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Empirical determination of dynamical decoupling operations

Mark S. Byrd* ,† and Daniel A. Lidar‡
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Strong and fast ‘‘bang-bang’’~BB! pulses have been recently proposed as a means for reducing decoherence
in a quantum system. So far theoretical analysis of the BB technique relied on model Hamiltonians. Here we
introduce a method for empirically determining the set of required BB pulses, that relies on quantum process
tomography. In this manner an experimenter may tailor his or her BB pulses to the quantum system at hand,
without having to assume a model Hamiltonian. In addition, the previous work has been extended to a general
noiseless evolution via the stabilizer formalism.
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I. INTRODUCTION

Quantum computers hold great promise in solving cert
computational problems faster than their classical coun
parts, but they are notoriously susceptible to decohere
~deviations from unitary dynamics! and unitary errors, the
combination of which we refer to as ‘‘noise.’’ The effect o
decoherence is to induce computational errors that des
the quantum speed-up: a decohered quantum compute
be efficiently simulated by a classical computer@1#. Hence
the ultimate success of quantum information processing
pends on the ability to implement error correction or avo
ance techniques. To this end, a variety of quantum error
recting codes ~QECC! and other methods have bee
designed. These methods all share an important feature:
are designed to deal withspecific modelsof errors, as em-
bodied in an assumed system-bath interaction Hamilton
The class of active~e.g., stabilizer! QECC @2–5#, for ex-
ample, is designed to correct independent errors resu
from ~up to! some fixed number,t, of system-bath many
body interactions; the class of passive QECC~decoherence-
free subspaces! works optimally under the assumption o
collective ~i.e., fully correlated! decoherence@6–10# or as-
sumes multiple-qubit errors@11#; dynamical decoupling or
symmetrization methods assume baths with relatively lo
correlation times and weak system-bath coupling, so that
coherence may be suppressed using fast and strong ‘‘b
bang’’ ~BB!, or dynamical decoupling, pulses, introduced
Ref. @12#, and further developed in Refs.@13–29#. One may
also note that BB pulses are related to the so-called ave
Hamiltonian theory@54#, and are important for the ability to
simulate one system by another@25,29–31#. In spite of this
impressive arsenal of methods there is a fundamental p
lem in the model-specific approach in terms of its appli
tions to experimental quantum information processing. T
problem is that in real world applications, decoherence
often a combined effect, which arises from a variety
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sources, and does not correspond to one particular mod
is often very difficult to identify and isolate the variou
sources. The result is that the model-dependent approac
overcoming decoherence breaks down when applied to r
istic systems, since it inevitably fails to capture all sourc
In addition, current methods tend to ignore the experimen
constraints imposed by the finiteness of resources, suc
the scarcity of qubits in present-day implementations
quantum computers~presently, fewer than 10 qubits!. Of
course, this criticism in no way diminishes the importance
the model-specific approach: it is through that approach
ground-breaking new results have been obtained which
tablish the in-principle possibility of overcoming decohe
ence. In particular, this work has led to the observation t
fault tolerant quantum computation is possible in the ind
pendent errors model, provided the fidelity of gate operati
is above a certain threshold@32–36#.

We focus here on the BB method and consider a parad
that is the reverse of the model-dependent approach to d
herence reduction: Instead of assuming a specific mode
decoherence, designing a corresponding QECC, and
looking for a system that might be described to a good
proximation by that model,we propose to tailor a set ofBB
pulses to a system, from experimentally measured deco
ence data. We call this approach, which we introduced fir
in Ref. @26#, ‘‘empirical bang-bang.’’ Empirical BB is a phe
nomenological approach which forsakes a microscopic
derstanding of the underlying decoherence processes in f
of a direct attack on the combined effect of all sources
decoherence at once. This method aims to achieve an
mized control@37–40# by using a closed-loop learning algo
rithm @41–43#. This closed-loop method, first introduced
Ref. @41#, and only recently discussed as a method of de
herence management@43#, can be used to iteratively opti
mize the output taking into account practical constraints
posed by the specific physical and experimental realizati

That empirical BB is feasible, in principle, follows from
two key facts:~i! It is possible to experimentally measure th
superoperator~i.e., the map that propagates the density m
trix! characterizing the noise in a particular system by us
quantum process tomography~QPT!; ~ii ! As we show here,
given knowledge of the superoperator it is possible to des
a BB procedure. Thus an experiment can, in principle, p
vide all the information needed to design an optimized se
BB pulses.

-
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This paper is arranged as follows. In Sec. II we review
basic background to quantum process tomography, and
theory for decoupling by symmetrization. We then present
Sec. III, a derivation and discussion of several formulas
determining the set of decoupling operations. In Sec. IV
generalize the entire scheme to operations onencodedqubits
in terms of the geometric picture which is a quite general a
new result. It establishes a method for designing a QE
and/or a decoherence-free subspace~DFS! for a given set of
BB pulses, or choosing the necessary set based on an en
ing. These basic methods are illustrated in Sec. V with a
examples. We then indicate in Sec. VI how the empirica
determined set of BB pulses can be optimized using
learning-loop algorithm.

II. REVIEW

In this section we review the important components of
empirical determination of bang-bang operations. These
clude QPT, the theory of dynamical decoupling operatio
for a given Hamiltonian, and its geometrical interpretatio
Readers familiar with these concepts can choose to
ahead to Sec. III, although the notation introduced in t
section will be used in the remainder of the paper.

A. Quantum process tomography

The dynamics of an open quantum system coupled
bath is formally obtained from the time-ordered evolution

U~ t !5T expF2 i E t

H~ t8!dt8G , ~1!

under the combined system-bath Hamiltonian

H5HS^ I B1I S^ HB1HSB,

HSB5(
g

Sg ^ Bg , ~2!

whereI is the identity operator,HS is the Hamiltonian for the
system alone,HB is the Hamiltonian for the bath alone,HSB
is the system-bath interaction Hamiltonian, and theSg and
Bg are operators on the system and the bath, respecti
Tracing over the bath degrees of freedom in order to ob
the time-evolved system density matrix

r~ t !5TrB@U~ t !„r~0! ^ rB~0!…U†~ t !#, ~3!

wherer(0) is the initial density matrix of the~open! system,
rB(0) is the initial density matrix of the bath. It can b
shown that this agrees with the most general quantum e
lution consistent with the condition of complete positivit
known as the Kraus operator sum representation~OSR!
@44–46#:
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Et~r~0!![r~ t !

5(
mn

Amn~ t !r~0!Amn
† ~ t !

5(
a,b

xa,b~ t !Kar~0!Kb
† . ~4!

The Kraus operatorscan be related to Eq.~3! through

Amn~ t !5Aln^muU~ t !un&, ~5!

where un&,um& are eigenvectors of the initial bath densi
matrix: rB(0)5(nlnun&^nu @47#. Since Tr@r(t)#51, they
satisfy the normalization condition:(mAmn

† Amn5I S . The
matrix

xa,b~ t !5(
mn

bmn;abmn;b*

is a time dependent, Hermitian coefficient matrix defined
a transformation of the Kraus operators to afixed~i.e., time-
independent! operator basisKa ,

Amn~ t !5(
a

bmn;a~ t !Ka .

A prescription for determining the superoperatorEt from ex-
perimental data~QPT! was given in a number of recent pa
pers @48–50#, and has very recently been applied in NM
experiments@51#. In this paper we will take QPT to mean th
determination of the coefficient matrixxab(t), with respect
to a given (experimentally convenient) choice of fixed ba
operators Ka . Formally, the problem is to invert thex ma-
trix from experimental data. Sincex is time dependent, it is
clear that one can in practice only sample it. If the decoh
ence process is Markovian then it suffices to obtain the tim
independent coefficient matrixaab that appears in the Lind
blad equation@47,52,53#. However, even this is a formidabl
problem: if the density matrix has dimensionsN3N ~where
for n qubitsN52n) then a simple counting argument show
that there are at mostN42N2 independent real parameters
aab and the same number, but time dependent inx. Even for
one qubit this amounts to 12 different parameters that m
have to be measured to completely characterize the deco
ence process. Fortunately, it is well known that in practice
few as 2 parameters may suffice, as is the case with theT1
andT2 relaxation times in NMR@54#.

The general idea behind QPT is to characterize the su
operator action on a complete basis set. To see this, let
N2 matricesr j be a basis for the density matrixr. For ex-
ample,r j could be the set of pure statesu j &^ j 8u, which are
then fed into the decoherence process as inputs:E(r j )
5(kl jkr j . Using quantum state tomography@55#, one can
experimentally determinel jk , which fully specifies the su-
peroperatorE, since it is now possible to find thex matrix:
Definej by Kar jKb

†5(kj jk
abrk , whereKa are the fixed ba-

sis Kraus operators. Then one can show that(abj jk
abxab

5l jk @49#. This can be thought of as a matrix equation f
4-2
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the vectorx and it can be solved by computing the inverse
the matrixj. Thus, by measuringl and by givingj through
a choice of the fixed operator basisKa , finding thex matrix
has been transformed into a linear algebra problem. In p
tice, we note that it may often be difficult to prepare the f
basis setr j . An interesting alternative, using entangled inp
states, was recently proposed in Ref.@56#. A method that
circumvents tomography altogether~but is less general!, us-
ing quantum network ideas, was described in Ref.@57#.

B. Decoupling by symmetrization

The process of decoupling by symmetrization countera
noise by applying sequences of frequent and strong pu
The time scales are crucial: one needs to perform a comp
cycle of symmetrization operations in a time shorter thantc ,
the inverse of the high-frequency cutoff of the bath spec
density @12–14#. An elegant group-theoretical treatme
shows that the applied pulses are unitary transformat
forming a finite-dimensional group, and the application o
series of pulses amounts to an average~symmetrization! over
this group @15–19#. A geometrical interpretation, reviewe
below, can offer further insight@24#. The method can also b
used to perform ‘‘ environment engineering,’’ in order
prepare the conditions that allow for DFSs@15,19,27#, as
well as in order to eliminate leakage errors that couple
coded states with states out of a DFS@15,28#. We briefly
review this theory.

A set of symmetrization operations is chosen such t
they form a discrete subgroup of the full unitary group
operations on the Hilbert space of the system. Denote
groupG and its elementsgj , j 50,1, . . . ,uGu21, whereuGu
is the order of the group. The cycle time isTc5uGuDt, where
uGu is the number of symmetrization operations, andDt is the
time that the system evolves freely between operations u
U05exp(2 iHt ) with H given by Eqs.~2!. The symmetrized
evolution is given by

U~Tc!5 )
j 50

uGu21

gj
†U0~Dt !gj[eiH effTc,

where the evolution underHSB1HB has been neglected du
ing pulse application, i.e., during the action of the gro
elementsgj . Heff denotes the resulting effective Hami
tonian. Since the approximation requires very strong, sh
pulses to be implemented in a sequence, they have b
termed as BB operations~we will use decoupling, symmetri
zation, and BB operations interchangeably!. In this ~BB!
limit

H°Heff5
1

uGu (
j 50

uGu21

gj
†Hgj[PG~H !, ~6!

whereHeff is the desired Hamiltonian~without noise!. The
mapPG is the projector into the centralizerZ(G) defined as

Z~G!5$Xu@X,gj #50, ; gjPG%.
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The resulting effective Hamiltonian now satisfies@Heff,G
50#, so that ifG is generated by$I ,HS ,Sg%, the evolution
will proceed without the operatorsSg affecting the system,
since the error operators will commute with the effecti
Hamiltonian. Thecontrol algebrais the algebra generated b
the set$gj%. Even if the symmetrization is performed und
less than ideal conditions, BB can still reduce the noise in
system@12,13#.

The main advantage offered by dynamical decoupling
that it does not require extra qubits. This is a very attractive
feature compared to both active and passive error correc
one that may make dynamical decoupling a method of cho
for small-scale quantum computer implementations, p
vided its stringent time-scale requirements can be met.

C. Geometry of the decoupling method

In preparation for the remainder of the paper, and as
intuitive aid, we briefly review the geometric description
BB controls developed in Ref.@24#. Let us explicitly intro-
duce N[n221 traceless, Hermitian generators$l i% i 51

N of
SU(n). These generators are closed under commutation
span the space of traceless Hermitian matrices. For SU(2),
the Pauli matrices are commonly used; for SU(3), theGell-
Mann matrices, and for higher dimensions, one may us
direct generalization of the Gell-Mann matrices. For dime
sions that are a power of two~and quantum computing! it is
often convenient to use the Pauli group~tensor products of
Pauli matrices!. The $l i% satisfy trace orthogonality

Tr~l il j !5Md i j , ~7!

whereM is a normalization constant~often taken to be 2 for
Lie algebras orn for n3n matrices!. Expanding the system
operators in terms of the$l i% yields

Kg5(
i

aigl i , ~8!

where the expansion coefficients are

aig5
1

M
Tr~l iKg!. ~9!

Using this,HSB can be written as follows:

HSB5(
g

Sg ^ Bg

5(
g

(
i 51

N

aigl i ^ Bg

[(
g

~aW g•lW ! ^ Bg . ~10!

Here aW g and lW are vectors of lengthN. In this coherence
vector representation, used extensively in Ref.@58#, an
n3n HamiltonianH is a vector with coordinatesaW g for each
error g in an N-dimensional vector space spanned by t
$l i% as basis vectors, with ordinary vector addition and s
lar multiplication. The open system evolution is thus d
scribed by a vector~or vector field! in the space of possible
evolutions.
4-3
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Now, as is well known, there is a homomorphic mappi
between the Lie groups SU(2) and SO(3)@59#. This map-
ping is generalized as follows for SU(n) and a subgroup o
the rotation group SO(N):

Uk
†l iUk5(

j 51

N

Ri j
(k)l j , ~11!

where the matrixR(k)PSO(N), the adjoint representation o
SU(n).

The BB operation@Eq. ~6!# may now be viewed as a
weighted sum of rotations of the~adjoint! vectorsaW g . To see
this, first let

aW g
(k)5R(k)aW g . ~12!

This represents the rotation byR(k) of the coordinate vecto
aW g . Next average over all rotations

aW g85
1

uGu (
k50

uGu21

aW g
(k) . ~13!

Finally, note that the effective Hamiltonian, after the BB o
erations, can be rewritten as

Heff5
1

uGu (
k50

uGu21

Uk
†HUk5(

g
~aW g8•lW ! ^ Bg . ~14!

Equation~14! @compared to Eq.~10!# is the desired geomet
ric representation of BB operations. Their effect is to simp
transform, for each errorg, the coordinatesaW g to aW g8 . It is
simplest to interpret this in the case of storage, where
seek BB operations such thatHeff50. Since the errors can b
decomposed in the linearly independent basis set indexe
g, each termaW g8•lW must vanish separately. Furthermor

since thel i are independent this can only be satisfied ifaW g8

50W for eachg. This means that

aW g85S 1

uGu (
k

R(k)D aW g50W , ~15!

i.e., the sum of all rotations applied to the original coordin
vectoraW g must vanish.

Similarly, to obtain a modified evolution corresponding
a target HamiltonianHeff

t 5(g(aW g
t
•lW ) ^ Bg , we require the

weighted sum of rotations applied to the original coordin
vector to be equal to the corresponding target coordinate
tor aW g

t . That is, forHeffÞ0, the following condition should
be satisfied to obtain the desired evolution:

aW g85aW g
t . ~16!

This may require a combination of switching strategies
the BB pulses@19#.

It should be noted that the geometrical picture is an
plicit representation of a subset of the group algebraCG us-
ing the set of traceless Hermitian matrices and the identit
01232
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the basis. When the coefficients of the adjoint vector are r
the resulting matrixHeff is Hermitian. When they are com
plex, the resulting matrix is not Hermitian and the evoluti
is not unitary, but may still be treated empirically, as w
show below.

We now turn to show how to find the BB pulses direct
from experimental data, i.e., given a QPT measuremen
the x matrix.

III. DETERMINATION OF DECOUPLING OPERATORS

Since the BB method operates at extremely fast ti
scales it is useful to consider a short-time expansion of
OSR evolution equation~4!. To do so we follow@47,60#,
where it was shown how the OSR can be rewritten to
semble the Lindblad equation@52,53#. Thus, the OSR can be
rewritten as

r~ t !5r~0!2
i

\
@S~ t !,r~0!#1

1

2 (
a,b51

N

xa,b~ t !

3$@Ka ,r~0!Kb
† #1@Kar~0!,Kb

† #%, ~17!

whereS(t) is the Hermitian operator defined by

S~ t !5
i\

2 (
a51

N

@xa,0~ t !Ka2x0,a~ t !Ka
† #. ~18!

Note the similarity of Eq.~17! to the Lindblad equation
@52,53#. Indeed, the Lindblad Markovian semigroup mas
equation can be derived from Eq.~17! via a coarse-graining
procedure@47,60#, which replaces the time-dependentxa,b
matrix elements with their time averages over an interval t
is longer than the bath correlation-timetc , and thus longer
than the BB time scale. An important outcome of this proc
dure is that the coarse-grainedS(t) can be interpreted as
system HamiltonianHS plus a Lamb shift correction@47,60#.
While still exact, Eq.~17! is more amenable to a short-tim
expansion than the original~equivalent! form of the OSR,
Eq. ~4!.

Note that the ‘‘fixed basis’’$Ka%a51
N is completely analo-

gous to the Hermitian generators$l i% i 51
N of SU(n) used in

the geometric picture of Sec. II C. Thus, assuming a Herm
ian basis$Ka% we can rewrite Eq.~18! as

S~ t !5 i\ (
a51

M

Im@xa,0~ t !#Ka5 i\Im~xW !•KW ,

which can be interpreted as giving the ‘‘Hamiltonian’’S(t)
as a vector with coordinates Im@xa,0(t)# in a space with
basis vectors$Ka%.

Next we give a general method for determining BB co
trols from empirical data, specialize the applicability of th
method somewhat, and then treat storage, single-qubit op
tions, and computation.
4-4
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A. Empirical bang-bang condition

Before going into a detailed and more careful analysis,
first present a ‘‘rough’’ version of the empirical BB cond
tion. We note two key facts:~i! in a first-order decoupling
scheme@16#, the BB method will operate only to undo th
undesired evolution due toS(t); ~ii ! from Secs. II A and II B
we find that, under the action of BB controls, the$Ka% trans-
form as

Ka→
BB 1

uGu (
k

Uk
†KaUk

5
1

uGu (
k

(
b51

Rab
(k)Kb

5
1

uGu (
k

~R(k)KW !a . ~19!

Thus, given the considerations above concerning the e
of BB pulses and their geometrical interpretation, we c
express the BB-modified open system evolution as

S5 i\Im~xW !•KW

→
BB

Im~xW !• 1
uGu (

k
R(k)KW

5 i\ 1
uGu (

k
(
ab

Im@xa,0#Rab
(k)Kb

5 i\Im~ x̃W !•KW [S̃, ~20!

where the new, BB-modified ‘‘Hamiltonian’’S̃ is described
by the new, rotated coordinate vector

Im~ x̃W !5Im~xW !
1

uGu (
k

R(k). ~21!

Now, let the ideal, or ‘‘wanted Hamiltonian’’ be described b
the coordinate vectorxW w , i.e.,

Sw5 i\Im~xW w!•KW . ~22!

For storage this would correspond to the null vector, but
for computation. The goal of the empirical BB procedure
to find rotation matricesR(k) such that the difference

S̃2Sw5 i\@ Im~ x̃W !2Im~xW w!#•KW 50, ~23!

or more generally, is minimal. This has the simple geome
interpretation of minimization of the distance between

BB-modified vector Im(x̃W ) and the desired vector Im(xW w).
The input datais Im(xW ) ~the output of the QPT measure

ment!, xW w ~the desired Hamiltonian!, KW ~the operator basis
with respect to whichxW w andxW are defined!. This data speci-
fies a solution to Eqs.~21! and ~23! in terms of the rotation
matricesR(k). This solution is not unique; see, e.g., the e
ample in Sec. V A.
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When theR(k) are found, the BB pulses can be calculat
from the transformation connecting the adjoint represen
tion to its unitary group.

Thus Eqs. (21) and (23) can be viewed as the essenc
the empirical BB procedure. From here on we flesh out thi
first main result.

B. Qubit noise

The development in Sec. III A was cavalier in its trea
ment of the indicesa,b of the fixed operator basis$Ka%. To
be more precise, consider a quantum register ofN qubits. We
will derive a short-time expansion of Eq.~17! under the as-
sumption that the system-bath interaction is linear in the s
tem operators:

HSB
(1)5(

i 51

N

sW i•BW i , ~24!

wheresW i5(s i
x ,s i

y ,s i
z) is the vector of Pauli matrices actin

on the i th qubit, andBW i is a corresponding vector of bat
operators. This assumption will be relaxed below~Sec. III F!
and, as should be clear from Sec. III A, is not essential
our approach, but will make the calculations below mo
transparent. A Taylor expansion of the evolution opera
U(t) @Eq. ~1!# then reveals that as time increases, higher a
higher tensor powers of the Pauli matrices act on the qu

U~ t !5I 2 i tH SB
(1)1

~ iH SB
(1)!2

2!
t21••• , ~25!

where for simplicity we have assumed a time-independ
Hamiltonian and setHS5HB50. The O(t) term involves
only single Pauli matrices, but theO(t2) terms and higher
involve tensor products of Pauli matrices. To capture this
terms of the OSR we expand the fixed basis operatorsKa as

KaW n
[ ^

i 51

N

s i
a , ~26!

where, for the i th qubit, s i
a , a50,1,2,3 corresponds to

I i ,s i
x ,s i

y ,s i
z , respectively. The subscript onKaW n

denotes a

vector aW n5(a1 , . . . ,aN) with n nonzero entries. That is
KaW n

acts nontrivially onn qubits.~We also useaW for a vector
of arbitrary index.! Note that we have omitted the subscripi
on a in Eq. ~26! in order to reduce the index clutter. The
exist M54N different KaW n

operators withKaW 0
5I ^ •••^ I

being the identity on the space of all qubits. Here we ha
chosen theK ’s to be Hermitian, and trace orthogonal,

Tr~KaW m
KbW n

!52NdaW mbW n
. ~27!

Hence they are a valid basis for all 2N32N matrices.
Corresponding to this expansion of the fixed-basis ope

tors, we can rewrite the OSR, Eq.~4!, more explicitly as
4-5
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r~ t !5 (
m,n50

N

(
aW m ,bW n

xaW m ,bW n
~ t !KaW m

r~0!KbW n

5xaW 0 ,bW 0
~ t !r~0!1 (

m51

N

(
aW m

xaW m ,bW 0
~ t !KaW m

r~0!

1xaW m ,bW 0
* ~ t !r~0!KaW m

†

1 (
m,n51

N

(
aW m ,bW n

xaW m ,bW n
~ t !KaW m

r~0!KbW n
. ~28!

Thus terms that contain only single Pauli matrices but
tensor products of Pauli matrices can only come from
second sum ((m51

N (aW m
), with m51. Comparing to Eqs

~17! and~18! it is clear that this sum is responsible for~part
of! the ‘‘Hamiltonian’’ S(t), whereas the third sum generat
the Lindblad-like term in Eq.~17!. ~This can also be verified
directly by repeating the derivation in Refs.@47,60# using the
KaW n

.) Hence to first order int we find

r~ t !2r~0!'2 i @S~ t !,r~0!#

'tF(
aW 1

~xaW 1,0KaW 1
2xaW 1,0* KaW 1

† !,r~0!G
52tF(

aW 1

Im~xaW 1,0!KaW 1
,r~0!G , ~29!

where in the last line we used the Hermiticity of theK op-
erators. The term(aW 1

is a sum over all elements of the Pau
group with one nonidentity element in the tensor product.
comparing to Eq.~25!, and recalling the expression for th
Kraus operators, Eq.~5!, it follows that this term is directly
related to bath matrix elements ofHSB, which give rise to a
Lamb shift @47,60#. When the system Hamiltonian is in
cluded, it appears in the(aW 1

term as well. However, recal
that we are developing an approach that is explicitlymodel
independent. Hence the only quantities we will use are th
QPT-measurablexaW 1,0 .

We now wish to find an appropriate set of BB controls
order to eliminate the noise on our qubits. It should be cl
from the discussion above that this noise is initially@i.e., at
times of O(t)] produced byunitary errors associated with
the bath-induced Lamb shift. Decoherence arises from te
that are of orderO(t2). Decoherence suppression is achiev
on a finite time scale with corrections being of ord
O(Dt/tc)

2k for a kth-order decoupling scheme, whereDt is
the pulse interval andtc is the bath correlation time@16#. As
noted above, from Secs. II A and II B we find that, under t
action of BB controls, theK transform as

KaW →
BB 1

uGu (
k

Uk
†KaW Uk . ~30!

~Here aW denotes a vector of arbitrary index.! This transfor-
mation is the basis for much of what follows.
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C. Qubit storage

For the storage of information~without computation! in
qubits, we need to preserve the density matrix under t
evolution, so thatr(t)5r(0). Let usdenote BB-modified
quantities by a tilde. In this case we should have, using
~29!,

@S̃~ t !,r~0!#50 ~31!

as the BB control objective. SinceS does not contain an
identity componentI we require that

S̃~ t !50. ~32!

We proceed to turn this into a condition on BB pulses.
Recall thatKaW 1

denotes an operator with exactly one no
identity term ~one of the three Pauli matrices acting on
unspecified qubit!. There are therefore 3N such operators,
which we now denote explicitly ass i

a , wherei 51, . . . ,N,
anda51,2,3. Under the assumption of a linear system-b
coupling, Eq.~24!, it is clear that the BB pulses need on
involve tensor products of single-qubit unitaries, i.e.,

Uk5 ^

i 51

N

Ui
(k) .

Then Eq.~30! becomes

s i
a→

BB 1

uGu
(

k
Uk

†s i
aUk

5
1

uGu
(

k
Ui

(k)†s i
aUi

(k) . ~33!

At this point it is useful to again introduce real rotation m
tricesR to represent the BB group,

Ui
(k)†s i

aUi
(k)5 (

b51

3

Rab
i ;(k)s i

b . ~34!

Herei runs over qubit indices;kP$0,1, . . . ,uGu21%; Ri ;(k) is
in the adjoint representation of the group SU(2)@i.e., Ri ;(k)

PSO(3)] acting on thei th qubit and has matrix element
Rab

i ;(k) . Now let us consider the transformation ofS(t) under
the BB controls. To simplify notation let us denote

ja
i [Im~xa,0

i !. ~35!

Then from Eq.~29!

i

t
S~ t !'(

i
(
a

ja
i s i

a[(
i

jW i
•sW i , ~36!

i

t S~ t !→
BB

(
i

jW i
•

1
uGu (

k
Ui

(k)†sW iUi
(k)

5(
i

jW i
•

1
uGu (

k
Ri ;(k)

•sW i

5(
i

j̃W i
•sW i , ~37!
4-6
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where

S 1

uGu (
k

Ri ;(k)D jW i5 j̃W i . ~38!

For storage we requirej̃W i50, i.e.,

j̃b
i 5Im~ x̃b,0

i !50 ; b,i . ~39!

Thus,solving for each i the set of linear equations

(
k

(
a

Im~xa,0
i !Rab

i ;(k)50 ~40!

for the rotation matrix elements Ri ;(k), in terms of measur-
able parametersxa,0

i ~the output of aQPT experiment!, de-
termines the BB pulses empirically. The pulse form of the
BB controls is determined through Eq.~34!.

Note that if Im(xa,0
i )[Im(xa,0), i.e., there is no depen

dence on qubit index~collective decoherence@6,9#!, then the
same set of rotation matrices$R(k)%k50

uGu21 ~with matrix ele-
mentsRab

(k)) can be used for all qubits, as already pointed
in Ref. @16# in terms of unitary BB controls. It also show
that, for complete symmetrization, one need only ensure
(kRab

i ;(k)50 for all a,b, independent of the decoheren
mechanism.

Finally, note that we can rewrite Eq.~40! as

S 1

uGu (
k

Ri ;(k)D Im~xW i !50. ~41!

In this manner it is clear that what we are looking for is
group of rotation matrices$Ri ;(k)%, acting on qubiti, whose
average (1/uGu)(kR

i ;(k) acts to annihilate the QPT measur
ment output vector Im(xW i). This is the geometrical interpre
tation of the empirical BB condition. Equation~41! is our
second main result.

D. Single-qubit operations

Now suppose that we are interested in quantumcomputa-
tion. In this case we must allow for single- and two-qub
operations, such that these are not eliminated by the BB c
trols. In the model-dependent approach this translates
the ~sufficient! condition that the BB generators commu
with the Hamiltonian that is implementing the computati
@17,18#. Here we derive more general conditions from t
empirical BB perspective, which have the advantage t
they can be used to determine the required set of BB pu
directly from a QPT measurement and a stipulated, wan
system Hamiltonian.

Let us consider the case of single-qubit operations first
this case the system Hamiltonian need only contain a sin
nonidentity operator~Pauli matrix! per qubit, as in Eq.~24!.
Therefore, the development of the previous subsection
plies. The difference, however, is that now instead of
storage condition of Eq.~39!, we require the BB-modified
x-matrix elementsx̃b,0

i to assume values that correspond to
wantedevolution~or system HamiltonianSw). Let us denote
01232
t

at

n-
to

at
es
d

n
le

p-
e

the corresponding wanted~real! x-matrix elements bywb
i

~they can easily be calculated from a Hamiltonian—see
low!; then the empirical BB condition replacing Eq.~40!
becomes

1

uGu (
k

(
a

Im~xa,0
i !Rab

i ;(k)5wb
i . ~42!

This once again has to be solved for the rotation matri

Ri ;(k), with elementsRab
i ;(k) , given the empirical datax̃W i

[Im(x̃a,0
i ). This too, can be written in a form amenable to

geometric interpretation

S 1

uGu (
k

Ri ;(k)D Im~xW i !5wW i . ~43!

Now the average over the rotation matrices acts to rotate
QPT output vector to a desired vector for thei th qubit wW i .
Equation~43! is our third main result.

E. Solvability

Let us next discuss the solvability conditions for the ro
tion matricesRi ;(k), from Eqs.~41! and ~43!. Since the van-
ishing of (1/uGu)(kR

i ;(k) suffices to satisfy Eq.~41! for given
i, its solvability is guaranteed if theRi ;(k) are chosen such
that, giveni, the Ri ;(k) correspond totransformations onto
the vertices of a symmetric object in three dimensions. We
stress that this is only a sufficient condition, which yields
solution that is independent of the empirical dataxW i . One can
also solve Eq.~41! for the rotation matricesRi ;(k) such that
xW i lies in the kernel of the linear transformation(kR

i ;(k).
This is a standard linear algebra problem. The condition fo
nonempty kernel is the vanishing of the determinant of
linear transformation. The dimension of the kernel is t
number of linearly independent vectors that are annihila
by the linear transformation. Since we require that Eq.~41!
be satisfied for all qubitsi, it is clear that sometimes th
kernel space can be too small. However, given the great
of flexibility in choosing the rotation matrices, it seems th
in practice a solution can always be found, even if one ins
on not having(kR

i ;(k)[0.
As for Eq.~43!, this is just the inhomogeneous version

the linear algebra problem discussed above, and similar s
dard arguments apply. However, some more insight int
sufficient condition may be obtained through a geome
argument, as follows. Let us focus on the case of a sin
qubit ~thus dropping the indexi ), and denotewW 5(a,b,c) t,
Im(xa,0)5(d,e, f ) t. We can always find a rotation matrixT
such that

TS a

b

c
D 5S a8

0

0
D . ~44!

Then (d,e, f ) t→(d8,e8, f 8) t underT, and we can write Eq.
~43! as
4-7
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TS 1

uGu (
k

R(k)DT21S d8

e8

f 8
D 5S a8

0

0
D . ~45!

Then in the rotated frame, we may write

TS 1

uGu (
k

R(k)DT215S (
k

q(k)

(
k

M (k)
D ,

such that the BB rotations have an upper 133 row that
should solve the equation(kq

(k)d85a8, and a lower 233
block that is the sum of 233 matrices(kM

(k) that should
vanish. That is, theM (k) correspond totransformations onto
the vertices of a symmetric object in the plane orthogona
the ‘‘ a8 direction.’’ The generalization to more than one qu
bit is straightforward.

For both Eqs.~41! and~43! we stipulate that our availabl
BB rotations have these properties. If not, we use the res
of Sec. IV to encode our information into a subspace s
that these conditions are indeed satisfied.

F. Two-qubit operations

In order to implement two-qubit operations we must allo
for a system Hamiltonian that contains two-body intera
tions. Therefore, it is useful to comment on what happ
when also the system-bath Hamiltonian contains high
order coupling, e.g., second order

HSB
(2)5 (

j . i 51

N

~sW i•Gi j •sW j ! ^ Bi j , ~46!

whereGi j is a second-rank tensor. In this case, both the th
and fourth line of Eq.~28! contribute terms that are bilinea
in the Pauli matrices, i.e., they contribute(aW 2

and (aW 1 ,bW 1
,

respectively. Additional bilinear terms will arise when th
expansion is taken toO(t2). The latter may arise fromHSB

(1)

@Eq. ~24!# and will contribute to thenonunitary, decohering
part of the evolution. The BB pulses that are appropriate
all these cases will be elements of SU(4).

As before, the quantities extracted from the QPT meas
ments will be the imaginary part of thex matrix which we
abbreviate using a matrixj, as in Eq.~35!. In this case the
modified evolution will provide for the possibility of two
qubit interactions. Thus, generalizing from Eqs.~29! and
~36!,

i

t
S~ t !'F(

aW 2

Im~xaW 2,0!KaW 2
1(

aW 1

Im~xaW 1
!KaW 1

,r~0!G
5(

i j
sW i•j i j

↔
•sW j , ~47!

where

~j i j !ab5jab
i j [Im~xab,00

i j !1Im~xa0,00
i j ! ~48!
01232
o

lts
h

-
s
r-

d

r

e-

is a 434 matrix of coefficients. Under the action of the s
of BB controls,

i

t
S~ t !→

BB 1

uGu (
k

(
i j

Ui j
(k)†~sW i•j i j

↔
•sW j !Ui j

(k)

5(
i j

sW i• j̃ i j
↔
•sW j , ~49!

where

j̃ i j
↔

5
1

uGu (
k

Ri j ;(k)
•j i j

↔
, ~50!

and the rotation matricesRPSO(15) are defined through

Ui j
(k)†~s i

a
^ s j

b!Ui j
(k)5(

gd
Rab,gd

i j ;(k) ~s i
g

^ s j
d!. ~51!

Again, let us describe the target, or wanted, evolution
the x-matrix w. In analogy with Eq.~34!, the matrixR is in
the adjoint representation of the group and thus can
viewed as a rotation in the vector space of Hermitian ma
ces. In this case, only a subgroup of the rotation gro
SO(N) is represented by the adjoint action.~This is true for
all SU(n), n>3). The expression analogous to Eq.~43! be-
comes

1
uGu (

k
Ri j ;(k)

•j i j
↔

5w
↔

i j , ~52!

or using explicit index notation,

1

uGu (
k

(
gd

jgd
i j Rgd,ab

i j ;(k) 5wab
i j . ~53!

Thus the two-qubit case involves solving for the elements

each of the rotation matricesRi j ;(k), given the QPT dataj i j
↔

and the desired Hamiltonianw
↔

i j . After the rotation matrices
are found, one obtains the BB pulses by inverting Eq.~51!
for the Ui j

(k) . While this seems like a daunting task in ge
eral, it should be numerically tractable, and is illustrated
a simple example in Sec. V B below. Equation~52! is our
fourth main result.

IV. GENERALIZATION TO ENCODED QUBITS

Before presenting examples, we generalize the empir
BB condition to encoded qubits, such as arise in the the
of quantum error correcting codes~QECC! @2–5# and
decoherence-free subspaces~DFS! @6–11#. In both cases it is
highly desirable to let the experiment determine a ‘‘tailor
encoding,’’ since the experiment knows the decoherence
cesses that govern the system we wish to protect better
any model one can design. Furthermore, combining QE
and DFS with the BB method has proven to be a powe
tool @25–28,61#. Now, both QECC and DFS can be d
scribed in terms of astabilizer @5,10#. A stabilizer group for
a set of code words, i.e., a code space, is a subgroup~of the
Pauli group for QECC, and of the group of all unitary tran
formations for DFS! that leaves the code space invariant.
4-8
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code~whether QECC or DFS! can be completely specified i
terms of its stabilizer@62#.

Let S be the vector space~group algebra! generated by
real linear combinations of the set of generators of the st
lizer group. Any member ofS will leave the code space
invariant. Thus the most general ‘‘error’’ we can allow in th
outcome of a BB procedure, when compared to a giv
wanted Hamiltonian, is an error inS. Then the outcome o
this ‘‘erroneous’’ evolution will be correct up to an overa
phase. As before, let Im(wW ) be the coordinates of the vecto
corresponding to the desired Hamiltonian evolution a

Im(x̃W ) be the actual vector after BB operations. Formally,
condition is

S̃2Sw5 i\@ Im~ x̃W !2Im~wW !#•KW PS, ~54!

which should be compared to Eq.~23!. This equation may be
interpreted in either of two ways. First, given an encod
and a wanted HamiltonianSw , it can be solved for the BB
operations that are needed for the suppression of error
the code subspace. Second, given a physically implem
able set of BB operations, it can be solved for a compat
code ~by finding the stabilizer!. Abstractly, this procedure
may be seen as a projection of the open system evolu
onto an evolution which is in the stabilizer of the code spa
The geometric projection operation completely reduces
the group-theoretical projection onto the commutant given
Ref. @15# in the case that the set ofR(k), form a discrete
group @24#. The emphasis here is a geometric picture of
empirical operations projecting onto the stabilizer group
the code. Note that quite generally, Eq.~54! gives an empiri-
cal means of identifying a subspace encoding such that
BB operations drive the evolution into a subspace wh
does not affect the encoded states. This implies a general
empirical means for thecreation of aDFS @27#. Equation
~54! is our fifth main result, which is new and quite gener

If the BB procedure is imperfect there will be an err
component remaining. The error vectorEW is given by the
difference between the BB modified and wanted Hamil
nians in the (n221)-dimensional vector space, where o
geometric picture holds

EW 5Im~ x̃W !2Im~wW !. ~55!

The vectorEW gives the magnitude and direction of the err
~i.e., the basis elementsl i give the type of error, e.g., bit flip
and/or phase flip, etc.!. The corresponding scalar quanti
~distance! is

d„Imx̃W ,Im~wW !…5@Tr„Im~ x̃W !2Im~wW !…2#1/2. ~56!

The error~55! can be generalized to

d„S,Im~ x̃W !…5min
BW PS

@BW 2Im~ x̃W !#, ~57!

and likewise, the corresponding scalar quantity is
01232
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d„S,Im~ x̃W !…5min
BW PS

@Tr„BW 2Im~ x̃W !…2#1/2, ~58!

which can be visualized as in Fig. 1.
Similar conclusions were presented for the unenco

case in Ref.@24#.

V. EXAMPLES

In this section we study several examples that illustr
the formalism developed above.

A. One-qubit example: Storing a qubit in the presence
of pure dephasing

Let us consider a simple model: a phase-flip error~pure
dephasing! on a single qubit. To first order, this gives a de
sity matrix of the form

rs8'rs1S igt

2 D @rs ,sz#, ~59!

where the prime indicates the density matrix for the qu
after the interaction with a bath. The coupling constantg is a
measure of the strength of the interaction. The bath ti
scale is the inverse of the bath high-frequency cutoff, wh
is a separate parameter. Suppose that we wish to find a s
BB pulses thatstore this qubit.

The first step in the empirical BB procedure is to meas
the superoperator using QPT. Here we would discover
the interaction causes a phase-flip error which correspo
to K}sz . That is, a measurement of thex matrix would
yield @by the comparison of Eq.~59! to Eq. ~29!#:
$Im(xa,0

1 )%a5x,y,z5$0,0,2g/2%.
The next step is to find the optimal set of BB operation

This we can do by solving Eq.~41! for the rotation matrices
with the measuredx matrix. This yields

2
g

2 S (
k50

uGu21

R3b
(k)D 50 ⇒ (

k50

uGu21

R3b
(k)50. ~60!

In accordance with the BB operations forming a discrete s
group, k50 corresponds to the identity. Forn51, since
R3150 for the identity rotation,

01 (
k51

uGu21

R3b
(k)50 and 11 (

k51

uGu21

R33
(k)50, ~61!

FIG. 1. Visualization of the errord that remains after the appli

cation of BB pulses. Im(x̃W ) is the BB-modified coordinate vector o
the evolution, andd measures the distance to the closest elemen
the algebra of the stabilizer group of the code.
4-9
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whereb51,2.
The best set of BB operations is the set that accomplis

the task at hand and has the fewest elementsuGu. We now
find a set withuGu52 ~corresponding to a parity-kick solu
tion @12,14#!. That is, we seek a rotation matrix

R(1)5S 0

0

0 0 21
D ,

whose unspecified elements are arbitrary in as far as that
do not affect the outcome of the BB procedure. To transfo
from the rotation matrices back to the BB pulses@i.e., from
SO(3) back to SU(2)], we use thegeneral result

~R•sW !a5ein̂•sW usae2 i n̂•sW u

5sacos~2u!12na~ n̂•sW !sin2~u!

2~ n̂3sW !asin~2u!. ~62!

HereRPSO(3), n̂ is a unit vector along the axis inR3 about
which a rotation through an angleu is performed@these 4
parameters parametrize the SO(3) rotation matrices#. Let a
53, then we know from the form ofR(1) that

2sz5szcos~2u!12n3~ n̂•sW !sin2~u!2~ n̂3sW !zsin~2u!.

It is simple to check that (mod 2p) the unique solution to
this equation is u56p/2, n350. This implies U

5e6 i n̂•sW p/2, with n̂5(n1 ,n2,0), but otherwise arbitrary. The
BB pulse must therefore correspond to a rotation about a
vector in thex2y plane on the Bloch sphere, which is th
expected result as the error was along thez axis.

It is likely that in a real experiment pure dephasing w
not be the only source of decoherence. Let us consid
situation where this was the dominant source, so that
QPT measurement that yielded$Im(xa;0

1 )%a5x,y,z5$0,0,
2g/2% actually contained anx component as well, which
was too small to be noticed while the dephasing process
present, e.g., because the two errors may well have diffe
characteristic time scales. Suppose that we perform ano
QPT measurement while applying the BB pulses fou
above~that eliminated dephasing! and find a residual error o
the sx ~bit-flip! type. This is an instance of a learning loo
which we discuss in Sec. VI below.

In this case, consider the total Hamiltonian

H5
g8

2
sx^ ~ I 1sx!. ~63!

Proceeding in exactly the same manner as before we d
mine the required BB operations. We find that we need
implementU5e6n̂•sW p/2, where nown̂5(0,n2 ,n3). Combin-
ing this and the conditionn̂5(n1 ,n2,0), we find that we
need to usen̂5(0,n2,0). Thus bit and phase flips might b
corrected using the corresponding single BB operati
which would be determined empirically from an experime
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with a learning-loop process. This is an optimal set, sinc
will eliminate both errors with only one~nonidentity! BB
pulse per cycle.

B. Two-qubit example: Computation using the Heisenberg
interaction in the presence of independent dephasing

As indicated above, the problem in the two-qubit case c
be quite involved since, in general, it requires finding t
elements of rotation matrices in SO(15). To illustrate t
formalism we consider a simple example. Suppose we w
to implement a Heisenberg exchange interactionJsW 1•sW 2 be-
tween the two qubits~Heisenberg exchange is important in
number of promising solid-state proposals, and is an inte
tion that is all by itself universal for QC@10,29,62# !. Then
the wanted, Heisenberg interaction is determined from

HHeis5JsW 1•sW 25(
i j

(
ab

s i
awab

i j s j
b ,

so that it is described by the matrix

w
↔

125JS 1 0 0
0 1 0
0 0 1

D . ~64!

Further, suppose that our QPT measurements suggest
the source of decoherence in the experiment is indepen
dephasing on the two qubits. This will be detected throu
QPT by producing the following:

i

t
S~ t !'g1s1

z1g2s2
z5(

i j
(
ab

s i
ajab

i j s j
b . ~65!

Independent dephasing will thus be described by the ma
elements

j3,0
125g1 , j0,3

125g2 . ~66!

To find the set of BB pulses we would now need to solve E
~53! for the rotation matrix elements, and then determine
corresponding SU(4) transformations, in a manner ana
gous to what we did above in the single-qubit example.
noted above~see also Ref.@24#!, solving these equations i
not, in general, trivial. In this simple example, however, a
of BB controls can be found noting the trace orthogonality
the two algebraic basis elements@24#, those corresponding to
the exchange and those corresponding to the errors. Ra
than going through a full derivation, we present the soluti
To remove the independent dephasing through a parity-k
procedure, without affecting the Heisenberg exchange in
action, it is possible to use independent qubit interactio
which form the following pulse:

U[U1U25exp@2 i ~s1
x1s2

x!p/2#52s1
xs2

x . ~67!

By direct calculation one can show that

@U,HHeis#50 and $U,S%50. ~68!
4-10
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The first commutation relation ensures that the parity-k
pulse can be applied during the computation withHHeis,
while the second~anti!commutation relation is the parity
kick condition @12,14,24#. Thus the desired evolution i
achieved. The pulseU is certainly not unique, and a gener
solution of Eq.~52! would yield a variety of other possibl
pulses.

VI. OPTIMIZATION ALGORITHMS

As indicated in the single-qubit example discussed in
preceding section, the empirical BB procedure can ben
from the incorporation of an off-line learning loop, that ac
as an optimization algorithm for the BB pulses. Such lea
ing loops have proven very successful, e.g., in quantu
chemical applications, where they are typically used to o
mize the yield of a chemical reaction, steer a system towa
a desired state, or perform a cooling task@37–43#. Roughly,
the idea is to guide a quantum system toward a desired
by letting a learning algorithm optimize a classical cont
field ~e.g., a laser pulse!. An initial field is guessed and ap
plied to the quantum system. The output is measured
input into a search algorithm~e.g., a genetic algorithm
@41,63#!, which tries to optimize the field in order to ge
closer to the desired goal. The experiment is then repe
with the new field, and the process is repeated until it c
verges to the desired goal to within a prescribed toleranc

A. Variational optimization

We first present an outline of a variational optimizati
procedure, which can, in principle, be used to tailor our B
pulses. Our presentation follows the standard approach in
quantum control literature, e.g., Refs.@38,39#. The general
control problem can be stated as follows. We seek a sys
Hamiltonian, Hc , which modifies a given~total, system-
bath! HamiltonianH, so as to produce the desired effecti
Hamiltonian

H̃5H1Hc . ~69!

The control HamiltonianHc may be composed of sever
possible terms,

Hc5(
i

ui~ t !Hc
i , ~70!

where theui(t) are usually pulses in QC, analogous to t
control fields in NMR and quantum optical systems. That
the ui(t) are control fields that may be turned on and off
desired. The unitary evolution will proceed as usual acco
ing to U(t)5T exp@2i*tH̃(t8)dt8# with H, Hc acting simulta-
neously. Thus controllability is determined by the gro
space that one is able to generate by the exponentiated v
fields H̃ @64#. For the robust storage of a qubit using B
controls, we require the elimination of the interaction Ham
tonianH. This would correspond to haveU'I . We also wish
to use as few BB operations as possible due to the t
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constraints. Thus we seek to minimize the difference
tween the BB-modified HamiltonianS̃, and the desired
HamiltonianSw

DS[S̃2Sw , ~71!

whereS̃ andSw are the appropriate modifications to Eq.~18!.
For example, for storage we would wantSw50. One may
now consider the standard controllability problem in terms
a desired state of the system, to be reached from some in
stateua0&[ua(t50)&:

i uȧ~ t !&5H̃ua~ t !& ~72!

~formally we should have included bath states as well,
we omit these for notational convenience!. H̃5H̃„ui(t),t…
and we may formally write the solution as

ua~ t !&5U~ t,t0!ua0&

5FT expH E
t0

t

H̃„ui~t!,t…dtJ G ua0&. ~73!

This can be seen as essentially a Heisenberg picture co
problem@16# and one can thus eliminate the direct inclusi
of the state itself. The short-time approximation enables u
remove the time ordering and write the expanded form

U~ t,t0!5 lim
Dtk→0

@exp$2 iH̃ N21DtN21%•••exp$2 iH̃ 0Dt0%#.

~74!

At this point we may invoke the assumptions of the B
operations that they are short, strong pulses and the evolu
in between them be that of the free system and bath.

It should be pointed out that in the standard control the
one often uses thefinal stateas the target of the control. Thi
can be done as a variational procedure, or in conjunc
with numerical algorithms which drive a learning or rea
time feedback loop. However, in quantum information pr
cessing applications, it is often theevolution itselfthat is the
control target, rather than the final state. For example,
would like to optimize the noiselessness of the evolution,
in our case. This fundamental difference between the go
of traditional control theory and its potential application
the quantum information domain has yet to be explored.
interesting recent step in this direction was taken in Re
@65,66#, in the context of optimization ofunitary ~closed-
system! evolutions.

To optimize the BB procedure, the difference between
BB modified controls and the ideal evolution should be mi
mized. This may be achieved in the continuum by solvi
the variational problem with a variable end point. The app
priate variational problem can be formulated as the minim
zation of acost function J@38–43#, expressed in terms of th
control fields$ui% and cycle timeTc as

J5E
t0

MTc
~Tr$@S„u~t!,t…2Sw~t!#2%!1/2dt, ~75!
4-11
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wherea2[a†a and we have usedM cycle timesTc for the
end point~which is not fixed!. One may add experimenta
constraints, such as finite pulse energy, smoothness o
pulse shapes, etc.@38,39#. This is a standard variational prob
lem for which we would seekdJ50 andd2J,0. The out-
come, i.e., the solution to the variational problem, will be t
optimal control fields$ui%. Note that these fields will be
approximately continuous for largeM and smallDt. Then
we may approximate them by a discrete set of BB operati
~traditionally defined as piecewise continuous controls; s
e.g., Refs.@64,67#!. However, it is to be expected that one
the advantages of the optimization procedure is that it w
yield pulses that are easier to implement physically than
pulses coming out of a standard BB analysis, since the o
mization procedure can be formulated to explicitly take in
account experimental constraints. In fact, experience
quantum chemistry shows that the pulses found by an o
mization procedure are often highly nonintuitive@38–43#.

Questions of convergence, etc., can be avoided by the
of a subgroup with a small number of elements. This w
reduce the problem, under the BB assumptions, to a se
on a discrete space. This is the space of discrete, or fi
order, subgroups of unitary groups. Fortunately, for quant
computation, we require only one- and two-qubit operatio
which reduces our search spaces to those of the discrete
groups of SU(2) and/or SU(4). These have been classifie
~see Refs.@68–70# and references therein!. We will not pur-
sue the variational formulation further here. An actual var
tional optimization calculation will be presented in a futu
publication.

B. Learning algorithm

In certain cases it may be possible to perform a la
number of experiments on identically prepared samples,
fering in the applied control fields. In this case, instead
solving a variational problem to find optimal BB pulses, o
can try to let the experiment guide an off-line learning alg
rithm ~typically a genetic algorithm! to an optimal solution
@41#. This algorithm is a part of a learning loop, described
Fig. 2.

The learning loop consists of the following steps, whi
are repeated iteratively in the learning process.

~1! A quantum state isinput for a particular information
processing task.

~2! The state is allowed to interact with a bath and u
dergo noisy evolution in theexperiment. Here we may
choose to apply BB pulses to modify the evolution.

~3! The resulting evolution is obtained throughquantum
process tomography.

~4! The QPT data isanalyzedby the learning algorithm to
find an improved BB strategy. This involves solving key Eq
~43! and ~52!.

~5! The previous steps are repeated until convergenc
within a prescribed tolerance is attained.

The result of the procedure is an optimized set of B
pulses. This set includes~i! the least number of BB opera
tions that will reduce or eliminate the noise in the syste
and ~ii ! the optimal ordering for this minimal set.
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Let us emphasize that:~1! no knowledge of the tota
Hamiltonian or noise process is assumed~i.e., the optimal
implementation is determined empirically!, and ~2! no as-
sumption is made about the quality of the BB operatio
only that they should improve the fidelity of the desired o
erations.~Of course we know from earlier work@12–19# that
the BB operations should be implemented as strong
pulses, but imperfect implementation will still reduce nois!

Finally, let us note that the learning process could, in pr
ciple, be incorporated in a real-time feedback loop~e.g., Ref.
@71# and references therein!, but this would require a very
fast numerical algorithm to solve Eqs.~43! and ~52!.

VII. CONCLUDING REMARKS

In order for methods that reduce decoherence and nois
quantum information processing tasks to succeed in the
world, they must be confronted with experimental data, a
allowed to be optimized in response to this data. This is
approach we have taken here, in the context of the dynam
decoupling, or ‘‘bang-bang’’~BB! method. We have devel
oped a formulation of the BB method that allows one
tailor the BB control pulses in response to data acquired
a quantum process tomography experiment. The experim
supplies a set of numbers that characterize the noise
cesses occurring on a short-time scale. From these num
one can determine an optimal set of BB pulses, by solvin
set of linear equations, in particular, Eqs.~23!, ~41!, ~43!, and
~52!. These equations correspond to different tasks one m
wish to implement with the help of the BB pulses~respec-
tively, general storage, single-qubit storage, single-qu
computation, two-qubit computation!, and yield a set of ro-
tation matrices~R! that correspond to BB pulses that perfor
the desired tasks.

A promising generalization of a single-sho
tomography-BB experiment is to introduce an off-line lear
ing loop, that uses the above equations in order to determ
an optimized set of BB pulses. The learning process inc
porates tomography measurements from a previous roun
order to find improved BB pulses for the next round. W
have briefly discussed how such a loop, and a concomi
variational optimization procedure, can be designed.

Throughout this paper we have emphasized that our
sults have an intuitive interpretation in terms of a geome
picture, wherein the effect of BB pulses is to rotate a co
dinate vector representing a noisy Hamiltonian to a des

FIG. 2. The learning loop control diagram for the empiric
determination of the optimal bang-bang controls.
4-12
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Hamiltonian. The geometric picture, via Eq.~54!, also en-
ables the determination of the ability to create an encod
~such as a decoherence-free subspace! using empirical data
and the available set of BB pulses. Alternatively, it can
used to describe the appropriate set of BB operations
quired to eliminate noise from an encoded set of qubits.

We hope that the results presented here will stimulate
periments in which real data will drive the determination a
application of appropriately tailored BB pulses.
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