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We study the analytically solvable Ising model of a single qubit system coupled to a spin bath. The purpose
of this study is to analyze and elucidate the performance of Markovian and non-Markovian master equations
describing the dynamics of the system qubit, in comparison to the exact solution. We find that the time-
convolutionless master equation performs particularly well up to fourth order in the system-bath coupling
constant, in comparison to the Nakajima-Zwanzig master equation. Markovian approaches fare poorly due to
the infinite bath correlation time in this model. A recently proposed post-Markovian master equation performs
comparably to the time-convolutionless master equation for a properly chosen memory kernel, and outperforms
all the approximation methods considered here at long times. Our findings shed light on the applicability of
master equations to the description of reduced system dynamics in the presence of spin baths.
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I. INTRODUCTION

A major conceptual as well as technical difficulty in the
practical implementation of quantum information processing
and quantum control schemes is the unavoidable interaction
of quantum systems with their environment. This interaction
can destroy quantum superpositions and lead to an irrevers-
ible loss of information, a process generally known as deco-
herence. Understanding the dynamics of open quantum sys-
tems is therefore of considerable importance. The
Schrodinger equation, which describes the evolution of
closed systems, is generally inapplicable to open systems,
unless one includes the environment in the description. This
is, however, generally difficult, due to the large number of
environment degrees of freedom. An alternative is to develop
a description for the evolution of only the subsystem of in-
terest. A multitude of different approaches have been devel-
oped in this direction, exact as well as approximate [1,2].
Typically the exact approaches are of limited practical use-
fulness as they are either phenomenological or involve com-
plicated integrodifferential equations. The various approxi-
mations lead to regions of validity that have some overlap.
Such techniques have been studied for many different mod-
els, but their performance in general, is not fully understood.

In this work we consider an exactly solvable model of a
single qubit (spin-1/2 particle) coupled to an environment of
qubits. We are motivated by the physical importance of such
spin bath models [3] in the description of decoherence in
solid state quantum information processors, such as systems
based on the nuclear spin of donors in semiconductors [4,5],
or on the electron spin in quantum dots [6]. Rather than
trying to accurately model decoherence due to the spin bath
in such systems (as in, e.g., Refs. [7,8]), our goal in this work
is to compare the performance of different master equations
which have been proposed in the literature. Because the
model we consider is exactly solvable, we are able to accu-
rately assess the performance of the approximation tech-
niques that we study. In particular, we study the Born-
Markov and Born master equations, and the perturbation
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expansions of the Nakajima-Zwanzig (NZ) [9,10] and the
time-convolutionless (TCL) master equations [11,12] up to
fourth order in the coupling constant. We also study the post-
Markovian (PM) master equation proposed in [13].

The dynamics of the system qubit in the model we study
is highly non-Markovian and hence we do not expect the
traditional Markovian master equations commonly used, e.g.,
in quantum optics [14] and nuclear magnetic resonance [15],
to be accurate. This is typical of spin baths, and was noted,
e.g., by Breuer ef al. [16]. Several other papers deal with the
effects of non-Markovian dynamics, some of which can be
found in Refs. [17-25]. The work by Breuer et al. (as well as
by other authors in a number of subsequent publications
[26-31]) is conceptually close to ours in that in both cases an
analytically solvable spin-bath model is considered and the
analytical solution for the open system dynamics is com-
pared to approximations. However, there are also important
differences, namely, in Ref. [16] a so-called spin-star system
was studied, where the system spin has equal couplings to all
the bath spins, and these are of the XY exchange type. In
contrast, in our model the system spin interacts via Ising
couplings with the bath spins, and we allow for arbitrary
coupling constants. As a result there are also important dif-
ferences in the dynamics. For example, unlike the model in
Ref. [16], for our model we find that the odd order terms in
the perturbation expansions of Nakajima-Zwanzig and time-
convolutionless master equations are nonvanishing. This re-
flects the fact that there is a coupling between the x and y
components of the Bloch vector, which is absent in [16]. In
view of the non-Markovian behavior of our model, we also
discuss the relation between a representation of the analytical
solution of our model in terms of completely positive maps,
and the Markovian limit obtained via a coarse-graining
method introduced in [32], and the performance of the post-
Markovian master equation [13].

This paper is organized as follows. In Sec. II, we present
the model, derive the exact solution, and discuss its behavior
in the limit of small times and large number of bath spins,
and in the cases of discontinuous spectral density co-domain
and alternating sign of the system-bath coupling constants. In
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Sec. III, we consider second order approximation methods
such as the Born-Markov and Born master equations, and a
coarse-graining approach to the Markovian semigroup mas-
ter equation. Then we derive solutions to higher order cor-
rections obtained from the Nakajima-Zwanzig and time-
convolutionless projection techniques as well as derive the
optimal approximation achievable through the post-
Markovian master equation. In Sec. IV, we compare these
solutions for various parameter values in the model and plot
the results. Finally, in Sec. V, we present our conclusions.

II. EXACT DYNAMICS
A. Model

We consider a single spin-% system (i.e., a qubit with a
two-dimensional Hilbert space H) interacting with a bath of
N spin-% particles (described by an N-fold tensor product of
two-dimensional Hilbert spaces denoted Hjp). We model the
interaction between the system qubit and the bath by the
Ising Hamiltonian

N
H) = a0 ® 2, g,0%, (1)

n=1

where g, are dimensionless real-valued coupling constants in
the interval [—1,1], and >0 is a parameter having the di-
mension of frequency (we work in units in which A=1),
which describes the coupling strength and will be used below
in conjunction with time (ar) for perturbation expansions.
The system and bath Hamiltonians are

|
HS = 50)00"', (2)
and
M
Hy=2 20,0, (3)

For definiteness, we restrict the frequencies w, and (), to the
interval [—1, 1], in inverse time units. Even though the units
of time can be arbitrary, by doing so we do not lose gener-
ality, since we will be working in the interaction picture
where only the frequencies (), appear in relation to the state
of the bath [Eq. (12)]. Since the ratios of these frequencies
and the temperature of the bath occur in the equations, only
their values relative to the temperature are of interest. There-
fore, henceforth we will omit the units of frequency and
temperature and will treat these quantities as dimensionless.

The interaction picture is defined as the transformation of
any operator

A— A1) = exp(iHyt)A exp(—iHt), (4)

where Hy=Hg+Hp. The interaction Hamiltonian H; chosen
here is invariant under this transformation since it commutes
with H,. [Note that in the next subsection, to simplify our
calculations we redefine Hy and H; (whence H; becomes
H,), but this does not alter the present analysis.] All the quan-
tities discussed in the rest of this paper are assumed to be in
the interaction picture.
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The dynamics can be described using the superoperator
notation for the Liouville operator

Lp(t) =—i[H;.p(1)], (5)

where p(7) is the density matrix for the total system in the
Hilbert space H¢® Hjp. The dynamics is governed by the von
Neumann equation

d
5P = alp®), (6)

and the formal solution of this equation can be written as
follows:

p(1) = exp(aLlt)p(0). (7

The state of the system is given by the reduced density op-
erator

ps(t) = Trg{p(1)}, (8)

where Trp denotes a partial trace taken over the bath Hilbert
space ‘Hp. This can also be written in terms of the Bloch
sphere vector

v.(1)
v(t)=| vy(r) |=Tr{aps(1)}, )
v(t)

where o= (0", 0”,0%) is the vector of Pauli matrices. In the
basis of o eigenstates this is equivalent to

1 s oL 1 T+u(n) v (r)—ivy(2)
ps(t)=—(1+v-0)=—( : N
2 2\v (1) +ivy(2) 1-v.(1)

(10)
We assume that the initial state is a product state, i.e.,

p(0) = ps(0) ® pg, (11)

and that the bath is initially in the Gibbs thermal state at a
temperature 7,

pp =exp(— Hy/kT)/Tr[exp(— Hg/kT)], (12)

where k is the Boltzmann constant. Since pp commutes with
the interaction Hamiltonian H;, the bath state is stationary
throughout the dynamics: pg(r)=pg. Finally, the bath spectral
density function is defined as usual as

JQ) =2 g, 8Q-Q,). (13)
n
B. Exact solution for the system-spin dynamics

We first shift the system Hamiltonian in the following
way:

Hg— Hg+ 6I,
0= Tr{E gno*;pg}. (14)

As a consequence the interaction Hamiltonian is modified
from Eq. (1) to
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H)—H,=ac ®B, (15)

where

B=2 g,05- 0l. (16)

This shift is performed because now Trg[H;,p(0)]=0, or
equivalently

Try{Bps} =0. (17)

This property will simplify our calculations later when we
consider approximation techniques in Sec. III. Now, we de-
rive the exact solution for the reduced density operator pg
corresponding to the system. We do this in two different
ways. The Kraus operator sum representation is a standard
description of the dynamics of a system initially decoupled
from its environment and it will also be helpful in studying
the coarse-graining approach to the quantum semigroup mas-
ter equation. The second method is computationally more
effective and is helpful in obtaining analytical expressions
for N> 1.

1. Exact solution in the Kraus representation

In the Kraus representation the system state at any given
time can be written as

ps(t) = 2 Kyps(O)K, (18)

where the Kraus operators satisfy E,J 1Kij=Is [33]. These
operators can be expressed easily in the elgenbasis of the
initial state of the bath density operator as

K= \\{jlexp(= it i), (19)

where the bath density operator at the initial time is pg(0)
=3\;|i)(i|. For the Gibbs thermal state chosen here, the
eigenbasis is the N-fold tensor product of the o° basis. In this
basis

exp(= ,BE)
pr=2 = (20)
where B8=1/kT. Here
N
E =, m (= 1), (21)
n= 1
is the energy of each eigenstate |[), where [=1,l,,...,l, is the

binary expansion of the integer /, and the partition function is
Z=3,exp(-BE)). Therefore, the Kraus operators become
K;j= \\; exp( itaE;0) 3y, (22)

where

B=ibl =3 1) n—Tr{E gnofpg}, @3
n=1

and \;=exp(-BE,)/Z. Substituting this expression for K

into Eq. (18) and writing the system state in the Bloch vector

form given in Eq. (10), we obtain
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vx(t) = UX(O)C(I) - Uy(O)S(t) s
vy(1) =v,(0)S(2) +v,(0)C(r),

v.(1) =v,(0), (24)

where

cH=2 \; cos 2al~?,~t,

S(r)= >\, sin 2aEjt. (25)

Equations (24) are the exact solution to the system dy-
namics of the above spin-bath model. We see that the evolu-
tion of the Bloch vector is a linear combination of rotations
around the z axis. This evolution reflects the symmetry of the
interaction Hamiltonian, which is diagonal in the z basis. By
inverting Eqgs. (24) for v,(0) or v,(0), we see that the Kraus
map is irreversible when C(f)>+5(¢)>=0. This will become
important below, when we discuss the validity of the time-
convolutionless approximation.

2. Alternative exact solution

Another way to derive the exact solution which is com-
putationally more useful is the following. Since all 0%, com-
mute, the initial bath density matrix factors and can be writ-
ten as

Q,
N P( ﬁ’ﬁ) hg
PB= ® Q _(I+ Bna-z) H Pn>
”ZlTr{exp(— —"M)] n=12 =1

2kT "
(26)
where

(27)

=tanh|{ - — |,
Pr an( 2kT>

and —1=B,=<1. Using this, we obtain an expression for 6
defined in Eq. (14),

N N
6=Tr\ X, g0 @ —(1+ﬂm¢)

n=1 m]

= 2 8n Tr{‘(O‘ +,3n1)} 11 Tr{—(1+ Bna, )}

m#n

= 2 8B (28)
n=1

The evolution of the system density matrix in the interaction
picture is

ps() = Trg{e ' p(0)e™r}. (29)

In terms of the system density matrix elements in the com-

=ac* @ B), we have
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N
(lps(0)lk) = (| Trgle ™ pg(0) & p,e™r}k)
m=1
N
— TrB{e—ia(j\ol\j)Bt<i|pS(0)|k> ® pm€+ia<k‘gz|k>8t}.
m=1

Let us substitute {j|o<[j)=(-1)’ and rewrite

N
il DBl _ pmial= V(S g105-0D1 _ Q) p=i- Valgoj-(@N)1)

=1

Since all the matrices are diagonal, they commute and we
can collect the terms by qubits as follows:

N

. . —i[(= 1Y=(= D¥a[g;0%—
(lpsDky = (ilpsO) ) Tr{ & 7l = D alsiwi=(0Nip 3
m=1

Let us denote (—l)j—(—])k=26jk. The trace can be easily
computed to be

N

IT Tr{ e‘izejk”‘[g"”z_(e/]v)l]tl(1 +B 01)}
2 n-n

n=1

N
=11 eI cos(2€;.ag,t) — i, sin(2e;ag,1)].
n=1

Thus the final expression for the system density matrix ele-
ments is

N
(lps]k) = (jlps(0) kY5 T [cos(2€;,ag,1)

n=1
—if3, sin(2ejag,1)].

Notice that €y,=¢€;;=0, hence the diagonal matrix elements
do not depend on time as before.

(0lps(1)|0y = (0[ps(0)|0),

(Llps(0)|1) = (1]ps(0)[1).

For the off-diagonal matrix elements €;;=1, €,p=—1, and the
evolution is described by

(0ps(0[1) = (0]ps(0)[1)A(1),
(1]ps(0)|0) = (1]ps(0)|0)F" (1), (30)

where

N
f(r) = e [ [cos(2ag, 1) - iB, sin(Rag,n].  (31)

n=1

In terms of the Bloch vector components, this can be written
in the form of Eq. (24), where

) =[f0+1 ]2,
S(0) =[f(0) - (n)2i. (32)
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C. Limiting cases
1. Short times
Consider the evolution for short times where at<<1. Then

N
[1cos(2ag,n +iB, sin(2ag,t)]

n=1

N
=I11-(1-B)sin’2ag,1

n=1

N
~[I[1-201-B8)(ag,n’]
n=1

N
~1 —2[a22 g1 —Bﬁ)]tz
n=1

~ exp[— 2(a1)?Q,], (33)

where (see Appendix A)

N o}
0= Te{Bps= 3 g3(1- ) = f A(Q) "
n=1 oo )

~7 1+ cosh

(34)

Note that the above approximation is valid under any of the
following conditions: very short times (at<< 1VQ,), low
temperatures (Q,<< 1), or a large number of qubits and not
too low temperatures VQ,> |g, |, Vn (see also below). The
total phase of f(z) in Eq. (31) is

N N
=200+ > (- BRag,t) = 20m—2a(2 gmB,,)t=O,

n=1 n=1

(35)

where we have used Eq. (28). Thus, the off-diagonal ele-
ments of the system density matrix become

2
o0 (1) = pg!(0)e 202,

2
ps’(1) = pg(0)e> 02, (36)

Finally, the dynamics of the Bloch vector components are

2
V(1) = 0,,(0)e7 02,

v.()=v.(1). (37)

This represents the well known behavior [34] of the evolu-
tion of an open quantum system in the Zeno regime. In this
regime coherence does not decay exponentially but is ini-
tially flat, as is the case here due to the vanishing time de-
rivative of pgl(t) at t=0. As we will see in Sec. III, the
dynamics in the Born approximation (which is also the sec-
ond order time-convolutionless approximation) exactly
matches the last result.
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FIG. 1. (Color online) Comparison of the exact solution at 3
=1 and B=10 for N=100.

2. Large N

When N>1 and the values of g, are random, then the
different terms in the product of Eq. (31) are smaller than 1
most of the time and have recurrences at different times.
Therefore, we expect the function f(7) to be close to zero in
magnitude for most of the time and full recurrences, if they
exist, to be extremely rare. When g, are equal and so are (),
then partial recurrences occur periodically, independently of
N. Full recurrences occur with a period which grows at least
as fast as N. This can be argued from Egs. (24) by imposing
the condition that the arguments of all the cosines and sines
are simultaneously equal to an integer multiple of 277. When
J(Q) has a narrow high peak, e.g., one g, is much larger than
the others, then the corresponding terms in the products in
Eq. (31) oscillate faster than the rate at which the whole
product decays. This is effectively a modulation of the decay.

3. Discontinuous spectral density co-domain

As can be seen from Eq. (31), the coupling constants g,
determine the oscillation periods of the product terms, while
the temperature factors B, determine their modulation
depths. If the codomain of spectral density is not continuous,
i.e., it can be split into nonoverlapping intervals G, j
=1,...,J, then Eq. (31) can be represented in the following
form:

f(t) =P ()Py(1) -+ Py(t), (38)

where

P(t)= 11 [cos(2ag,n) -iB,sin(2ag,n].  (39)

g”EGJ-

In this case, if G; are separated by large enough gaps, the
evolution rates of different P;(¢) can be significantly differ-
ent. This is particularly noticeable if one P;(r) undergoes
partial recurrences while another P;/(¢) slowly decays.

For example, one can envision a situation with two inter-
vals such that one term shows frequent partial recurrences
that slowly decay with time, while the other term decays
faster, but at times larger than the recurrence time. The over-
all evolution then consists of a small number of fast partial
recurrences. In an extreme case, when one g, is much larger
than the others, this results in an infinite harmonic modula-
tion of the decay with depth dependent on fB,, i.e., on
temperature.
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FIG. 2. (Color online) Comparison of the exact solution at 3
=1 and B=10 for N=4.

4. Alternating signs

If the bath has the property that every bath qubit m has a
pair —m with the same frequency Q_,,=(,,, but opposite
coupling constant g_,=-g,,, the exact solution can be sim-
plified. First, B_,,=B,,, and #=0. Next, Eq. (31) becomes

NP2

£ = I1 [cos2ag,1) - i, sin(2ag,1)][cos(2ag_,1)
m=1
- lﬂ—m Sin(zag—mt)]
N2

= [ [cos’>2ag,1) + B2 sin’*(2ag,.1)].

m=1

(40)

This function is real, thus Eq. (32) becomes C(¢)=f(t), S(z)
=0, so that v (1)=v,(0)f(¢) and v,(1)=v,(0)f(r). The exact
solution is then symmetric under the intérchange U0y, A
property shared by all the second order approximate solu-
tions considered below, as well as the post-Markovian master
equation. The limiting case Eq. (33) remains unchanged, and
since O, depends on gi, but not g, it and all second order
approximations also remain unchanged. In the special case
|g,./=g, the exact solution exhibits full recurrences with pe-
riod T=1/ ag.

II1. APPROXIMATION METHODS

In this section we discuss the performance of different
approximation methods developed in the open quantum sys-
tems literature [1,2]. The corresponding master equations for
the system density matrix can be derived explicitly and since
the model considered here is exactly solvable, we can com-
pare the approximations to the exact dynamics. We use the
Bloch vector representation and since the z component has
no dynamics, a fact which is reflected in all the master equa-
tions, we omit it from our comparisons.

A. Born and Born-Markov approximations
Both the Born and Born-Markov approximations are sec-
ond order in the coupling strength a.
1. Born approximation

The Born approximation is equivalent to a truncation of
the Nakajima-Zwanzig projection operator method at the
second order, which is discussed in detail in Sec. III B. The
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FIG. 3. (Color online) Comparison of the exact solution at 3
=1 and B=10 for N=100 for randomly generated g, and (},,.

Born approximation is given by the following integrodiffer-
ential master equation:

ps(t) == J Trp{[H/(1).[H/(s), ps(s) & ppll}ds. (41)

0

Since in our case the interaction Hamiltonian is time inde-
pendent, the integral becomes easy to solve. We obtain

ps(t) =— Zazsz [ps(s) — o°ps(s)o]ds, (42)
0

where Q, is the second order bath correlation function in Eq.
(34). Writing pg(#) in terms of Bloch vectors as (I+v-d)/2
[Eq. (10)], we obtain the following integrodifferential
equations:

t

Uy y(1) =~ 4012sz v, (s)ds. (43)

0

These equations can be solved by taking the Laplace
transform of the variables. The equations become

V
SVx,y(s) - vx,y(o) == 4’a2Q2 XYV(S) 5 (44)
s
where V, ,(s) is the Laplace transform of v, ,(¢). This gives
0
Vi 5) = O (43)
s +40,a

which can be readily solved by taking the inverse Laplace
transform. Doing so, we obtain the solution of the Born mas-
ter equation for our model as follows:

v,y (1) = v, (0)cos(2a\0,1). (46)

Note that this solution is symmetric under the interchange
vy, but the exact dynamics in Eq. (24) does not have
this symmetry. The exact dynamics respects the symmetry:
v,—v, and vy,—-v,, which is a symmetry of the Hamil-
tonian. This means that higher order corrections are required
to break the symmetry v, <> v, in order to approximate the
exact solution more closely.

One often makes the substitution v, () for v, ,(s) in Eq.
(43) since the integrodifferential equation obtained in other
models may not be as easily solvable. This approximation,
which is valid for short times, yields
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FIG. 4. (Color online) Comparison of the exact solution at 8
=1 and B=10 for N=4 for randomly generated g, and (),,.

U, (1) == 4’0y, (1), (47)

which gives

Uy (1) =0, (0)exp(=20,07r%), (48)

i.e., we recover Eq. (37). This is the same solution obtained
in the second-order approximation using the time-
convolutionless (TCL) projection method discussed in Sec.
III B.

2. Born-Markov approximation

In order to obtain the Born-Markov approximation, we
use the following quantities [2, Ch. 3]:
Rw)= X PyoPy,
Ey-E=w

IN'w)= a2f €' Q,ds,

0
(49)
H, =2 T(0)R(w) R(w),

where T(o)=[I'"(0)-T'(w)"]/2i, E; is an eigenvalue of the
system Hamiltonian Hy, and Pg_is the projector onto the
eigenspace corresponding to this eigenvalue. In our case Hy
is diagonal in the eigenbasis of o<, and only w=0 is relevant.
This leads to R(0)=0° and T'(0)=a?[]Q,dt. Since T'(0) is
real, we have T(0)=0. Hence the Lamb shift Hamiltonian
H,; =0, and the Lindblad form of the Born-Markov approxi-
mation is

ps(t) = W0 pso™ = pg)., (50)

where 7=F(O)+F(O)*:2a2f(°)°Q2dt. But note that Q,
=Trg{B?pg} does not depend on time. This means that I and
hence 7y are both infinite. Thus the Born-Markov approxima-
tion is not valid for this model and the main reason for this is
the time independence of the bath correlation functions. The
dynamics is inherently non-Markovian.

A different approach to the derivation of a Markovian
semigroup master equation was proposed in [32]. In this ap-
proach, a Lindblad equation is derived from the Kraus
operator-sum representation by a coarse-graining procedure
defined in terms of a phenomenological coarse-graining time
scale 7. The general form of the equation is

052117-6



NON-MARKOVIAN DYNAMICS OF A QUBIT COUPLED TO...

FIG. 5. (Color online) Comparison of the exact solution, NZ2,
NZ3, and NZ4 at B=1 and B=10 for N=100. The exact solution is
the solid (blue) line, NZ2 is the dashed (green) line, NZ3 is the
dot-dashed (red) line, and NZ4 is the dotted (cyan) line.

i)

M
20— i) 0]+ S (o[04

a,B=1
+[Aup(0).A%]).

where the operators Ag=/ and A,, a=1,...,M form an arbi-
trary fixed operator basis in which the Kraus operators (18)
can be expanded as

M
K;= 2 bicAq- (51)
a=0
The quantities x, 5(#) and Q(¢) are defined through
XapD) = 2 biaby0), (52)
;M
0()= 7 2 Ixao DKo = Xoa K], (53)
a=1
and
(X),= lff)((s)ds. (54)
TJo
For our problem we find
P - i p0]+ FHopo,-p0],  (55)
where
= %_S (7) (56)
and
1
7’=2_[1—C(T)], (57)
T

with C(¢) and S(z) defined in Eq. (25). In order for this ap-
proximation to be justified, it is required that the coarse-
graining time scale 7 be much larger than any characteristic
time scale of the bath [32]. However, in our case the bath
correlation time is infinite which, once again, shows the in-
applicability of the Markovian approximation. This is further
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FIG. 6. (Color online) Comparison of the exact solution, NZ2,
NZ3, and NZ4 at B=1 and S=10 for N=4. The exact solution is the
solid (blue) line, NZ2 is the dashed (green) line, NZ3 is the dot-
dashed (red) line, and NZ4 is the dotted (cyan) line.

supported by the performance of the optimal solution that
one can achieve by varying 7, which is discussed in Sec. I'V.
There we numerically examine the average trace-distance be-
tween the solution to Eq. (55) and the exact solution as a
function of 7. The average is taken over a time 7, which is
greater than the decay time of the exact solution. We deter-
mine an optimal 7 for which the average trace distance is
minimum and then determine the approximate solution. The
solution of Eq. (55) for a particular 7 in terms of the Bloch
vector components is

0.(1) = 0, (0)C A1) +v,(0)5 (1),
(58)
0,(1) = 0,(0)C A1) ~ v, ()50,

where C.(f)=¢ %7 cos[@(7)r] and S(1)=e "' sin[@(7)1].
The average trace distance as a function of 7 is given by

_ 1
D(pexacvpCG) = ETr|pexact - pCG|

T
= -3 [cw G0 +Is0 -0
=0

X v, (0)% + vy(O)z, (59)

where pcg represents the coarse-grained solution and where

|X|=\X'X. The results are presented in Sec. IV. Next we
consider the Nakajima-Zwanzig (NZ) and the time-
convolutionless (TCL) master equations for higher-order ap-
proximations.

B. NZ and TCL master equations

Using projection operators one can obtain approximate
non-Markovian master equations to higher orders in ar. A
projection is defined as follows:

Pp="Trz{p} @ pp,

and serves to focus on the “relevant dynamics” (of the sys-
tem) by removing the bath (a recent generalization is dis-
cussed in Ref. [35]). The choice of pg is somewhat arbitrary
and can be taken to be pg(0), which significantly simplifies
the calculations. Using the notation introduced in [16], define

(60)
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FIG. 7. (Color online) Comparison of the exact solution, TCL2,
TCL3, and TCL4 at 8=1 and B=10 for N=100. The exact solution
is the solid (blue) line, TCL?2 is the dashed (green) line, TCL3 is the
dot-dashed (red) line, and TCL4 is the dotted (cyan) line. Note that
for B=1, the curves nearly coincide.

S=PSP (61)

for any superoperator S. Thus (S") denote the moments of
the superoperator. Note that for the Liouvillian superopera-
tor, (£)=0 by virtue of the fact that Trg{Bpg(0)}=0 (see [2]).
Since we assume that the initial state is a product state, both
the NZ and TCL equations are homogeneous equations. The
NZ master equation is an integrodifferential equation with a
memory kernel MV(z,s) and is given by

ps(t) & pg= f N1,5)ps(s) @ pps. (62)
0

The TCL master equation is a time-local equation given by

ps(t) & pg=K(0)ps(t) & pp. (63)

When these equations are expanded in ar and solved we
obtain the higher-order corrections. When the interaction
Hamiltonian is time independent (as in our case), the above
equations simplify to

f N(t’s)pS(S) ® deS = E anIn(t’S)<£n>pcpS(s)’
0

n=1
(64)
and
/-l
(n-1)!

K@) =D o

n=1

(Lo (65)

for the NZ and TCL equations, respectively, where the time-
ordered integral operator Z,(,s) is defined as

t 5 ()
I,,(t,s)EJ dtlf dtz'"f ds. (66)
0 0 0

The definitions of the partial cumulants (L), and the ordered
cumulants (L), are given in Refs. [12,36,37]. For our model
we have

(L)pe=(L)y:=0, (67)
and
(L), =(L?),
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FIG. 8. (Color online) Comparison of the exact solution, TCL2,
TCL3, and TCL4 at B=1 and B=10 for N=4. The exact solution is
the solid (blue) line, TCL?2 is the dashed (green) line, TCL3 is the
dot-dashed (red) line, and TCL4 is the dotted (cyan) line. Note that
for B=1, TCL3, TCL4, and the exact solution nearly coincide.

(L2pe=(L?),

(Lpe= (L),

(Loe=(L7),
(LHpe= (LY = (L,

(L e = (LY = 3(LH. (68)

Explicit expressions for these quantities are given in Appen-
dix B. Substituting these into the NZ and TCL equations (64)
and (65), we obtain what we refer to below as the NZn and
TCLn master equations, with n=2,3,4. These approximate
master equations are, respectively, second, third, and fourth
order in the coupling constant «, and they can be solved
analytically. The second-order solution of the NZ equation
(NZ2) is exactly the Born approximation and the solution is
given in Eq. (46). The third-order NZ master equation is
given by

ps(t) = = 2220, T5(1,9) [ ps(s) — 0°ps(s) 0“1 + i4a’ Q3 T5(1,5)
X[a*ps(s) = ps(s) o], (69)
and the fourth order is
ps(1) == 2070, T5(t,5)[ ps(s) — o ps(s)o°] + 40’ Q3 T5(1,5)
X[o*ps(s) = ps(s)o] + 8CY4(Q4 - Q%)L(LS)[PS(S)
- o°ps(s)o]. (70)

These equations are equivalent to, respectively, sixth and
eighth order differential equations (with constant coeffi-
cients) and are difficult to solve analytically. The results we
present in the next section were therefore obtained numeri-
cally.

The situation is simpler in the TCL approach. The second-
order TCL equation is given by

ps(1) = — ot Trg{[HL.[Hp,ps(1) @ pp(0)]1}
=—2a’1Qy[ ps(1) - o ps(1) 7], (71)

whose solution is as given in Eq. (48) in terms of Bloch
vector components. For TCL3 we find

052117-8



NON-MARKOVIAN DYNAMICS OF A QUBIT COUPLED TO...

0.8

1 15 2
at

FIG. 9. (Color online) Comparison of TCL2 and the exact solu-
tion to demonstrate the validity of the TCL approximation for N
=4 and B=1. The solid (blue) line denotes the exact solution and
the dashed (green) line is TCL2. Note that the time axis here is on
a linear scale. TCL2 breaks down at ar=0.9, where it remains flat,
while the exact solution has a recurrence.

2
ps(t) =— 2a2tQ2[pS(t) - ops(o ]+ 4iQ3a3%[UzPs(f)

- pS(t)a-z]’ (72)
and for TCL4 we find
3
o1 = | 20210, + (80, - 240D '
2
X [ps(0) - o:ps(t)or] + 4i0sa*
X[o,ps(t) = ps(t)o,]. (73)

These equation can be solved analytically, and the solutions
to the third- and fourth-order TCL equations are given by

v.(1) = fu(en)v,(0)cos(g(1) +v,(0)sin(g ()],

v,(1) = f,(at)[v,(0)cos(g(r)) —v,(0)sin(g(r))],  (74)

where g(1)=405a’1/3, f3(at)=exp(-2Q,a?t*) (TCL3), and
falat)=exp[-20,0%*+(20,-603)a*t*/3] (TCLA4). 1t is in-
teresting to note that the second-order expansions of the TCL
and NZ master equations exhibit a v,«»v, symmetry be-
tween the components of the Bloch vector, and only the
third-order correction breaks this symmetry. Notice that the
coefficient of &’ does not vanish in this model unlike in the
one considered in [16] because both (£?),.#0 and (L%),,
# 0 and hence the third-order (and other odd order) approxi-
mations exist.

C. Post-Markovian (PM) master equation

In this section we study the performance of the post-
Markovian master equation recently proposed in [13].

0 _ f A kexpD 1), (79)

at 0

This equation was constructed via an interpolation between
the exact dynamics and the dynamics in the Markovian limit.
The operator D is the dissipator in the Lindblad equation

PHYSICAL REVIEW A 76, 052117 (2007)

(50), and k(z) is a phenomenological memory kernel, which
must be found by fitting to data or guessed on physical
grounds. As was discussed earlier, the Markovian approxi-
mation fails for our model, nevertheless, one can use the
form of the dissipator we obtained in Eq. (50),

Dp=dpd*—p. (76)
It is interesting to examine to what extent Eq. (75) can ap-
proximate the exact dynamics. As a measure of the perfor-
mance of the post-Markovian equation, we will take the trace
distance between the exact solution pe,,.(¢) and the solution
to the post-Markovian equation p,(7). The general solution of
Eq. (75) can be found by expressing p(f) in the damping
basis [38] and applying a Laplace transform [13]. The solu-
tion is

p(0) = 2 ()R = 2 Tr(Lip(1)R,, (77)
where
pilt) = Lap™! [ %1 pi(0) = E(D(0), (78)
s = Nik(s = N\;)

(Lap™! is the inverse Laplace transform) with k being the
Laplace transform of the kernel k, {L;} and {R;} being the left
and right eigenvectors of the superoperator D, and \; the
corresponding eigenvalues. For our dissipator the damping

basis is {L}={R;}= é,%,%,f’—; and the eigenvalues are
{0,-2,-2,0}. Therefore, we can immediately write the for-
mal solution in terms of the Bloch vector components as

follows:

vy,y(1) =Lap™! l } U,,(0) = &(0)v,.,(0).

s+ 2k(s +2)
(79)

We see that v,(r) has no dependence on v,(0), and neither
does v,(t) on v,(0), in contrast to the exact solution. The
difference comes from the fact that the dissipator D does not
couple v,(7) and v,(¢). This reveals an inherent limitation of
the post-Markovian master equation: it inherits the symme-
tries of the Markovian dissipator D, which may differ from
those of the generator of the exact dynamics. In order to
rigorously determine the optimal performance, we use the
trace distance between the exact solution and a solution to
the post-Markovian equation as follows:

1
D(pexaci(t).p1(1)) = SNLC(0) - NP +S(1)?

X Vv, (0)* +0,(0)%. (80)
Obviously this quantity reaches its minimum for &(r)=C(z),
V't independently of the initial conditions. The kernel for
which the optimal performance of the post-Markovian mas-
ter equation is achieved, can thus be formally expressed, us-
ing Eq. (79), as
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FIG. 10. (Color online) Comparison of the exact solution, NZ4,
TCL4, and PM at B=1 and B=10 for N=100. The exact solution is
the solid (blue) line, PM is the dashed (green) line, NZ4 is the
dot-dashed (red) line, and TCL4 is the dotted (cyan) line. Note that
for =1, TCL4, PM, and the exact solution nearly coincide for
short and medium times. Only PM captures the recurrences of the
exact solution at long times.

1
Lap(C(0) } (51
It should be noted that the condition for complete positivity
of the map generated by Eq. (75), Z;&(t)L] ® R;=0 [13],
amounts here to |&(¢)|=|C()| <1, which holds for all z. Thus
the minimum achievable trace distance between the two so-
lutions is given by

1
ko (1) = EEZZ Lap_'{

Dy P, p1(0) = 3S0N0, O 40,07 (82)

The optimal fit is plotted in Sec. IV.

Finding a simple analytical expression for the optimal
kernel Eq. (81) seems difficult due to the complicated form
of C(r). One way to approach this problem is to expand C(z)
in powers of at and consider terms which give a valid ap-
proximation for small times as<<1. For example, Eq. (33)
yields the lowest nontrivial order as

Cy(H) =1-20,a1* + 0(a*r*). (83)

Note that this solution violates the complete positivity con-
dition for times larger than t=1/a\2Q,. The corresponding
kernel is

ky(t) = 2020,e¥ cosh(2\ 0, ar). (84)

Alternatively we could try finding a kernel that matches
some of the approximate solutions discussed so far. For ex-
ample, it turns out that the kernel

knzo(1) = 202Q262[ (85)

leads to an exact match of the NZ2 solution. Finding a kernel
which gives a good description of the evolution of an open
system is an important but in general, difficult question
which remains open for further investigation. We note that
this question was also taken up in the context of the PM in
the recent study [39], where the PM was applied to an ex-
actly solvable model describing a qubit undergoing sponta-
neous emission and stimulated absorption. No attempt was
made to optimize the memory kernel and hence the agree-
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FIG. 11. (Color online) Comparison of the exact solution, NZ4,
TCL4, and PM at B=1 and B=10 for N=4. The exact solution is
the solid (blue) line, PM is the dashed (green) line, NZ4 is the
dot-dashed (red) line, and TCL4 is the dotted (cyan) line. Note that
for B=1, TCL4 and the exact solution nearly coincide for short and
medium times.

ment with the exact solution was not as impressive as might
be possible with optimization.

Finally, we stress again that k(¢) is a phenomenological
memory kernel which must be found either by fitting or by
guessing. As pointed out in Ref. [13], experimental determi-
nation of the kernel by fitting can be done as follows. Sup-
pose one measures p(f) via quantum state tomography. It can
be shown that &(r)=Tr[L;p(¢)]/ Tr[L;p(0)] [13]. The coeffi-
cients &) are thus directly experimentally accessible, pro-
vided one first specifies a Markovian model from which the
left eigenvectors L; and eigenvalues \; can be computed.
Inverting Eq. (78) then yields the kernel as

k(r) =Lap™'[(s — 1/Lap[ &(1)])]e ™ /X,

This inversion process for k(z) is not unique in the sense that
it will depend on the choice of Markovian model. It can be
optimized via well-established maximum likelihood meth-
ods, e.g., [40], thus yielding the optimal Markovian model.
Another possibility for determining k(f) in a systematic fash-
ion is to attempt to find a general analytical optimal fit be-
tween the PM master equation and the TCL or NZ master
equations.

IV. COMPARISON OF THE ANALYTICAL SOLUTION
AND THE DIFFERENT APPROXIMATION TECHNIQUES

In the results shown below, all figures express the evolu-
tion in terms of the dimensionless parameter «r (plotted on a
logarithmic scale). We choose the initial condition v,(0)
=v,(0)=1/ \2 and plot only v.(f) since the structure of the
equations for v,(f) and v(¢) is similar. In order to compare
the different methods of approximation, we consider various
choices of parameter values in our model. Among these
choices we consider both low- and high-temperature cases.
We note that in a spin-bath model it is assumed that the
environment degrees of freedom are localized and this is
usually the case at low temperatures. At higher temperatures
one may need to consider delocalized environment degrees
of freedom as well, such as phonons, magnons, etc. A class
of models known as oscillator bath models [41] incorporate
such effects. In this paper, we restrict attention to the spin-
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FIG. 12. (Color online) Comparison of the exact solution, NZ4,
TCL4, and PM at ar=0.1 for N=100 for different 8 [0.01,10].
The exact solution is the solid (blue) line, PM is the dashed (green)
line, NZ4 is the dot-dashed (red) line, and TCL4 is the dotted (cyan)
line.

bath model described here for both low and high tempera-
tures, as our primary goal is not a realistic description of
decoherence in solid state systems, but a comparison of dif-
ferent master equations to an exactly solvable model.

A. Exact solution

We first assume that the frequencies of the qubits in the
bath are equal (),=1, V n), and so are the coupling con-
stants (g,=1, V n). In this regime, we consider large and
small numbers of bath spins N=100 and N=4, and two dif-
ferent temperatures S=1 and B=10. Figures 1 and 2 show
the exact solution for N=100 and N=4 spins, respectively,
up to the second recurrence time. For each N, we plot the
exact solution for =1 and B=10.

We also consider the case where the frequencies (), and
the coupling constants g, can take different values. We gen-
erated uniformly distributed random values in the interval
[-1,1] for both Q, and g,. In Figures 3 and 4 we plot the
ensemble average of the solution over 50 random ensembles.
The main difference from the solution with equal (2, and g,
is that the partial recurrences decrease in size, especially as N
increases. We attribute this damping partially to the fact that
we look at the ensemble average, which amounts to averag-
ing out the positive and negative oscillations that arise for
different values of the parameters. The main reason, how-
ever, is that for a generic ensemble of random (), and g, the
positive and negative oscillations in the sums (25) tend to
average out. This is particularly true for large N, as reflected
in Fig. 3. We looked at a few individual random cases for
N=100 and recurrences were not present there. For N=20
(not shown here), some small recurrences were still visible.

We also looked at the case where one of the coupling
constants, say g;, has a much larger magnitude than the other
ones (which were made equal). The behavior was similar to
that for a bath consisting of only a single spin.

In the following, we plot the solutions of different orders
of the NZ, TCL, and PM master equations and compare them
for the same parameter values.

B. NZ

In this section, we compare the solutions of different or-
ders of the NZ master equation for ,=g,=1. Figure 5
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FIG. 13. (Color online) Comparison of the exact solution, NZ4,
TCL4, and PM at ar=0.5 for N=4 for different 8 € [0.01,10]. The
exact solution is the solid (blue) line, PM is the dashed (green) line,
NZ4 is the dot-dashed (red) line, and TCL4 is the dotted (cyan) line.

shows the solutions to NZ2, NZ3, NZ4 and the exact solu-
tion for B=1 and B=10 up to the first recurrence time of the
exact solution. For short times NZ4 is the better approxima-
tion. It can be seen that while NZ2 and NZ3 are bounded,
NZA4 leaves the Bloch sphere. But note that the approxima-
tions under which these solutions have been obtained are
valid for at<<1. The NZ4 solution leaves the Bloch sphere in
a regime where the approximation is not valid. For 8=10,
NZ2 again has a periodic behavior (which is consistent with
the solution), while the NZ3 and NZ4 solutions leave the
Bloch sphere after small times. Figure 6 shows the same
graphs for N=4. In this case both NZ3 and NZ4 leave the
Bloch sphere for S=1 and =10, while NZ2 has a periodic
behavior. A clear conclusion from these plots is that the NZ
approximation is truly a short-time one: it becomes com-
pletely unreliable for times longer than at<<1.

C. TCL

Figure 7 plots the exact solution, TCL2, TCL3, and TCL4
at B=1 and B=10 for N=100 spins and €),=g,=1. It can be
seen that for 8=1, the TCL solution approximates the exact
solution well even for long times. However, the TCL solution
cannot reproduce the recurrence behavior of the exact solu-
tion (also shown in the figure.) Figure 8 shows the same
graphs for N=4. In this case, while TCL2 and TCL3 decay,
TCL4 increases exponentially and leaves the Bloch sphere
after a short time. This is because the exponent in the solu-
tion of TCL4 in Eq. (74) is positive. Here again the approxi-
mations under which the solutions have been obtained are
valid only for small time scales and the graphs demonstrate
the complete breakdown of the perturbation expansion for
large values of ar. Moreover, the graphs reveal the sensitiv-
ity of the approximation to temperature: the TCL fares much
better at high temperatures.

In order to determine the validity of the TCL approxima-
tion, we look at the invertibility of the Kraus map derived in
Eq. (18) or equivalently Eq. (25). As mentioned earlier, this
map is noninvertible if C(£)>+5(¢)>=0 for some ¢ [or equiva-
lently v,(1)=0 and v,(r)=0]. This will happen if and only if
at least one of the B, is zero. This can occur when the bath
density matrices of some of the bath spins are maximally
mixed or in the limit of a very high bath temperature.
Clearly, when the Kraus map is noninvertible, the TCL ap-
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FIG. 14. (Color online) Comparison of the exact solution, NZ4,
TCLA4, and PM at B=1 and =10 for N=100 for random values of
g, and Q,. The exact solution is the solid (blue) line, PM is the
dashed (green) line, NZ4 is the dot-dashed (red) line, and TCL4 is
the dotted (cyan) line. Note that for S=1 and B=10, TCL4, PM,
and the exact solution nearly coincide.

proach becomes invalid since it relies on the assumption that
the information about the initial state is contained in the
current state. This fact has also been observed for the spin-
boson model with a damped Jaynes-Cummings Hamiltonian
[2]. At the point where the Kraus map becomes noninvert-
ible, the TCL solution deviates from the exact solution (see
Fig. 9). We verified that both v, and v, vanish at this point.

D. NZ, TCL, and PM

In this section, we compare the exact solution to TCL4,
NZ4, and the solution of the optimal PM master equation.
Figure 10 shows these solutions for N=100 and B=1 and
B=10 when Q,=g,=1. Here we observe that while the
short-time behavior of the exact solution is approximated
well by all the approximations we consider, the long-time
behavior is approximated well only by PM.

For B=1, NZ4 leaves the Bloch sphere after a short time
while TCL4 decays with the exact solution. But as before,
the TCL solution cannot reproduce the recurrences seen in
the exact solution. The optimal PM solution, by contrast, is
capable of reproducing both the decay and the recurrences.
TCL4 and NZ4 leave the Bloch sphere after a short time for
B=10, while PM again reproduces the recurrences in the
exact solution. Figure 11 shows the corresponding graphs for
N=4 and it can be seen that again PM can outperform both
TCL and NZ for long times. Figures 12 and 13 show the
performance of TCL4, NZ4, and PM compared to the exact
solution at a fixed time (for which the approximations are
valid) for different temperatures (8 e[0.01,10]). It can be
seen that both TCL4 and the optimal PM solution perform
better than NZ4 at medium and high temperatures, with
TCL4 outperforming PM at medium temperatures. The per-
formance of NZ4 is enhanced at low temperatures, where it
performs similarly to TCL4 (see also Figs. 10 and 11). This
can be understood from the short-time approximation to the
exact solution given in Eq. (37), which up to the precision
for which it was derived is also an approximation of NZ2
[Eq. (46)]. As discussed above, this approximation (which
also coincides with TCL2) is valid when 2Q,(af)><1. As
temperature decreases, so does the magnitude of Q,, which
leads to a better approximation at fixed az. Since NZ2 gives
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FIG. 15. (Color online) Comparison of the exact solution, NZ4,
TCL4, and PM at B=1 and B=10 for N=4 for random values of g,
and (),,. The exact solution is the solid (blue) line, PM is the dashed
(green) line, NZ4 is the dot-dashed (red) line, and TCL4 is the
dotted (cyan) line. Note that for S=1, TCL4, PM, and the exact
solution nearly coincide for short and medium times.

the lowest-order correction, this improvement is reflected in
NZ4 as well.

In Figs. 14 and 15 we plot the averaged solutions over 50
ensembles of random values for (), and g, in the interval
[-1,1]. We see that on average TCL4, NZ4, and the optimal
PM solution behave similarly to the case when Q,=g,=1.
Due to the damping of the recurrences, especially when N
=100, the TCL4 and the PM solutions match the exact solu-
tion closely for much longer times than in the deterministic
case. Again, the PM solution is capable of qualitatively
matching the behavior of the exact solution at long times.

E. Coarse-graining approximation

Finally, we examine the coarse-graining approximation
discussed in Sec. III. We choose the time over which the
average trace distance is calculated to be the time where the
exact solution dies down. In Fig. 16 we plot the coarse-
grained solution for the value of 7 for which the trace dis-
tance to the exact solution is minimum. As can be seen, the
coarse-graining approximation does not help since the Mar-
kovian assumption is not valid for this model. In deriving the
coarse-graining approximation [32] one makes the assump-
tion that the coarse-graining time scale is greater than any
characteristic bath time scale. But the characteristic time
scale of the bath is infinite in this case.

V. SUMMARY AND CONCLUSIONS

We studied the performance of various methods for ap-
proximating the evolution of an Ising model of an open
quantum system for a qubit system coupled to a bath con-
sisting of N qubits. The high symmetry of the model allowed
us to derive the exact dynamics of the system as well as find
analytical solutions for the different master equations. We
saw that the Markovian approximation fails for this model
due to the time independence of the bath correlation func-
tions. This is also reflected in the fact that the coarse-
graining method [32] does not approximate the exact solu-
tion well. We discussed the performance of these solutions
for various parameter regimes. Unlike other spin-bath mod-
els discussed in literature (e.g., [16]), the odd-order bath cor-
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FIG. 16. (Color online) Comparison of the exact solution and
the optimal coarse-graining approximation for N=50 and S=1. The
exact solution is the solid (blue) line and the coarse-graining ap-
proximation is the dashed (green) line. Note the linear scale time
axis.

relation functions do not vanish, leading to the existence of
odd-order terms in the solution of TCL and NZ equations.
These terms describe the rotation around the z axis of the
Bloch sphere, a fact which is reflected in the exact solution.
We showed that up to fourth order TCL performs better than
NZ at medium and high temperatures. For low temperatures
we demonstrated an enhancement in the performance of NZ
and showed that NZ and TCL perform equally well. We
showed that the TCL approach breaks down for certain pa-
rameter choices and related this to the noninvertibility of the
Kraus map describing the system dynamics. We also studied
the performance of the post-Markovian master equation ob-
tained in [13] with an optimal memory kernel. We discussed
possible ways of approximating the optimal kernel for short
times and derived the kernel which leads to an exact fit to the
NZ2 solution. It turns out that PM master equation performs

1
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as well as the TCL2 for a large number of spins and outper-
forms all orders of NZ and TCL considered here at long
times, as it captures the recurrences of the exact solution.

Our study reveals the limitations of some of the best
known master equations available in the literature, in the
context of a spin bath. In general, perturbative approaches
such as low-order NZ and TCL do well at short times (on a
time scale set by the system-bath coupling constant) and fare
very poorly at long times. These approximations are also
very sensitive to temperature and do better in the high-
temperature limit. The PM does not do as well as TCL4 at
short times but has the distinct advantage of retaining a
qualitatively correct character for long times. This conclu-
sion depends heavily on the proper choice of the memory
kernel; indeed, when the memory kernel is not optimally
chosen the PM can yield solutions which are not as satisfac-
tory [39].
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APPENDIX A: BATH CORRELATION FUNCTIONS

Here we show how to calculate the bath correlation func-
tions used in our simulations. The kth-order bath correlation
function is defined as

Or= Tr{kaB},

where B and pz were given in Egs. (16) and (12), respec-
tively. This yields

"
n

<ll(2 2,07 — 0IB)|1 I’ |<E 2w 613) |- |l’"><l’”|<2 80— 613)|l>

"
n

Iy - 9) S

- ) (E gkl - «9)

"

(A1)

where Z=3, exp(-BE,) and the expressions for E;, and E, were given in Eqgs. (21) and (23), respectively.
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The above formulas are useful when the energy levels E,

and E ; are highly degenerate, which is the case, for example,
when g,=g and ,=( for all n. For a general choice of
these parameters, it is computationally more efficient to con-
sider @ in the form (28) and the initial bath density matrix in
the form (26). For example, the second-order bath correla-
tion function is

N N
Q2=Tr <2 gmof;z_ 01)(2 gnofz_ 01)[)3

m=1 n=1

N
> 8.8,

n,m=1

N
=Tr ohpp [ —20Tr| 2 g,0%pp ( +
n=1

=Tr 2 En8m ¢® (I+ﬁn 1) _02
n,m=1
=2 Tr{gm—( +Bm1)}Tr{gn%(ofz+18n1)}
n#m
N
x 11 Tr{—(1+,8,o*])}+Tr Egan -
Jj#Fmn n=1
N
= 2 2uBu8uBu- Egnﬁ +Egn 6 = Egz(l— BY).
n,m=1 n=1
-
# (A2)

Using the identity 1—tanh?*(-x/2)=2/(1+cosh x), this corre-
lation function can be expressed in terms of the bath spectral
density function [Eq. (13)] as follows:

N
0,=> g(1-6)

n=1

= f 5(9 - Qn)|gn|2

Q
x[l —tanh2<— —)}dﬂ
2kT

PHYSICAL REVIEW A 76, 052117 (2007)

B fw 2J(Q)dQ)
_ - ( Q ) |
1 + cosh| —
kT

Higher-order correlation functions are

analogously.

computed

APPENDIX B: CUMULANTS FOR THE NZ AND TCL
MASTER EQUATIONS

We calculate the explicit expressions for the cumulants
appearing in Eq. (68), needed to find the NZ and TCL per-
turbation expansions up to fourth order.

Second order,

(L?p=-Trg{[HL[Hp.p]l} @ pg
=- TTB{H%P —-2H;pH;+ PH%} & pp
=-20,(ps—

!

=p',

o-szO-z) ® PB

(L2p=PLPPL*Pp="PL*Pp’

=-20,(ps—

where pg=Trpp'=-20,(ps~
<£2>2P =-20,{[-20(ps

- 0,p50,)] = 0 [-20,(ps

Ung"a-z) ® P> (Bl)

0.ps0,). Therefore

- zpsaz)]o-z} ® PB

=803(ps— 0.p50,) @ pg. (B2)

Third order,
(L)p=iTeg{lH,[HLH.p]1} @ py=iTrg{H}p~3HpH,
+ 3H1PH§ - PH;} ® pp=4i03(0,ps— pso,) @ pg.
(B3)
Fourth order,
(LYp =Trp{[H.[H.[H}.[H}.p]11]} @ pp= TTB{H?P
— 4HjpH, + 6H]pH] — 4H,pH; + pH[} @ pp

=804(ps - (B4)

0.ps0.) & pp.
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