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Abstract
Methods of optimal control are applied to a model system of interacting two-
level particles (e.g., spin-half atomic nuclei or electrons or two-level atoms)
to produce high-fidelity quantum gates while simultaneously negating the
detrimental effect of decoherence. One set of particles functions as the quantum
information processor, whose evolution is controlled by a time-dependent
external field. The other particles are not directly controlled and serve as
an effective environment, coupling to which is the source of decoherence. The
control objective is to generate target one- and two-qubit unitary gates in the
presence of strong environmentally-induced decoherence and under physically
motivated restrictions on the control field. The quantum-gate fidelity, expressed
in terms of a novel state-independent distance measure, is maximized with
respect to the control field using combined genetic and gradient algorithms.
The resulting high-fidelity gates demonstrate the feasibility of precisely guiding
the quantum evolution via optimal control, even when the system complexity
is exacerbated by environmental coupling. It is found that the gate duration
has an important effect on the control mechanism and resulting fidelity. An
analysis of the sensitivity of the gate performance to random variations in the
system parameters reveals a significant degree of robustness attained by the
optimal control solutions.
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1. Introduction

The transfer of information between elements of a quantum computational system requires the
use of entangling quantum interactions [1]. Undesired interactions between the system and
its surroundings can destroy quantum coherences and thus are a critical obstacle to successful
quantum computation (QC). The feasibility of creating high-fidelity quantum gates in the
presence of environmentally induced decoherence is one of the most important problems to
overcome for practical QC. In particular, in spin-based solid-state realizations of QC [2–5]
one encounters a difficult task of effectively separating a multiparticle quantum system into
interacting and non-interacting components.

Quantum error correction (QEC) enables fault-tolerant QC [6], but only when the errors in
quantum gate operations are sufficiently small [7]. Therefore, it is very important to decrease
the errors caused by decoherence. This problem has inspired significant interest in various
methods of decoherence management, including the use of decoherence-free subspaces and
noiseless subsystems [8–12], quantum dynamical decoupling [13–20], schemes based on
stochastic control [21], optimal control techniques [22–27], and multilevel encoding of logical
states [28].

The method of optimal control [29, 30] enables managing the dynamics of complex
quantum systems in a very precise and specific manner and therefore is especially useful
in QC. In addition to applications to the problem of dynamical suppression of decoherence
[22–27], optimal control theory (OCT) [31, 32] was also successfully used to design unitary
quantum gates in closed systems [33–37]. The optimal control of quantum gates in the
presence of decoherence still remains to be fully explored. In [28] we previously considered
the optimal control of quantum gates for qubits encoded in multilevel subspaces; this method
makes quantum gates immune to mixing and decoherence that occur within the encoding
subspaces. Recent works [38, 39] developed specific techniques, involving optimizations over
sets of controls operating in pre-designed ‘weak-decoherence’ subspaces. In the present paper
we propose a different approach in which the full power of OCT is used to generate the target
gate with the highest possible fidelity while simultaneously suppressing strong decoherence
induced by coupling to a multiparticle environment. This method does not rely on any special
pre-design of the system parameters to avoid or weaken decoherence (e.g., using multiple
levels as in [28], tunable inter-qubit couplings as in [38], or auxiliary qubits as in [39]); the
only control used in the present approach is a time-dependent external field.

A similar OCT-based approach was recently used [40] to design quantum gates for solid-
state qubits in the presence of decoherence. However, the objective in [40] was to optimize a
purity-dependent quality factor (or, in [38], the purity itself), instead of the actual gate fidelity.
In the present work we demonstrate that although improving the purity of the quantum
information processor (QIP) is necessary for performing a high-fidelity quantum gate, it is
not sufficient. Even if the QIP is completely decoupled from its environment at a given time,
this does not ensure that the desired gate operation will be performed at the decoupling time.
Therefore, we optimize a gate fidelity [41] which directly measures the distance between
the target quantum gate of the QIP and the actual transformation of the composite system.
Optimization techniques were also applied recently to QEC [42, 43]. In contrast to QEC, our
approach does not require ancilla qubits and is not limited to the weak decoherence regime.
The optimal control of quantum gates can potentially be used in conjunction with QEC to
achieve fault tolerance with an improved threshold.

In this work, we consider a model system composed of interacting two-level particles, for
example, spin-half atomic nuclei or electrons or two-level atoms. A small set of particles serve
as qubits in the QIP; the rest of the particles serve as an effective environment. The qubits
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are directly controlled by a time-dependent external field, while the environmental particles
do not directly couple to the field. The control objective is to generate target quantum gates
in the QIP with the highest possible fidelity. The optimal control field must perform the
desired gate operation while simultaneously suppressing the qubit-environment interaction
and restoring lost coherence to the QIP. This model is sufficiently simple to allow for a full
numerical treatment of the entire composite system, and the results are relevant to important
physical applications, in particular, to spin-based solid-state realizations of quantum gates
[2–5]. For example, our model bears a similarity to systems in which an electron spin (or a
pair of electron spins) is coupled to a nuclear spin bath [5, 44, 45]. Coherent manipulation
of electron spins via rapid electrical control of the exchange interaction has been successfully
demonstrated in such systems [5]. The analysis reported in the present work indicates that
the employment of the optimal control methods may increase the effectiveness of coherent
management of coupled spin dynamics.

The paper is organized as follows. Section 2 presents the model (including an explicit
matrix form for the simplest case of one qubit coupled to a one-particle environment) and
schemes of multiparticle couplings. In section 3, we consider a distance measure that quantifies
the fidelity of quantum gates. This fidelity is independent of the initial state and is evaluated
directly from the evolution operator of the composite system. Section 4 investigates the
dynamics of decoherence in the uncontrolled system for various values of system parameters.
In order to fully explore the utility of OCT, we select a set of parameters that enhances the loss
of coherence in the uncontrolled system. In section 5, we describe in detail the genetic and
gradient optimization algorithms. The results obtained with the optimal controls are presented
and discussed in section 6. Section 7 investigates the robustness of optimal solutions to
uncertainties in the system parameters. Finally, section 8 concludes with a summary of the
results and discusses future directions.

2. The model system

We use a model of N interacting two-level particles (e.g., spin-half particles or two-level
atoms), which are divided into the QIP, composed of m qubits, and an n-particle environment
(N = m + n). The qubits are directly coupled to a time-dependent external control field,
while the environment is not directly controlled and is managed only through its interaction
with the qubits. The evolution of the composite system of qubits and environment is treated
in an exact quantum-mechanical manner, without either approximating the dynamics by a
master equation or using a perturbative analysis based on the weak coupling assumption. The
Hamiltonian for the composite controlled system, H = H0 + HC + Hint, has the form (h̄ = 1)

H =
N∑

i=1

ωiSiz −
m∑

i=1

µiC(t)Six −
N−1∑
i=1

N∑
j>i

γij Si · Sj . (1)

Here, Si = (
Six, Siy, Siz

)
is the spin operator for the ith particle (Si = 1

2σi , in terms of the Pauli
matrices), H0 is the sum over the free Hamiltonians ωiSiz for all N particles (ωi is the transition
angular frequency for the ith particle), HC specifies the coupling between the m qubits and
the time-dependent control field C(t) (µi are the dipole moments), and Hint represents the
Heisenberg exchange interaction between the particles (γij is the coupling constant for the ith
and j th particles). This model is particularly relevant to spin-based solid-state realizations of
quantum gates [2–5].
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Now consider the simplest case of one qubit and a one-particle environment (m = n = 1)

in more detail. The Hamiltonian in this case is

H = ω1S1z + ω2S2z − µC(t)S1x − γ S1 · S2, (2)

where γ = γ12. We use the orthonormal basis

|1〉 = |+〉1 ⊗ |+〉2, |2〉 = |+〉1 ⊗ |−〉2, |3〉 = |−〉1 ⊗ |+〉2, |4〉 = |−〉1 ⊗ |−〉2,

(3)

where Siz|±〉i = ± 1
2 |±〉i . The Hamiltonian (2) in the basis (3) has the following matrix form:

H = 1

2




ω1 + ω2 − 1
2γ 0 −µC(t) 0

0 ω1 − ω2 + 1
2γ −γ −µC(t)

−µC(t) −γ ω2 − ω1 + 1
2γ 0

0 −µC(t) 0 −ω1 − ω2 − 1
2γ


 . (4)

In addition to the simplest case of a two-particle system described above, we also consider
situations where one qubit is coupled to a multiparticle environment (m = 1 and n = 2, 4, 6).
For m = 1, the coupling constants are given by

γij =
{
γ, for i = 1 and j = 2, . . . , N,

0, for 2 � i � N,
(5)

which means that the qubit interacts with each environmental particle with the same coupling
constant γ , and the environmental particles are not directly coupled to each other. For n = 2,
the system can be modelled by a linear chain with the qubit q1 at the centre, equally coupled
to both environmental particles e2 and e3:

e2 ←→ q1 ←→ e3. (6)

For n = 4, the system can be modelled by a two-dimensional lattice with the qubit q1 at the
centre, equally coupled to four environmental particles {e2, . . . , e5}:

e4

�
e2 ←→ q1 ←→ e3

�
e5

. (7)

Similarly, for n = 6, the system can be modelled by a three-dimensional lattice with the qubit
at the centre, coupled to six environmental particles. In these lattices, it is assumed that the
Heisenberg interactions decay exponentially with distance [2], and therefore environmental
particles on the vertices of the square (n = 4) and cube (n = 6) are neglected.

A different model with nearest-neighbour couplings is also considered in the case of
n = 4. The system is modelled by a linear chain of particles, with the qubit at the centre and
each particle coupled only to its nearest neighbours with the same coupling constant γ :

e4 ←→ e2 ←→ q1 ←→ e3 ←→ e5. (8)

The case where two qubits are coupled to a one-particle environment (m = 2 and n = 1)
is used to develop an entangling quantum gate (specifically, the controlled-NOT gate) in
the presence of a simple environment. This system can be modelled by the following two-
dimensional triangular lattice:

e3
γ13↙↗ ↖↘γ23

q1
γ12←→ q2

(9)
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where the two qubits are denoted as q1 and q2, and the environmental particle as e3. Such a
model is relevant, for example, for a dilute nuclear spin bath [3]. Values for this set of coupling
constants are given in section 6.4.

3. The distance measure

Our objective is to generate an evolution of the QIP which at some time tf will be as close
as possible to the target quantum gate. The problem of evaluating the actual gate fidelity is
complicated by the fact that the evolution of the QIP is non-unitary due to the interaction
with the environment. Nevertheless, it is possible to define a useful measure of the distance
between the target quantum gate of the QIP and the actual evolution operator of the composite
system [41].

Let U(t) ∈ U(2N) be the unitary time-evolution operator of the composite system and
G ∈ U(2m) be the unitary target transformation for the quantum gate of the QIP (where U(d)

denotes the group of all d × d unitary matrices). The evolution of the composite system is
governed by the Schrödinger equation,

U̇ (t) = −iH(t)U(t), (10)

with the initial condition U(0) = I2N (where Id denotes the d × d identity matrix). The gate
fidelity depends on the distance between the actual evolution U ≡ U(tf) at the final time tf
and the target transformation G. In order to perform a perfect gate, it suffices for the time-
evolution operator at t = tf to be in a tensor-product form Uopt = G ⊗ �, where � ∈ U(2n)

is an arbitrary unitary transformation acting on the environment5. Therefore, the following
objective functional is proposed [41] as the measure of the distance between U and G:

J = λN min
�

{‖U − G ⊗ �‖|� ∈ U(2n)}, (11)

where ‖·‖ is a matrix norm on the space Md (C) of d × d complex matrices (in the present
case d = 2N ), λN is a normalization factor, and J is minimized over the set of all unitary
�. It is useful to expand G,� and U in orthonormal bases. Let {|i〉}, {|ν〉} and {|i〉 ⊗ |ν〉}
be orthonormal bases that span the Hilbert spaces of the QIP, environment, and composite
system, respectively. The corresponding expansions read

G =
2m∑

i,i ′=1

Gii ′ |i〉〈i ′|, � =
2n∑

ν,ν ′=1

�νν ′ |ν〉〈ν ′|, (12a)

U =
2m∑

i,i ′=1

2n∑
ν,ν ′=1

Uii ′
νν ′

|i〉〈i ′| ⊗ |ν〉〈ν ′|. (12b)

Using in (11) the Frobenius norm, defined as

‖X‖Fr = [Tr(X†X)]1/2 ∀X ∈ Md(C), (13)

and λN = 2−(N+1)/2, the distance measure becomes [41]

J = [
1 − 2−N Tr(

√
Q†Q)

]1/2
, (14)

where Q ∈ M2n (C) is given by

Q =
2n∑

ν,ν ′=1

(
2m∑

i,i ′=1

G∗
ii ′Uii ′

νν ′
,

)
|ν〉〈ν ′|. (15)

5 We do not consider in the present work a more general situation where the composite system itself is open and �

may not be unitary.
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Since 0 � J � 1, it is convenient to define the gate fidelity as F = 1 − J . An important
property of this distance measure is its independence of the initial state. In contrast to some
other distance measures6, J is evaluated directly from the evolution operator U, with no need
to specify the initial state of the system. This property of J reflects our objective of generating
a specified target transformation for whatever initial state, pure or mixed, direct-product or
entangled.

Note that in the ideal case when there is no coupling to the environment, i.e., the QIP is a
closed system with unitary dynamics, the distance measure (14) becomes

J = [1 − 2−m| Tr(G†Uq)|]1/2, (16)

where Uq ≡ Uq(tf) is the unitary evolution operator of the QIP at the final time. Another
distance measure used in the literature [37] for closed systems is Jcs = 1 − 2−m| Tr(G†Uq)|,
i.e., Jcs = J 2. For example, in section 6 we report optimization results which, in the case of
closed QIP systems, are J ∼ 10−6 and J ∼ 10−4 for one- and two-qubit gates, respectively,
corresponding to the values Jcs ∼ 10−12 and Jcs ∼ 10−8, respectively.

4. Decoherence dynamics of the uncontrolled system

The loss of coherence in the QIP, caused by the interaction with the environment, is detrimental
to the quantum gate performance. In order to better understand the mechanism of optimal
control, we first study the decoherence process in the uncontrolled system. The state of the
QIP at time t is described by the reduced density matrix:

ρq(t) = Trenv [ρ(t)] , (17)

where ρ(t) is the density matrix of the composite system and Trenv denotes the trace over the
environment. A useful measure of decoherence is the von Neumann entropy [47]:

SvN(t) = − Tr{ρq(t) ln[ρq(t)]}. (18)

For a pure state, SvN = 0, while for a maximally mixed state of a k-level system, SvN = ln(k).
We explore the decoherence dynamics of the QIP by studying the time evolution of the
entropy SvN(t) for the uncontrolled system (in this section) and under the influence of optimal
time-dependent control fields (in subsequent sections). The initial state used for the entropy
calculations is

|�0〉 =
m⊗

i=1

|−〉i ⊗
N⊗

j=m+1

|+〉j (19)

(i.e., initially all qubits are in the state |−〉 and all environmental particles are in the state |+〉).
Recall that the distance measure J of (14) is independent of the initial state and consequently
so are the optimal control fields found for the target gates and the corresponding fidelities.
We choose some initial state only for the entropy calculations, which are done to illustrate the
decoherence dynamics after the time-evolution operator is determined (for either a controlled
or uncontrolled system). Therefore, the specific choice of the initial state (19) places no
limitations whatsoever on the generality of the optimal control results.

We set the unit of time, thereby introducing a natural system of units, by arbitrarily
choosing ω1 = 1 for all simulations (this implies that one period of the first qubit’s free
evolution is 2π ). Details of the dynamics depend on the system parameters (i.e., the frequencies
and coupling constants for the uncontrolled system). In the simplest case of the uncontrolled

6 Relationships between various distance measures, including some presented in [46] and generalizations of (14),
are discussed in more detail in [41].
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Figure 1. The time-evolution of the entropy SvN(t) for the uncontrolled system of one qubit
coupled to a one-particle environment, with γ = 0.02, ω1 = 1, and various values of ω2. Solid
lines: ω2 = (π − x)−1; dashed lines: ω2 = π − x (with x = 2, 2.1, 2.14). The initial state is |�0〉
of (19). For a given value of γ , closer frequencies ω1 and ω2 enhance the interaction between the
qubit and environment, causing stronger decoherence and longer revival times.

system of one qubit coupled to a one-particle environment (m = n = 1), the initial state is
|�0〉 = |−〉1 ⊗ |+〉2, and the time evolution can be solved analytically:

|�(t)〉 = e−iγ t/4

{
cos(	t)|−+〉 + i sin(	t)

[
ω1 − ω2

2	
|−+〉 +

γ

2	
|+−〉

]}
, (20)

ρq(t) = cos2(	t)|−〉〈−| + sin2(	t)

[
(ω1 − ω2)

2

4	2
|−〉〈−| +

γ 2

4	2
|+〉〈+|

]
, (21)

where we use a simplified notation: |−+〉 = |−〉1 ⊗ |+〉2, |+−〉 = |+〉1 ⊗ |−〉2, and
	 = 1

2 [(ω1 − ω2)
2 + γ 2]1/2 is the Rabi frequency. Due to discreteness of the environment’s

spectrum, the loss of coherence is reversible. If the transition frequencies are degenerate,
ω1 = ω2, then the state of the composite system, |�(t)〉, oscillates between two direct-
product states, |−+〉 and |+−〉. In this case, complete coherence revivals will occur whenever
sin(	t) = 0 or cos(	t) = 0, i.e., at times t

(deg)

k = kπ/(2	) (k ∈ N). However, if ω1 �= ω2,
then |�(t)〉 oscillates between the initial direct-product state |−+〉 and an entangled state
(a superposition of |−+〉 and |+−〉). Therefore, complete coherence revivals will occur only
when sin(	t) = 0, i.e., at times tk = kπ/	 (k ∈ N). If |ω1 −ω2| � γ , then, in addition to the
complete revivals at times tk , partial revivals will occur at times t

(part)
k ≈ (

k − 1
2

)
π

/
	 (k ∈ N).

The maximum loss of coherence depends on the values of γ and |ω1 − ω2|. For a given value
of γ , closer frequencies enhance the interaction between the qubit and environment, causing
higher peak values of decoherence (i.e., the entropy) and longer revival times. Figure 1 shows
the time-evolution of the entropy for the uncontrolled system of one qubit and a one-particle
environment, with γ = 0.02, ω1 = 1, and various values of ω2. The entropy dynamics shown
in figure 1, obtained by numerically propagating the Schrödinger equation (10), and are in
full agreement with the analytical results above. In particular, we find the first-revival times
t1 ≈ {50.0, 140.7, 313.2} for ω2 = (π − x)−1 and t1 ≈ {43.9, 136.1, 313.2} for ω2 = π − x

with x = {2, 2.1, 2.14}, respectively. These values fully agree with the analytical formula
for tk obtained above. Also, for x = 2.14, the frequency difference |ω1 − ω2| ≈ 0.001 59 is
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Figure 2. The time-evolution of the entropy SvN(t) for the uncontrolled systems of one qubit
coupled to n-particle environments: n = 2 (solid line), n = 4 (dashed line), and n = 6 (dotted
line). The coupling constant is γ = 0.02. Frequencies of the qubit, ω1, and the environmental
particles, ωj (j = 2, . . . , n + 1), are given by (23). The initial state is |�0〉 of (19).

about one order of magnitude smaller than γ , and, correspondingly, a partial revival is found
numerically at t

(part)
1 ≈ 156.6, in agreement with the analytical result.

For the optimal control simulations below, the system parameters are chosen to ensure
complex dynamics and strong decoherence: values of γ /ω are up to 0.02, which is significant
for QC applications, and the frequencies ωi are close (but not equal), to enhance the interaction.
For one qubit coupled to a one-particle environment (m = n = 1), we choose

ω1 = 1, ω2 = (π − 2.14)−1 ≈ 0.998 41. (22)

Imposing upper limits on the gate duration (tf � 60) and coupling constant (γ � 0.02)

places the dynamics of the uncontrolled system in the regime where decoherence increases
monotonically with time (before the entropy reaches its maximum value of SvN ≈ ln 2). This
dynamical regime approximates some of the effects that the QIP would experience from a larger
environment, in particular, preventing restoration of coherence to the qubit by uncontrolled
revivals. Thus, any increase in coherence may be attributed exclusively to the action of the
control field.

When selecting the parameters of a multiparticle environment, we apply the same criteria
for maximizing decoherence of the uncontrolled system, as described above. Figure 2
illustrates the uncontrolled time-evolution of the entropy for a one qubit coupled to n-particle
environments (n = 2, 4, 6), with γ = 0.02. The frequencies of the qubit and pairs of the
environmental particles are given by

ω1 = 1, (23a)

ωj = (π − xj )
−1, ωj+1 = π − xj , j = 2, 4, . . . , n, (23b)

xj =



2.14, n = 2,

2.14, 2.1, n = 4,

2.14, 2.1, 2, n = 6.

(23c)

For example, for n = 4, the frequencies of the four environmental particles are approximately
{0.960 07, 0.998 41, 1.001 59, 1.041 59}.
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5. Optimal control algorithms

In the context of optimal control, the objective is to maximize the fidelity of the target quantum
gate over a set of time-dependent control fields. The target quantum gates considered in this
paper include the Hadamard (Ht), identity (I2), phase (π/8), and controlled-NOT (CNOT)
transformations:

Ht = 1√
2

(
1 1
1 −1

)
, I2 =

(
1 0
0 1

)
,

π

8
=

(
1 0
0 exp(iπ/4)

)
, (24a)

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (24b)

Collectively, Ht, π/8 and CNOT constitute a universal set of quantum gates for QC [1].
Identity is included to preserve an arbitrary quantum state during a specified time interval,
e.g., while operations are performed on other qubits.

In maximizing the gate fidelity, we employ a combination of two optimization techniques,
a genetic algorithm and a gradient algorithm. For a given target gate, the genetic algorithm
first locates a parameterized control field that achieves a reasonable value of fidelity
(e.g., F > 0.95), then the gradient algorithm further improves this result by lifting the
parameterization restriction on the field. This section describes the details of these search
algorithms.

5.1. Optimization with the genetic algorithm

When the genetic algorithm is used, the gate fidelity F is maximized with respect to a
parameterized control field

C(t) = f (t)

m∑
i=1

Ai cos(ω̃i t + θi), 0 � t � tf . (25)

Here, f (t) is an envelope function incorporating the field’s spectral width, tf is the gate
duration, and Ai , ω̃i and θi are the amplitude, central angular frequency and relative phase of
the ith component of the field, respectively. A combination of these optimization parameters
(called ‘genes’) represents an ‘individual’ whose ‘fitness’ is defined as the fidelity of the gate
generated by the corresponding field. A collection of individuals constitutes a ‘population’ (we
use population sizes of ∼250). At each generation, we evaluate the fitness of all population
members and create the next generation by crossover and mutation of genes of the fittest
individuals (crossover and mutation rates are between 20 and 40%). A novelty of this algorithm
implementation is the inclusion of the control duration tf as one of the optimization parameters.

5.2. Optimization with the gradient algorithm

Removing the constraints on the control field imposed by the parameterized form (25) provides
the potential for more effective control of the system. In this case optimal control fields are
found by minimizing the following functional [34]:

K = J + Re
∫ tf

0
Tr{[U̇(t) + iH(t)U(t)]B(t)} dt +

α

2

∫ tf

0
|C(t)|2 dt. (26)

In addition to the distance measure J of (14), K includes a constraining term and a cost term.
Upon minimization of K, the first integral constrains U(t) to obey the Schrödinger equation
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(B(t) is an operator Lagrange multiplier) and the second integral term penalizes the field
fluence,

E =
∫ tf

0
|C(t)|2 dt, (27)

with a weight α > 0.

5.2.1. Optimal control equations An optimal control field is obtained by solving a set of
equations that follow from the variational analysis of K as a functional of B(t) and U(t).
Here, we derive the corresponding functional derivatives [48] and boundary conditions. The
functional derivative of K with respect to B(t) yields

δK

δB(t)
= Re{[U̇ (t) + iH(t)U(t)]T }, (28)

so that the condition δK/δB(t) = 0 results in the Schrödinger equation (10) for U(t). Next
we compute the functional derivative of K with respect to U(t):

δK

δU(t)
= Re

{
δJ

δU(t)
+ BT (tf)δ(t − tf) − [Ḃ(t) − iB(t)H(t)]T

}
. (29)

Since J depends only on U = U(tf), we obtain δJ/δU(t) = (dJ/dU)δ(t − tf). Therefore,
the condition δK/δU(t) = 0 results in two equations:

Ḃ(t) = iB(t)H(t), (30)

BT (tf) = − dJ

dU
. (31)

We will also use the functional derivative of K with respect to C(t),

δK

δC(t)
= Im{Tr[µ̂U(t)B(t)]} + αC(t),

µ̂ =
M∑
i

µiSix

(32)

to guide the gradient search, as described in section 5.2.2 below.
The initial condition for U(t) is U(0) = I2N and the final condition for B(t) is given by

(31). In order to find the explicit form of dJ/dU , first consider a scalar function y(Z(x)),
where Z is a matrix function of the scalar variable x. Using the chain rule, we obtain

dy

dx
=

∑
κ,κ ′

dy

dZκκ ′

dZκκ ′

dx
=

∑
κ,κ ′

dy

dZκκ ′

dZT
κ ′κ

dx
= Tr

(
dy

dZ

dZT

dx

)
. (33)

Setting y = Tr(Z), implies that

dy

dZ
= I. (34)

Now let Z = (Q†Q)1/2 and x = Uab (a complex scalar variable). The matrix indices a and
b range from 1 to 2N . Note that (Q†Q)1/2 is not an analytic function of Uab, but it can be
expressed as an analytic function of Uab and U ∗

ab. Therefore, a generalized complex derivative
[48] is applied to calculate dZ/dx, so that U ∗

ab and subsequently Q† are treated as constants
when differentiating (Q†Q)1/2 with respect to Uab. Thus we find that

dZ

dx
= d(Q†Q)1/2

dUab

= 1

2
(Q†Q)−1/2Q† dQ

dUab

. (35)
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By combining (33)–(35), we obtain

dy

dx
= d

dUab

Tr[(Q†Q)1/2] = 1

2
Tr

[
(Q†Q)−1/2Q† dQ

dUab

]
. (36)

With the above notation, J = (1 − 2−Ny)1/2. Noting that (dJ/dU)ab = dJ/dUab and using
(36), we finally derive(

dJ

dU

)
ab

= −2−N

4
{1 − 2−N Tr[(Q†Q)1/2]}−1/2 Tr

[
(Q†Q)−1/2Q† dQ

dUab

]
, (37a)

dQ

dUab

= G∗
�a/2n��b/2n�|a mod 2n〉〈b mod 2n|. (37b)

Equation (37b) is obtained from (15), using the fact that k mod k = k. In (37b), the states are
elements of the environment’s orthonormal basis {|ν〉}, and �x� denotes the smallest integer
greater than or equal to x. The explicit form of the boundary condition for B(t) is obtained by
substituting (37) into (31).

5.2.2. The numerical procedure Optimal control fields are found using an iterative gradient
algorithm described below. An initial guess for the control field is needed at the first iteration.
Typically, we use the output of the genetic algorithm as the initial guess for faster convergence,
although fields of the form (25) with a random choice of parameters can be used as well. At
each iteration, U(t) is propagating forward in time with the Schrödinger equation (10) and the
initial condition U(0) = I2N . The resulting matrix U = U(tf) is used to determine the final
condition (31) for B(tf). Then B(t) is propagated backward in time with the time-reversed
Schrödinger equation (30). All propagations are performed using a toolkit for computational
efficiency [49]. The resulting U(t) and B(t) are utilized to compute the functional derivative
δK/δC(t) of (32), which then adjusts the control field for the next iteration. The adjustment
of the control field for the kth iteration (k ∈ N) is given by

C(k)(t) = C(k−1)(t) − β sinr (πt/tf)
δK

δC(t)

∣∣∣∣
C(t)=C(k−1)(t)

, (38)

where 0 < β � 1 and 1
2 � r � 1 are constants used to modify the magnitude of the field

adjustment. The multiplier sinr (πt/tf) ensures that the control field C(t) is nearly zero
at the initial and final time, which is a reasonable physical restriction on the field. This
iteration routine continues until we observe no further improvement in K, which manifests the
achievement of convergence.

Despite the lack of direct coupling of the control field to the environment, it can be shown
that the composite system described by (1) is completely controllable, as defined in [50].
However, the restrictions on the gate duration and on the shape of the control field limit the
achievable fidelity.

6. Results of optimal control in the presence of decoherence

6.1. One qubit coupled to a one-particle environment

We consider the optimally controlled Hadamard, identity, and phase gates generated for a
single qubit coupled to a one-particle environment (m = n = 1). Fidelities for these one-
qubit gates are presented in figure 3 for various values of the coupling constant γ . The control
fields optimized for the actual values of γ result in fidelities above 0.9991. In particular, for the
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gates: Hadamard (solid line), identity (dashed line) and phase (dotted line). Each one-qubit gate
is coupled to a one-particle environment. Values of γ range from 0 to 0.02 in increments of 0.001.
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Figure 4. Optimal control fields C(t) versus time, for one-qubit gates: (a) Hadamard, (b) identity
and (c) phase. Each one-qubit gate is coupled to a one-particle environment (γ = 0.02).

Hadamard transform, we obtain F > 1 − 10−6 for γ = 0 (a closed system) and F ≈ 0.9995
for γ = 0.02 (the strongest coupling considered). In contrast, when the control field optimized
for γ = 0 is applied to the system with γ = 0.02, it generates a gate with a poor fidelity,
F ≈ 0.9063. This result demonstrates that optimal solutions designed for the ideal case of a
closed system have little value when applied to realistic open systems. However, the optimal
control algorithm is able to generate quantum gates with very high fidelities, if coupling to the
environment is explicitly taken into account.

The optimal control fields that generate the one-qubit gates (with a one-particle
environment and γ = 0.02) are shown in figure 4. These fields are intense, with maximum
amplitudes larger than 2.0 (in the units of h̄ = ω1 = µi = 1). The gate duration is tf = 25.0
(about four periods of free evolution). The exact time structure of an optimal field is not
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Figure 5. The von Neumann entropy SvN(t) versus time, for optimally controlled one-qubit
gates: (a) Hadamard, (b) identity and (c) phase. Each one-qubit gate is coupled to a one-particle
environment (γ = 0.02). The initial state is |�0〉 of (19).

intuitive and is tailored to the particular control application. For example, control fields
optimized for γ = 0.02 are not only more intense than those optimized for γ = 0, they also
have very different structures. One common feature of the optimal control fields presented in
figure 4 is that they are approximately symmetric about t ≈ tf/2. We suggest that this property
of the fields is related to the reversibility of the system dynamics: the periods in which the
information flows from the QIP to the environment are followed by periods in which the
information flow is reversed, in order to restore the coherence of the QIP.

Figure 5 shows the time behaviour of the von Neumann entropy of the QIP for optimally
controlled one-qubit gates (with tf = 25.0 and γ = 0.02). By comparing figures 5 and 1,
we observe that the optimal control dramatically enhances coherence of the qubit system
in comparison to the uncontrolled dynamics. Decoherence is suppressed by the control at
all times, but especially at the end of the gate operation (i.e., for t = tf). For example,
SvN(tf) < 10−7 for the Hadamard gate with γ = 0.02, which means that at t = tf the
qubit system and environment are almost completely uncoupled. Inspecting eigenvalues of
the controlled Hamiltonian, we find that the intense control field creates significant dynamic
shifts of the energy levels. Specifically, under the influence of the optimal control field,
four of the six transition frequencies of the composite system experience high-amplitude
oscillations (following the corresponding changes in the field strength). This effect is mainly
responsible for reducing the qubit-environment interaction during the control pulse. However,
achieving extremely low final-time entropies and correspondingly high gate fidelities requires
the employment of an induced coherence revival. For the selected set of the system parameters,
revivals in the uncontrolled dynamics occur at times much longer than tf (specifically,
t
(part)
1 ≈ 156.6 and t1 ≈ 313.2), so that the almost complete coherence revival observed

at t = tf is induced exclusively by the control field.
For very short gate durations (tf < 5), a different type of optimal solution is found. The

control fails to induce revivals at such short times and therefore generates gates with smaller
fidelities (e.g., F ≈ 0.9874 for the Hadamard transform with γ = 0.02 and tf ≈ 2.33). In this
short-time regime the control relies on the decoherence suppression via dynamic shifting of
the energy levels and on very fast operation (trying to perform the target transformation in the
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shortest time possible to limit the effect of decoherence), but not on the creation of coherence
revivals. Such short-time controls can be useful for environments with very dense spectra, for
which the induced-revival times will be impractically long.

We study in detail how the choice of the control duration tf affects properties of the optimal
control field, gate fidelity, and decoherence dynamics. Specifically, we optimize the one-qubit
Hadamard gate (with a one-particle environment and γ = 0.02) for all integer values of tf
between 2 and 40 using the gradient algorithm described in section 5.2. For tf < 5 we find
the fast-control no-revival regime described above. Interestingly, most optimal control fields
with tf > 5, in addition to inducing an almost complete coherence revival at the final time,
also produce a partial revival at approximately tf/2. Optimal control fields with 5 < tf < 20
typically exhibit large amplitudes and fluences and strong low-frequency components. For
tf = 25 we find the optimal control field that generates the quantum gate with a better fidelity
while having a smaller amplitude and fluence, as compared to the fields obtained for shorter
control durations. As tf increases to 25, the gate fidelity increases to approximately 0.9995,
the final-time entropy decreases to approximately 10−7, and the maximum field amplitude
decreases to approximately 2.0. However, increasing tf above 25 does not improve the
optimal gate performance; the field amplitudes, gate fidelities, and final-time entropy values
change very slightly for 25 � tf � 40. The physical interpretation of this behaviour is that
the control requires some time (tf � 25 in the present case) to almost completely reverse the
information flow between the QIP and environment, and induce a nearly perfect coherence
revival. From these results, it appears that the pulse duration is a very important characteristic
of the control fields employed for quantum gate generation.

6.2. The Kraus-map dynamics of the qubit

The time-dependent state of the QIP, which is coupled to the environment, is represented by
the reduced density matrix (17). In order to examine the reduced dynamics of the QIP, it is
instructive to use the Kraus-map representation [51]. If the composite system was initially
(i.e., at time t = 0) in the direct-product state,

ρ(0) = ρq(0) ⊗ ρenv(0) = ρq(0) ⊗
2n∑

ν=1

�ν |ν〉〈ν|, (39)

then the reduced dynamics of the QIP has the following form (known as the Kraus map [51]):

ρq(t) = �[ρq(0)] =
2n∑

ν,ν ′=1

Kνν ′(t)ρq(0)K
†
νν ′(t), (40)

where the Kraus operators Kνν ′(t) ∈ M2m(C) are given by

Kνν ′(t) = √
�ν ′

2m∑
i,i ′=1

Uii ′
νν ′

(t)|i〉〈i ′|, (41a)

2n∑
ν,ν ′=1

K
†
νν ′(t)Kνν ′(t) = I2m . (41b)

It is well known [51] that there exist infinitely many different sets of Kraus operators,
{K1, . . . , Kp} (where p ∈ N is the number of operators in the set), that represent the same map
� (i.e., they evolve ρq(0) in exactly the same way). Moreover, any Kraus map for a k-level
quantum system can be represented by a set of p � k2 Kraus operators. That is, if the map
is represented by a set of p′ > k2 Kraus operators, there always exists another representation
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Figure 6. The time-evolution of the Kraus operator’s norm, ‖K21(t)‖Fr, for the system of one qubit
and one environmental particle: uncontrolled evolution with γ = 0.1 (dotted line), uncontrolled
evolution with γ = 0.02 (dashed lines) and controlled evolution, under the optimal control field
generating the Hadamard gate, with γ = 0.02 (solid line). The initial state is |�0〉 of (19).

with not more than k2 operators. Therefore, for our system of m qubits and n environmental
particles, the set of 22n Kraus operators (41a) can always be transformed into another set of
not more than 22m operators, representing the same map �. However, since we numerically
study Kraus operators only for the case of n = m = 1, there is no practical need for such a
transformation.

In calculations, we use ρ(0) = |�0〉〈�0| with |�0〉 of (19). For one qubit coupled to
a one-particle environment, we use the notation |ν = 1〉 = |+〉 and |ν = 2〉 = |−〉 and
find K12(t) = K22(t) = 0 and K

†
11(t)K11(t) + K

†
21(t)K21(t) = I2. It is therefore sufficient

to explore either K11(t) or K21(t). By evaluating the Kraus operators we can quantify the
non-unitarity of the qubit dynamics. It is important to note that the non-unitary evolution
is not only responsible for decoherence, but is also required to steer the information flow
back to the QIP. The control field that restores coherence to the QIP necessarily employs the
interaction with the environment and the corresponding non-unitary dynamics. We examine
the time behaviour of the Frobenius norm of the Kraus operator, ‖K21(t)‖Fr, that serves as
a measure of non-unitarity. Figure 6 shows ‖K21(t)‖Fr for both controlled and uncontrolled
dynamics. In comparison to the uncontrolled evolution, the optimal control dramatically
decreases the non-unitarity of the qubit dynamics during the gate operation, culminating in
almost complete decoupling at the final time tf . We also see that, under the optimal control,
‖K21(t)‖Fr is approximately symmetric about t ≈ tf/2. Inspecting the time derivative of the
entropy, dSvN/dt , we find that ‖K21(t)‖Fr reaches the maximum at approximately the same
time (just prior to tf/2) when the fastest decrease in the qubit’s entropy is observed, indicating
the maximum flow of information into the QIP.

6.3. One qubit coupled to a multiparticle environment

We explore the performance of optimally controlled one-qubit gates in the presence of
multiparticle environments described in section 2. Table 1 reports optimal control field
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Table 1. The performance of the optimally controlled one-qubit Hadamard gate in the presence of
various n-particle environments (γ = 0.02). Here, Amax, tf , E, F and SvN(tf) are the maximum
field amplitude, control duration, field fluence, gate fidelity and final-time entropy, respectively.
Fγ=0 denotes the gate fidelity obtained when the control field optimized for γ = 0 is applied to
the system with γ = 0.02. The initial state for the entropy computation is |�0〉 of (19).

n 1 2 4 6

Amax 2.0 4.0 4.0 2.5
tf 25.0 15.4 25.0 25.0
E 20.0 49.0 55.5 34.0

F 0.9995 0.9975 0.9935 0.9786
Fγ=0 0.9063 0.8829 0.8133 0.7723
SvN(tf) 9.0 × 10−8 4.4 × 10−5 4.7 × 10−4 3.0 × 10−3

parameters, fidelity and final-time entropy for the one-qubit Hadamard gate coupled to n-
particle environments (m = 1, n = 1, 2, 4, 6 and γ = 0.02). For n = 4, the values in
table 1 were obtained with the coupling scheme modelled by a two-dimensional lattice of
(7); however, very similar results were obtained with the linear nearest-neighbour coupling
scheme of (8).

The results obtained for n � 2 further illustrate the benefits of optimal controls which
explicitly take into account coupling to the environment. The entropy dynamics indicate
that for multiparticle environments the control employs the same mechanism of an induced
coherence revival, as described above for n = 1. Fast and intense control fields significantly
suppress the qubit-environment interaction during the gate operation and try to recover as
much of the lost information as possible before the end of the control pulse. However, as the
complexity of the composite system increases, it becomes more difficult to induce an almost
perfect revival; therefore, the gate fidelity and final-time coherence decrease as n increases.
This observation supports the conclusion that shorter-time controls (which do not rely on
revivals) will be useful for environments with dense spectra.

6.4. Two qubits with a one-particle environment

For the QIP consisting of two qubits (m = 2), the target gate is CNOT of (24b). The coupling
constant between the two qubits is γ12 = 0.1, while the coupling constant between each qubit
and the single environmental particle (n = 1) is γ13 = γ23 = γ . Frequencies of the two qubits
are ω1 = 1 and ω2 = π − 2.05 ≈ 1.095 19, and the frequency of the environmental particle is
ω3 = (π − 2.14)−1 ≈ 0.998 41. The optimal control fields obtained for γ = 0 and γ = 0.01
(shown in figure 7) generate the CNOT gate with fidelities of 0.9999 and 0.9798, respectively.
When γ = 0.01, the entropy for the uncontrolled evolution increases monotonically until
t ≈ 125 (reaching a maximum of approximately 0.6), whereas the optimal control field results
in a much lower entropy, shown in sub-plot (b) of figure 8. The same pattern of a partial
revival at an intermediate time followed by an almost complete revival at t = tf , seen for
the one-qubit gates in figure 5, is also present for the two-qubit gate, but on a longer time
scale. For the CNOT gate’s final-time coherence revival we find SvN(tf) ≈ 1.5 × 10−3 at
tf = 121.1.

We observe that the fidelity of the optimally controlled quantum gates decreases with
increases in n (the number of environmental particles) and, even more significantly, m (the
number of qubits in the QIP). This behaviour arises due to the difference between the perfect
control solution and an actual control field found by the optimization algorithm. According to
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Figure 8. The time-evolution of (a) fidelity F(t) and (b) von Neumann entropy SvN(t) during
the optimally controlled CNOT gate operation (m = 2, n = 1, and γ = 0.01). These results
demonstrate that a high degree of coherence (quantified by the entropy) does not ensure a
correspondingly high value of the gate fidelity. The initial state for the entropy computation
is |�0〉 of (19).

an analysis of the control landscape for unitary transformations [52, 53], the pernicious effect
of control inaccuracies on the gate fidelity rapidly increases with the size of the system. If
instead of the perfect control solution C0(t), the actual field is C0(t) + δC(t), then instead of
the perfect fidelity F = 1, one will obtain F = 1 − δF , where δF ∝ 2m‖δC(t)‖2 (here, ‖·‖
denotes an appropriate functional norm). As the number of interacting qubits, m, increases,
the factor 2m becomes more important. Moreover, as the complexity of the composite system
increases (more qubits and/or environmental particles), the control error ‖δC(t)‖ will increase
as well, as it will become more difficult to find a field that is very close to the perfect one.
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6.5. Can the state purity measure the gate fidelity?

We found that obtaining a very high gate fidelity requires an almost complete coherence revival
characterized by a very low final-time entropy. Is it then possible to rely on a characteristic
of coherence (e.g., the final-time entropy or purity of the QIP state) as a measure of the gate
quality, instead of measuring the distance between the actual and target gate transformations?
The answer is definitely ‘no’ because the restoration of coherence is a necessary, but not
sufficient, condition for a high gate fidelity. There exist an infinite number of unitary, or
almost unitary, transformations which nevertheless are very far from the target one.

In order to further emphasize this point, we generalize the notion of the gate fidelity (as
measured by the distance between the actual evolution operator U(t) and target transformation
G) to all times 0 � t � tf . Figure 8 shows this time-dependent fidelity F(t) and the entropy
SvN(t) for the optimally controlled two-qubit CNOT gate (with γ = 0.01 and tf = 121.1). We
see that the minimum of the entropy occurs at a time tSmin ≈ 119 (i.e., before tf) when F(t) is
still quite low, and that at the time interval between tSmin and tf , while the fidelity F(t) rapidly
increases to achieve its final-time value F ≈ 0.9798, the entropy slightly increases as well.
This example shows that fidelity and coherence do not always correlate and that a very low
value of the entropy does not always result in a correspondingly high value of the gate fidelity.
According to this analysis, a strategy of maximizing the state purity [38, 40] does not ensure
the generation of target quantum gates with the highest possible fidelity.

7. Robustness of optimally controlled gates to system variations

We observed that applying the control field optimized for the closed system (γ = 0) to the
coupled one (γ = 0.02) results in a significant decrease in the gate fidelity. Analogously,
we find that applying the control field optimized for the case of a one-particle environment
(n = 1) to systems with n � 2 environmental particles also has a strong detrimental effect
on the gate fidelity. These results are part of a broader analysis of the robustness of optimally
controlled quantum gates to different types of system variations.

We address some aspects of this issue by considering the one-qubit Hadamard gate, with
a fixed number n of environmental particles (n = 1, 2, 4), and finding an optimal control
field for a specified set of system parameters: the coupling constants γij given by (5) (with
γ = 0.02) and frequencies ωi given by (22) for n = 1 and (23) for n � 2. Then we apply this
control field to an ensemble of systems with normal variations in either coupling constants γij

or frequencies ωi and analyse how the uncertainties in the system parameters affect the gate
fidelity F and final-time entropy SvN(tf). Although the dependence of F and SvN(tf) on the
coupling constants and frequencies is highly nonlinear (which implies that the distributions of F
and SvN(tf) will not be normal), our statistical analysis employs only mean values and standard
deviations, given by F = L−1 ∑L

r=1 Fr and σF = [
L−1 ∑L

r=1(Fr − F)2
]1/2

, respectively, for
the gate fidelity F, and similarly for the final-time entropy SvN(tf). The summation is over all
elements of the ensemble (ensemble sizes L of the order of 105 are used in the calculations).

7.1. Variation of the coupling constants

The value of each non-zero coupling constant γij (given by (5) with γ = 0.02) is individually
replaced by a value randomly selected from a normal distribution with a mean γ = 0.02 and
a standard deviation σγ = γ /8 = 0.0025. The statistical analysis of the corresponding
distributions of the fidelity and final-time entropy is reported in table 2, and frequency
histograms of these distributions are shown in figure 9. These results demonstrate a high
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Figure 9. Frequency histograms for the gate fidelity and final-time entropy distributions, obtained
when the control field optimized for the Hadamard gate with γ = 0.02 is applied to an ensemble
of systems with normal variations in the coupling constants γij . The distribution for each non-zero
γij is normal with a mean γ = 0.02 and a standard deviation σγ = γ /8 = 0.0025. Sub-plots
include frequency histograms of (a) the fidelity distribution for n = 1, (b) the entropy distribution
for n = 1, (c) the fidelity distribution for n = 4 and (d) the entropy distribution for n = 4. Note
the axes scale differences in the sub-plots. Table 2 reports statistical data for these distributions.

Table 2. Fidelity and entropy data for the one-qubit Hadamard gate applied to an ensemble of
systems with normal variations in the coupling constants γij and frequencies ωi . Columns of F
and SvN(tf) contain fidelity and final-time entropy values, respectively, for the original system
parameters: γ = 0.02 and frequencies given by (22) for n = 1 and (23) for n � 2. Columns of
F and SvN contain mean values of fidelity and final-time entropy, respectively, over the ensemble,
while σF and σSvN are the respective standard deviations.

n F F σF SvN(tf) SvN σSvN

Variation in γij

1 0.9995 0.9995 1.1 × 10−4 9.0 × 10−8 1.0 × 10−7 4.7 × 10−8

2 0.9975 0.9975 2.6 × 10−4 4.4 × 10−5 4.6 × 10−5 1.5 × 10−5

4 0.9935 0.9934 6.1 × 10−4 4.7 × 10−4 4.8 × 10−4 8.1 × 10−5

Variation in ωi

1 0.9995 0.9821 1.1 × 10−2 9.0 × 10−8 6.8 × 10−3 7.4 × 10−3

2 0.9975 0.9896 5.3 × 10−3 4.4 × 10−5 7.0 × 10−4 6.2 × 10−4

4 0.9935 0.9884 4.5 × 10−3 4.7 × 10−4 1.7 × 10−3 1.8 × 10−3

degree of robustness of the performance of the optimally controlled gate to relatively large
variations in the strength of the system-environment coupling. On average, there is practically
no decrease in the fidelity and entropy, and the relative width of the fidelity distribution,
σF /F , is by several orders of magnitude smaller than σγ /γ . Interestingly, if the control field
optimized for γ = 0.02 is applied to the closed system with γ = 0, this results in a relatively
high fidelity (e.g., F = 0.9989 for n = 1). The standard deviation σF rises with the increase
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Figure 10. Frequency histograms for the gate fidelity and final-time entropy distributions, obtained
when the control field optimized for the Hadamard gate with transition frequencies ωi given by
(22) for n = 1 and (23) for n � 2 is applied to an ensemble of systems with normal variations in
the transition frequencies. The distribution for each transition frequency is normal with a mean
ωi = ωi and a standard deviation σωi

= ωi/25. Sub-plots include histograms of (a) the fidelity
distribution for n = 1, (b) the entropy distribution for n = 1, (c) the fidelity distribution for
n = 4, and (d) the entropy distribution for n = 4. Note the axes scale differences in the sub-plots.
Table 2 reports statistical data for these distributions.

in the number of environmental particles. We also see that the distributions of F and SvN(tf)

are more symmetric for n = 4 than for n = 1.

7.2. Variation of the frequencies

The value of each frequency ωi (given by (22) for n = 1 and (23) for n � 2) is individually
replaced by a value randomly selected from a normal distribution with a mean ωi = ωi and
a standard deviation σωi

= ωi/25. The statistical analysis of the corresponding distributions
of the fidelity and final-time entropy is reported in table 2, and frequency histograms of these
distributions are shown in figure 10. It is well known [29, 30, 32] that a high degree of
quantum control may be achieved through the complex interference of evolution pathways.
This interference strongly depends on the relative phases of all pathways, and these phases
in turn depend on the transition frequencies of the system. Therefore, we would expect the
optimal gate performance to be much more sensitive to variations in the frequencies than to
changes in the coupling constants. The results presented in table 2 and figure 10 corroborate
this expectation. Still, the robustness of the optimal gate performance to frequency fluctuations
is tolerable. Moreover, the degree of robustness for systems with two and more environmental
particles (n � 2) is even higher than for n = 1.

8. Conclusions

This work demonstrates the importance of OCT in designing quantum gates for use in QC,
especially in the presence of a decohering environment. The model studied here represents
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a realistic system of interacting qubits and is relevant for various physical implementations
of QC. High quality optimal solutions obtained in the presence of unwanted couplings also
exhibit a significant degree of robustness to random variations in the system parameters. The
analysis of the system dynamics reveals control mechanisms which employ fast and intense
time-dependent fields to effectively suppress the qubit-environment interaction via dynamic
shifting of the energy levels and achieve an almost full coherence recovery via an induced
revival.

The results reported in this paper further support the use in QC applications of laboratory
closed-loop optimal controls employing learning algorithms and intense ultrafast fields [29,
30]. In the area of molecular dynamics, the utility of optimal control methods was first
demonstrated theoretically in very simple model systems; nevertheless, these methods were
later applied with great success in the laboratory to complex molecules [29]. Similarly, we
expect that the optimal control of quantum gates, the usefulness of which was demonstrated
here for a relatively simple environment model, will be also effective for real quantum
information systems. A successful application of optimal control methods to the generation
of high-fidelity quantum gates in the laboratory will be an important step towards achieving
error thresholds required for fault tolerant QC [6, 7].

This work may be further advanced with the use of the control-mechanism analysis [54] to
explore the detailed dynamics of the decoherence management process in optimally controlled
quantum gates. Methods of landscape analysis [52, 53, 55] may be employed to investigate
how optimal controls are deduced and study the effects of control errors in the context of
non-unitary dynamics of open quantum systems.
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