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We study the conditions under which a subsystem code is correctable in the presence of noise that results
from continuous dynamics. We consider the case of Markovian dynamics as well as the general case of
Hamiltonian dynamics of the system and the environment, and derive necessary and sufficient conditions on
the Lindbladian and system-environment Hamiltonian, respectively. For the case when the encoded informa-
tion is correctable during an entire time interval, the conditions we obtain can be thought of as generalizations
of the previously derived conditions for decoherence-free subsystems to the case where the subsystem is time
dependent. As a special case, we consider conditions for unitary correctability. In the case of Hamiltonian
evolution, the conditions for unitary correctability concern only the effect of the Hamiltonian on the system,
whereas the conditions for general correctability concern the entire system-environment Hamiltonian. We also
derive conditions on the Hamiltonian which depend on the initial state of the environment, as well as condi-
tions for correctability at only a particular moment of time. We discuss possible implications of our results for
approximate quantum error correction.
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I. INTRODUCTION

Operator quantum error correction �OQEC� �1� is a uni-
fied approach to error correction for noise represented by a
completely positive trace-preserving �CPTP� linear map or
noise channel. This approach uses the most general encoding
for the protection of information—encoding in subsystems
�2�. OQEC contains as special cases the standard quantum
error-correction method �3� as well as the methods of
decoherence-free subspaces �4� and subsystems �5�. Re-
cently, the approach was generalized to include
entanglement-assisted error correction �6�, resulting in the
most general quantum error-correction formalism presently
known for CPTP maps �7�.

In practice, however, noise is a continuous process and if
it can be represented by a CPTP map, that map is generally a
function of time. Correctability is therefore a time-dependent
property. Furthermore, the evolution of an open system is
completely positive if the system and the environment are
initially uncorrelated �8�, and necessary conditions for CPTP
maps are not known. For more general cases one needs a
notion of correctability that can capture non-CP transforma-
tions �9�. Whether completely positive or not, the noise map
is a result of the action of the generator driving the evolution
and possibly of the initial state of the system and the envi-
ronment.

Perfect correctability is usually an idealization, since there
is almost always a nonzero probability for uncorrectable er-
rors. For example, if each qubit in a code undergoes inde-
pendent errors, no matter how large the code is, there will
always be a nonzero probability for multiqubit errors that are
not correctable by the code �although, if this probability per
unit time is sufficiently small, an arbitrarily long information

processing task can be implemented reliably by the use of
fault-tolerant techniques �10��. Nevertheless, perfect correct-
ability is a fundamental concept in the theory of quantum
error correction and its understanding is crucial for the un-
derstanding of error correction in realistic scenarios.

In this paper, we study the question of the conditions un-
der which a subsystem code is perfectly correctable in the
presence of noise that results from continuous dynamics. We
first consider the case where the subsystem is correctable
during an entire time interval following the encoding, i.e.,
when the information initially encoded in the subsystem does
not leak out to the environment. Such conditions are needed
in order to understand the mechanisms of information pres-
ervation during continuous processes. If the noise process is
expressed as a CPTP map, the answer is simple—the Kraus
operators have to satisfy the known error-correction condi-
tions at every moment during the evolution. Our goal is,
however, to understand these conditions in terms of the gen-
erator that drives the evolution—the system-environment
Hamiltonian, or in the case of Markovian evolution the Lind-
bladian.

We also consider the case where a subsystem can be cor-
rectable at a given moment after the encoding without being
correctable during the entire time interval between the en-
coding and that moment. This situation can arise in the case
of non-Markovian dynamics, where the encoded information
can flow out to the environment and later return to the sys-
tem. We show that the conditions one obtains on the genera-
tor of evolution in this case do not provide nontrivial infor-
mation about the properties of the instantaneous dynamics,
except for the global requirement that the linear map result-
ing from the dynamics up to the moment in question satisfies
the known error-correction conditions.
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Conditions on the generator of evolution have been de-
rived for the case of decoherence-free subsystems �DFSs�
�11�, which are a special type of operator codes. DFSs are
fixed subsystems of the system’s Hilbert space, inside which
all states evolve unitarily. One generalization of this concept
are the so-called unitarily correctable subsystems �1�. These
are subsystems all states inside of which can be corrected via
a unitary operation up to an arbitrary transformation inside
the gauge subsystem. Unlike DFSs, the unitary evolution fol-
lowed by states in a unitarily correctable code is not re-
stricted to the initial subsystem. An even more general con-
cept is that of unitarily recoverable subsystems �1�, for
which states can be recovered by a unitary transformation up
to an expansion of the gauge subsystem. It was shown that
any correctable subsystem is in fact a unitarily recoverable
subsystem �12�. This result reflects the so-called subsystem
principle �2�, according to which protected information is
always contained in a subsystem of the system’s Hilbert
space. The connection between DFSs and unitarily recover-
able subsystems suggests that similar conditions on the gen-
erators of evolution to those for DFSs can be derived in the
case of general correctable subsystems. This is the subject of
the present paper.

The paper is organized as follows. In Sec. II, we review
the definitions of correctable subsystems and unitarily recov-
erable subsystems. In Sec. III, we discuss the necessary and
sufficient conditions for such subsystems to exist in the case
of CPTP maps. In Sec. IV, we derive conditions for the case
of Markovian dynamics. The conditions for general correct-
ability in this case are essentially the same as those for uni-
tary correctability except that the dimension of the gauge
subsystem is allowed to suddenly increase. For the case
when the evolution is noncorrectable, we conjecture a proce-
dure for tracking the subsystem which contains the optimal
amount of undissipated information and discuss its possible
implications for the problem of optimal error correction. In
Sec. V, we derive conditions on the system-environment
Hamiltonian. In this case, the conditions for continuous uni-
tary correctability concern only the effect of the Hamiltonian
on the system, whereas the conditions for continuous general
correctability concern the entire system-environment Hamil-
tonian. In the latter case, the state of the noisy subsystem
plus environment belongs to a particular subspace which
plays an important role in the conditions. We extend the con-
ditions to the case where the environment is initialized inside
a particular subspace. In Sec. VI, we discuss the conditions
under which a subsystem is correctable only at a particular
moment of time. We conclude in Sec. VII.

II. CORRECTABLE SUBSYSTEMS

For simplicity, we consider the case where information is
stored in only one subsystem. Then there is a corresponding
decomposition of the Hilbert space of the system,

HS = HA
� HB

� K , �1�

where the subsystem HA is used for encoding of the pro-
tected information. The subsystem HB is referred to as the
gauge subsystem, and K denotes the rest of the Hilbert

space. In the formulation of OQEC �1�, the noise process is a
CPTP linear map E :B�HS�→B�HS�, where B�H� denotes
the set of linear operators on a finite-dimensional Hilbert
space H. Such a map can be written in the Kraus form �13�

E��� = �
�

M��M�
† for all � � B�HS� , �2�

where the Kraus operators �M���B�HS� satisfy

�
�

M�
† M� = IS. �3�

Let PAB�·� denote the superoperator projector on B�HA

� HB�,

PAB�·� = PAB�·�PAB, �4�

where PAB is the projector of HS onto HA � HB,

PABHS = HA
� HB. �5�

We now recall some of the key notions in correctability.
The first and simplest version is one that does not require a
recovery �or correction� step:

Definition 1 (noiseless subsystem). The subsystem HA in
Eq. �1� is called noiseless with respect to the noise process E,
if

TrB��PAB � E����� = TrB���

for all � � B�HS� such that � = PAB��� . �6�

More general is the case when one invokes a correction
map to correct the subsystem.

Definition 2 (correctable subsystem). The subsystem HA

in Eq. �1� is called correctable if there exists a correcting
CPTP map R :B�HS�→B�HS�, such that the subsystem is
noiseless with respect to the map R �E:

TrB��PAB � R � E����� = TrB���

for all � � B�HS� such that � = PAB��� . �7�

A special case of this is unitary correction.
Definition 3 (unitarily correctable subsystem). The sub-

system HA in Eq. �1� is called unitarily correctable when
there exists a unitary correcting map, i.e., when there exists a
unitary map U :B�HS�→B�HS� such that

TrB��PAB � U � E����� = TrB���

for all � � B�HS� such that � = PAB��� . �8�

A similar but more general notion is that of a unitarily
recoverable subsystem, for which the unitary U need not
bring the erroneous state back to the original subspace HA

� HB but can bring it into a subspace HA � HB�, with B not
necessarily equal to B�.

Definition 4 (unitarily recoverable subsystem). The sub-
system HA in Eq. �1� is called unitarily recoverable when
there exists a unitary map U :B�HS�→B�HS� such that

TrB���P
AB� � U � E����� = TrB���
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for all � � B�HS� such that � = PAB��� . �9�

Obviously, if HA is unitarily recoverable, it is also cor-
rectable, since one can always apply a local CPTP map
EB�→B :B�HB��→B�HB� which brings all states from HB� to
HB. �In fact, if the dimension of HB� is smaller than or equal
to that of HB, this can always be done by a unitary map, i.e.,
HA is unitarily correctable.� In Ref. �12� it was shown that
the reverse is also true—if HA is correctable, it is unitarily
recoverable. This equivalence will provide the basis for our
derivation of correctability conditions for continuous dynam-
ics.

Before we proceed with our discussion, we point out that
condition �9� can be equivalently written as �1�

U � E�� � �� = � � ��, �� � B�HB�� ,

for all � � B�HA�, � � B�HB� . �10�

III. COMPLETELY POSITIVE LINEAR MAPS

An important class of transformations on quantum states
consists of the so-called completely positive linear maps,
also known simply as quantum operations �14�. Let HS and
HE denote the Hilbert spaces of a system and its environ-
ment, and let H=HS � HE be the total Hilbert space. A com-
mon example of a CP map is the transformation that the state
of a system undergoes if the system is initially decoupled
from its environment, ��0�=�S�0� � �E�0�, and both the sys-
tem and environment evolve according to the Schrödinger
equation:

d��t�
dt

= − i�H�t�,��t�� . �11�

�We work in units in which �=1, and assume a generally
time-dependent Hamiltonian.� Equation �11� gives rise to the
unitary transformation

��t� = V�t���0�V†�t� , �12�

with

V�t� = T exp�− i	
0

t

H���d�
 , �13�

where T denotes time ordering. Under the assumption of an
initially decoupled state of the system and the environment,
the transformation of the state of the system is described by
a CPTP map

�S�0� → �S�t� � TrE���t�� = �
�

M��t��S�0�M�
†�t� ,

for which the time-dependent Kraus operators M��t�
�B�HS� are given by

M��t� = ���TrE�IS
� 
����
V�t��, � = ��,�� , �14�

where �
��� is a basis of the Hilbert space of the environ-
ment, in which the initial environment density operator is
diagonal: �E�0�=����
����
.

The Kraus representation �2� applies to any CP linear
map, which need not necessarily arise from evolution of the
type �11�. This is why, in the following theorem, we derive
conditions for discrete CP maps. For correctability under
continuous dynamics, the same conditions must apply at all
times, i.e., one can view the quantities M�, U, and C�, as
well as the subsystem HB� in the theorem as being implicitly
time dependent.

Theorem 1. The subsystem HA in the decomposition �1� is
unitarily recoverable under a CP linear noise process in the
form �2�, if and only if there exists a unitary operator U
�B�HS� such that the Kraus operators satisfy

M�PAB = U†IA
� C�

B→B�, C�
B→B�:HB → HB�,

∀ � . �15�

Proof. The sufficiency of condition �15� is obvious—
using that � � � in Eq. �10� satisfies � � �= PAB� � �PAB, it
can be immediately verified that Eq. �15� implies Eq. �10�
with U=U�·�U†. Now assume that HA is unitarily recover-
able and the recovery map is U=U�·�U†. The map U �E in Eq.
�10� can then be thought of as having Kraus operators UM�.
In particular, condition �10� has to be satisfied for �= 
	��	
,
�= 

��

 where 
	��HA and 

��HB are pure states. No-
tice that the image of 
	��	
 � 

��

 under the map U �E
would be of the form 
	��	
 � ��, only if all terms in Eq. �2�
are of the form

UM�
	��	
 � 

��

M�
†U†

= 
g��	�
2
	��	
 � 

���	���
���	�
 ,

g��	� � C , �16�

where for now we assume that g� and 

��� may depend on

	�. This follows from the fact that each of the operators
UM� transforms pure states into pure states, and the �posi-
tive� reduced operator on HA of each of the terms �16� must
be proportional to the same pure state 
	��	
 in order for the
total reduced density operator on HA to be pure. In other
words,

UM�
	�

� = g��	�
	�

���	��, g��	� � C, ∀ � .

�17�

But if we impose �17� on a linear superposition 
	�=a
	1�
+b
	2� �a ,b�0�, we obtain g��	1�=g��	2� and 

���	1��
= 

���	2��, i.e.,

g��	� � g�, 

���	�� � 

���, ∀ 
	� � HA, ∀ � .

�18�

Since Eq. �17� has to be satisfied for all 
	��HA and all


��HB, we obtain

UM�PAB = IA
� C�

B→B�, C�
B→B�:HB → HB�,

∀ � . �19�

Applying U† from the left yields condition �15�. �
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We remark that condition �15� is equivalent to the condi-
tions obtained in Ref. �1�.

IV. MARKOVIAN DYNAMICS

The most general continuous completely positive time-
local evolution of the state of a quantum system is described
by a semigroup master equation in the Lindblad form �15�:

d��t�
dt

= − i�H�t�,��t�� −
1

2�
j

„2Lj�t���t�Lj
†�t�

− Lj
†�t�Lj�t���t� − ��t�Lj

†�t�Lj�t�… � L�t���t� .

�20�

Here H�t� is a system Hamiltonian, Lj�t� are Lindblad opera-
tors, and L�t� is the Liouvillian superoperator corresponding
to this dynamics. The general evolution of a state is given by

��t2� = T exp�	
t1

t2

L���d�
��t1�, t2 � t1. �21�

Such evolution arises from a Hamiltonian interaction with
the environment in the Markovian limit of short bath corre-
lation times �16�. The evolution induced by �20� is com-
pletely positive and can be thought of as arising from an
infinite sequence of infinitesimal completely positive maps
of the form �2�. These maps can depend on time, and there-
fore the operators in �20� are generally time dependent.

We first derive necessary and sufficient conditions for uni-
tarily correctable subsystems under the dynamics �20�, and
then extend them to the case of unitarily recoverable sub-
systems.

A. Unitarily correctable subsystems

In the case of continuous dynamics, the error map E and
the error-correcting map U in Eq. �8� are generally time de-
pendent. If we set t=0 as the initial time at which the system
is prepared, the error map resulting from the dynamics �20�
is

E�t��·� = T exp�	
0

t

L���d�
�·� . �22�

Our strategy is now to convert the problem into one of noise-
less subsystems, for which necessary and sufficient condi-
tions have already been found �11�. To this end let U�t�
=U�t��·�U†�t� be the unitary error-correcting map in Eq. �8�.
We can define the rotating frame corresponding to U†�t� as
the transformation of each operator as

O�t� → Õ�t� = U�t�O�t�U†�t� . �23�

In this frame, the Lindblad equation �20� can be written as

d�̃�t�
dt

= − i�H̃�t� + H��t�, �̃�t�� −
1

2�
j

„2L̃j�t��̃�t�L̃j
†�t�

− L̃j
†�t�L̃j�t��̃�t� − �̃�t�L̃j

†�t�L̃j�t�… � L̃�t��̃�t� ,

�24�

where H��t� is defined through

i
dU�t�

dt
= H��t�U�t� , �25�

i.e.,

U�t� = T exp�− i	
0

t

H����d�
 . �26�

The CPTP map resulting from the dynamics �24� is

Ẽ�t��·� = T exp�	
0

t

L̃���d�
�·� . �27�

Theorem 2. Let H̃�t� and L̃j�t� be the Hamiltonian and the
Lindblad operators in the rotating frame �23� with U�t� given
by Eq. �25�. Then the subsystem HA in the decomposition �1�
is correctable by U�t� during the evolution �20�, if and only if

L̃j�t�PAB = IA
� Cj

B�t�, Cj
B�t� � B�HB�, ∀ j , �28�

and

PAB
„H̃�t� + H��t�… = IA

� DB�t�, DB�t� � B�HB� ,

�29�

and

PAB�H̃�t� + H��t� +
i

2�
j

L̃j
†�t�L̃j�t�
PK = 0, �30�

for all t, where PK denotes the projector on K.
Proof. Since by definition U�t� is an error-correcting map

for subsystem HA, if PAB(��0�)=��0�, we have

TrB�PAB � Ẽ„�̃�0�…� = TrB�PAB
„�̃�t�…�

= TrB�PAB � U�t� � E�t�„��0�…�

= TrB���0�� = TrB��̃�0�� ,

i.e., HA is a noiseless subsystem under the evolution in the
rotating frame �24�. Then the theorem follows from Eq. �24�
and the conditions for noiseless subsystems under Markovian
dynamics obtained in �11�. �

Remark. Conditions �29� and �30� can be used to obtain
the operator H��t� �and hence U�t�� if the initial decomposi-
tion �1� is known. Note that there is a freedom in the defini-
tion of H��t�. For example, DB�t� in Eq. �29� can be any
Hermitian operator. In particular, we can choose DB�t�=0.
Also, the term PKH��t�PK does not play a role and can be
chosen arbitrarily. Using that PK= I− PAB, we can choose

H��t� = − H̃�t� −
i

2
PAB��

j

L̃j
†�t�L̃j�t�


+
i

2��j

L̃j
†�t�L̃j�t�
PAB, �31�

which satisfies Eqs. �29� and �30�. Using Eqs. �23�, �25�, and
�31�, we obtain the following first-order differential equation
for U�t�:
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i
dU�t�

dt
= − U�t�H�t� −

i

2
PABU�t���

j

Lj
†�t�Lj�t�


+
i

2
U�t���

j

Lj
†�t�Lj�t�
U†�t�PABU�t� . �32�

This equation can be used to solve for U�t� starting from
U�0�= I.

Notice that, since HA is unitarily correctable by U�t�, at
time t the initially encoded information can be thought of as
contained in the subsystem HA�t� defined through

HA�t� � HB�t� � U†�t�HA
� HB, �33�

i.e., this subsystem is obtained from HA in Eq. �1� via the
unitary transformation U†�t�. One can easily verify that the
fact that the right-hand side of Eq. �28� acts trivially on HA

together with Eq. �29� are necessary and sufficient conditions
for an arbitrary state encoded in subsystem HA�t� to undergo
trivial dynamics at time t. Therefore, these conditions can be
thought of as the conditions for lack of noise in the instan-
taneous subsystem that contains the protected information.
On the other hand, the fact that the right-hand side of Eq.
�28� maps states from HA � HB to HA � HB together with Eq.
�30� are necessary and sufficient conditions for states inside
the time-dependent subspace U†�t�HA � HB not to leave this
subspace during the evolution. Thus the conditions of the
theorem can be thought of as describing a time-varying
noiseless subsystem HA�t�.

B. Unitarily recoverable subsystems

We now extend the above conditions to the case of uni-
tarily recoverable subsystems. As we pointed out earlier, the
difference between a unitarily correctable and a unitarily re-
coverable subsystem is that in the latter the dimension of the
gauge subsystem may increase. Since the dimension of the
gauge subsystem is an integer, this increase can happen only
in a jumplike fashion at particular moments. Between these
moments, the evolution is unitarily correctable. Therefore,
we can state the following theorem.

Theorem 3. The subsystem HA in Eq. �1� is correctable
during the evolution �20�, if and only if there exist times ti,
i=0,1 ,2 , . . ., t0=0, ti� ti+1, such that for each interval be-
tween ti−1 and ti there exists a decomposition

HS = HA
� Hi

B
� Ki, Hi

B � Hi−1
B , �34�

with respect to which the evolution during this interval is
unitarily correctable.

Remark. An increase of the gauge subsystem at time ti
happens if the operator Cj�t� in Eq. �28� obtains nonzero
components that map states from Hi

B to Hi+1
B . From that mo-

ment on, ti
 t
 ti+1, Eq. �28� must hold for the new decom-
position HS=HA � Hi+1

B
� Ki+1. The unitary U�t� is deter-

mined from Eqs. �29� and �30�, as described earlier.
The conditions derived in this section provide insights

into the mechanism of information preservation under Mar-
kovian dynamics, and thus could also have implications for
the problem of error correction when perfect recovery is not
possible �17,18�. For example, it is conceivable that the uni-

tary operation constructed according to Eq. �25� with the
appropriate modification for the case of increasing gauge
subsystem may be useful for error correction also when the
conditions of the theorems are only approximately satisfied.
Notice that the generator driving the effective evolution of
the subspace U†�t�HA � HB, whose projector we denote by
PAB�t��U†�t�PABU�t�, can be written as

L�t��·� = − i�Heff�t�, · � + D�t��·� + S�t��·� , �35�

where

Heff�t� = H�t� +
i

2
PAB�t���

j

Lj
†�t�Lj�t�


−
i

2��j

Lj
†�t�Lj�t�
PAB�t� �36�

is an effective Hamiltonian,

D�t��·� = �
j

Lj�t��·�Lj
†�t�

is a dissipator, and

S�t��·� = −
1

2
PAB�t���

j

Lj
†�t�Lj�t�
PAB�t��·�

−
1

2
�·�PAB�t���

j

Lj
†�t�Lj�t�
PAB�t� �37�

is a superoperator acting on B�U†�t�HAB�. The dissipator
most generally causes an irreversible loss of the information
contained in the current subspace, which may involve loss of
the information stored in subsystem HA�t� as well as an in-
crease of the gauge subsystem. The superoperator S�t��·�
gives rise to a transformation solely inside the current sub-
space. In the case when the evolution is correctable, this
operator acts locally on the gauge subsystem, but in the gen-
eral case it may act nontrivially on HA�t�. The role of the
effective Hamiltonian is to rotate the current subspace by an
infinitesimal amount. If one could argue that the information
lost under the action of D�t� and S�t� is in principle irretriev-
able, then heuristically one could expect that, after a single
time step dt, the corresponding factor of the infinitesimally
rotated �possibly expanded� subspace will contain the maxi-
mal amount of the remaining encoded information. Note that
to keep track of the increase of the gauge subsystem one
would need to determine the operator Cj on the right-hand
side of Eq. �28� that optimally approximates the left-hand
side. Of course, since the dissipator generally causes leakage
of states outside the current subspace, the error-correcting
map at the end would have to involve more than just a uni-
tary recovery followed by a CPTP map on the gauge sub-
system. In order to maximize the fidelity �19� of the encoded
information with a perfectly encoded state, one would have
to bring the state of the system fully inside the subspace
HA � HB. These heuristic arguments, however, require a rig-
orous analysis. It is possible that the action of the superop-
erators D�t� and S�t� may be partially correctable and thus
one may have to modify the unitary �25� in order to opti-
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mally track the retrievable information. We leave this as a
problem for future investigation.

V. CONDITIONS ON THE SYSTEM-ENVIRONMENT
HAMILTONIAN

We now derive conditions for correctability of a sub-
system when the dynamics of the system and the environ-
ment is described by the Schrödinger equation �11�. While
the CP-map conditions can account for such dynamics when
the states of the system and the environment are initially
uncorrelated, they depend on the initial state of the environ-
ment. Below, we first derive conditions on the system-
environment Hamiltonian that hold for any state of the envi-
ronment, and then extend them to the case when the
environment is initialized inside a particular subspace.

We point out that the equivalence between unitary recov-
erable subsystems and correctable subsystems has been
proven for CPTP maps. Here, we could have a non-CP evo-
lution since the initial state of the system and the environ-
ment may be entangled. Nevertheless, since correctability
must hold for the case when the initial states of the system
and the environment are uncorrelated, the conditions we ob-
tain are necessary. They are obviously also sufficient since
unitary recoverability implies correctability.

Let us write the system-environment Hamiltonian as

HSE�t� = HS�t� � IE + IS
� HE�t� + HI�t� , �38�

where HS�t� and HE�t� are the system and the environment
Hamiltonians, respectively, and

HI�t� = �
j

Sj�t� � Ej�t� �39�

is the interaction Hamiltonian. From the point of view of the
Hilbert space of the system plus environment, the decompo-
sition �1� reads

H = �HA
� HB

� K� � HE = HA
� HB

� HE
� K � HE.

�40�

A. Conditions independent of the state of the environment

We will again consider conditions for unitary correctabil-
ity first, and then conditions for general correctability.

1. Unitary correctability

In the rotating frame �23�, the Schrödinger equation �11�
becomes

d�̃�t�
dt

= − i�H̃SE�t� + H��t�, �̃�t�� . �41�

Since in this picture a unitarily correctable subsystem is
noiseless, we can state the following theorem.

Theorem 4. Consider the evolution �11� driven by the

Hamiltonian �38�. Let H̃S�t� and S̃j�t� be the system Hamil-
tonian and the interaction operators �39� in the rotating frame
�23� with U�t� given by Eq. �25�. Then the subsystem HA in

the decomposition �1� is unitarily correctable by U�t� during
this evolution, if and only if, for all t,

S̃j�t�PAB = IA
� Cj

B�t�, Cj
B�t� � B�HB�, ∀ j , �42�

and

„H̃S�t� + H��t�…PAB = IA
� DB�t�, DB�t� � B�HB� .

�43�

Proof. With respect to the evolution in the rotating frame
�23�, the subsystem HA is noiseless. The theorem follows
from the conditions for noiseless subsystems under Hamil-
tonian dynamics �11� applied to the Hamiltonian in the rotat-
ing frame. Note that the fact that the operator on the right-
hand side of Eq. �43� sends states from HA � HB to HA

� HB implies that the off-diagonal terms of H̃S�t�+H��t� in
the block basis corresponding to the decomposition �1� van-

ish, i.e., PAB(H̃S�t�+H��t�)PK=0. �
Remark. The Hamiltonian H��t� can be obtained from

conditions �42� and �43�. We can choose DB�t�=0 and define

H��t�=−H̃S�t�, which together with Eq. �25� yields

i
dU�t�

dt
= − U�t�HS�t� , �44�

i.e.,

U†�t� = T exp�− i	
0

t

HS���d�
 . �45�

This simply means that the evolution of the subspace that
contains the encoded information is driven by the system
Hamiltonian.

The conditions again can be separated into two parts. The
fact that the right-hand sides of Eqs. �42� and �43� act trivi-
ally on HA is necessary and sufficient for the information
stored in the instantaneous subsystem HA�t� to undergo
trivial dynamics at time t. The fact that the right-hand sides
of these equations do not take states outside HA � HB is nec-
essary and sufficient for states not to leave the subspace
U†�t�HA � HB as it evolves.

2. Unitary recoverability

The conditions for unitary recoverability are not obtained
directly from Theorem 4 in analogy to the case of Markovian
dynamics. Such conditions would certainly be sufficient, but
it turns out that they are not necessary. If after the unitary
recovery operation the dimension of the gauge subsystem
HB� is larger than that of the initial gauge subsystem HB, the
state of the gauge subsystem plus environment must belong
to a proper subspace of HB� � HE �because the overall evo-
lution is unitary and the dimension of the subspace occupied
by the possible states of the system and the environment
must be preserved�. Thus it is not necessary that the Hamil-
tonian acts trivially on the factor HA in HA � HB� � HE, but

only on the factor HA in HA � H̃BE, where H̃BE is the proper
subspace in question.

Example. To illustrate this point, consider the following
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example. Let HS=H1 � H2 be the Hilbert space of two qu-
bits with Hilbert spaces H1 and H2, respectively. Let the
environment consist of a single qubit, i.e., dim�HE�=2. We
will work in the rotating frame �23� defined through the re-
covering unitary �25� but will drop the tilde for simplicity of
notation and will include the Hamiltonian H��t� in the defi-
nition of the overall Hamiltonian HSE�t�. Let us denote the
basis states of each of the qubit systems by 
0�� and 
1��

where the superscript � labels the qubit ��=1,2 ,E�. Con-
sider the encoding �1� with HA=H1 and HB=Span�
0�2�. In
our basis, the system-environment Hamiltonian is such that it
leaves the state of qubit 1 invariant, i.e., its effect on the
initial state of the system plus environment is equivalent to a
unitary transformation on H2 � HE. Since the initial state of
the joint system of qubits 2 and E belongs to the two-
dimensional subspace Span�
0�2� � HE of H2 � HE, the state
of these two qubits at any later time must belong to a two-
dimensional subspace of H2 � HE. Let us imagine that the
action of the Hamiltonian up to a given time t* results in the
effective unitary transformation I2 � 
0��0
E+X2 � 
1��1
E
�here X denotes the �X Pauli matrix�. Then the state of qubits
2 and E at this moment will belong to the subspace H̃BE

=Span�
0�2
0�E , 
1�2
1�E�. If we assume that there is no re-
striction on the initial state of the environment, the reduced
density operator on subsystem 2 at time t* can have support
on the entire Hilbert space H2. In particular, if the environ-
ment is initially in the maximally mixed state �
0��0
E
+ 
1��1
E� /2, the reduced density operator on subsystem 2 at
time t* will also be in the maximally mixed state �
0��0
2
+ 
1��1
2� /2. In other words, the state of qubit 2 is not re-
stricted to any particular proper subspace of H2 and similarly
the state of the environment is not restricted to any proper
subspace of HE. However, we cannot argue that the operators
Sj�t*� of the interaction Hamiltonian �39� must have the form
Sj�t*�= I1 � Cj

2�t*� �the analog of Eq. �42�� or that the system
Hamiltonian in Eq. �38� must have the form HS�t*�= I1

� H2�t*� �the analog of Eq. �43��. The reason is that, since
the state of the entire system plus environment at time t*
belongs to the subspace H1 � H̃BE, it is necessary only that
HSE�t*� acts trivially on qubit 1 when acting on states in this
subspace. For example, if the system Hamiltonian is HS�t*�
=Z1 � Z2 �where Z denotes the �Z Pauli matrix� and
the interaction Hamiltonian is HI�t*�=Z1 � �
11��11
2E

− 
00��00
2E�, qubit 1 will be effectively acted upon trivially
by the Hamiltonian because the effect of HS�t*� � IE on states
in the subspace H1 � Span�
0�2
0�E , 
1�2
1�E� is equivalent to
that of −Z1 � Z2 � IE. Note that in the case of unitary correct-
ability, we can derive necessary conditions only in terms of
the part of the Hamiltonian that acts on the system because
HB�=HB and HB� � HE is fully occupied, so the condition
that HA in HA � HB� is acted upon trivially must hold for any
state of the environment.

We now proceed to formulate general conditions for uni-
tary recoverability under Hamiltonian evolution. Let

HS = HA
� HB� � K� �46�

be a decomposition of the Hilbert space of the system such
that the factor HB��HB is such that it has the largest pos-

sible dimension, i.e., dim�HB���dB� is the largest integer
such that

dim�HS� = dim�HA�dB� + dK�, �47�

where dK� is a non-negative integer.
Since the evolution of the state of the system plus the

environment is unitary, at time t the initial subspace HA

� HB � HE will be transformed to some other subspace of
HS � HE which is unitarily related to the initial one. Apply-
ing the unitary recovery operation U�t� returns this subspace

to the form HA � H̃BE�t�, where H̃BE�t� is a subspace of
HB� � HE. Clearly, there exists a unitary operator
W0�t� :HB� � HE→HB� � HE that maps this subspace to the
initial subspace HB � HE:

W0�t�P̃BE�t�W0
†�t� = PBE. �48�

�Here P̃BE�t� denotes the projector on H̃BE�t�.� Moreover,
since the overall unitary that describes the evolution is a
differentiable function of time, if U�t� is chosen as differen-
tiable, W0�t� can also be chosen differentiable. Note that, as
an operator on the entire Hilbert space, this unitary has the

form W0�t�� IA � W0
B�E�t� � IK� � IE.

Let us define the frame

Ô�t� = W�t�O�t�W†�t� , �49�

where

i
dW�t�

dt
= H��t�W�t� . �50�

Then the evolution driven by a Hamiltonian G�t�, in this

frame will be driven by Ĝ�t�+H��t�.
Theorem 5. Let Õ�t� denote the image of an operator

O�t��B�H� under the transformation �23� with U�t�
�B�HS� given by Eq. �25� �H��t��B�HS��, and let Ô�t�
denote the image of O�t� under the transformation �49� with
W�t� given by Eq. �50�. Let PABE be the projector on HA

� HB � HE. The subsystem HA in the decomposition �40� is
unitarily recoverable by U�t� during the evolution driven by
the system-environment Hamiltonian HSE�t�, if and only if
there exists H��t��B�HB� � HE�, where HB� was defined in
�46�, such that

„Ĥ̃SE�t� + Ĥ��t� + H��t�…PABE = IA
� DBE�t� ,

DBE�t� � B�HB
� HE�, ∀ t . �51�

Proof. Assume that the information encoded in HA is uni-
tarily recoverable by U�t�. Consider the evolution in the
frame defined through the unitary operation W�t�U�t�, where
W�t�=W0�t� for some differentiable W0�t� that satisfies the
property �48�. In this frame, which can be obtained by con-
secutively applying the transformations �23� and �49�, the

Hamiltonian is Ĥ̃SE�t�+ Ĥ��t�+H��t�. Under this Hamil-
tonian, the subsystem HA must be noiseless and no states
should leave the subspace HA � HB � HE. It is straightfor-
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ward to see that the first requirement means that HA must be
acted upon trivially by all terms of the Hamiltonian, hence
the factor IA on the right-hand side of Eq. �51�. At the same
time, the subspace HB � HE must be preserved by the action
of the Hamiltonian, which implies that the factor DBE�t� on
the right-hand side of Eq. �51� must send states from HB

� HE to HB � HE. Note that this implies that the off-diagonal
terms of the Hamiltonian in the block form corresponding

to the decomposition �40� must vanish, i.e., PABE(Ĥ̃SE�t�
+ Ĥ��t�+H��t�)P�

ABE=0, where P�
ABE denotes the projector on

K � HE. Obviously, these conditions are also sufficient, since
they ensure that in the frame defined by the unitary transfor-
mation W�t�U�t�, the evolution of HA is trivial, and states
inside the subspace HB � HE evolve unitarily under the ac-
tion of the Hamiltonian DBE�t�. Since W�t� acts on HB�

� HE, subsystem HA is invariant also in the rotating frame
�23�. This means that HA is recoverable by the unitary
U�t�. �

Remark. Similarly to the previous cases, the unitary op-
erators U�t� and W�t� can be obtained iteratively from Eq.
�51� if the decomposition �1� is given. Since H��t� acts on

HB� � HE, from Eq. �51� it follows that the operator Ĥ̃SE�t�
+ Ĥ��t� must satisfy

„Ĥ̃SE�t� + Ĥ��t�…PABE = IA
� FB�E�t� ,

FB�E�t� � B�HB� � HE� . �52�

At the same time, we can choose H��t� so that DBE�t�=0.
This corresponds to

W�t�H̃BE�t� = HB
� HE, �53�

where H̃BE�t� was defined in the discussion before Theorem
5. To ensure DBE�t�=0, we can choose

H��t� = − Ĥ̃SE�t� − Ĥ��t� + P�
ABE

„Ĥ̃SE�t� + Ĥ��t�… , �54�

where P�
ABE�·�= P�

ABE�·�P�
ABE. For t=0 �U�0�= I, W�0�= I�, we

can find a solution for Ĥ��0�=H��0� from Eq. �52�, given the

Hamiltonian Ĥ̃SE�0�=HSE�0�. Plugging the solution in Eq.
�54�, we can obtain H��0�. For the unitaries after a single
time step dt we then have

U�dt� = I − iH��0�dt + O�dt2� , �55�

W�dt� = I − iH��0�dt + O�dt2� . �56�

Using U�dt� and W�dt� we can calculate Ĥ̃SE�dt� according
to Eqs. �23� and �49�. Then we can solve Eq. �52� for

Ĥ��dt�=W�dt�H�†�dt�, which we can use in Eq. �54� to find
H��dt�, and so on. Note that here we cannot specify a simple

expression for Ĥ��t� in terms of Ĥ̃SE�t�, since we do not have
the freedom to choose fully FB�E�t� in Eq. �52� due to the
restriction that H��t� acts locally on HS.

We point out that condition �51� again can be understood
as consisting of two parts—the fact that the right-hand side

acts trivially on HA is necessary and sufficient for the instan-
taneous dynamics undergone by the subsystem
U†�t�W†�t�HA at time t to be trivial, while the fact that it
preserves HA � HB � HE is necessary and sufficient for states
not to leave U†�t�W†�t�HA � HB � HE as it evolves.

It is tempting to perform an argument similar to the one
we presented for the Markovian case about the possible re-
lation of the specified recovery unitary operation U�t� and
the optimal error-correcting map in the case of approximate
error correction. If the encoded information is not perfectly
preserved, we can construct the unitary operation U�t� as
explained in the comment after Theorem 5 by optimally ap-
proximating Eqs. �52� and �54�. However, in this case the
evolution is not irreversible and the information that leaks
out of the system may return to it. Thus we cannot argue that
the unitary map specified in this manner would optimally
track the remaining encoded information.

B. Conditions depending on the initial state
of the environment

We can easily extend Theorem 5 to the case when the
initial state of the environment belongs to a particular sub-
space HE0 �HE. The only modification is that, instead of
PABE in Eq. �51�, we must have PABE0, where PABE0 is the
projector on HA � HB � HE0, and on the right-hand side we
must have DBE0�t��B�HB � HE0�.

The following two theorems follow by arguments analo-
gous to those for Theorem 5. We assume the same definitions
as in Theorem 5 �Eqs. �23�, �25�, �49�, and �50��, except that
in the second theorem we restrict the definition of H��t�.

Theorem 6. Let PABE0 be the projector on HA � HB

� HE0, where HE0 �HE. The subsystem HA in the decompo-
sition �40� is unitarily recoverable by U�t��B�HS� during
the evolution driven by the system-environment Hamiltonian
HSE�t� when the state of the environment is initialized inside
HE0, if and only if there exists H��t��B�HB� � HE� such
that

„Ĥ̃SE�t� + Ĥ��t� + H��t�…PABE0 = IA
� DBE0�t� ,

DBE0�t� � B�HB
� HE0�, ∀ t . �57�

The conditions for unitary correctability in this case re-
quire the additional restriction that W�t� acts on HB � HE and
not on HB� � HE, since in this case U�t� brings the state
inside HA � HB � HE. Notice that when the state of the en-
vironment is initialized in a particular subspace, we cannot
use conditions for unitary correctability similar to those in
Theorem 4. This is because, after the correction U�t�, the
state of the gauge subsystem plus environment may belong
to a proper subspace of HB � HE, and tracing out the envi-
ronment would not yield necessary conditions.

Theorem 7. Let PABE0 be the projector on HA � HB

� HE0, where HE0 �HE. The subsystem HA in the decompo-
sition �40� is unitarily correctable by U�t��B�HS� during the
evolution driven by the system-environment Hamiltonian
HSE�t� when the state of the environment is initialized inside
HE0, if and only if there exists H��t��B�HB � HE� such that
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„Ĥ̃SE�t� + Ĥ��t� + H��t�…PABE0 = IA
� DBE0�t� ,

DBE0�t� � B�HB
� HE0�, ∀ t . �58�

Notice that the conditions of Theorems 6 and 7 do not
depend on the particular initial state of the environment but
only on the subspace to which it belongs. This can be under-
stood by noticing that different environment states inside the
same subspace give rise to Kraus operators �14� which are
linear combinations of each other. The discretization of er-
rors in operator quantum error correction �1� implies that all
such maps will be correctable.

The conditions for correctable dynamics dependent on the
state of the environment could be useful if we are able to
prepare the state of the environment in the necessary sub-
space. The environment, however, is generally outside the
experimenter’s control. Nevertheless, it is conceivable that
the experimenter may have some control over the environ-
ment �for example, by varying its temperature�, which for
certain Hamiltonians could bring the environment state close
to a subspace for which the evolution of the system is cor-
rectable. It is important to point out that, according to a result
derived in Ref. �19�, the error due to imperfect initialization
of the environment will not increase under the evolution.

VI. CORRECTABILITY AT A PARTICULAR MOMENT OF
TIME

So far, we have looked at the conditions under which the
encoded information is preserved during an entire time inter-
val following the encoding. As pointed out earlier, this is not
the most general form of correctability that can occur. It is
possible that the encoded information is lost for a while but
is later retrieved. This clearly cannot happen in the case of
Markovian dynamics because Markovian dynamics is irre-
versible. However, it can occur in the case of Hamiltonian
dynamics where the information can flow out to the environ-
ment and later return to the system. In this section, we dis-
cuss the conditions on the system-environment Hamiltonian
for this most general type of correctability.

Let the unitary transformation generated by the action of
the system-environment Hamiltonian from time t=0 to time
t=T be

VSE�T� = T exp�− i	
0

T

HSE�t�dt
 . �59�

The following theorem follows directly from the definition
of unitary recoverability.

Theorem 8. Let PABE0 denote the projector on HA � HB

� HE0, where HE0 �HE. Let HB� be defined as in Eq. �46�.
The subsystem HA in the decomposition �40� is unitarily re-
coverable by U=US � IE at time t=T under the evolution
driven by the system-environment Hamiltonian HSE�t� when
the state of the environment is initialized inside HE0, if and
only if

UVSE�T�PABE0 = IA
� CBE0→B�E,

CBE0→B�E:HB
� HE0 → HB� � HE. �60�

The theorems for the case of unitary correctability or cor-
rectability independent of the state of the environment can be
obtained from Theorem 8 by substituting HB�=HB and
HE0 =HE, respectively.

Theorem 8 can be regarded as a generalization of Theo-
rem 1, which concerns the process that leads to a particular
transformation at a given moment, rather than the transfor-
mation itself. More specifically, condition �60� is equivalent
to the condition that all possible CPTP maps obtained
through Eq. �14�, for the different possible initial density
matrices of the environment with support on HE0, satisfy Eq.
�15�. This equivalence can be obtained by sandwiching both
sides of Eq. �60� between all pairs of vectors 
�� and 
��
from an orthonormal basis which spans HE and a subset of
which spans HE0.

Note that Theorem 8 imposes conditions on the Hamil-
tonian HSE�t� only indirectly—through a condition on the
resulting unitary �59�. At first sight this may not seem too
different from the situation we had before for the case of
continuous correctability, because the conditions in that case
�e.g., Theorem 6� could be regarded as equivalent to the
requirement that Theorem 8 holds at every moment of time.
But precisely because in that case condition �60� was im-
posed for all times, we obtained nontrivial conditions on the
Hamiltonian for all times. Those nontrivial conditions en-
sured that, at every moment of time, the Hamiltonian does
not take the information of interest outside the system.

In this case, the only restriction on the resulting unitary is
the global requirement that at time T the unitary VSE�T� sat-
isfies Eq. �60�. But up to any moment t0, 0� t0�T, the uni-
tary VSE�t� can be completely arbitrary because it can always
become of the form that satisfies Theorem 8 during the in-
terval between t0 and T. Therefore, if we write conditions on
the Hamiltonian similar to those for continuous correctabil-
ity, up to any moment t0�T these conditions will be trivial.
The only nontrivial condition has a global character and it is
expressed through the condition on VSE�T� as given by Theo-
rem 8.

VII. CONCLUSION

We have derived conditions for correctability of sub-
systems under continuous dynamics. We first presented con-
ditions for the case when the evolution can be described by a
CPTP linear map. These conditions are equivalent to those
known for operator codes �1� except that we consider them
for time-dependent noise processes. We then derived condi-
tions for continuous correctability for the case of Markovian
dynamics and general Hamiltonian dynamics of the system
and the environment. We derived conditions for both unitary
correctability and general correctability, using the fact that
correctable subsystems are unitarily recoverable �12�. For the
case of Hamiltonian dynamics, we also considered condi-
tions for correctability at only a particular moment of time.

The conditions for continuous correctability under both
Markovian and Hamiltonian evolution can be understood as
consisting of two parts—the first is necessary and sufficient
for the absence of noise inside the instantaneous subsystem
that contains the information, and the second is necessary
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and sufficient for states not to leave the subsystem as it
evolves with time. In this sense, the new conditions can be
thought of as generalizations of the conditions for noiseless
subsystems to the case where the subsystem is time depen-
dent.

In the Hamiltonian case, the conditions for continuous
unitary correctability concern only the action of the Hamil-
tonian on the system, whereas the conditions for continuous
unitary recoverability concern the entire system-environment
Hamiltonian. The reason for this is that the state of the gauge
subsystem plus the environment generally belongs to a par-
ticular subspace, which does not factor into a sector belong-
ing to the system and a sector equal to the Hilbert space of
the environment.

We also derived conditions in the Hamiltonian case that
depend on the initial state of the environment. These condi-
tions could be useful, in principle, since errors due to imper-
fect initialization of the environment do not increase under
the evolution. Furthermore, these conditions could provide a
better understanding of correctability under CPTP maps,
since a CPTP map that results from Hamiltonian evolution
depends on both the Hamiltonian and the initial state of the
environment.

Finally, we discussed the conditions for correctability at
only a particular moment of time. This most general form of
correctability can occur in the case of non-Markovian dy-
namics where the information can flow out to the environ-
ment but later return to the system. We showed that the con-
ditions on the generator of evolution in this case amount to a
condition on the overall transformation and do not provide
nontrivial information about the time-local properties of the
dynamics.

We also discussed possible implications of the conditions
for continuous correctability for the problem of optimal re-
covery in the case of imperfectly preserved information. We
hope that the results obtained in this paper will provide in-
sight into the mechanisms of information flow under deco-
herence that could be useful in the area of approximate error
correction as well.
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