by the
“three-electron-exchange” terms of the formp0
=kCABuABCl and e0=kCABuHuABCl. It is apparent that
such terms involve a cooperative effect between all three
electrons and hence cannot be seen in two-electron calcula-
tions. It follows thatthe presence of the third electron quan-
titatively changes the exchange coupling between the other
two electrons.

2. Hund-Mülliken model

We have have been working within the HL approximation
in which there is one orbital per quantum dot occupied by a
single electron. To check its physical validity, we make
three-electron computations within the HM approximation as
well, in which double occupation of quantum dots is permit-
ted. This leads to a total of 8+12=20 basis states in the
three-spin case(23=8 from the HL basis and 33232=12
double-occupation states). In the HL approximation, the
eight states divide into a degenerate four-dimensionalS
=3/2 subspace with energyE3/2 and a degenerate four-
dimensionalS=1/2 subspace with energyE1/2. In the HM
case, the degenerate four-dimensionalS=3/2 subspace is un-
affected by the double-occupation states, which must all
haveS=1/2; theenergy of these fourS=3/2 states remains
E3/2. (The S=3/2,Sz=3/2 state has three spin-up electrons
and so the Hamiltonian cannot mix it with any other state.
Since the otherS=3/2 states are related by a rotation gener-
ated by the total spin operator, which commutes with the
Hamiltonian, they must be eigenstates of the Hamiltonian
with the same energy.) The 12 double-occupation states en-
large theS=1/2 subspace, which becomes 16-dimensional
and has a nontrivial spectrum.

In the HM case, the decomposition(7) is no longer mean-
ingful because the basis states do not necessarily have one
spin per quantum dot. This complicates the computation of
the eigenspectrum of this 16-dimensional space. First, we
note that the projectionSz (the number of spin-up electrons)
is still a good quantum number because the Hamiltonian(3)
cannot mix two states with different numbers of spin-up
electrons. The 16-dimensional subspace, therefore, splits into
two degenerate eight-dimensionalSz= ±1/2 subspaces. The
Sz=1/2 subspace consists of two HL states and six double-
occupation states analogous to(5)

uC1/2
3 l ~

1
Î2

suCs↑↓↑dl − uCs↓↑↑dld,

uF1/2
3 l ~

2
Î6

uCs↑↑↓dl − 1
Î6

suCs↑↓↑dl + uCs↓↑↑dld,

uCAABs↑↓↑dl ~ aA↑
† aA↓

† aB↑
† uvacl,uCAACs↑↓↑dl,uCBBAs↑↓↑dl,

uCBBCs↑↓↑dl,uCCCAs↑↓↑dl,uCCCBs↑↓↑dl. s19d

One can construct the 838 Hamiltonian in this subspace and
diagonalize it. The eigenstates exhibit degeneracies arising
from the symmetry of the Hamiltonian under the exchange of
a pair of dots. Assuming that our dots are all equivalent,
there are three dot-pair exchange operators that commute
with the Hamiltonian:EA,B that exchanges dotsA,B; EB,C
that exchanges dotsB,C; andEC,A that exchanges dotsC,A.
For instance,EA,BuCAACs↑↓ ↑ dl= uCBBCs↑↓ ↑ dl. We can re-
quire that the eigenstates of the Hamiltonian also be eigen-
states ofEA,B or EB,C or EC,A. Using our eight states(19), it is
possible to construct two linearly independent states that are
simultaneous eigenstates of all three exchange operators. The
two (unnormalized) eigenstates are

suCAABs↑↓↑dl + uCAACs↑↓↑dl + uCBBAs↑↓↑dl + uCBBCs↑↓↑dl

+ uCCCAs↑↓↑dl + uCCCBs↑↓↑dld

and

suCAABs↑↓↑dl − uCAACs↑↓↑dl − uCBBAs↑↓↑dl + uCBBCs↑↓↑dl

+ uCCCAs↑↓↑dl − uCCCBs↑↓↑dld,

with eigenvalue +1 and −1, respectively. Each such state
turns out to be an eigenstate of the Hamiltonian with its own
nondegenerate energy. The remaining six members of the
eight-dimensional subspace are not simultaneous eigenstates
of all three exchange operators:EA,B and EB,C and EC,A. To
ensure that we can nevertheless choose the eigenstates of the
Hamiltonian to be simultaneous eigenstates ofEA,B or EB,C or
EC,A, the energy eigenstates occur in degenerate pairs that
can be superposed as desired to form eigenstates of the ex-
change operators. When the parameters of the spatial Hamil-
tonian (3) make double occupation energetically expensive,
one of the degenerate pairs will be low in energy and will
consist mainly of the HL statesuC1/2

3 l anduF1/2
3 l. In this way,

the HM calculation reduces to the HL result plus high-energy
double-occupation states, and(16) still describes the low-
energy spin dynamics.
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3. Unequal Coupling

We emphasize that Eq.(16) was derived assuming rota-
tion, inversion, and exchange symmetry. Exchange symme-
try, in particular, is broken whenever there is unequal cou-
pling between dots, and then the Hamiltonian can involve
more constants. This situation is realized when the dots are
not all equidistant or when they have been shifted electri-
cally, as in the case of dots defined by electrodes creating
confinement potentials,38 or when there are unequal tunnel-
ing barriers between different dots.14 For instance, in the case
of three unequally coupled dots, the Hamiltonian will have
the form

Hspin= K + JABSA ·SB + JBCSB ·SC + JACSA ·SC

if we still assume rotation and inversion invariance.(An ex-
ternal magnetic field, which has been shown to be instrumen-
tal in changing the sign ofJ in the case of two dots,14,16

could lead to a very different Hamiltonian. It would break
rotation symmetry, introducing operators intoHspin, such as
ST

z.) This three electron Hamiltonian commutes with the
z-component of the total spin operatorST, so they can be
simultaneously diagonalized. The stateuCs↓↓ ↓ dl has ST

z

=−3
2 and energy eigenvalueK+sJAB+JBC+JACd /4. It is

found to be degenerate withsuCs↓↓ ↑ dl+ uCs↓↑ ↓ dl
+ uCs↑↓ ↓ dld /Î3, a state withST

z =−1
2. There are two remain-

ing ST
z =−1

2 eigenvectors, which have the(unnormalized)
forms

SJBC − JAB + J̃

JAB − JAC
uCs↓↓↑dl +

JBC − JAC + J̃

JAB − JAC
uCs↓↑↓dl

+ uCs↑↓↓dlD ,

SJAB − JBC + J̃

JAC − JAB
uCs↓↓↑dl +

JAC − JBC + J̃

JAB − JAC
uCs↓↑↓dl

+ uCs↑↓↓dlD
and have energiesa+ J̃,a− J̃ respectively, wherea;−3sJAB

+JBC+JACd /2 and J̃;sJAB
2 +JBC

2 +JAC
2 −JACJBC−JABJAC

−JABJBCd1/2. The remaining four energy eigenvectors, with
ST

z = 3
2 and ST

z = 1
2, can be obtained from these four by inver-

sion. From these results it is possible to derive equations
analogous to(14)–(18) in the case whenJAB, JBC, and JAC
are not equal.

C. Four-electron case

In the case of four electrons, the effective Hamiltonian
again takes the form(8). Since four electrons can haveST
=0, ST=1, orST=2, we must keep three constantsL0, L1, and
L2 in Hspin. It follows immediately thatHspin includes terms
of the form L2sSA·SBdsSC·SDd and permutations. UnlessL2

happens to vanish,the presence of a fourth electron intro-
duces a qualitatively different four-body interaction as well

as a quantitative change in the exchange coupling between
the other electrons.

We now calculateL0, L1, andL2 just as we calculatedL0
andL1 for three particles. Let us define

p0 = kBADCuABCDl, e0 = kBADCuHuABCDl,

p08 = kDABCuABCDl, e08 = kDABCuHuABCDl,

p1 = kADBCuABCDl, e1 = kADBCuHuABCDl,

p2 = kBACDuABCDl, e2 = kBACDuHuABCDl,

p4 = kABCDuABCDl, e4 = kABCDuHuABCDl,

where the subscript indicates how many electrons retain the
same state in the bra and the ket, just as in the three-electron
case. The termse0 and e08 involve four-body effects:e0 in-
volves two pairs of electrons exchanging orbitals ande08 in-
volves all four electrons exchanging orbitals cyclically(Fig.
2).

A convenient state to use forST=0 is uC0
4l

=NsuCs↑↓ ↑ ↓ dl− uCs↑↓ ↓ ↑ dl− uCs↓↑ ↑ ↓ dl+ uCs↓↑ ↓ ↑ dld,
keeping in mind the definition(6). After normalization, this
state yields the singlet energy

E0 = L0 =
e4 − 4e1 + 3e0

p4 − 4p1 + 3p0
. s20d

A convenient state to use forST=1 is uC1
4l=NfuCs↑↓ ↑ ↓ dl

+ uCs↑↓ ↓ ↑ dl− uCs↓↑ ↑ ↓ dl− uCs↓↑ ↓ ↑ dlg. This state, after
normalization, yields the triplet energy

E1 = L0 + 2L1 + 4L2 =
e4 − 2e2 − e0 + 2e08

p4 − 2p2 − p0 + 2p08
. s21d

Finally, a convenient state to use forST=2 is uCs↑↑ ↑ ↑ dl.
We find for the quintet energy

E2 = L0 + 6L1 + 36L2 =
e4 − 6e2 + 8e1 + 3e0 − 6e08

p4 − 6p2 + 8p1 + 3p0 − 6p08
.

s22d

Solving, we have

L0 = E0,

FIG. 2. Selected matrix elements relevant to four-electron case.
Arrows indicate transition from localized state on initial dot to lo-
calized state on final dot.
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L1 = −
1

12
sE2 − 9E1 + 8E0d,

L2 =
1

24
sE2 − 3E1 + 2E0d.

We would like to exhibit interaction constants explicitly
in the spin Hamiltonian. We haveST=oi=A

D Si, so that

ST
2 = 3I + 2o

i, j

Si ·Sj ,

while

sST
2d2 = S3I + o

AøiÞ jøD

Si ·SjD2

= 9I + 6o
iÞ j

Si ·Sj + o
iÞ j

Si ·Sjo
kÞl

Sk ·Sl ,

and it can be shown that

o
iÞ j

Si ·Sjo
kÞl

Sk ·Sl = o
iÞ jÞkÞl

sSi ·SjdsSk ·Sld

+ 4 o
iÞ jÞl

sSi ·SjdsSj ·Sld

+ 2o
iÞ j

sSi ·SjdsSi ·Sjd

= o
iÞ jÞkÞl

sSi ·SjdsSk ·Sld + 4S1

2o
iÞ j

Si ·SjD
+ 2S9

4
−

1

2o
iÞ j

Si ·SjD .

We are led to

sST
2d2 =

27

2
+ 7o

iÞ j

Si ·Sj + o
iÞ jÞkÞl

sSi ·SjdsSk ·Sld.

The spin Hamiltonian can now be written as follows:

Hspin= K + Jo
i, j

Si ·Sj + J8fsSA ·SBdsSC ·SDd

+ sSA ·SCdsSB ·SDd + sSA ·SDdsSB ·SCdg,

where

K = L0 + 3L1 +
27L2

2
=

− 2E0 + 9E1 + 5E2

16
, s23d

J = 2L1 + 14L2 =
− 2E0 − 3E1 + 10E2

12
, s24d

J8 = 8L2 =
− 2E0 − 3E1 + E2

3
. s25d

Generically,J8 does not vanish, and four-body interactions
arise. The physical interpretation of the exchange constants
as simple energy differences between different spin multip-
lets is now lost; we find energy differences with numerical
coefficients that are not intuitively obvious.

Of central physical importance to us is the relative sizes
of the coefficientsJ andJ8. This is studied in Sec. IV, where
a HL calculation suggests thatJ8 is substantial in comparison
to J in physically important regions of parameter space. We
also find that both coefficients are affected by three-body
sp1,e1d and four-body exchangessp0,p08 ,e0,e08d.

In the general case of 2n electrons, two-body, four-
body,…, 2n-body interaction terms appear in the Hamil-
tonian. Computing the strengths of the interactions for larger
n is a topic of interest, but we do not address it here. One
expects the strengths of the terms to decrease with the num-
ber of bodies involved.

IV. MODEL POTENTIAL CALCULATIONS

To compute the values of theLi, we select the following
specific form for the one-body potential in(3):

Vsr d =
1

2s2ld6mvo
2ur − A u2ur − Bu2ur − Cu2ur − Du2. s26d

This potential has a quadratic minimum at each of the verti-
ces of an equilateral tetrahedronA =s0,0,0d, B

=s2lÎ1/3 ,0,−2lÎ2/3d, C=s−lÎ1/3 ,l ,−2lÎ2/3d, and

D=s−lÎ1/3 ,−l ,−2lÎ2/3d. The distance between vertices
is 2l. We select a potential with four minima so that it can be
used in the four-electron case without modification. This fa-
cilitates comparison between the two-, three-, and four-
electron cases, and the extra minima do not influence the
two- and three-electron cases in any significant way.

At vertex A, we define the localized Gaussian state as
follows:

fAsr d ; kr uAl ; Smvo

p"
D3/4

expS−
mvo

2"
ur − A u2D ,

which is the ground state of the quadratic minimum at that
vertex. We define localized states similarly for the other ver-
tices.

The following one-body Hamiltonian matrix elements are
needed to evaluate the coupling constants inHspin:

kAuAl = 1,

kAuhuAl = kAu
P2

2m
+

1

2
mvo

2ur − A u2uAl

+ kAuVsr d −
1

2
mvo

2ur − A u2uAl

= "voF3

2
+

15

2048
s63xb

−3 + 280xb
−2 + 320xb

−1dG ,

kAuBl = e−xb,

kAuhuBl = "voF3

2
e−xb +

1

2048
s945xb

−3 + 1680xb
−2 + 936xb

−1

− 1216 − 880xbde−xbG . s27d
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In these equations, we have added and subtracted a
harmonic-oscillator potential from the one-body Hamiltonian
h for ease of calculation. The dimensionless tunneling pa-
rameterxb is the square of the ratio of the interdot distance 2l
to the characteristic harmonic-oscillator width 2Î" / smvod

xb ; mvol
2/",

and which is also the ratio of the tunneling energy barrier
mvo

2l2/2 to the harmonic-oscillator ground-state energy
"vo/2.

Matrix elements of the Coulomb interaction are given by

kFGuwuUVl = "voF2xc
Îxb

2Î2

uf + u − g − vu
e−s1/4dsuf − uu2+ug − vu2d

3erfS uf + u − g − vu

2Î2
DG ,

uf + u − g − vu Þ 0 s28d

kFGuwuUVl = "voF 4
Îp

xc
Îxbe

−s1/4dsuf − uu2+ug − vu2dG ,

uf + u − g − vu = 0. s29d

In these equations, the dimensionless parameterxc is the ra-
tio of the Coulomb energye2/ sk2ld to the harmonic oscilla-
tor ground state energy"vo/2

xc ; e2/skl"vod.

The symbolsF ,G, U, and V take values from the set
hA,B,C,Dj. The lowercase vectors are defined byf
;Îmvo/"F=Îxb/ lF, etc. The symbol erfsxd
=s2/Îp de0

xe−s2
ds denotes the error function.

A. Two electrons

In the case of two electrons, we assume that two of the
potential minima of(26) are occupied; there is an electron at

A =s0,0,0d and an electron atB=s2lÎ1/3 ,0,−2lÎ2/3d. In
order to computeL0 and L1 from Eqs. (11) and (12), we
require only the matrix elementskABuHuABl=2kAuhuAl
+kABuwuABl, kABuHuBAl=2kAuhuBlkAuBl+kABuwuBAl,
kABuABl=1, andkABuBAl=kAuBl2. (We have simplified us-
ing the fact thatkAuhuAl=kBuhuBl and using the fact that the
wave functions are real.) Once L0 and L1 have been com-
puted, it is straightforward to obtainK=L0+s3/2dL1 and J
=2L1.

A plot of the energy shiftK as a function ofxb (the tun-
neling energy) andxc (the Coulomb energy) is shown in Fig.
3 in units of "vo. Following Ref. 8, we estimate realistic
values forxb andxc by considering the case of GaAs hetero-
structure single dots. An estimated value forxb is xb
;mvo

2l2/ s"vod<1, since the harmonic oscillator
width 2Î" / smvod should be approximately equal to the dis-
tance between dots 2l in a quantum computer. The parameter
xc;e2/ skl"vod<1.5 taking k=13.1, "vo=3 meV andxb

<1. Note that the energyK increases when the one-electron
tunneling barrier energy decreases and the Coulomb-
interaction energy increases(i.e., for smallxb and largexc).

In Fig. 4, we plot the exchange-interaction constantJ as a
function of xb and xc. The plot generally indicates thatJ
increases as the tunneling barrier decreases(xb smaller)—an
intuitively reasonable result. Although it is outside the re-
gime of physical interest depicted in the plot, when the Cou-
lomb interaction is extraordinarily strong,xc→ ,15, J de-
velops a negative minimum atxb,1.5. The reason is that the
ST=3/2 state has a totally antisymmetric spatial wave func-
tion, while the ST=1/2 state does not. The antisymmetry
tends to reduce the Coulomb-repulsion energy between elec-
trons while increasing the one-electron tunneling energy.
When parameters are tuned to make the Coulomb repulsion
important, the energy of theST=3/2 state dips down, even-
tually decreasing below the energy of theST=1/2 state. This
leads toJ,0. The negative value ofJ signals the breakdown
of the HL approximation in this region. The exact two-
electron ground state is known39 to haveST=1/2,while J,0
would imply anST=3/2 ground state. The HL representation
of theST=1/2 state is simply too rigid to represent the exact
ground state when interactions are extremely strong. The in-
flexibility of the HL wave functions should be kept in mind
when there are extremely strong interactions in the three-
electron and four-electron cases, as well. Fortunately, in our
region of physical interest,xb<1, xc<1.5, HL results should
be meaningful. Even then, however, it should be kept in
mind that the barrier between minima of the potential(26) is

FIG. 3. Plot ofK as a function of dimensionless tunneling bar-
rier xb and Coulomb energyxc in the case of two interacting
electrons.

FIG. 4. Plot ofJ as a function ofxb andxc in the case of two
interacting electrons.
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shallow, and so the calculation will become increasingly in-
accurate as the minima get close together. Alternative nu-
merical methods can be found, e.g., in Refs. 14–17.

B. Three electrons

In the case of three electrons we assume three of the po-
tential minima in Eq. (26) are occupied at, say,A
=s0,0,0d, B=s2lÎ1/3 ,0,−2lÎ2/3d, and C=s−lÎ1/3 ,l ,

−2lÎ2/3d. The electrons are therefore arranged at the cor-
ners of an equilateral triangle, and the minimum atD is
unoccupied. To solve Eqs.(14) and(15), we need to evaluate
three-body matrix elements. Details are given in Appendix
B.

A plot of the energy shiftK as a function ofxb (the tun-
neling energy) andxc (the Coulomb energy) is shown in Fig.
5 in units of"vo. The plot’s shape is quite similar to that of
Fig. 3. Figure 6 displays the changeDK given by subtracting
from K the value thatK would take if the three-electron swap
matrix elementse0=kCABuHuABCl and p0=kCABuABCl
were zero. The axis directions are reversed in this plot to
make its shape easier to inspect. The figure shows thatDK is
most important when the one-electron tunneling barrier en-
ergy and the Coulomb-interaction energy are small in mag-
nitude (small xb and smallxc).

In Fig. 7, we plot the exchange-interaction constantJ as a
function of xb andxc. A similar figure appeared previously22

with an erroneous scale on thexc axis. (On the four plots

appearing in Ref. 22, the ticks on thexc axis ran from 1 to 5,
but the plots actually depicted the range 2Î2,xc,10Î2; the
correct figures appearing here do not change the conclusions
of that work.) Figure 7 shows a physically reasonable param-
eter range in which the qualitative appearance ofJ is similar
to that of the two-electron case, Fig. 4.

Figure 8 shows the changeDJ given by subtracting from
J the value thatJ would take if the three-electron swap ma-
trix elementse0 and p0 were zero(note that the axis direc-
tions are flipped to make the plot clearer). Comparing the
scales of Figs. 7 and 8, one finds that the three-electron swap
matrix elements can have a powerful influence onJ.

To complement our HL results, we have computed the
HM spectrum. For reasonable parameter valuessxb=1.0,xc

=1.5d, we have found that the lowest four states of the 16-
dimensionalS=1/2 subspace are degenerate and have an
energy(that we callE1/2,HM) that is well separated from that
of the remaining 12 states withS=1/2.These four states are
similar in composition to the four members of the HLS
=1/2 subspace. The remaining 12 states of the HMS=1/2
subspace consist mainly of states with two electrons on a
single dot. The fourS=3/2 states have an energy that isin
between E1/2,HM and the energy of the higher-lyingS=1/2
states. We thus have a situation that is analogous to the one
we encountered in the HL case. It is reasonable to project out

FIG. 5. Plot ofK as a function ofxb andxc in the case of three
mutually interacting electrons.

FIG. 6. Plot ofDK as a function ofxb andxc in the case of three
mutually interacting electrons. Axis directions are reversed from the
preceding figure.

FIG. 7. Plot ofJ as a function ofxb andxc in the case of three
mutually interacting electrons.

FIG. 8. Plot ofDJ as a function ofxb andxc in the case of three
mutually interacting electrons. Axis directions are reversed from the
preceding figure.
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the eight low-energy states of the HM calculation and com-
pare with the HL calculation. Figures 9 and 10 show the
values ofK and J for an effective Hamiltonian of the form
(16) that gives this eight-dimensional low-energy subspace’s
spectrum. These figures should be compared to Figs. 5 and 7.

For reasonable parameter values(again,xb=1.0,xc=1.5),
we find in the HL approximation thatJ=2.2 for two particles
(in units of "vo), J=1.5 for three particles, indicating a
change of −32 %(or an absolute change of −0.7). In the HM
approximation,J=3.2 for two particles andJ=2.4 for three
particles, indicating a change of −25 %(or an absolute
change of −0.8). Thus, the same effect is seen. The absolute
value ofJ is larger in the HM case(this is expected since the
basis has increased, leading to a decrease in the ground state
energyE1/2 while E3/2 stays constant), but the qualitative HL
conclusions are well substantiated.

C. Four electrons

The actual calculation for the four-electron case is more
involved than that of the three-electron case but identical in
procedure. Details are given in Appendix C. The resulting
quantitiesK andDK appear as functions ofxb andxc in Figs.
11 and 12, respectively. Here,DK is the value ofK minus the
value of K obtained by setting to zero both three-body
sp1,e1d and also four-bodysp0,p08 ,e0,e08d matrix elements.

The behavior of the exchange-interaction constantJ as a
function ofxb andxc (Fig. 13) is similar to that of the three-
electron case(Fig. 7). The appearance ofDJ (Fig. 14, given
by subtracting fromJ the value thatJ would take if the
three-body and four-body matrix elements were zero) is also
reminiscent ofDJ in the three-electron case(Fig. 8). On the
other hand,J8 (Fig. 15) exhibits different behavior whileDJ8
(Fig. 16) is qualitatively similar in form toDJ from the three-
electron case.

The interaction constantJ8 can be quite significant com-
pared toJ, which is remarkable and requires attention in
quantum computer design. In fact, at the pointxb=1, xc
=1.5, our calculation yieldsJ=0.93 andJ8=−0.15 soJ8 /J
=−16 %, implying substantial four-body interactions. We
caution, though, that these values were obtained within a HL
approximation that will become inaccurate asxb decreases
and the minima of(26) get closer together. Our intention is
to highlight the possible significance of the four-body terms.
Such terms have been observed experimentally in3He (Ref.
40), and Cu4O4 square plaquettes in La2CuO4 (Ref. 41),
whereJ8 /J was found to be,27 %.

V. CONCLUSIONS

The exchange interaction between localized electrons is a
basic phenomenon of condensed-matter physics, with a his-
tory that dates back to Heisenberg’s pioneering work.1 The
details of its behavior are of great significance to quantum

FIG. 9. Plot ofK as a function ofxb andxc in the case of three
mutually interacting electrons, computed within the HM
approximation.

FIG. 10. Plot ofJ as a function ofxb andxc in the case of three
mutually interacting electrons, computed within the HM
approximation.

FIG. 11. Plot ofK as a function ofxb andxc in the case of four
mutually interacting electrons.

FIG. 12. Plot ofDK as a function ofxb andxc in the case of four
mutually interacting electrons. Axis directions are reversed from the
preceding figure.
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information processing using quantum dots. Here we have
considered the effects that arise when three or more elec-
trons, each localized in a low-energy orbital on a quantum
dot, are simultaneously coupled. We have shown that both
quantitative and qualitative effects arise, due to many-body
terms, that modify the standard form of the Heisenberg ex-
change interaction. Most significantly, in the case of four
coupled electrons, there is a four-body interaction that is
added to the Heisenberg exchange interaction, and our HL
calculations suggest that it could be strong in physically rel-
evant parameter regimes. This possibility needs to be consid-
ered in electron-spin-based quantum computer design be-
cause, on the one hand, of the problems it could produce
when its presence is unwelcome and, on the other hand, be-
cause of its potential uses in novel designs. In other designs
as well, the possibility should be considered that many-qubit
terms could arise in the effective qubit Hamiltonian.

Note added in proof: A recent paper42 has quantitatively
verified an effect alluded to above in Eq.(8). This paper
demonstrates that the application of a magnetic field breaks
the inversion symmetry of the system, allowing chiral terms
of the formSA·sSB3SCd to arise in the Hamiltonian.
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APPENDIX A: PERTURBATIVE APPROACH TO
HEISENBERG EXCHANGE

Here we summarize the perturbative approach to deriving
corrections to the Heisenberg exchange interaction. See, e.g.,
Refs. 7, 26, and 27 for more details.

After second quantization of the Coulomb interaction
Hamiltonian(3), one arrives at the result

H = o
i,s

«inis + o
i, j

o
s

tijais
†ajs + Uo

i

nisni,−s

− o
i, j

o
s,s8

Jijais
†ais8ajs8

† ajs,

whereais
† creates an electron with spins in the ith Wannier

orbital fsr −r id, nis=ais
†ais is the number operator,

tij =E f*sr − r idhsr dfsr − r jddr

is the hopping energy fori Þ j , «i ; tii is the energy of the
electron in theith orbital,

FIG. 13. Plot ofJ as a function ofxb andxc in the case of four
mutually interacting electrons.

FIG. 14. Plot ofDJ as a function ofxb andxc in the case of four
mutually interacting electrons. Axis directions are reversed from the
preceding figure.

FIG. 15. Plot ofJ8 as a function ofxb andxc in the case of four
mutually interacting electrons.

FIG. 16. Plot ofDJ8 as a function ofxb andxc in the case of four
mutually interacting electrons. Axis directions are reversed from the
preceding figure.

EXCHANGE INTERACTION BETWEEN THREE AND FOUR… PHYSICAL REVIEW B 70, 115310(2004)

115310-11



U =
1

2
e2E ufsr du2ufsr 8du2

ur − r 8u
drdr 8

is the on-site interaction energy, and

Jij = e2E f*sr − r idfsr − r jdf*sr 8 − r jdfsr 8 − r id
ur − r 8u

drdr 8 ù 0

is the customary direct exchange integral(ferromagnetic).
One now assumesU@«i ,tij ,Jij to ensure that all orbitals

are singly occupied. One then evaluatesH in the HL basis

us1,s2,…,snl = a1s1

† a2s2

†
¯ ansn

† uvacl

in which states differ one from the other only in the distri-
bution of spinssi in the orbitalsi. The evaluation is facili-
tated by noting that the operators

Si
a ;

1

2o
s,s8

ais
†ss,s8

a ais8

are the component of spin-half operators, wheress,s8
a are the

matrix elements of the Pauli matricessa=x,y,zd. This al-
lows one to rewrite the exchange term as

o
s,s8

Jijais
†ais8ajs8

† ajs = 2JijSi ·Sj + const,

which is the familiar Heisenberg exchange Hamiltonian.
The contribution of the hopping term toH can be ne-

glected in the limittij /U→0. However, whentij /U!1 but
nonvanishing, it can be shown,7 using standard perturbation
theory in powers of 1/U, that the effective hopping Hamil-
tonian in the HL basis takes the form

Heff = −
Hh

2

U
+

Hh
3

U2 +
Hh

4

U3 + …,

where Hh=oi, jostijais
†ajs is the original hopping Hamil-

tonian, which vanishes in the HL basis. The first-order cor-
rection −Hh

2/U gives rise to a term of the
form s1/Udoi, jutij u2Si ·Sj +const, which quantitatively modi-
fies (with opposite sign, i.e., antiferromagnetically) the
Heisenberg Hamiltonian.6 However, it is clear that higher-
order terms can contribute multispin terms of the form we
have considered in this paper. It can be shown26 that all odd
orders vanish, in agreement with our general symmetry ar-
gument of Sec. II. The termHh

4/U3 then gives rise to four-
spin interactions of the formsSi ·SjdsSk·Sld, proportional to
tij t jktkltli /U

3, with i , j , l, i ,k, kÞ j , l.26 This can be inter-
preted diagramatically as a cycle in which the electrons in-
terchange dots in the orderi → l →k→ j → i. Thus, perturba-
tion theory shows that whent4/U3 is significant, the four-
spin interaction cannot be neglected.

APPENDIX B: DETAILS OF CALCULATIONS FOR
THREE ELECTRONS

The Hamiltonian(3) contains three one-body termsh and
three Coulomb-interaction termsw, and the contribution of
each term is given in Eqs.(27)–(29). These contributions

determine the parametersp3,p1,p0,e3,e1, ande0 that appear
in Eqs.(14) and (15)

e3 = kAuhuAl + kBuhuBl + kCuhuCl + kABuwuABl + kACuwuACl

+ kBCuwuBCl,

e1 = kBuhuAlkAuBl + kAuhuBlkBuAl + kCuhuCl + kBAuwuABl

+ kBCuwuAClkAuBl + kACuwuBClkBuAl,

e0 = kCuhuAlkAuBlkBuCl + kAuhuBlkCuAlkBuCl + kBuhuClkCuAl

3kAuBl + kCAuwuABlkBuCl + kCBuwuAClkAuBl

+ kABuwuBClkCuAl,

and

p3 = 1,

p1 = kAuBlkBuAl,

p0 = kCuAlkAuBlkBuCl.

We apply the symmetries of an equilateral triangle,
kBuAl=kCuAl=kBuCl, kBuhuAl=kCuhuAl=kBuhuCl, kAuhuAl
=kBuhuBl=kCuhuCl to get the matrix elements not explicitly
listed in Eqs.(27)–(29). All matrix elements are functions of
"vo,xb, and xc, so L0 and L1 obtained from Eqs.(14) and
(15), and K and J obtained from Eqs.(17) and (18), are
functions of"vo,xb, andxc as well.

APPENDIX C: DETAILS OF CALCULATIONS FOR FOUR
ELECTRONS

Here, there is an electron in a Gaussian orbital at each of
the four potential minima of(26). We use the analytical ex-
pressions(27)–(29) to evaluate the many-body matrix ele-
ments that appear in Eqs.(20)–(22). The Hamiltonian(3)
contains four one-body termsh and six Coulomb-interaction
termsw. Taking them all into account, we have

e4 = kAuhuAl + kBuhuBl + kCuhuCl + kDuhuDl + kABuwuABl

+ kACuwuACl + kADuwuADl + kBCuwuBCl + kBDuwuBDl

+ kCDuwuCDl,

e2 = kBuhuAlkAuBl + kAuhuBlkBuAl + kCuhuClkBuAlkAuBl

+ kDuhuDlkBuAlkAuBl + kBAuwuABl + kBCuwuAClkAuBl

+ kBDuwuADlkAuBl + kACuwuBClkBuAl + kADuwuBDl

3kBuAl + kCDuwuCDlkBuAlkAuBl,

e1 = kAuhuAlkDuBlkBuClkCuDl + kDuhuBlkBuClkCuDl + kBuhuCl

3kDuBlkCuDl + kCuhuDlkDuBlkBuCl + kADuwuABlkBuCl

3kCuDl + kABuwuAClkDuBlkCuDl + kACuwuADlkDuBl

3kBuCl + kDBuwuBClkCuDl + kDCuwuBDlkBuCl

+ kBCuwuCDlkDuBl,
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e0 = kBuhuAlkAuBlkDuClkCuDl + kAuhuBlkBuAlkDuClkCuDl

+ kDuhuClkBuAlkAuBlkCuDl + kCuhuDlkBuAlkAuBlkDuCl

+ kBAuwuABlkDuClkCuDl + kBDuwuAClkAuBlkCuDl

+ kBCuwuADlkAuBlkDuCl + kADuwuBClkBuAlkCuDl

+ kACuwuBDlkBuAlkDuCl + kDCuwuCDlkBuAlkAuBl,

e08 = kDuhuAlkAuBlkBuClkCuDl + kAuhuBlkDuAlkBuClkCuDl

+ kBuhuClkDuAlkAuBlkCuDl + kCuhuDlkDuAlkAuBlkBuCl

+ kDAuwuABlkBuClkCuDl + kDBuwuAClkAuBlkCuDl

+ kDCuwuADlkAuBlkBuCl + kABuwuBClkDuAlkCuDl

+ kACuwuBDlkDuAlkBuCl + kBCuwuCDlkDuAlkAuBl.

The overlap matrix elements are simpler

p4 = 1,

p2 = kBuAlkAuBl,

p1 = kDuBlkBuClkCuDl,

p0 = kBuAlkAuBlkDuClkCuDl,

p08 = kDuAlkAuBlkBuClkCuDl.

Analytical forms are then available for all of the matrix ele-
ments ofH and all the overlap matrix elements using expres-
sions(27)–(29) and using the tetrahedron symmetries

kBuAl = kCuAl = kDuAl = kBuCl = kBuDl = kCuDl,

kBuhuAl = kCuhuAl = kDuhuAl = kBuhuCl = kBuhuDl = kCuhuDl,

kAuhuAl = kBuhuBl = kCuhuCl = kDuhuDl.

With all of the matrix elements ofH and the overlap
matrix elements in hand, we evaluateK, J, andJ8 by solving
Eqs.(20)–(25).

1W. Heisenberg, Z. Physik49, 619 (1928).
2P. A. M. Dirac, Proc. R. Soc. London, Ser. A123, 714 (1929).
3J. V. Vleck,Theory of Electric and Magnetic Susceptibilities(Ox-

ford University Press, London/Clarendon, London, 1932).
4C. Herring, Rev. Mod. Phys.34, 631 (1962).
5P. W. Anderson, inSolid State Physics, edited by F. Seitz and D.

Turnbull (Academic Press, New York, 1963), Vol. 14, Chap. 2,
p. 99.

6P. W. Anderson,Concepts in Solids(Benjamin, New York, 1963).
7W. Jones and N. March,Theoretical Solid State Physics(Dover,

New York, 1985), Vol. 1.
8D. Loss and D. P. DiVincenzo, Phys. Rev. A57, 120 (1998).
9D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley, Phys. Rev.

Lett. 85, 1758(2000).
10J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, Phys. Rev.

A 63, 042307(2001).
11D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B.

Whaley, Nature(London) 408, 339 (2000).
12D. A. Lidar and L.-A. Wu, Phys. Rev. Lett.88, 017905(2002).
13D. Bacon, J. Kempe, D. P. DiVincenzo, D. A. Lidar, and K. B.

Whaley, inProceedings of the 1st International Conference on
Experimental Implementations of Quantum Computation, Syd-
ney, Australia, edited by R. Clark(Rinton, Princeton, NJ, 2001),
p. 257; quant-ph/0102140.

14G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B59,
2070 (1999).

15G. Burkard, H.-A. Engel, and D. Loss, Fortschr. Phys.48, 965
(2000).

16X. Hu and S. Das Sarma, Phys. Rev. A61, 062301(2000).
17X. Hu and S. Das Sarma, Phys. Rev. A64, 042312(2001).
18J. Levy, Phys. Rev. A64, 052306(2001).
19J. Schliemann, D. Loss, and A. H. MacDonald, Phys. Rev. B63,

085311(2001).
20K. V. Kavokin, Phys. Rev. B64, 075305(2001).
21S. D. Barrett and C. H. W. Barnes, Phys. Rev. B66, 125318

(2002).

22A. Mizel and D. A. Lidar, Phys. Rev. Lett.92, 077903(2004).
23C. Yonnouleas and U. Landman, Int. J. Quantum Chem.90, 699

(2002).
24I. Dzyaloshinski, J. Phys. Chem. Solids4, 241 (1958).
25T. Moriya, Phys. Rev.120, 91 (1960).
26M. Takahashi, J. Phys. C10, 1289(1977).
27A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Phys. Rev. B

37, 9753(1988).
28D. Bacon, K. R. Brown, K. B. Whaley, Phys. Rev. Lett.87,

247902(2001).
29E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and

D. Preda, Science292, 472 (2001).
30P. W. Shor, inProceedings of the 37th Symposium on Founda-

tions of Computing(IEEE Computer Society Press, Los Alami-
tos, CA, 1996), p. 56; quant-ph/9605011.

31D. Gottesman, Phys. Rev. A57, 127 (1997).
32J. Preskill, Proc. R. Soc. London, Ser. A454, 385 (1998).
33A. M. Steane, Nature(London) 399, 124 (1999).
34D. A. Lidar, D. Bacon, J. Kempe, and K. B. Whaley, Phys. Rev.

A 63, 022307(2001).
35R. Raussendorf and H. J. Briegel, Phys. Rev. Lett.86, 5188

(2001).
36M. H. Freedman, quant-ph/0110060.
37W. Heitler and F. London, Z. Physik44, 455 (1927).
38L. Jacak, P. Hawrylak, and A. Wójs,Quantum Dots(Springer-

Verlag, Berlin, 1998).
39D. C. Mattis, in The Theory of Magnetism, Springer Series in

Solid-State Sciences No. 17(Springer, New York, 1988), Vol. I,
Sec. 4.5.

40M. Roger, J. H. Hetherington, and J. M. Delrieu, Rev. Mod. Phys.
55, 1 (1983).

41R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T.
E. Mason, S.-W. Cheong, and Z. Fisk, Phys. Rev. Lett.86, 5377
(2002).

42V. W. Scarola, K. Park, and S. Das Sarma, cond-mat/0403444.

EXCHANGE INTERACTION BETWEEN THREE AND FOUR… PHYSICAL REVIEW B 70, 115310(2004)

115310-13


