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Several prominent proposals have suggested that spins of localized electrons could serve as quantum com-
puter qubits. The exchange interaction has been invoked as a means of implementing two qubit gates. In this
paper, we analyze the strength and form of the exchange interaction under relevant conditions. We find that,
when several spins are engaged in mutual interactions, the quantitative strengths or even qualitative forms of
the interactions can change. A variety of interaction forms can arise depending on the symmetry of the system.
It is shown that the changes can be dramatic within a Heitler-London model. Hund-Mdlliken calculations are
also presented, and support the qualitative conclusions from the Heitler-London model. The effects need to be
considered in spin-based quantum computer designs, either as a source of gate error to be overcome or a new
interaction to be exploited.
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I. INTRODUCTION of each electron(We take spin operators to be dimensionless

The exchange interaction between electrons has beeR this paper —# is excluded from their definition.This
studied since the early days of quantum mechdrisnd Hamiltonian has a spin-singlet eigenstate and degenerate
has been reviewed in some classic referedickas well as  Spin-triplet eigenstatesThe quantityd is the exchange cou-
textbooks’ Recently, a promising propo$aias emerged to Pling constant, given by the energy splitting between the
use the exchange interaction as a tunable qubit-qubit interagpin-singlet and spin-triplet statés}1°
tion in a quantum computer, with the individual spins of
electrons acting as qubits. To satisfy the conditions for con-
structing a universal quantum computer, the exchange inter- J=¢- €. (2
action can either be supplemented with single-qubit
operations, or can be used by itself to construct a universal
set of gates, in which case one encodes a logical qubit intdo date, studies of the exchange interaction in quantum com-
the state of several spifist?(This alternative to the standard putation have focused on the case of two quantum Hbt=!
universality scheme has been termed “encodedtarting from the simplest case of two electrons in singly
universality.™3) Motivated by the proposal of Loss and occupied dots in the lowest orbital state, systematic generali-
DiVincenzo? there have been a number of studies of the onezations have been introduced and their effect on the ex-
and two-particle behavior of electrons localized on quantunthange interaction studied. In particular, researchers have
dots within a quantum computét*-?1Here, we expand on analyzed the effect of double occupati§ri2-2thigher orbital
our work?? considering the important situation of three or statest*1® and many-electron dof.An accurate numerical
more coupled dots. We show how both quantitatively andstudy reporting singlet-triplet crossing via magnetic field ma-
qualitatively new interactions can appear, provide explicitnipulation in a lateral double quantum dot can be found in
formulas for the magnitudes of these interactions, and notRef. 23. Neglecting spin-orbit coupling, these studies have
consequences of breaking the symmetry of the system. The$eund increasingly accurate expressionsXawhile focusing
effects require consideration if one intends to make a quaren the definition of Eq.(2). In the presence of spin-orbit
tum computer with more than two spins. coupling both rotation and inversion symmetry are broken,

The exchange interaction between two localized electronand anisotropic corrections t8,, arise?0-2425
arises as a result of their spatial behavior, but it can be ex- In this work, we undertake a study of the case of three or
pressed as an effective spin-spin interaction. In conditions ofour electrons, each in a quantum dot. Once the system in-
rotation symmetry(i.e., neglecting external magnetic fields, volves more than two electrons, simultaneous multipartite
spin-orbit coupling, etg, a purely isotropic form of this in- exchanges can occur. For three coupled dots containing three
teraction arises, which is known as Heisenberg exchange, electrons, processes in which all three electrons exchange

H. =S, S 1) contribute to a quantitative correction to the valueJoiVe
ex A B show explicitly that, for three identical dots arranged on the
Here,S=(S,,S,,S) is a vector of spin-half angular momen- corners of an equilateral triangle, the effective Hamiltonian
tum operators, ané,B are indices referring to the location can still be written using a Heisenberg exchange interaction
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Hepin= K + J(Sy-Sg+Sg-Sc+Sc-Sa), Il. ELECTRON-SPIN-OPERATOR HAMILTONIAN

In this section we present general arguments concerning
but thatJ is changed and is found to be influenced by threethe form of the effective spin Hamiltonian, as it arises from
body exchange matrix elements. For four coupled dots conlocalized electrons interacting via the Coulomb force. We
taining four electrons, the actual form of the interaction Eq.start with the familiar electronic Hamiltonian
(1) changes due to four-body effects. For identical dots ar- N
ranged on the corners of a symmetric tetrahedron, the inte, _ D ipi2+V(ri) >

e2 n
——=2h(r)+2> W(ri,r),
i=1

action takes the form = 2m =i ki i<
3
Hspin=K "'JAs%gD S-S+ I'[(Sa~ Sp)(Sc - Sp) where the first term is the kinetic energy, the second is the
confining potential, and the third is the Coulomb interaction.
+(Sa - Sc)(Sg - Sp) +(Sa - Sp)(Sg - So)l, The confining potentialV(r) containsn energy minima,

which give rise to then dots. To understand the dynamics of

where throughout this paper notation such Asi<D n electron-spin qubits im quantum dots, it is desirable to
means that takes the letter values to D. According to our eliminate the spatial degrees of freedom, leaving an effective
Heitler-London(HL) calculations, the ratiq)’/J| can reach Hamiltonian composed of electron-spin operators only.

16 % in physically relevant parameter regimes. The first step in changing HamiltonigB) to an electron-

Four-body exchange terms have been discussed in oth&Pin-operator Hamiltonian is to fix a basis. We first consider
contexts—for example, in a perturbative treatment of thd!€ case of two electrons in two dots, labekedndB. We do

two- and three-dimensional half-filled Hubbard models, four-n°t allow for double occupancy of a dot and consider only a
body interactions were shown to suppress the Néel temper&indle low-energy orbital per dot labeled as(r)=(r[A)

ture and the temperature of the paraferromagnetic phasid #g(r)=(r|B). Electrons 1 and 2 occupy these low-
transitiorf®27 (see Appendix A Here, we present a nonper- energy orbitals. Each electron can have spin-up or spin-
turbative derivation of these terms, starting from a finite-down, hence each electron can represent a qubit. A state
dimensional Hamiltonian and then highlighting their signifi- with, for example, electron 1 in orbitd with spin-up and
cance for quantum computation. Interaction Hamiltonianelectron 2 in orbitalA with spin down is represented as
calculations such as ours are of significance in various quanBA)| 1 |). Since electrons are fermions, this state needs to be
tum computation contexts, includin@ the encoded univer- antisymmetrized; the full state of the two electrons takes the
sality paradigm, where in the most efficient implementationsform of a Slater determinant

several exchange interactions are turned on

simultaneous(§13 ?quantitative studies of parallel gate [W(11)=(AB|LT) = [BA)T)) < a} aflvag.  (4)

sequences in particular may require revisiting in light of Note that the order of spins in the state lafié|, 1) indicates

our results, as well as the “supercoherent qubits” method fojhat the electron in orbitak has spin down and the electron
reducing decoherené@where four- and eight-spin interac- in orbital B has spin up. In Eq(4) we introduced second-
tions must be turned on simultaneously in order to enacyantized notatioriignoring normalizatiopy with a;&i creat-
quantum logic gates between encoded quibit) adiabalic  jng an electron with spin down in orbitél andaf, creating
quantum computing? where the final Hamiltonian for any an electron with spin up in orbitaB. The four states
nontrivial calculation inevitably includes simultaneous inter-|y (s, s5)) form the two-electron basis. The same procedure
actions between multiple qubitéiji) fault-tolerant quantum  5hjies to three electrons in three dots. There is again a

error correction, where a higher degree of parallelism transging|e low-energy orbital per dot, labeled ag(r)=(r |A)
lates into a lower threshold for fault-tolerant quantum Com'¢B(r)E<r|B> and ¢a(r)=(r|C) fér dots A B. andC re,—

putation operationgi“> (iv) the “one-way" quantum com- spectively. Electrons 1, 2, and 3 occupy these low-ener
puter proposat® where all nearest-neighbor interactions in a pe Y. . P Py ) ) 9y
orbitals. A state with, for example, electron 1 in orbigl

cluster of coupled spins are turned on smyltaneously inore spin up, electron 2 in orbitah with spin down, and
der to prepare a many-spin entangled state;(anthe search

. S . electron 3 in orbitalC with spin up is represented as
for physical systems with intrinsic, topological fault toler- X . . ;
ance, where systems with four-body interactions have bee BAG)T | 1). This state is then antisymmetrized so that the

identified as having the sought-after properfis. ull state of the three electrons is the Slater determinant

We begin with a general description of a finite- | (|11))=(JABO|/11)+|BCA)|11])+|CAB)|T]1)
dimensional effective spin Hamiltonian in Sec. (This is

compared to the standard, perturbative derivation in Appen- = |BAO)T11) - |ACB)L11) = |CBAI111))

dix A.) Section Ill shows how to compute the parameters in «al alal |vao. (5)
the effective spin Hamiltonian, with detailed consideration of LBrmel

the two-electron, three-electron, and four-electron cases. WEhe order of spins in the state lab&l(| 1 T7) indicates that
introduce a specific model and calculate the parameterthe electron in orbital has spin down, the electron in orbital
quantitatively, for three and four electrons, in Sec. IV. Ap- B has spin up, and the electron in orbi@has spin up. The
pendixes B and C contain relevant technical detalils. eight stategW(s,,Sz,Sc)) form the three-electron basis.
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EXCHANGE INTERACTION BETWEEN THREE AND FOUR.

The general case of electrons gives 2fully antisymme-
trized basis vectors of the form

[W(spSs1--1 ) = % 5Pl|AB...)[sas5...)],  (6)
where the sum runs over all permutatidd®f both orbitals
and spins, andp=1(-1) if the permutation is eve(odd). In
this basis, the Hamiltonia(3) takes the form of a 2x2"
Hermitian matrix. Like any 2X2" Hermitian matrix, the
Hamiltonian can be written as a sum

3

Hspin:_ E Ii,j,...

i,j,...=0

ai(A) ® 0;(B) ® ... (7)

of Hermitian spin matrices of the form(A)® 0;(B)® ...,
each multiplied by a real coefficiehtj  Here,oi(p) denotes
the Pauli matrixo; acting on the electron in dagt, with i
=0, 1, 2, 3 and withry equal to the identity matrix. There are
n factors in the tensor produet(A) ® 0i(B) ® ..., so that it
can be written as a" 2" matrix, and there are similarly
subscripts on the coefficiedt;  This decomposition7)
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ation, the eigenstates of the spin Hamiltonian are clearly just
eigenstates 0%;.

[lI. COMPUTATION OF THE SPIN HAMILTONIAN
PARAMETERS

To compute the values dfy,L4,L,,... we consider an
eigenstatg W) of S?, with known eigenvalueSy(S;+1). If
there aren electrons in the system, we Writé'>:|\I’gT>. To
proceed, ongi) computes the expectation value of the effec-
tive spin Hamiltonian(8) in this state(ii) computes the ex-
pectation value of the spatial Hamiltoni&@8) in this state,
and then(iii ) equates the two expectation values

(W[Hspid W) = (W[H[W). 9)

This procedure is repeated for all eigenvaluessé,f thus
generating a set of linear equations for the parameters
Lo,L1,L5,..., in terms of matrix elements d¢f between dif-
ferent orbital states. Fam electrons the number of distinct
eigenvalues 08% is [n/2]+1 (where[n/2] denotes the great-
est integer less tham/ 2), so this is the maximum number of

into spin matrices produces an effective electron-spin Hamildistinct energy eigenvalues of the Hamiltoni@). Thus, the

tonian that conveniently describes the dynamica gubits.

coefficientsL,,, for 0O=<m<|n/2]+1 have enough degrees of

The procedure we have just described is framed withirfreedom to completely and uniquely specify the mats8y;

the Heiter-London approximatiof. The approximation con-

without loss of generality, we can skt,=0 for m=[n/2|

sists of neglecting excited states and has been criticized on1, We are led tgn/2|+1 coupled linear equations for the
the grounds that it does not produce the correct asymptotigonzeraol,, parameters. In the case thmeis even,S; takes on

behavior in the limit of very large distancéddowever, in

the integer value®,1,...,n/2. In the case that is odd, S;

the context of our system of interest, this asymptotic limit istakes on the half-integer valuég2,3/2....,n/2. We have

not a concern, and moreover, recent studies have verified the

utility of the approximation in the case of largbut not
infinite) interdot separatiot We will thus proceed with the

(/2

(W5 IHspid 5 = mEZO Ll Sr(Sr+ D]™. (10

HL approximation, which has the advantage of conceptual

simplicity and physical clarity. In the three-electron case, weHaving completed stefi) of our program, we now turn to
show that Hund-Mdlliken(HM) calculations, in which step(ii), the calculation of(‘If”Sr|H|\If”ST). We make this cal-
double occupation is permitted, support the conclusions ofulation separately for the cases of two, three, and four elec-

our HL results.

trons.

Symmetry considerations fundamentally constrain the

form of the electron-spin Hamiltonian. The coordinate sys-

tem used to defing and | is arbitrary if there is no spin-orbit

A. Two-electron case

coupling and no external magnetic field. In this case, the As a simple illustration of our procedure we rederive the
effective spin-operator Hamiltonian has rotation, inversionWell-known result for two electrons: the exchange constant

and exchange symmetry. The coefficiefits in (7) are

equals the difference between tfgegeneratetriplet states

strongly constrained by this symmetry. The Hamiltonian cardnd the singlet state. The spin sing8t=0) and spin triplet

only be a function of the total spin squaréﬁ:(SA+SB
+...)%, where

Sa=3[a1 AR+ 03 (A)F + 05(A)Z] © 04(B) © 76(0) ® ..,
Se = 0o(A) ® 2[01(B)X+ 05(B)Y + 05(B)2] ® 05(C) ® ..., etc.
A pseudoscalar, such &, -(SgX Sc), cannot appear in the

Hamiltonian because of inversion symmetry. We must have

Hspin: I-0 + Lls%' + L2(S$')2 + ..., (8)

where Lg,Lq,L,,...
energy. The constarty is an energy shift. The term propor-

tional toL; gives rise to the familiar Heisenberg interaction.
Here we see that, in principle, higher-order interactions may

are real constants with dimensions of

(Sr=1) states have eigenvalues 8} equal to 0 and 2, re-
spectively. Thus, the Hamiltonigi®) can only have two dis-
tinct eigenvalues, and we need to sdl®é2|+1=2equations
for Lo andL;. A convenientS;=1 eigenstate is the normal-
ized state [WIZ)=AW(11)=N(|AB)11)-[BA)1 1))
=M(AB)—-|BA))|T 1). The normalization constat” has the
value

N'=((AB|AB) + (BABA) - (AB|BA) - (BA/AB)) /2,
Inserting this state into Eq9) yields
(VE2|Hepi WE21) = (WL HIWE ).

be present in the spin Hamiltonian, starting with a fourth-The spin Hamiltonian's expectation value is immediately

order term proportional th,. In this highly symmetric situ-

found to belLy+2L4, as can be seen from E@.0). Expand-
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ing out the spatial Hamiltonian’s expectation value gives

Lo+ 2L,
_ (ABH|AB) + (BAIH|BA) - (ABH|BA) — (BAH|AB)
- (AB|AB) + (BABA) - (AB|BA) - (BAAB) '
(12

which can be evaluated once a choice of orbital states iqg

specified; we do this in Sec. IV. To compare with E2), we
note that this equation specifies the triplet eneegyL
+2L;. A second equation is found from th&=0

state I‘I’n =MW D) =W 1T)HI=N]AB+BA)(|T |)
=1L, Wh|ch leads to

_ (ABH|AB) + (BAH|BA) + (AB[H|BA) + (BAH|AB)
°"  (ABAB)+(BABA) +(ABBA) +(BAAB)
(12)

giving the singlet energys=L,. To exhibit the exchange
coupling explicitly, we rewrite the Hamiltonian as

Hepin=Lo+L1Sa+ L1S5+ 2L1Sa - Ss =K +JS, - Sg,
(13
where K=Ly+(3/2)L; and J=2L,. Expression(2) follows
when we note thalt;=(&—€5)/2.

B. Three-electron case

1. Heitler-London model

PHYSICAL REVIEW B 70, 115310(2004
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FIG. 1. Matrix elements relevant to three-electron case. Arrows
indicate transition from localized state on initial dot to localized
state on final dot.

1
V6(ps+ 200~ 3py)
The quantitiegs, p;, andp, are given by
ps=(ABCABC),
which is an overlap integral when all three electrons retain

In the three-electron case, the possible values that the tottie same state in the bra and ket,

spin can take areS;=1/2 (with two, two-dimensional
eigenspacgsor Sr=3/2 (with a four-dimensional eigen-
space. We, therefore, again need to solN8/2|+1=2

p1=(BACABC) =(CBAABC) =(ACBABC),

which is an overlap integral when one electron has the same

equations, and it is sufficient to keep only two constantsstate in the bra and ket, and

Lo and L; in Hg,, setting L, and the rest to zero.
As a convenient state with know8;=3/2 we take the
normalized state|\1f ,2>oc|\1f(TTT)> so that the energy
is  Egp= <\P3,2|HSPI,J\P3,2> Lo+Ly(3/2)(5/2). We use
W3y e[| W (1] 1)) |®(1171))]/\2 as a normalized state
with  known ST 1/2, for which the energy isEj,
= (V] Hepid W3 =Lo+L1(1/2)(3/2). Then equating ex-
pectation values of Hamiltoniai®) and Hamiltonian(8), i.e.,
requiring(\lf%JHspi,J\Ing):<\If§T|H|\If§T) for each of our states
Sr=1/2 andS;=3/2 as in Eq(9), we can solve fot, and

po=(CABABC) = (BCAABQC),

which is an overlap integral when zero electrons have the
same state in the bra and ket — all three electrons change
their states. In evaluating the matrix elemedt,,|H| W3 )

we use the notation

€,=(CABH|ABC) =(BCAH|ABO),

€ = (BACJH|ABC) = (CBAH|ABC) = (ACBH|ABC),

L,. To do so we need to obtain more explicit expressions for

<11f3 |H|\If3> We assume thai(r), ¢g(r), and ¢c(r) are
real and satlsfy<A|A> (B|B)=(C|C) and (A|B)=(A|C)

3= (ABCH|ABO),

where the physical interpretation is thagt involves 3k

=(B|C) (this is consistent with our original assumption of electrons exchanging orbitalFig. 1).
rotational invariance, inversion invariance, and equilateral Computing the expectation value Hfin the statd\lf3,2>

triangle geometry First, let us normallz¢\P3,2>
W3, = M|ABC) +|CAB) + [BCA - [BAC) -
-[ACB][111),

where the normalization constanfis given by

ICBA

then leads to the result

EL _ €3 + 260 - 361
477 pa+2py-3p;

For the caseSy=1/2, using|¥3,,) an analogous calcula-
tion yields

Egp=Lo+ (14
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€ € In the HM case, the decompositi¢r) is no longer mean-
(15 ingful because the basis states do not necessarily have one

3
Eip=Lot ZLl =

Ps~Po spin per quantum dot. This complicates the computation of
These equations givie, andL, in terms of thep; and ;. the eigenspectrum of this 16-dimensional space. First, we
To compute the usual exchange coupling, it is useful tonote that the projectiof, (the number of spin-up electrons
rewrite Hgpin @s is still a good quantum number because the Hamilto&n
5 cannot mix two states with different numbers of spin-up
Haspin= <|—0+ L > 3) 2L, 2 S-S electrons. The 16-dimensional subspace, therefore, splits into
Asi=C Asi<j=C two degenerate eight-dimensiorE +1/2 subspaces. The
=K+J(Sy-Sg+Sa-Sc+Ss-So), (16)  S,=1/2 subspace consists of two HL states and six double-
occupation states analogous(f)
where
K=Lo+ 2Ly, an ViD= (WD) - eI,
(@3 o ZWTD) = Z( AL +[WATT),
J=2L,. (19
Solving for the exchange constaht 2L, we find, finally, |V ang(T11)) aLTaLLaET|VaC>v|\PAAC(TlT)>1|\I}BBA(TiT)>=

J= %(Es/z —E1p).

A couple of comments are in order concerning this result. Weec LT WeedT LD [WocTL1))- (19

First, the energiegs,, E1/, can be calculated once the orbit- One can construct the>X88 Hamiltonian in this subspace and
als are specified, as we do in Sec. IV below. We see thatliagonalize it. The eigenstates exhibit degeneracies arising
similar to the two-electron case, the physical interpretation ofrom the symmetry of the Hamiltonian under the exchange of
the exchange constant is tiap to a multiplicative factorit a pair of dots. Assuming that our dots are all equivalent,
is given by the energy difference between B1e=3/2 and  there are three dot-pair exchange operators that commute
Sr=1/2states. Second, note from E¢$4) and(15) thatthe  with the Hamiltonian:E, g that exchanges dot&,B; Eg ¢
value of the exchange constahis determined in part by the that exchanges do®,C; and Ec a that exchanges dofs, A.
“three-electron-exchange” terms of the formpy  For instanceEag/Waac(T] 1))=|Weadll T)). We can re-
=(CAB|ABC) and €=(CABH|ABC). It is apparent that quire that the eigenstates of the Hamiltonian also be eigen-
such terms involve a cooperative effect between all thregtates o, g or Egc or Ec 2. Using our eight stated9), it is
electrons and hence cannot be seen in two-electron calculpossible to construct two linearly independent states that are
tions. It follows thatthe presence of the third electron quan- simultaneous eigenstates of all three exchange operators. The
titatively changes the exchange coupling between the othawo (unnormalizedl eigenstates are

two electrons

([Pane(T L) + [Waac(T L)) + [Wepa(T11)) + [Wepd(111))

2 Hund:Mdliken mode! +[WeeaT LD +[WeedT11))

We have have been working within the HL approximation
in which there is one orbital per quantum dot occupied by #"d
single electron. To check its physical validity, we make
three-electron computations within the HM approximation as(|q’AAB(TH)> ~[Waac(T11) = [WesaT L) + [Wepc(T11))
well, in which double occupation of quantum dots is permit- WA TN = [Weca(TLT))),
ted. This leads to a total of 8+12=20 basis states in the
three-spin cas€2®=8 from the HL basis and 82x2=12  with eigenvalue +1 and -1, respectively. Each such state
double-occupation statesin the HL approximation, the turns out to be an eigenstate of the Hamiltonian with its own
eight states divide into a degenerate four-dimensioBal nondegenerate energy. The remaining six members of the
=3/2 subspace with energ¥;, and a degenerate four- eight-dimensional subspace are not simultaneous eigenstates
dimensionalS=1/2 subspace with energl,,,. In the HM  of all three exchange operatois, g and Eg ¢ andEc . To
case, the degenerate four-dimensid®aB/2 subspace is un- ensure that we can nevertheless choose the eigenstates of the
affected by the double-occupation states, which must alHamiltonian to be simultaneous eigenstateggf or Eg ¢ or
haveS=1/2; theenergy of these fouB=3/2 states remains Eca, the energy eigenstates occur in degenerate pairs that
Es,. (The S=3/2,5,=3/2 state has three spin-up electrons can be superposed as desired to form eigenstates of the ex-
and so the Hamiltonian cannot mix it with any other state.change operators. When the parameters of the spatial Hamil-
Since the otheB=3/2 states are related by a rotation gener-tonian (3) make double occupation energetically expensive,
ated by the total spin operator, which commutes with theone of the degenerate pairs will be low in energy and will
Hamiltonian, they must be eigenstates of the Hamiltoniarconsist mainly of the HL statd®3,,) and|®3,). In this way,
with the same energyThe 12 double-occupation states en-the HM calculation reduces to the HL result plus high-energy
large theS=1/2 subspace, which becomes 16-dimensionaldouble-occupation states, ail6) still describes the low-
and has a nontrivial spectrum. energy spin dynamics.
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3. Unequal Coupling
We emphasize that Eq16) was derived assuming rota-

7N 7
tion, inversion, and exchange symmetry. Exchange symme @ @

try, in particular, is broken whenever there is unequal cou-

pling between dots, and then the Hamiltonian can involve Po %o Py-£

more constants. This situation is realized when the dots arg

not all equidistant or when they have been shifted electri- @ @ @ @

cally, as in the case of dots defined by electrodes creating

confinement potentiaf, or when there are unequal tunnel- U U

ing barriers between different dotsFor instance, in the case

of three unequally coupled dots, the Hamiltonian will have

the form FIG. 2. Selected matrix elements relevant to four-electron case.

Arrows indicate transition from localized state on initial dot to lo-

Hspin=K + JagSa - Sg + JgcSe - Sc + JacSa - Sc calized state on final dot.

if we still assume rotation and inversion invarian¢&n ex- o ) )
ternal magnetic field, which has been shown to be instrumerRS @ quantitative change in the exchange coupling between
tal in changing the sign of in the case of two dot&6  the other electrons .

could lead to a very different Hamiltonian. It would break Ve now calculatd.o, L;, andL; just as we calculatetly
rotation symmetry, introducing operators irit, such as andL, for three particles. Let us define

S;.) This three electron Ha_miltonian commutes with the Po=(BADCABCD), €,=(BADGH|ABCD),
z-component of the total spin operat8¢, so they can be
simultaneously diagonalized. The stat&(|] |)) has St
:—g and energy eigenvalu&+(Jag+tJgctac)/4. It is
found to be degenerate with(|W(] | T)+[P(LT]))
+|W(T] l)))/\@, a state WitrSZT=—%. There are two remain-

ing Szr=—§ eigenvectors, which have th@nnormalizeg p, =(BACDABCD), €,=(BACDH|ABCD),
forms

py=(DABCJABCD), «,=(DABCH|ABCD),

p, =(ADBCABCD), ¢ =(ADBCH|ABCD),

p,=(ABCDABCD), ¢,=(ABCDH|ABCD),
Jec—JpgtJ

Jsc—JactJ
Ine - dnc [W(Lin)+ Hw(lw» where the subscript indicates how many electrons retain the
same state in the bra and the ket, just as in the three-electron
case. The termg, and €, involve four-body effectse, in-
WL |, volves two pairs of electrons exchanging orbitals afdh-
volves all four electrons exchanging orbitals cyclicaliig.

~ ~ 2).
Jag~Jec+J Jac=Jsc+J A convenient state to use forS;=0 is |V
( I dng T e TPUTL) =NV LT V=P L D)=Fe (T )T L)),
keeping in mind the definitioi6). After normalization, this
n |‘1’(Tll)>> state yields the singlet energy
E.=l.= 64_4El+ 360 (20)
o=bko=——— —

and have energiea;+3 , a-J respectively, wher@a=-3(Jsg Ps—4pL+3pg

+JBc+JA%/)2/2 and _J?(J/ZABJ’Jéc*Jic‘JAcJBc‘JABJAc A convenient state to use f@=1is [¥H=N|W(1] 1 1))
—-JagJec) s The remaining four energy eigenvectors, with +HWALLIN=1PATTD)=®(T]1))]. This state, after

_3 _1 ; ; o . !

St=; and St=3, can be obtained from these four by inver- normalization, yields the triplet energy
sion. From these results it is possible to derive equations
analogous tq14)—(18) in the case whelag, Jgc, and Jac

are not equal.

€1~ 26, €+ 2¢;
Ps= 2P~ Po+ 2Py
Finally, a convenient state to use f8=2 is |[W(7111)).

Ey=Lo+2L,+4L,= (21)

C. Four-electron case We find for the quintet energy
In the case of four electrons, the effective Hamiltonian B €4~ 66, + 8ey + 3¢y — B¢
again takes the forn@8). Since four electrons can ha% E,=Ly+6L;+36L,= -
=0, S;=1, orS;=2, we must keep three constahts L, and P4 = 6Pz + 8Py + 3P0~ 6pg
Ly in Hgpin It follows immediately thaHgy,, includes terms (22

of the form L,(Sp-Sg)(Sc-Sp) and permutations. Unleds,
happens to vanisithe presence of a fourth electron intro-
duces a qualitatively different four-body interaction as well Lo = Ey,

Solving, we have
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1 Of central physical importance to us is the relative sizes
L= 5(E2~ 9B, + 8E9), of the coefficients) andJ’. This is studied in Sec. IV, where
a HL calculation suggests that is substantial in comparison

= i(Ez - 3E, + 2E,). to J in physically important regions of parameter space. We

also find that both coefficients are affected by three-body
(p1, €1) and four-body exchangégy, pg, €., €)-

In the general case ofn2electrons, two-body, four-
body,.., 2n-body interaction terms appear in the Hamil-

We would like to exhibit interaction constants explicitly
in the spin Hamiltonian. We havé;= 2 ~5S;, so that

=3+2 S-S tonian. Computing the strengths of the interactions for larger
i<j ’ n is a topic of interest, but we do not address it here. One
_ expects the strengths of the terms to decrease with the num-
while ber of bodies involved.
(s=(a+ 3 ssf
A<i#j<D IV. MODEL POTENTIAL CALCULATIONS
=91+62 S-S+ S-S S-S, To compute the values of tHe, we select the following
i#] i#] k#I specific form for the one-body potential {8):
and it can be shown that
V(r) = I 6ma)o|r -Ajr-BJjr -C|*r -DJ%. (26)
>S:525:S= X (S:S)(5S) @)
e k! 177kl This potential has a quadratic minimum at each of the verti-
+4 > (S-S)(S;-S) ces of an equilateral tetrahedro/A=(0,0,0, B
i#j#1 =(21v1/3,0,-av2/3), c=(-1N1/3,1,-2v2/3), and
+23(5-S)(S - S) D=(-1y 1/3,4,-2\ 2/3). The distance between vertices
i ! ! is 21. We select a potential with four minima so that it can be

used in the four-electron case without modification. This fa-

= > (S 'Sj)(5k'5|)+4( =Ns. S) cilitates comparison between the two-, three-, and four-

i) k£l 277 electron cases, and the extra minima do not influence the
two- and three-electron cases in any significant way.

) At vertex A, we define the localized Gaussian state as

follows:
3/4
mw0> eX% _ A|2) ,
Th

(Z-—zs s

|#:J

We are led to

97 Bar) = (r|A) = (
(2= +72s5 5+ X (S-S5 S).

i#] ] ket which is the ground state of the quadratic minimum at that
) o ] vertex. We define localized states similarly for the other ver-
The spin Hamiltonian can now be written as follows: tices.
_ , The following one-body Hamiltonian matrix elements are
Hspin= K +Ji§j S-S+ J'[(Sa-Sp)(Sc - Sp) needed to evaluate the coupling constantslip;
+(Sa~S0)(Sp - Sp) + (Sa~ Sp)(Ss - So), Am=1,
where P2 1
Al T 2 — A2
27, - 2Ey+9E, + 5E, (AIRIA) = (A + maglr = AFA)
K=Lo+3L,+ = T . (239
1
AN - Emwilr AP
- 2E,- 3E; + 10E,
J=2L,+14,= , (24) 3,
12 =g = (63xb‘3 +280, 72+ 320, 7Y |,
2 2048
-2Ey-3E,+E
sfp=—— 29 (AlB) =€,

Generically,J’” does not vanish, and four-body interactions 3

arise. The physical interpretation of the exchange constantgA|h|B) :hwo[ e X+ —(945xb_3+ 1680(b + 936(b
as simple energy differences between different spin multip- 2

lets is now lost; we find energy differences with numerical

coefficients that are not intuitively obvious. -1216- 88&b)e_xb} : (27)
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In these equations, we have added and subtracted a
harmonic-oscillator potential from the one-body Hamiltonian

h for ease of calculation. The dimensionless tunneling pa-
rameterxy is the square of the ratio of the interdot distante 2
to the characteristic harmonic-oscillator widtR72/ (mw,)

Xp = Mgl %A,

and which is also the ratio of the tunneling energy barrier
mw§I2/2 to the harmonic-oscillator ground-state energy
hawyl2.

Matrix elements of the Coulomb interaction are given by

— 2\5 ) 5 FIG. 3. Plot ofK as a function of dimensionless tunneling bar-
(FGW|UV) = fiwo| 2x\xp—————— WAf ~ullg=v[9 rier x, and Coulomb energy, in the case of two interacting
[f+u-g-v| electrons.
[f+u-g-v| _ .
xeffl ———=—| |, =~ 1. Note that the energlt increases when the one-electron
2\2 tunneling barrier energy decreases and the Coulomb-

interaction energy increaséise., for smallx, and largex.).
[f+u-g-v|#0 (28 In Fig. 4, we plot the exchange-interaction consthat a
function of x, and x.. The plot generally indicates that
4 — ) ) increases as the tunneling barrier decregggsmallepy—an
(FGw|UV) :ﬁwo[fxc\xbe_(m)(f_u Ho-v )}, intuitively reasonable result. Although it is outside the re-
d gime of physical interest depicted in the plot, when the Cou-
lomb interaction is extraordinarily strong,— ~ 15, J de-
f+u-g-v|=0. (29 velops a negative minimum &~ 1.5. The reason is that the

In these equations, the dimensionless parametir the ra- S;=3/2 state has a totally antisymmetric spatial wave func-

tio of the Coulomb energg?/ (x2!) to the harmonic oscilla- 0N, while the S;=1/2 state does not. The antisymmetry
tor ground state energiw,/2 tends to reduce the Coulomb-repulsion energy between elec-
0

trons while increasing the one-electron tunneling energy.

X, = el (klhw,). When parameters are tuned to make the Coulomb repulsion
important, the energy of th§;,=3/2 state dips down, even-
I:eB %%?OISTFh’(aG' Io%&e?cr;ds;/ ;[/?alt:?or\ic,alierz f(rjoer]l?ng&e ;et tually decreasing below the energy of t8g=1/2 state. This

—_r Y leads taJ<0. The negative value afsignals the breakdown
= VMwo/AiF=\x,/IF,  etc. ~ The  symbol  e®) ot the HL approximation in this region. The exact two-
=(2/ v"w)fée'szds denotes the error function. electron ground state is knowtto haveS;=1/2,while J<0
would imply anS;=3/2 ground state. The HL representation
of the S;=1/2 state is simply too rigid to represent the exact
ground state when interactions are extremely strong. The in-

In the case of two electrons, we assume that two of th@jexibility of the HL wave functions should be kept in mind
potential minima o0{26) are occupied; there is an electron at when there are extremely strong interactions in the three-
A=(0,0,0 and an electron a=(2l \rm,o,—zvz/s). In  electron and four-electron cases, as well. Fortunately, in our
order to computel, and L, from Egs.(11) and (12), we region of physical interesi,~1, x.=~ 1.5, HL results should
require only the matrix element$ABJH|AB)=2(Alh|A)  be meaningful. Even then, however, it should be kept in
+(AB/wW|AB), (ABJH|BA)=2(A/h|B)A|B)+(ABW|BA), mind that the barrier between minima of the potent2f) is
(AB|AB)=1, and(AB|BA)=(A|B)?. (We have simplified us-
ing the fact thatAlh|A)=(B|h|B) and using the fact that the
wave functions are realOncel, and L, have been com-
puted, it is straightforward to obtaiK=Ly+(3/2)L; andJ
=2L,.

A plot of the energy shifK as a function ofk, (the tun-
neling energyandx. (the Coulomb energyis shown in Fig.
3 in units of Zw,. Following Ref. 8, we estimate realistic
values forx, andx. by considering the case of GaAs hetero-
structure single dots. An estimated value fry is x,
=mow??/(hoy) =1, since the harmonic oscillator
width 2y#%/(mw,) should be approximately equal to the dis-
tance between dotd # a quantum computer. The parameter  FIG. 4. Plot ofJ as a function ofx, andx, in the case of two
x.= €/ (klhwy)=~1.5 taking k=13.1, hw,=3 meV andx, interacting electrons.

A. Two electrons
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FIG. 5. Plot ofK as a function of, andx, in the case of three
mutually interacting electrons.

FIG. 7. Plot ofJ as a function of, andx. in the case of three
shallow, and so the calculation will become increasingly in-mutually interacting electrons.
accurate as the minima get close together. Alternative nu-

merical methods can be found, e.g., in Refs. 14-17. appearing in Ref. 22, the ticks on tRgaxis ran from 1 to 5,
but the plots actually depicted the range22< x, < 10v2; the
B. Three electrons correct figures appearing here do not change the conclusions

of that work) Figure 7 shows a physically reasonable param-
In the case of three electrons we assume three of the p@ger range in which the qualitative appearancd isf similar

tential minima in_Eq. (26) are occupied at, sayA g that of the two-electron case, Fig. 4.
=(0,0,0, B=(2l \@,0,—2 \%), and C:(—I\ 1/3.1, Figure 8 shows the change] given by subtracting from
~21\2/3). The electrons are therefore arranged at the corJ the value thatl would take if the three-electron swap ma-
ners of an equilateral triangle, and the minimumbatis  trix elementsey and p, were zero(note that the axis direc-
unoccupied. To solve Eqé&l4) and(15), we need to evaluate tions are flipped to make the plot clegce€omparing the
three-body matrix elements. Details are given in Appendixscales of Figs. 7 and 8, one finds that the three-electron swap
B. matrix elements can have a powerful influenceJon

A plot of the energy shifK as a function of, (the tun- To complement our HL results, we have computed the
neling energyandx (the Coulomb energyis shown in Fig. HM spectrum. For reasonable parameter valigs 1.0 x.
5 in units offiw,. The plot’s shape is quite similar to that of =1.5, we have found that the lowest four states of the 16-
Fig. 3. Figure 6 displays the chang& given by subtracting dimensionalS=1/2 subspace are degenerate and have an
from K the value thak would take if the three-electron swap energy(that we callEy, yv) that is well separated from that
matrix elements e;=(CABH|ABC) and p,=(CAB|ABC) of the remaining 12 states witB=1/2. These four states are
were zero. The axis directions are reversed in this plot t¢imilar in composition to the four members of the H
make its shape easier to inspect. The figure showsitisis ~ =1/2 subspace. The remaining 12 states of the BML/2
most important when the one-electron tunneling barrier enSubspace consist mainly of states with two electrons on a
ergy and the Coulomb-interaction energy are small in magSingle dot. The foulS=3/2 states have an energy thatiis
nitude (small x, and smallx,). between E, v and the energy of the higher-lying=1/2

In Fig. 7, we plot the exchange-interaction consthas a  States. We thus have a situation that is analogous to the one
function of x, andx. A similar figure appeared previoudky ~We encountered in the HL case. Itis reasonable to project out
with an erroneous scale on the axis. (On the four plots

FIG. 6. Plot ofAK as a function ok, andx. in the case of three FIG. 8. Plot ofAJ as a function ok, andx. in the case of three
mutually interacting electrons. Axis directions are reversed from themutually interacting electrons. Axis directions are reversed from the
preceding figure. preceding figure.
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FIG. 11. Plot ofK as a function ok, andx, in the case of four
mutually interacting electrons.
FIG. 9. Plot ofK as a function of, andx, in the case of three

mutual!y interacting electrons, computed within the HM  The pehavior of the exchange-interaction consthas a
approximation. function of x, andx (Fig. 13 is similar to that of the three-
electron cas€Fig. 7). The appearance dfJ (Fig. 14, given
the eight low-energy states of the HM calculation and comby subtracting fromJ the value that) would take if the
pare with the HL calculation. Figures 9 and 10 show thethree-body and four-body matrix elements were yé&salso
values ofK andJ for an effective Hamiltonian of the form reminiscent ofAJ in the three-electron cag€ig. 8). On the
(16) that gives this eight-dimensional low-energy subspace’'sther hand)’ (Fig. 15 exhibits different behavior whilaJ’
spectrum. These figures should be compared to Figs. 5 and (Fig. 16) is qualitatively similar in form taAJ from the three-
For reasonable parameter valyagain,x,=1.0 x.=1.5), electron case.
we find in the HL approximation that=2.2 for two particles The interaction constall’ can be quite significant com-
(in units of Aw,), J=1.5 for three particles, indicating a pared toJ, which is remarkable and requires attention in
change of —32 %or an absolute change of —0.Tn the HM  quantum computer design. In fact, at the poigtl, X,
approximation, J=3.2 for two particles and=2.4 for three =15, our calculation yield§=0.93 andJ’=-0.15 so0J’'/J
particles, indicating a change of —-25%r an absolute =-16 %, implying substantial four-body interactions. We
change of -0.8 Thus, the same effect is seen. The absoluteaution, though, that these values were obtained within a HL
value ofJ is larger in the HM caséthis is expected since the approximation that will become inaccurate \gsdecreases
basis has increased, leading to a decrease in the ground staigd the minima 0{26) get closer together. Our intention is
energyE;, while Eg/, stays constantbut the qualitative HL  to highlight the possible significance of the four-body terms.

conclusions are well substantiated. Such terms have been observed experimentalfHim (Ref.
40), and CyO, square plaquettes in b@uO, (Ref. 41,
C. Four electrons whereJ’/J was found to be-27 %.
The actual calculation for the four-electron case is more
involved than that of the three-electron case but identical in V. CONCLUSIONS
procedure. Details are given in Appendix C. The resulting
guantitiesK andAK appear as functions of, andx; in Figs. The exchange interaction between localized electrons is a

11 and 12, respectively. HeraK is the value oK minus the  basic phenomenon of condensed-matter physics, with a his-
value of K obtained by setting to zero both three-bodytory that dates back to Heisenberg's pioneering wofke
(p1,€1) and also four-bodypy, pj. €, €) matrix elements. details of its behavior are of great significance to quantum

Jum
fiw,
FIG. 10. Plot ofJ as a function ok, andx; in the case of three FIG. 12. Plot ofAK as a function ok, andx. in the case of four
mutually interacting electrons, computed within the HM mutually interacting electrons. Axis directions are reversed from the
approximation. preceding figure.
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FIG. 13. Plot ofJ as a function ok, andx. in the case of four FIG. 15. Plot of)" as a function ok, andx. in the case of four
mutually interacting electrons. mutually interacting electrons.

information processing using quantum dots. Here we havey AFOSR under Contract No. F49620-01-1-0%6BREA
considered the effects that arise when three or more eleand the Connaught Fund. We thank Professor T.A. Kaplan
trons, each localized in a low-energy orbital on a quantunfor useful correspondence.

dot, are simultaneously coupled. We have shown that both
quantitative and qualitative effects arise, due to many-body
terms, that modify the standard form of the Heisenberg ex-
change interaction. Most significantly, in the case of four
coupled electrons, there is a four-body interaction that is
added to the Heisenberg exchange interaction, and our H!’:o
calculations suggest that it could be strong in physically reI-R
evant parameter regimes. This possibility needs to be consid-
ered in electron-spin-based quantum computer design b?_]
cause, on the one hand, of the problems it could produce
when its presence is unwelcome and, on the other hand, be-

APPENDIX A: PERTURBATIVE APPROACH TO
HEISENBERG EXCHANGE

Here we summarize the perturbative approach to deriving
rrections to the Heisenberg exchange interaction. See, e.g.,
efs. 7, 26, and 27 for more details.

After second quantization of the Coulomb interaction
amiltonian(3), one arrives at the result

cause of its potential uses in novel designs. In other designs H=2 giNis + > tija1'1;ajs+ UE Nishi —s
as well, the possibility should be considered that many-qubit s i<j s i
terms could arise in the effective qubit Hamiltonian. T

q - E E Jij aiTsais’ajs/ajs’

Note added in proofA recent papéf has quantitatively
verified an effect alluded to above in E(B). This paper
demonstrates that the application of a magnetic field breaks + . . . .
the inversion symmetry of the system, allowing chiral termsWhereais creates an electron with spin the ith Wannier

of the form S,(Sg X Sc) to arise in the Hamiltonian. orbital ¢(r =), niS:aiTSaiS is the number operator,

i<jgg

ACKNOWLEDGMENTS t; :f ¢ (r =rph(r)g(r —r))dr

A.M. acknowledges the support of a Packard Foundation
Fellowship for Science and Engineering. D.A.L. acknowl-is the hopping energy for# j, &;=t; is the energy of the
edges support under the DARPA-QuIST programanaged electron in thdth orbital,

v
R
e,

A
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FIG. 14. Plot ofAJ as a function ok, andx. in the case of four FIG. 16. Plot ofAJ’" as a function ok, andx; in the case of four
mutually interacting electrons. Axis directions are reversed from themutually interacting electrons. Axis directions are reversed from the
preceding figure. preceding figure.
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1 |p(r)|?(r")|? determine the parameteps, p;,Po, €3, €1, and gy that appear
U= Eez Wdrdr’ in Egs.(14) and (15)
is the on-site interaction energy, and e3=(Ah/A) + (B|h|B) +(C|h|C) + (ABIW/AB) + (ACIW|AC)
. ., , +(BC|w|BC),
Ju=ezf ¢(r-ri)¢(r-l|r,-)il> (1 “A =) e =0
T e = (BIn|A)(A[B) + (AIh[B)(BIA) +(C|hC) + (BAWAB)
is the customary direct exchange integf@frromagnetix. + (BC/WAC)(A|B) + (AC/W|BC)(BIA),

One now assumed > ¢;,t;;,J; to ensure that all orbitals
are singly occupied. One then evaluakésn the HL basis
Jiy oeetp ¢0=(CINAXAB)BIC) + (AI[B)(C|AXBIC) + (BI[C)(CIA)

S N SRR
81,2, -+, S) = @5 B, "+ 8ng [VAO X (A|B) + (CAWIAB)(BI|C) + (CBWIAC)AIB)

in which states differ one from the other only in the distri- + (AB|wW|BC)(C|A),

bution of spinss in the orbitalsi. The evaluation is facili-

tated by noting that the operators and

ps=1,
§=33 alol,an
p1=(AIBXBIA),
are the component of spin-half operators, whefg are the
matrix elements of the Pauli matricéa=x,y,z). This al- Po = (C|AXA[B)XBIC).

lows one to rewrite the exchange term as We apply the symmetries of an equilateral triangle,
(B|A)=(C|A)=(B|C), (Blh|A)=(C|h|A)=(BIh|C), (Alh|A)
=(B|h|By=(C|h|C) to get the matrix elements not explicitly
listed in Eqs(27)—29). All matrix elements are functions of
which is the familiar Heisenberg exchange Hamiltonian.  #w,,x,, andx., so L, and L, obtained from Eqs(14) and
The contribution of the hopping term tid can be ne- (15), and K and J obtained from Eqs(17) and (18), are
glected in the limitt;;/U— 0. However, whert;/U<1 but  functions offiw,, X, andx, as well.
nonvanishing, it can be shownysing standard perturbation
theory in powers of 1U, that the effective hopping Hamil-
tonian in the HL basis takes the form

> Jijalais,afs,ajs =2J;S - S + const,

S,S

APPENDIX C: DETAILS OF CALCULATIONS FOR FOUR
ELECTRONS

- H_ﬁ + H_ﬁ + H_ﬁ Here, there is an electron in a Gaussian orbital at each of
u ur v the four potential minima of26). We use the analytical ex-

. - . . ressions(27)—«29) to evaluate the many-body matrix ele-
where Hy=X,S4,ala; is the original hopping Hamil- 122 thsegtz;(pe;r in Eqe20)(22). TheyHam)i/Itonian(3)
tonian, which vanishes in the HL basis. The first-order cor- ; . . .

; 5 . . contains four one-body ternisand six Coulomb-interaction
recion Hi/U gives rise fto a term of the termsw. Taking them all into account, we have
form (1/U)=;|t;]?S - S+ const, which quantitatively modi- : ’
fies (with opposite sigﬁn, i.e., antiferromagneticallyhe €,=(Alh|A) + (B|h|B) + (C|h|C) +(D|h|D) + (AB|w|AB)
Heisenberg Hamiltoniah.However, it is clear that higher-
order terms can contribute multispin terms of the form we +(ACIW|AC) + (AD|WIAD) + (BClw|BC) + (BD|w[BD)
have considered in this paper. It can be shévihat all odd +(CD|w|CDy,
orders vanish, in agreement4wit£1 our general symmetry ar-
gument of Sec. Il. The terrdl,/U® then gives rise to four- -
spin interactions of the forniS;-S;)(S¢-S,), proportional to €= (BInIAXAIB) + (AInIBXBIA) + (CIhC)BIAXAIB)
tytudtiati /U3, with i <j<I, i<k, k#],1.26 This can be inter- +(D|h|D)(BA)A|B) + (BAW|AB) + (BClw|ACKA|B)
preted diagramatically as a cycle in which the electrons in- + (BD|w|/AD)(A|B) + (AC|w|BC)(B|A) + (AD|w|BD)
terchange dots in the order»1—k—j—i. Thus, perturba-
tion theory shows that whetf/U? is significant, the four- X(B|A) +(CD|w|CD)B|AXA[B),
spin interaction cannot be neglected.

Heff:

€1 = (Alh|AXD[B)(B|C)C|D) + (D|h[B)(B|CXC|D) + (B|h|C)
APPENDIX B: DETAILS OF CALCULATIONS FOR X (D|B)C|D) +(C|h|D){D|B)(B|C) + (AD|w|AB)(B|C)
THREE ELECTRONS %(C|D) + (ABW|AC)(D|B)(C|D) + (AC/W|AD)(D|B)
The Hamiltonian(3) contains three one-body terrhsand

three Coulomb-interaction terms, and the contribution of X(B|C) + (DB|W[BCXC|D) +(DClw|BDXB|C)
each term is given in Eqg27)—29). These contributions +(BC|w|CD)D|B),
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eo=(BINAXAIB)D|C)(C|D) + (AlhB)(BIAXD|C)CID)
+(D|h[C)(BIAXAIB)(CID) +(ClhID)(BIAXAB)(DIC)
+ (BAWAB)(D|C)(CID) + (BDW|AC)A/B)(CID)
+ (BCWIAD)(A|B)(D|C) + (AD|W|BC)(BAX(C|D)
+ (ACI|BD)(BIAXDIC) + (DCw|CD)(BIAXAIB),

€)= (D|h|AXA[B)(B|C)C|D) + (Alh[B)XD|A)B|C)C|D)
+(B[h|C)(D|AXA[B)(C|D) +(C|h|D)}(D|A)A[B)XB|C)
+(DAJw|AB)(B|C){C|D) + (DB|w|AC){A|B){C|D)
+(DC|w|AD)(A|B){B|C) + (AB|w|BC){D|A){C|D)
+(AC|w|BD)(D|AXB|C) + (BC|w|CD)(D|A)A|B).
The overlap matrix elements are simpler

pa=1,

P2 = (B|AXAB),

PHYSICAL REVIEW B 70, 115310(2004
p1=(D|BXB|CXC|D),
Po = (B|AXA[B)XD|C)C|D),

Po = (DIAXAIB)(B|C)(C|D).

Analytical forms are then available for all of the matrix ele-
ments ofH and all the overlap matrix elements using expres-
sions(27)«29) and using the tetrahedron symmetries

(B|AY=(C|A)=(D|A)=(B|C) =(B|D) =(C|D),
(B|h|A) =(Clh|A) = (DIh|A) = (BJh|C) = (B|h|D) =(C|h|D),

(Alh[A) = (BIh[B) = (Ch|C) = (D|hD).

With all of the matrix elements oH and the overlap
matrix elements in hand, we evaludteJ, andJ’ by solving

Egs.(20)~(25).
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