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Empirical determination of dynamical decoupling operations
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Strong and fast “bang-bang’BB) pulses have been recently proposed as a means for reducing decoherence
in a quantum system. So far theoretical analysis of the BB technique relied on model Hamiltonians. Here we
introduce a method for empirically determining the set of required BB pulses, that relies on quantum process
tomography. In this manner an experimenter may tailor his or her BB pulses to the quantum system at hand,
without having to assume a model Hamiltonian. In addition, the previous work has been extended to a general
noiseless evolution via the stabilizer formalism.
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[. INTRODUCTION sources, and does not correspond to one particular model. It
is often very difficult to identify and isolate the various
Quantum computers hold great promise in solving certairfources. The result is that the model-dependent approach for
computational problems faster than their classical counter@vercoming decoherence breaks down when applied to real-
parts, but they are notoriously susceptible to decoherendStC Systems, since it inevitably fails to capture all sources.
(deviations from unitary dynamigsand unitary errors, the In addition, current methods tend to ignore the experimental

combination of which we refer to as “noise.” The effect of constraints imposed by the finiteness of resources, such as

decoherence is to induce computational errors that destroghe scarcity of qubits in present-day implementations of

the quantum speed-up: a decohered quantum computer ¢ yantum computergpresently, fewer than 10 qubitsOf

be efficiently simulated b lassical 8t H Burse, this criticism in no way diminishes the importance of
e efficiently simulated by a classical compuléi. Hence o qqel-specific approach: it is through that approach that

the ultimate success of quantum information processing d&syound-breaking new results have been obtained which es-
pends on the ability to implement error correction or avoid-iapjish the in-principle possibility of overcoming decoher-
ance techniques. To this end, a variety of quantum error COlance, In particular, this work has led to the observation that
recting codes(QECQ and other methods have been fayit tolerant quantum computation is possible in the inde-
designed. These methods all share an important feature: th@\éndent errors model, provided the fidelity of gate operations
are designed to deal witbpecific model®f errors, as em- s above a certain thresho[82—-36.

bodied in an assumed system-bath interaction Hamiltonian. \We focus here on the BB method and consider a paradigm
The class of activele.g., stabilizer QECC [2-5], for ex-  that is the reverse of the model-dependent approach to deco-
ample, is designed to correct independent errors resultingerence reduction: Instead of assuming a specific model of
from (up to some fixed number, of system-bath many- decoherence, designing a corresponding QECC, and then
body interactions; the class of passive QE@@&coherence- looking for a system that might be described to a good ap-
free subspacésworks optimally under the assumption of proximation by that modeklve propose to tailor a set @B
collective (i.e., fully correlatedl decoherencg6—10] or as-  Pulses to a system, from experimentally measured decoher-
sumes multiple-qubit errorkL1]; dynamical decoupling or €nce dataWe call this approach, which we introduced first
symmetrization methods assume baths with relatively lond Ref.[26], “empirical bang-bang.” Empirical BB is a phe-
correlation times and weak system-bath coupling, so that ddlomenological approach which forsakes a microscopic un-
coherence may be suppressed using fast and strong “ban grstaﬂdlng of the underlying de_tcoherence processes in favor
bang” (BB), or dynamical decoupling, pulses, introduced in f a direct attack on the combined effect of all sources of

Ref. [12], and further developed in Refil3—29. One ma decoherence at once. This method aims to achieve an opti-
also note that BB pulses arep related to the so-called aviragﬁﬁgd[zgizg[s.r?&s%gg etas_ilgg argquce)tsheodd- I()fﬁgtl?rirrgiggczg%
Hamiltonian theory54], and are important for the ability to ’ P '

. : i Ref.[41], and only recently discussed as a method of deco-
simulate one system by anothi@5,29-31. In spite of this o raca’managemeft3], can be used to iteratively opti-

impressive arsenal of methods there is a fundamental probyize the output taking into account practical constraints im-
lem in the model-specific approach in terms of its applicay,nseq by the specific physical and experimental realization.
tions to experimental quantum information processing. The  That empirical BB is feasible, in principle, follows from
problem is that in real world applications, decoherence iswo key factsi(i) It is possible to experimentally measure the
often a combined effect, which arises from a Variety Ofsuperoperato(’i_e_, the map that propagates the density ma-
trix) characterizing the noise in a particular system by using
guantum process tomograpk®PT); (i) As we show here,
*Present address: Harvard University, Maxwell Dworkin Labora-given knowledge of the superoperator it is possible to design

tory, 33 Oxford Street, Cambridge, MA 02138. a BB procedure. Thus an experiment can, in principle, pro-
"Electronic address: byrd@hrl.harvard.edu vide all the information needed to design an optimized set of
*Electronic address: dlidar@chem.utoronto.ca BB pulses.
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This paper is arranged as follows. In Sec. Il we review the E(p(0)=p(t)
basic background to quantum process tomography, and the
theory for decoupling by symmetrization. We then present, in
Sec. lll, a derivation and discussion of several formulas for
determining the set of decoupling operations. In Sec. IV we
generalize the entire scheme to operationgcodedjubits
in terms of the geometric picture which is a quite general and
new result. It establishes a method for designing a QECC
and/or a decoherence-free subspdRES) for a given set of The Kraus operatorscan be related to Eq3) through
BB pulses, or choosing the necessary set based on an encod-
ing. These basic methods are illustrated in Sec. V with a few A0 =N (ulUD)]v), 5
examples. We then indicate in Sec. VI how the empirically ] o )
determined set of BB pulses can be optimized using yvhere |v),|u) are eigenvectors of the initial bath density

:% A, (Dp(0)AT (1)

=a2ﬁ Xag(DK p(0)K],. 4

learning-loop algorithm. matrix: pg(0)=3_\,|v)(v| [47]. Since Tfp(t)]=1, they
satisfy the normalization conditionZMALVszls. The
matrix
Il. REVIEW
In this section we review the important components of the Xa,p(t)= 2 bw;ab:‘w;ﬁ
v

empirical determination of bang-bang operations. These in-

Clude QPT, the t_heo_ry of dyn_amlcal decpupll_ng operat!onsls a time dependent, Hermitian coefficient matrix defined by
for a given Hamiltonian, and its geometrical interpretation.

e . ‘a transformation of the Kraus operators téxad(i.e., time-
Readers familiar with these concepts can choose to Sk'P .
ndependentoperator basix,,

ahead to Sec. lll, although the notation introduced in this
section will be used in the remainder of the paper.

A,w<t)=§ buva(DK,.

A. Quantum process tomography

The dynamics of an open quantum system coupled to éprescrlptlon for determining the superoperafpfrom ex-

- . —— . perimental datdQPT) was given in a number of recent pa-
bath is formally obtained from the time-ordered evolution pers[48—50, and has very recently been applied in NMR

experiment$51]. In this paper we will take QPT to mean the
: (1) determination of the coefficient matrjx,(t), with respect
to a given (experimentally convenient) choice of fixed basis
operators K,. Formally, the problem is to invert thg ma-
under the combined system-bath Hamiltonian trix from experimental data. Singe is time dependent, it is
clear that one can in practice only sample it. If the decoher-
ence process is Markovian then it suffices to obtain the time-
independent coefficient matrix, ; that appears in the Lind-
blad equationj47,52,53. However, even this is a formidable
problem: if the density matrix has dimensioNs<N (where
HSBZE S,®B,, (2 forn qubitsN=2") then a simple counting argument shows
7 that there are at most*— N? independent real parameters in
a,p and the same number, but time dependent.ieven for
wherel is the identity operatokl g is the Hamiltonian for the  one qubit this amounts to 12 different parameters that may
system aloneH is the Hamiltonian for the bath alonegg ~ have to be measured to completely characterize the decoher-
is the system-bath interaction Hamiltonian, and 8yeand  ence process. Fortunately, it is well known that in practice as
B, are operators on the system and the bath, respectivelfew as 2 parameters may suffice, as is the case witfTthe
Tracing over the bath degrees of freedom in order to obtai@nd T, relaxation times in NMR 54].
the time-evolved system density matrix The general idea behind QPT is to characterize the super-
operator action on a complete basis set. To see this, let the
N2 matricesp; be a basis for the density matrix For ex-

t
U(t)=Tex;{—if H(t")dt’

H:HS®IB+IS®HB+HSB!

- T
p(1)=Trg[U(1)(p(0) @ pg(0)NU ()], 3 ample, p; could be the set of pure stat§$(j’|, which are
then fed into the decoherence process as inpéi¢p;)
wherep(0) is the initial density matrix of théopen system, =i\ jkp;j . Using quantum state tomograpf5], one can

pe(0) is the initial density matrix of the bath. It can be experimentally determing;,, which fully specifies the su-
shown that this agrees with the most general quantum evderoperatoi, since it is now possible to find the matrix:
lution consistent with the condition of complete positivity, Define ¢ by K ,p;KL=3,&1Ppy, whereK, are the fixed ba-
known as the Kraus operator sum representati®sR sis Kraus operators. Then one can show tﬁgggﬁfxaﬂ
[44-44: =\jk [49]. This can be thought of as a matrix equation for
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the vectory and it can be solved by computing the inverse of The resulting effective Hamiltonian now satisfigbl.4,G

the matrix¢. Thus, by measuring and by givingé through ~ =0], so that ifG is generated byl,Hs,S,}, the evolution

a choice of the fixed operator ba#ls , finding they matrix ~ will proceed without the operatorS, affecting the system,
has been transformed into a linear algebra problem. In pragince the error operators will commute with the effective
tice, we note that it may often be difficult to prepare the full Hamiltonian. Thecontrol algebrais the algebra generated by
basis sep; . An interesting alternative, using entangled inputthe set{g;;. Even if the symmetrization is performed under
states, was recently proposed in REF6]. A method that less than ideal conditions, BB can still reduce the noise in the

circumvents tomography altogethéut is less generglus- ~ System[12,13. _ o
ing quantum network ideas, was described in R&T]. The main advantage offered by dynamical decoupling is
thatit does not require extra qubit§his is a very attractive

feature compared to both active and passive error correction,
B. Decoupling by symmetrization one that may make dynamical decoupling a method of choice

The process of decoupling by symmetrization counteractg?r small-sgale quantum computer implementations, pro-
\Snded its stringent time-scale requirements can be met.

noise by applying sequences of frequent and strong pulses.
The time scales are crucial: one needs to perform a complete
cycle of symmetrization operations in a time shorter thagn _ )
the inverse of the high-frequency cutoff of the bath spectra] !N Preparation for the remainder of the paper, and as an
density [12-14. An elegant group-theoretical treatment Intuitive aid, we briefly review the geometric description of
shows that the applied pulses are unitary transformation B controls developed in Ref24]. Let us explicitly intro-

=n2_ it AN
forming a finite-dimensional group, and the application of a uce N=n"—1 traceless, Hermitian generatofs;};_, 9f
series of pulses amounts to an averé@nmetrization over SU(n). These generators are closed under commutation and

this group[15-19. A geometrical interpretation, reviewed span the space of traceless Hermitian matrices. Fqi25U

below, can offer further insigh24]. The method can also be }\qgniaﬂ;mitensce:n%refoﬁomT\er]bc/jilrifeer?s;i{)%résgnfeh%ie”hse a
used to perform “ environment engineering,” in order to ' 9 ! y

. direct generalization of the Gell-Mann matrices. For dimen-
prepare_the cond|t|or_15_that allow for DF$55,19,21, as sions that are a power of tw@nd quantum computingt is
well as in order to eliminate leakage errors that couple en

: ) often convenient to use the Pauli gro(tensor products of
coded states with states out of a DFE5,28. We briefly  payi matrices The{\;} satisfy trace orthogonality
review this theory.

A set of symmetrization operations is chosen such that Tr(NiN) =M &, (7)

they form a discrete subgroup of the full unitary group of

operations on the Hilbert space of the system. Denote thi¥hereM is a normalization constareften taken to be 2 for
group@ and its elements;, j=0,1, ... |6/~ 1, where|g| Lie algebras on for nxXn matrice$. Expanding the system

is the order of the group. The cycle timeTis=|G|At, where operators in terms of thf\ } yields
|G| is the number of symmetrization operations, atds the

C. Geometry of the decoupling method

time that the system evolves freely between operations under Ky,= Z ajy\i, (8
Uy=exp(—iHt) with H given by Eqs(2). The symmetrized
evolution is given by where the expansion coefficients are
lgl-1 . 1
U(To= I g/Us(Atigj=eer, Ay = TTNKS)- ©
j=o

Using this,Hgg can be written as follows:
where the evolution undéi s+ Hg has been neglected dur-

ing pulse application, i.e., during the action of the group HSBZZ S,®B,
elementsg;. Hey denotes the resulting effective Hamil- Y
tonian. Since the approximation requires very strong, short N
pulses to be implemented in a sequence, they have been => > a,\i®B,
termed as BB operatior(sve will use decoupling, symmetri- y i=1
zation, and BB operations interchangeablin this (BB)
limit => (a,\)®B,. (10)
Y
e Herea, and X are vectors of lengtiN. In this coherence
= T = Y . L .
H=Heg |G| JZ‘O 97Hg;=Tlg(H), ©) vector representation, used extensively in RE8], an

nXn HamiltonianH is a vector with coordinate&;7 for each
error y in an N-dimensional vector space spanned by the
{\;} as basis vectors, with ordinary vector addition and sca-
lar multiplication. The open system evolution is thus de-
scribed by a vectofor vector field in the space of possible
Z(G)={X|[X,9;1=0, V gjeg}. evolutions.

where Hq is the desired Hamiltoniafwithout nois¢. The
mapIl; is the projector into the centraliz&(G) defined as
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Now, as is well known, there is a homomorphic mappingthe basis. When the coefficients of the adjoint vector are real,
between the Lie groups SU(2) and SO(®pP]. This map- the resulting matrixH .« is Hermitian. When they are com-
ping is generalized as follows for Sh{ and a subgroup of plex, the resulting matrix is not Hermitian and the evolution

the rotation group SQ\): is not unitary, but may still be treated empirically, as we
N show below.
T B ® We now turn to show how to find the BB pulses directly
UiUy= 21 RN, (1D from experimental data, i.e., given a QPT measurement of
: the y matrix.
where the matribxR e SO(N), the adjoint representation of
su().

The BB operation[Eq. (6)] may now be viewed as a IIl. DETERMINATION OF DECOUPLING OPERATORS
weighted sum of rotations of tHedjoin} vectorsa,, . To see Since the BB method operates at extremely fast time
this, first let scales it is useful to consider a short-time expansion of the

OSR evolution equatiort4). To do so we follow[47,60,
é(yk)=R(k)§y. (12) where it was shown how the OSR can be rewritten to re-

semble the Lindblad equatigb2,53. Thus, the OSR can be
This represents the rotation BR¥ of the coordinate vector rewritten as

5y. Next average over all rotations

1 191 B i 1 2'\‘:
== 3 a0 (13) P(t)—P(O)_g[S(t),P(O)]JFEaﬁzl Xa,p(t)
Y |G &b Y ’

X{[Kq,p(0)KE]+[Kap(0),KET, 17
Finally, note that the effective Hamiltonian, after the BB op- p p

erations, can be rewritten as , . )
whereS(t) is the Hermitian operator defined by

l6-1
Heﬁ:@ kgo UfHU=> (a)-X)®B,. (14 N
’ S)= 5 2 [Xao®KexoaOKL]. (18

Equation(14) [compared to Eq10)] is the desired geomet-
ric representation of BB operations. Their effect is to simply

transform, for each erroy, the coordinates., to a/,. It is Note the similarity of Eq.(17) to the Lindblad equation

simplest to interpret this in the case of storage, where W&SZ’SC_)J' Indeed, the .Lindblad Markov!an semigroup master
seek BB operations such tHats=0. Since the errors can be €duation can be derived from E(L7) via a coarse-graining

decomposed in the linearly independent basis set indexed tRfocedurel47,60, which replaces the time-dependeyy 4
-, - . rmatrix elements with their time averages over an interval that
y, each terma -\ must vanish separately. Furthermore,

i Y i . 7 7is longer than the bath correlation-timg, and thus longer
since thek; are independent this can only be satisfiedf  than the BB time scale. An important outcome of this proce-
=0 for eachy. This means that dure is that the coarse-grain&ft) can be interpreted as a
system Hamiltoniam 5 plus a Lamb shift correctiof¥7,60.

R 1 R R . . . g
a == RrR®|a,=0, (15) While still exact, Eq.(17) is more amenable to a short-time
Y G % Y expansion than the origindequivalen}t form of the OSR,
Eq. (4).
i.e., the sum of all rotations applied to the original coordinate Note that the “fixed basis’{Ka}gz1 is completely analo-
vector::\y must vanish. gous to the Hermitian generatofs;}}\_, of SU(n) used in

Similarly, to obtain a modified evolution corresponding to the geometric picture of Sec. Il C. Thus, assuming a Hermit-
a target HamiltoniarHi;==(a',-X)®B,,, we require the ~ian basis{K,} we can rewrite Eq(18) as
weighted sum of rotations applied to the original coordinate
vector to be equal to the corresponding target coordinate vec- M o
tor a',. That is, forHes+0, the following condition should S(t) =it 21 IM[xq,0(t) JK,=i7IM(x)-K,
be satisfied to obtain the desired evolution: “

a' =at. (16)  which can be interpreted as giving the “HamiltoniaB{t)
Y Y . . . .
as a vector with coordinates [m, o(t)] in a space with
This may require a combination of switching strategies forbasis vectorgK,}.
the BB pulseg19]. Next we give a general method for determining BB con-
It should be noted that the geometrical picture is an exirols from empirical data, specialize the applicability of this
plicit representation of a subset of the group algelfaus- method somewhat, and then treat storage, single-qubit opera-
ing the set of traceless Hermitian matrices and the identity asons, and computation.
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A. Empirical bang-bang condition When theR(® are found, the BB pulses can be calculated

Before gomg into a detailed and more careful analysis, Wérom the transformation connecting the adjoint representa-

first present a “rough” version of the empirical BB condi- 10N 10 its unitary group. _
tion. We note two key facts(i) in a first-order decoupling Thus Egs. (21) and (23) can be viewed as the essence of

scheme[16], the BB method will operate only to undo the the empirical BB procedure=rom here on we flesh out this
undesired evolution due ®(t): (ii) from Secs. Il Aand 1B first main result.
we find that, under the action of BB controls, th€,} trans-

form as B. Qubit noise
BB The development in Sec. Il A was cavalier in its treat-
a g < > UIK, Uy ment of the indicesr, 8 of the fixed operator bas{é,}. To
be more precise, consider a quantum registé qtibits. We
1 > R(kg,KB will derive a short-time expansion of EQL7) under the as-
IQI k B= sumption that the system-bath interaction is linear in the sys-
- tem operators:
=L > (ROK),. 19 °
1G] & N
1 5. B
Thus, given the considerations above concerning the effect HSB_; oi'Bi, (24)

of BB pulses and their geometrical interpretation, we can
express the BB-modified open system evolution as
WhereaI (af,0,a7) is the vector of Pauli matrices acting
S=iflm(y)-K on theith qubit, andB; is a corresponding vector of bath
operators. This assumption will be relaxed bel@&ec. Il P

BB and, as should be clear from Sec. Ill A, is not essential for

—>Im()?) > ROK our approach, but will make the calculations below more
gl < transparent. A Taylor expansion of the evolution operator
K U(t) [Eqg. (1)] then reveals that as time increases, higher and
_'ﬁ@ E Z Im[xq, oIR AKB higher tensor powers of the Pauli matrices act on the qubits
=iﬁ|m()()- KES, (20 (iH(l))Z
U =1-itH@+ — >+, (25)

where the new, BB-modified “Hamiltonian3 is described
by the new, rotated coordinate vector
where for simplicity we have assumed a time-independent
. Hamiltonian and seHg=Hg=0. The O(t) term involves
Im(y)=1Im( X) > RM, (21)  only single Pauli matrices, but th@(t?) terms and higher
9] & involve tensor products of Pauli matrices. To capture this in

) o ) terms of the OSR we expand the fixed basis operdgras
Now, let the ideal, or “wanted Hamiltonian” be described by

the coordinate vectog,,, i.e., N
K&HE ® U'ia, (26)
Sy=iflm(xy) K. (22) =1

For storage this would correspond to the null vector, but not’Vhere for theith qubit, o, «=0,1,2,3 corresponds to
for computation. The goal of the empirical BB procedure isli, o7 07,07, respectively. The subscript df; denotes a

to find rotation matriceR® such that the difference vector @,=(ay, ...,ay) With n nonzero entries. That is,
Ka, acts nontrivially om qubits.(We also usex for a vector
~ ~ - -
S—S,=ia[Im(x)—Im(x,)]-K=0, (23)  of arbitrary index. Note that we have omitted the subsciipt

on « in EqQ. (26) in order to reduce the index clutter. There
or more generally, is minimal. This has the simple geometricexist M =4N different Kz, operators withK; =1®--- @l

interpretation of minimization of the distance between thepeing the identity on the space of all qubits. Here we have

BB-modified vector Img) and the desired vector Ing(,). chosen thek’s to be Hermitian, and trace orthogonal,
Theinput datais Im()?) (the output of the QPT measure- \
meny, X/W (the desired HamiltonianK (the operator basis, Tr(KC;mKB‘n)=2 5&mﬁn- (27)

with respect to which}W and y are definell This data speci-

fies a solution to Eqg21) and(23) in terms of the rotation Hence they are a valid basis for all 2 2N matrices.
matricesR(). This solution is not unique; see, e.g., the ex-  Corresponding to this expansion of the fixed-basis opera-
ample in Sec. V A, tors, we can rewrite the OSR, E@l), more explicitly as
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C. Qubit storage

N
P(t):m;‘;o E Xan B, (DKa p(0)Kz For the storage of informatiotwithout computation in
T @meba qubits, we need to preserve the density matrix under time

N evolution, so thatp(t)=p(0). Let usdenote BB-modified
:X&O’[go(t)p(O)erE:1 > Xa, 5 (DKs p(0) ((qzug)\ntities by a tilde. In this case we should have, using Eq.
* T ~
X ol VPO, [S(1),p(0)]=0 (3D
. i . as the BB control objective. Sinc8 does not contain an
+m;:1 AEé X By(DK i p(O)KG5,. (28) identity component we require that

_ _ N S(t)=0. (32
Thus terms that contain only single Pauli matrices but not o N
tensor products of Pauli matrices can only come from thé/Ve proceed to turn this into a condition on BB pulses.

second sum XN_,3; ), with m=1. Comparing to Egs. Recall thatk ;. denotes an operator with exactly one non-

(17) and(198) it is clear that this sum is responsible figrart identity_t_erm (on_e of the three Pauli matrices acting on an
of) the “Hamiltonian” S(t), whereas the third sum generates unspecified qubjt There are therefore N8 such operators,

the Lindblad-like term in Eq(17). (This can also be verified Wwhich we now denote explicitly as;*, wherei=1, ... N,
directly by repeating the derivation in Refd.7,60 using the anda=1,2,3. Under the assumption of a linear system-bath
Kg,.) Hence to first order it we find coupling, Eq.(24), it is clear that the BB pulses need only

involve tensor products of single-qubit unitaries, i.e.,
p(t)=p(0)~—i[S(1),p(0)] N
Ue=o U,
i=1
~t[2 (Xal,chzl_X;l,OKT&l),P(O)} |
*1 Then Eq.(30) becomes

_ . . BB
=~ 2 m(xa,0Kapp(0), (29 e S Uleeu,
Ig] "«
where in the last line we used the Hermiticity of tKeop- _1 E Ut ay® (33
erators. The ternZ ; is a sum over all elements of the Pauli 6] % booreh

group with one nonidentity element in the tensor product. By this point it is useful to again introduce real rotation ma-

comparing to Eq(25), and recalling the expression for the ticesR to represent the BB group,

Kraus operators, Ed5), it follows that this term is directly

related to bath matrix elements Hfsgz, which give rise to a S

Lamb shift [47,60. When the system Hamiltonian is in- SIAPLVICEDY Ry ol (34

cluded, it appears in thE&l term as well. However, recall A=1

that we are developing an approach that is expligitigdel ~ Herei runs over qubit indiceske{0,1, ... |G|—1}; R"® is

independentHence the only quantities we will use are the in the adjoint representation of the group SU(2§., R"®

QPT—measurabl%lvo. € SO(3)] acting on theith qubit and has matrix elements
We now wish to find an appropriate set of BB controls in R, . Now let us consider the transformation $(t) under

order to eliminate the noise on our qubits. It should be cleathe BB controls. To simplify notation let us denote

from the discussion above that this noise is initidilg., at P i

times of O(t)] produced byunitary errors associated with £a=IM(x00)-

the bath-induced Lamb shift. Decoherence arises from termgnen from Eq.(29)

that are of orde©(t?). Decoherence suppression is achieved

on a finite time scale with corrections being of order i P e P

O(At/7,)?* for a kth-order decoupling scheme, wheke is {S(t)”Z ; §a0] =Ei &, (36)

the pulse interval and, is the bath correlation timgl6]. As

(39

noted above, from Secs. Il Aand Il B we find that, under the i BBG 2 1 Wt = 1100
action of BB controls, th& transform as fS(t)HZ & 1g ; U™ oiUj
! 2 T (30) E 2 1 E is(k)
K;— —= >, UIKU,. 30 - i RIK. 5.
Elhiat - S R

(Here @ denotes a vector of arbitrary indexthis transfor- _ "gi G (37)
mation is the basis for much of what follows. i v
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where the corresponding wante@eal) y-matrix elements bywiﬁ
(they can easily be calculated from a Hamiltonian—see be-
i 2 R | Z :’gi. (38) low); then the empirical BB condition replacing E(0)
19 % becomes
For storage we requiréizo, i.e., % z 2 |m(Xia O)Ric;ygk)zwig‘ (42)
k a ’
&=Im(xXpo)=0 V¥ Bii. (39)

This once again has to be solved for the rotation matrices
R®, with elementsR;{’, given the empirical datg'
= Im(}'a’O). This too, can be written in a form amenable to a

Thus, solving for each i the set of linear equations

i i5(k) —
; ; IM(Xa0Rap” =0 (40 geometric interpretation
for the rotation matrix elements'R, in terms of measur- 1 S RO im(7h = 23
able parametersy,, o (the output of aQPT experiment de- 9] < m(x')=w" (43

termines the BB pulses empiricallyhe pulse form of the
BB controls is determined through E(@4). Now the average over the rotation matrices acts to rotate the

Note that if Im(x, 0 =IM(x4,0), I-€., there is no depen- pT output vector to a desired vector for tith qubit w'.
dence on qubit indekcollective decohf:renc[G,Q]), then the Equation(43) is our third main result.
same set of rotation matricgR™}|9 1 (with matrix ele-
mentstl'%) can be used for all qubits, as already pointed out
in Ref. [16] in terms of unitary BB controls. It also shows
that, for complete symmetrization, one need only ensure that Let us next discuss the solvability conditions for the rota-
% Ri¥=0 for all a,, independent of the decoherence tion matricesR"(9, from Eqgs.(41) and(43). Since the van-
mechanism. ishing of (1/G])=,R"® suffices to satisfy Eq41) for given
|:ir'|a||y7 note that we can rewrite E(ﬂ_o) as i, its SOIVabiIity is .guaranteed if thR':(k) are chosen such
that, giveni, the R"( correspond taransformations onto
1 S R - the vertices of a symmetric object in three dimensidkie
@ - R Im(x')=0. (4D stress that this is only a sufficient condition, which yields a
solution that is independent of the empirical dﬁtaOne can
In this manner it is clear that what we are looking for is aalso solve Eq(41) for the rotation matriceR"™ such that
group of rotation me}(trice§Rl,(k)}, gc_ting on qubit, whose ' lies in the kernel of the linear transformatiai R+
average (14])2R"™ acts to annihilate the QPT measure- Thjs s a standard linear algebra problem. The condition for a
ment output vector Imx'). This is the geometrical interpre- nonempty kernel is the vanishing of the determinant of the
tation of the empirical BB condition. Equatio@1) is our linear transformation. The dimension of the kernel is the

E. Solvability

second main result. number of linearly independent vectors that are annihilated
by the linear transformation. Since we require that &d4)
D. Single-qubit operations be satisfied for all qubits, it is clear that sometimes the

Now subpose that we are interested in quan uta- kernel space can be too small. However, given the great deal

tion. In thizpcase we must allow for sin Ig- and tvxF/)o- Ubit of flexibility in choosing the rotation matrices, it seems that
L sing d in practice a solution can always be found, even if one insists

operations, such that these are not eliminated by the BB cons ot havingS, R (=0

- i i k =Vu.

trols. In the model-dependent approach this translates into As for Eq.(43), this is just the inhomogeneous version of

the (sufficien) condition that the BB generators commute ; . N~
) L S ; .~ the linear algebra problem discussed above, and similar stan-
with the Hamiltonian that is implementing the computation o .
dard arguments apply. However, some more insight into a

[17,18. Here we derive more general conditions from the ufficient condition may be obtained through a geometric

empirical BB perspective, which have the advantage tha :
they can be used to determine the required set of BB pulsesrgumem’ as follows. Let us focus on the case of a single

directly from a QPT measurement and a stipulated, wantegubit (thus dropping the indek), and denotav=(a,b,c)",

system Hamiltonian. IM(x .0 = (d,e,f)!. We can always find a rotation matrix
Let us consider the case of single-qubit operations first. [Uch that

this case the system Hamiltonian need only contain a single a a’

nonidentity operatotPauli matriy per qubit, as in Eq(24).

Therefore, the development of the previous subsection ap- T b]=| 0. (44)

plies. The difference, however, is that now instead of the c 0

storage condition of Eq(39), we require the BB-modified

x-matrix eIementsN(‘ﬁyO to assume values that correspond to aThen d,e,f)'—(d’,e’,f’)! underT, and we can write Eq.
wantedevolution(or system Hamiltoniai$,). Let us denote (43) as
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L d’ a’
T(@ ; R(k))Tl e |=|0 (45)
f! 0

Then in the rotated frame, we may write

S
1 K
T(— > R(k>)T1= ,

k

such that the BB rotations have an uppex3 row that
should solve the equatioB,q¥d’=a’, and a lower X3

block that is the sum of 3 matrices>,M® that should
vanish. That is, thé1 correspond taransformations onto

PHYSICAL REVIEW A 67, 012324 (2003

is a 4x4 matrix of coefficients. Under the action of the set
of BB controls,

[ BB 1 -
§SO—pgr 2 2 U@l apuf?

ij

:Z &i.‘g‘ii.(;J., (49)
ij
where
gn:é Ek: R0, gl (50)

and the rotation matriceRe SO(15) are defined through

(51)

UBT (oo el ul=> RN (678 ¢?).

the vertices of a symmetric object in the plane orthogonal to i (or@ep)Uy % ap.yo( 77 © )

the“a’ direction” The generalization to more than one qu- . ) )

bit is straightforward. Again, I_et us describe the_ target, or wanted, _evo!ut!on by
For both Eqs(41) and(43) we stipulate that our available thex-matrixw. In analogy with Eq(34), the matrixR is in

BB rotations have these properties. If not, we use the resuli® adjoint representation of the group and thus can be

of Sec. IV to encode our information into a subspace suclyiewed as a rotation in the vector space of Hermitian matri-

that these conditions are indeed satisfied.

F. Two-qubit operations

In order to implement two-qubit operations we must allow
for a system Hamiltonian that contains two-body interac- S RO, gl =, |
tions. Therefore, it is useful to comment on what happens 1G] % .

ces. In this case, only a subgroup of the rotation group
SO(N) is represented by the adjoint actidihis is true for

all SU(n), n=3). The expression analogous to E43) be-
comes

(52

when also the system-bath Hamiltonian contains higheror using explicit index notation,

order coupling, e.g., second order

N
H&@= > (01-Gj-0)@By,

jSi=1

(46)

whereG;; is a second-rank tensor. In this case, both the thir
and fourth line of Eq(28) contribute terms that are bilinear

in the Pauli matrices, i.e., they contribu‘.‘t@2 and 24, By

respectively. Additional bilinear terms will arise when the

expansion is taken t®(t?). The latter may arise frorhl &y
[Eq. (24)] and will contribute to thenonunitary, decohering

part of the evolution. The BB pulses that are appropriate fo

all these cases will be elements of @U).

As before, the quantities extracted from the QPT measure-

ments will be the imaginary part of the matrix which we
abbreviate using a matrig as in Eq.(35). In this case the
modified evolution will provide for the possibility of two-
qubit interactions. Thus, generalizing from Ed29) and
(36),

£S()~ 3 M, 0K+ 3 M5, K 5, 0(0)

:; Gi- &l a, (47

where

(€)= &) s=Im(x 5 00 + 1M (X0 00) (48)

1
g >

Thus the two-qubit case involves solving for the elements of

S, Rl -wly. 9

%ach of the rotation matricd®’:(9, given the QPT daté'

and the desired Hamiltoniam;; . After the rotation matrices
are found, one obtains the BB pulses by inverting &q4)

for the U{}? . While this seems like a daunting task in gen-
eral, it should be numerically tractable, and is illustrated for
A simple example in Sec. V B below. Equati®®) is our
fourth main result.

IV. GENERALIZATION TO ENCODED QUBITS

Before presenting examples, we generalize the empirical
BB condition to encoded qubits, such as arise in the theory
of quantum error correcting codeQECQO [2-5] and
decoherence-free subspa¢B&S) [6—11]. In both cases it is
highly desirable to let the experiment determine a “tailored
encoding,” since the experiment knows the decoherence pro-
cesses that govern the system we wish to protect better than
any model one can design. Furthermore, combining QECC
and DFS with the BB method has proven to be a powerful
tool [25-28,61. Now, both QECC and DFS can be de-
scribed in terms of atabilizer[5,10]. A stabilizer group for
a set of code words, i.e., a code space, is a subgi@iughe
Pauli group for QECC, and of the group of all unitary trans-
formations for DF$ that leaves the code space invariant. A
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code(whether QECC or DFScan be completely specified in d

terms of its stabilizef62]. I
Let S be the vector spacéroup algebragenerated by

real linear combinations of the set of generators of the stabi-

lizer group. Any member ofS will leave the code space S o

invariant. Thus the most general “error” we can allow in the Im()

outcome of a BB procedure, when compared to a given

wanted Hamiltonian, is an error i. Then the outcome of

this “erroneous” evolution will be correct up to an overall

phase. As before, let Inf() be the coordinates of the vector  FIG. 1. Visualization of the errod that remains after the appli-
CO“’ESPO”d'nQ to the desired Hamiltonian evolution and:ation of BB pulses. In¥) is the BB-modified coordinate vector of
Im(x) be the actual vector after BB operations. Formally, thethe evolution, andl measures the distance to the closest element of

condition is the algebra of the stabilizer group of the code.
S i TR d(S,Im(Y)=min[TrE-Im())2*2  (58)
S—-S,=ih[Im(xy)—Im(w)]-Ke S, (54 Ges

which should be compared to E@3). This equation may be Which can be visualized as in Fig. 1.

interpreted in either of two ways. First, given an encoding Similar conclusions were presented for the unencoded
and a wanted Hamiltonia8,, it can be solved for the BB ¢ase in Ref[24].

operations that are needed for the suppression of errors on

the code subspace. Second, given a physically implement- V. EXAMPLES

able set of BB operations, it can be solved for a compatible |n this section we study several examples that illustrate
code (by finding the stabilizer Abstractly, this procedure the formalism developed above.

may be seen as a projection of the open system evolution

onto an evolution which is in the stabilizer of the code space.  A. One-qubit example: Storing a qubit in the presence

The geometric projection operation completely reduces to of pure dephasing

the group-theoretical projection onto the commutant given in Let us consider a simple model: a phase-flip efure

Ref. [15] in the case that the set 61", form a discrete dephasingon a single qubit. To first order, this gives a den-
group[24]. The emphasis here is a geometric picture of the_. P . gie qubrt. ' 9
ity matrix of the form

empirical operations projecting onto the stabilizer group of°

the code. Note that quite generally, E§4) gives an empiri-

cal means of identifying a subspace encoding such that the pe~pst

BB operations drive the evolution into a subspace which

does not affect the encoded stat&&is implies a general, where the prime indicates the density matrix for the qubit

empirical means for thereation of aDFS [27]. Equation  after the interaction with a bath. The coupling constig a

(54) is our fifth main result, which is new and quite general. measure of the strength of the interaction. The bath time
If the BB procedure is imperfect there will be an error scale is the inverse of the bath high-frequency cutoff, which

component remaining. The error vectlris given by the is a separate parameter. Suppose that we wish to find a set of

difference between the BB modified and wanted Hamilto-BB pulses thastorethis qubit.

nians in the 6?—1)-dimensional vector space, where our  The first step in the empirical BB procedure is to measure

igt
ipuno (59

geometric picture holds the superoperator using QPT. Here we would discover that
the interaction causes a phase-flip error which corresponds
E=Im(%)— Im(W). (55 t0 Kxo,. That is, a measurement of the matrix would

yield [by the comparison of EQq.59 to Eq. (29)]:
{IM(X.0}a=xy..={0,0-9/2}.

The next step is to find the optimal set of BB operations.
is we can do by solving Ed41) for the rotation matrices
with the measuregy matrix. This yields

The vectorE gives the magnitude and direction of the error
(i.e., the basis elemenis give the type of error, e.g., bit flip Th
and/or phase flip, etc. The corresponding scalar quantity

(distance is
9 lgl-1 lgl-1
d(Im, Im(@)=[ Tram(%) — Im(@)2]¥2  (56) - 5( p) R(skﬁ)) =0 = > R{j=0. (60
The error(55) can be generalized to In accordance with the BB operations forming a discrete sub-
group, k=0 corresponds to the identity. Far=1, since
d(S,Im(%))=min B—Im(¥)], (57)  Rs1=0 for the identity rotation,
BesS lg-1 l91-1

0+ R¥Y=0 and 1+ R¥Y=0, (61
and likewise, the corresponding scalar quantity is kgl 36 IZZI. 33 (6)
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where=1,2. with a learning-loop process. This is an optimal set, since it
The best set of BB operations is the set that accomplishesill eliminate both errors with only onénonidentity BB
the task at hand and has the fewest elemggitsWe now  pulse per cycle.
find a set with|G|=2 (corresponding to a parity-kick solu-
tion [12,14)). That is, we seek a rotation matrix B. Two-qubit example: Computation using the Heisenberg
0 interaction in the presence of independent dephasing
RO— 0 As indicated above, the problem in the two-qubit case can
- ' be quite involved since, in general, it requires finding the
0 0 -1 elements of rotation matrices in SO(15). To illustrate the
formalism we consider a simple example. Suppose we wish
whose unspecified elements are arbitrary in as far as that they implement a Heisenberg exchange interacfién- ¢, be-
do not affect the outcome of the BB procedure. To transformyween the two gubitéHeisenberg exchange is important in a
from the rotation matrices back to the BB pulges., from  number of promising solid-state proposals, and is an interac-
SO(3) back to S(2)], we use thegeneral result tion that is all by itself universal for Q€10,29,63). Then

. . . the wanted, Heisenberg interaction is determined from
(R'o.)a:elnﬂ'&o_ae—lwae

I 94— apii B
=0,c09260)+2n,(n-o)sirt(0) HHels_J‘Tl“TZ_iEj aEB T Wago]
~(NX0),sIN(26). (62 so that it is described by the matrix
HereRe SO(3),n is a unit vector along the axis ik® about
. - - 1 0 O
which a rotation through an angk is performed[these 4 N 64
parameters parametrize the SO(3) rotation matfidest o Wi=J1 0 1 0] (64)
=3, then we know from the form dR®) that 0 01

Further, suppose that our QPT measurements suggest that
the source of decoherence in the experiment is independent
dephasing on the two qubits. This will be detected through
QPT by producing the following:

— 0,= 0,€0526) +2n3(n- o) sSirt(6) — (NX &) ,sin(26).

It is simple to check that (mod+2) the unique solution to

this equation is #==*m/2, n3=0. This implies U

=e*"" 772 \ith n=(n,,n,,0), but otherwise arbitrary. The i

BB pulse must therefore correspond to a rotation about a unit ES(t)%glo'i—i- g,05= 2 > gfggﬁgf, (65)

vector in thex—y plane on the Bloch sphere, which is the i ap

expected result as the error was along ztaxis. ) ) . ]
It is likely that in a real experiment pure dephasing will Independent dephasing will thus be described by the matrix

not be the only source of decoherence. Let us consider @lements

situation where this was the dominant source, so that our 1 1

QPT measurement that yieldem(x%.)}a-x.y..=10.0, 5091, §03=92. (66)

—g/2} actually contained amx component as well, which )

was too small to be noticed while the dephasing process wa° find the set of BB pulses we would now need to solve Eq.

present, e.g., because the two errors may well have diﬁereﬁ§3) for the _rotatlon matrix element_s, and_ then determine the

characteristic time scales. Suppose that we perform anoth&Prresponding SU(4) transformations, in a manner analo-

QPT measurement while applying the BB pulses founddous to what we did above in the s_,ingle-qubit exar_‘nple.. As
above(that eliminated dephasingnd find a residual error of noted abovesee also Refl24]), solving these equations is

the o, (bit-flip) type. This is an instance of a learning loop, not, in general, trivial. In this simple example, however, aset
which we discuss in Sec. VI below. of BB controls can be found noting the trace orthogonality of

In this case, consider the total Hamiltonian the two algebraic basis elemengst], those corresponding to
the exchange and those corresponding to the errors. Rather
g’ than going through a full derivation, we present the solution.
H= ?ox®(| +0,). (63)  To remove the independent dephasing through a parity-kick
procedure, without affecting the Heisenberg exchange inter-

Proceeding in exactly the same manner as before we detgftion. it is possible to use independent qubit interactions
mine the required BB operations. We find that we need tgvhich form the following pulse:

; _atn-oml2 o ;

fmpler_nentU =e ,.\{there nown= (O,nz,n3_). Combin- U=U,Up=ex —i(o%+ 0% 2= —o%o%.  (67)

ing this and the conditiom=(n,,n,,0), we find that we

need to use=(0,n,,0). Thus bit and phase flips might be By direct calculation one can show that
corrected using the corresponding single BB operation,
which would be determined empirically from an experiment [U,Hpeisl=0 and {U,S}=0. (68)
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The first commutation relation ensures that the parity-kickconstraints. Thus we seek to minimize the difference be-
pulse can be applied during the computation Wihes,  tween the BB-modified Hamiltoniars, and the desired
while the secondanticommutation relation is the parity- Hamiltonians,,

kick condition [12,14,24. Thus the desired evolution is

achieved. The pulsH is certainly not unique, and a general ASEE—SN, (72)
solution of Eq.(52) would yield a variety of other possible

pulses. whereS andS,, are the appropriate modifications to E#g).
For example, for storage we would waff,=0. One may
VI. OPTIMIZATION ALGORITHMS now consider the standard controllability problem in terms of

o ) ) ) ) ) a desired state of the system, to be reached from some initial
As indicated in the single-qubit example discussed in th%tate|a0)zla(t=0)>:

preceding section, the empirical BB procedure can benefit
from the incorporation of an off-line learning loop, that acts i|é(t)>=ﬁ|a(t)) (72)
as an optimization algorithm for the BB pulses. Such learn-

ing loops have proven very successful, e.g., in quantum¢ormally we should have included bath states as well, but

chemical applications, where they are typically used to optiyye omit these for notational convenienc® = (u;(t),1)

|ag). (73

mize the yield of a chemical reaction, steer a system towardg,§ e may formally write the solution as
a desired state, or perform a cooling td48K—43. Roughly,
the idea is to guide a quantum system toward a desired goal la(t))=U(t,t)|ag)

by letting a learning algorithm optimize a classical control

field (e.g., a laser pulgeAn initial field is guessed and ap- te

plied to the quantum system. The output is measured and Texp{ LOH(Ui(T)‘T)dT]

input into a search algorithnte.g., a genetic algorithm

[41,63)), which tries to optimize the field in order to get This can be seen as essentially a Heisenberg picture control
closer to the desired goal. The experiment is then repeatgstoblem[16] and one can thus eliminate the direct inclusion
with the new field, and the process is repeated until it conof the state itself. The short-time approximation enables us to
verges to the desired goal to within a prescribed tolerance.remove the time ordering and write the expanded form

A. Variational optimization U(t,to)= lim [exp{—iHy_1Aty_q}---exp{—iHoAto}].
Atk—>0
We first present an outline of a variational optimization (74)

procedure, which can, in principle, be used to tailor our BB

pulses. Our presentation follows the standard approach in th&t this point we may invoke the assumptions of the BB
quantum control literature, e.g., Ref88,39. The general operations that they are short, strong pulses and the evolution
control problem can be stated as follows. We seek a systein between them be that of the free system and bath.

Hamiltonian, H., which modifies a given(total, system- It should be pointed out that in the standard control theory

bath HamiltonianH, so as to produce the desired effective one often uses thinal stateas the target of the control. This

Hamiltonian can be done as a variational procedure, or in conjunction
_ with numerical algorithms which drive a learning or real-
H=H-+H,. (690  time feedback loop. However, in quantum information pro-

cessing applications, it is often tleolution itselfthat is the
The control HamiltonianH. may be composed of several control target, rather than the final state. For example, one
possible terms, would like to optimize the noiselessness of the evolution, as
in our case. This fundamental difference between the goals
of traditional control theory and its potential application in
He=2, ui(t)HL, (700  the quantum information domain has yet to be explored. An
[ interesting recent step in this direction was taken in Refs.
[65,66, in the context of optimization ofinitary (closed-
where theu;(t) are usually pulses in QC, analogous to thesystem evolutions.
control fields in NMR and quantum optical systems. Thatis, To optimize the BB procedure, the difference between the
the u;(t) are control fields that may be turned on and off asBB modified controls and the ideal evolution should be mini-
desired. The unitary evolution will proceed as usual accordmized. This may be achieved in the continuum by solving
ing to U(t) = ZTexy —i/H(t')dt' ] with H, H, acting simulta-  the variational problem with a variable end point. The appro-
neous]y_ Thus Controuabi“ty is determined by the grouppriate variational prOblem can be formulated as the minimi-
space that one is able to generate by the exponentiated vec#tion of acost function J38—43, expressed in terms of the

fields H [64]. For the robust storage of a qubit using BB control fields{u;} and cycle timeT. as

controls, we require the elimination of the interaction Hamil- MT,

tonianH. This would correspond to havé~1. We also wish J= J (TH{[S(u(7),7)— Sy( T)]Z})1/2d T, (75)
to use as few BB operations as possible due to the time to
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wherea’=a'a and we have useM cycle timesT,, for the o

end point(which is not fixed. One may add experimental Input_| Experiment QPT | Optimized
constraints, such as finite pulse energy, smoothness of the
pulse shapes, etf38,39. This is a standard variational prob- L

Output

lem for which we would seeléJ=0 and 5°J<0. The out-
come, i.e., the solution to the variational problem, will be the
optimal control fields{u;}. Note that these fields will be
approximately continuous for largel and smallAt. Then ) . B
we may approximate them by a discrete set of BB operations FIG._ 2._The Iearnlng loop control diagram for the empirical
(traditionally defined as piecewise continuous controls; sedletermination of the optimal bang-bang controls.
e.g., Refs[64,67). However, it is to be expected that one of
the advantages of the optimization procedure is that it will Let us emphasize thail) no knowledge of the total
yield pulses that are easier to implement physically than thejamiltonian or noise process is assuniéed., the optimal
pulses coming out of a standard BB analysis, since the optimplementation is determined empiricallyand (2) no as-
mization procedure can be formulated to explicitly take intosumption is made about the quality of the BB operations,
account experimental constraints. In fact, experience imnly that they should improve the fidelity of the desired op-
quantum chemistry shows that the pulses found by an optigrations (Of course we know from earlier woild2—19 that
mization procedure are often highly nonintuitiVe8—43. the BB operations should be implemented as strong fast
Questions of convergence, etc., can be avoided by_the _u?ﬁjlses, but imperfect implementation will still reduce noise.
of a subgroup with a small number of e'e”?e“ts- This will Finally, let us note that the learning process could, in prin-
reduce the problem, under the BB assumptions, 1o a Sear%f?ple, be incorporated in a real-time feedback ldem., Ref.

on a discrete space. This is the space of discrete, or fini 1] and references therginbut this would require a very
ast numerical algorithm to solve Eq&l3) and(52).

Analyze

order, subgroups of unitary groups. Fortunately, for quantu
computation, we require only one- and two-qubit operation
which reduces our search spaces to those of the discrete sub-

groups of SU(2) and/or S4). These have been classified VII. CONCLUDING REMARKS
(see Refs[68—70 and references therginVe will not pur-
sue the variational formulation further here. An actual varia-
tional optimization calculation will be presented in a future
publication.

In order for methods that reduce decoherence and noise in
quantum information processing tasks to succeed in the real
world, they must be confronted with experimental data, and

allowed to be optimized in response to this data. This is the

B. Learning algorithm approach we have taken here, in the context of the dynamical

decoupling, or “bang-bang(BB) method. We have devel-

In certain cases it may be possible to perform a larg.%ped a formulation of the BB method that allows one to

number of experiments on identically prepared samples, dif:_: ; .
fering in the applied control fields. In this case, instead oftallor the BB control pulses in response to data acquired by

. TP : . a quantum process tomography experiment. The experiment
solving a variational problem to find optimal BB pulses, one . . .
can try to let the experiment guide an off-line learning algo—SUpplles a Se’.[ of numbers that characterize the noise pro-
rithm (typically a genetic algorithinto an optimal solution cesses occurring on a shprt—tlme scale. From these numbers
[41]. This algorithm is a part of a learning loop, described in®N€ can determine an optimal set of BB pulses, by solving a

Fig. 2. set of linear equations, in particular, E¢83), (41), (43), and
The learning loop consists of the following steps, which(32)- These equations correspond to different tasks one may
are repeated iteratively in the learning process. wish to implement with the help of the BB pulse®spec-
(1) A quantum state isnput for a particular information ~ tively, general storage, single-qubit storage, single-qubit
processing task. computation, two-qubit computatipnand yield a set of ro-

(2) The state is allowed to interact with a bath and un-tation matricegR) that correspond to BB pulses that perform
dergo noisy evolution in theexperiment Here we may the desired tasks.

choose to apply BB pulses to modify the evolution. A promising generalization of a single-shot
(3) The resulting evolution is obtained througliantum  tomography-BB experiment is to introduce an off-line learn-
process tomography ing loop, that uses the above equations in order to determine

(4) The QPT data isnalyzedby the learning algorithm to an optimized set of BB pulses. The learning process incor-
find an improved BB strategy. This involves solving key Eqs.porates tomography measurements from a previous round in

(43) and (52). order to find improved BB pulses for the next round. We
(5) The previous steps are repeated until convergence thave briefly discussed how such a loop, and a concomitant
within a prescribed tolerance is attained. variational optimization procedure, can be designed.

The result of the procedure is an optimized set of BB Throughout this paper we have emphasized that our re-
pulses. This set includg$) the least number of BB opera- sults have an intuitive interpretation in terms of a geometric
tions that will reduce or eliminate the noise in the systempicture, wherein the effect of BB pulses is to rotate a coor-
and (ii) the optimal ordering for this minimal set. dinate vector representing a noisy Hamiltonian to a desired
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