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Adiabatic approximation in open quantum systems
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We generalize the standard quantum adiabatic approximation to the case of open quantum systems. We
define the adiabatic limit of an open quantum system as the regime in which its dynamical superoperator can
be decomposed in terms of independently evolving Jordan blocks. We then establish validity and invalidity
conditions for this approximation and discuss their applicability to superoperators changing slowly in time. As
an example, the adiabatic evolution of a two-level open system is analyzed.
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. INTRODUCTION p(t) = TrglU(t) psgO)UT(1)], (1)

The adiabatic theorefri—3] is one of the oldest and most where p(t) is the system stateysg(0)=p(0) ® pg(0) is the
useful general tools in quantum mechanics. The theorernitially uncorrelated system-bath state, andJ(t)
posits, roughly, that if a state is an instantaneous eigenstatez’exp[-ifBHSB(t/)dt'] (7 denotes time-ordering; we sét
of a sufficiently slowly varying Hamiltoniaii at one time,  =1). Such an evolution is completely positive and trace pre-
then it will remain an eigenstate at later times, while itSser\/ing[]_S,zo,z:IL Under certain approximations, itis pos-

eigenenergy evolves continuously. lts role in the study ofible to convert Eq(1) into the convolutionless form
slowly varying quantum mechanical systems spans a vast

array of fields and applications, such as energy-level cross- p(t) = LOp(t). (2)
ings in moleculeg4,5], quantum field theory6], and geo-

metric phase$7,8]. In recent years, geometric phases have‘o‘n important example is

been proposed to perform quantum information processing 1N
[9-11], with adiabaticity assumed in a number of schemes p(t) = —i[H(1),p()] + = ((Ti(1), p()IT(1)]
for geometric quantum computatiqe.g.,[12-15). More- 2ia

over, additional interest in adiabatic processes has arisen in t
connection with the concept of adiabatic quantum comput- +[Li©p(®, I (0)]). (3)
ing, in which slowly varying Hamiltonians appear as a prom-HereH(t) is the time-dependent effective Hamiltonian of the
ising mechanism for the design of new quantum algorittmgpen system antf;(t) are time-dependent operators describ-
and even as an alternative to the conventional quantum Cifng the system-bath interaction. In the literature, &y with
cuit model of quantum computatida6, 17 timeindependent operatoi; is usually referred to as the
Remarkably, the notion of adiabaticity does not appear tqarkovian dynamical semigroup, or Lindblad equation
have been extended in a systematic manner to the arena fg 2123 [see also Ref[24] for simple derivation of Eg.
openquantum systems, i.e., quantum systems coupled {0 &) from Eq. (1)]. However, the case with time-dependent
external environmer(tL8]. Such systems are of fundamental coefficients is also permissible under certain restrict{@ss
interest, as the notion of a closed system is always an idealirhe Lindblad equation requires the assumption of a Markov-
zation and approximation. This issue is particularly impor-jgn path with vanishing correlation time. Equati¢® can be
tant in the context of quantum information processing, wherengre general; for example, it applies to the case of non-
environment-induced decoherence is viewed as a fundamearkovian convolutionless master equations studied in Ref.
tal obstacle on the path to the construction of quantum inforf26). |n this work we will consider the class of convolution-
mation processoree.g.,[19]). _ _ less master equatiort8). In a slight abuse of nomenclature,
The aim of this work is to systematically generalize theyye will henceforth refer to the time-dependent gener4toy

concept of adiabatic evolution to the realm of open quantunys ihe Lindblad superoperator, and h&) as Lindblad op-
systems. Formally, an open quantum system is described a$,ors.

follows. Consider a quantum systefncoupled to an envi- Returning to the problem of adiabatic evolution, concep-
ronment, or_bafch (with respective Hilbert SpaC%S’HB)’ ._tually, the difficulty in the transition from closed to open
evolving unitarily under the total system-bath Hamiltonian gy gtems s that the notion of Hamiltonian eigenstates is lost,
Hsp The exact system dynamics is given by tracing over th&jce the Lindblad superoperator—the generalization of the
bath degrees of freedop 8] Hamiltonian—cannot in general be diagonalized. It is then
not a priori clear what should take the place of the adiabatic
eigenstates. Our key insight in resolving this difficulty is that
*Electronic address: msarandy@chem.utoronto.ca this role is played bydiabatic Jordan blocks of the Lindblad
"Electronic address: dlidar@chem.utoronto.ca superoperator The Jordan canonical fori27], with its as-
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sociated left and right eigenvectors, is in this context the D »
natural generalization of the diagonalization of the Hamil- () = >, an(t)e/odt Ent")
tonian. Specifically, we show that, for slowly varying Lind- n=1
blad superoperators, the time evolution of the density matrix;:, a,(t) being complex functions of time. Substitution of
written in a suitable basis in the state space of linear operaEq_ (6) into Eq. (4) yields
tors, occurs separately in sets of Jordan blocks related to
each Lindblad eigenvalue. This treatment for adiabatic pro- > (any + an|h>)e—if})dt'En(t’) =0, (7)
cesses in open systems is potentially rather attractive as it n
can simplify the description of the dynamical problem by o
breaking down the Lindblad superoperator into a set of de?Nere use has been made of E8). Multiplying Eq. (7) by
coupled blocks. In order to clearly exemplify this behavior, (K(t), we have
we analyze a simple two-level open system for which the . T T
exact solution of the master equati(®) can be analytically &= _En: an(Kle ot et (8
determined.

The paper is organized as follows. We begin, in Sec. [lwhere
with a review of the standard adiabatic approximation for _
closed quantum systems. In Sec. lll, we describe the general In(t) = Eq(t) = E(D). C)

dynamics of open quantum systems, review the superopera useful expression fork|n), for k#n, can be found by

tor formalism, and introduce a strategy to find suitable basegking the time derivative of Eq(5) and multiplying the
in the state space of linear operators. Section IV is devoted tsylting expression bgk|, which reads

deriving our adiabatic approximation, including the condi-

n(t)), (6)

tions for its validity. In Sec. V, we provide a concrete ex- N (K|H|n)
ample which illustrates the consequences of the adiabatic (k) = Ok (n#K). (10
behavior for systems in the presence of decoherence. Finall¥, ,
we present our conclusions in Sec. VI. herefore, Eq(8) can be written as
_ - KHIN g
IIl. THE ADIABATIC APPROXIMATION IN CLOSED a=—adklk) - > g eI (11)
QUANTUM SYSTEMS n#k nk
A. Condition on the Hamiltonian Adiabatic evolution is ensured if the coefficieaigt) evolve

. ) ) . independently from each other, i.e., if their dynamical equa-
To facilitate comparison with our later derivation of the o ¢ 4o not couple. As is apparent from HAl), this re-

adiabatic approximation for open systems, let us begin b¥1uirement is fulfilled by imposing the conditions
reviewing the adiabatic approximation in closed quantum

systems, subject to unitary evolution. In this case, the evolu- <k|H|n> )
tion is governed by the time-dependent Schrédinger equation Orgtaé T O < 02£T|gnk|, (12
H()| (1)) = i|¢(t)>, (4)  which serves as an estimate of the validity of the adiabatic

approximation, wherd is the total evolution time. Note that
: . . ) A the left-hand side of Eq(12) has dimensions of frequency
state in aD-dimensional Hilbert space. For simplicity, we and hence must be compared to the relevant physical fre-
assume that the spectrum bif(t) _is enti_rely discrete and _quency scale, given by the gap.[3,28]. For a discussion of
npndegenerate. Thus we can define an instantaneous baSISuQé adiabatic regime when there is no gap in the energy spec-
eigenenergies by trum see Refs[29,30. In the case of a degenerate spectrum
H(1)|n(t)) = E,(1)|n(1)), (5) of !—|(t), Eqg. (10 h9|d§ only for eigeqstatekk} 'anc.l |n>'for
which E, # E,. Taking into account this modification in Eq.
with the set of eigenvectotis(t)) chosen to be orthonormal. (11), it is not difficult to see that the adiabatic approximation
In this simplest case, where to each energy level there corrgreneralizes to the statement that each degenerate eigenspace
sponds a unique eigenstatadiabaticity is then defined as of H(t), instead of individual eigenvectors, has independent
the regime associated with an independent evolution of theyolution, whose validity conditions given by EG.2) are to
instantaneous eigenvectors oftH This means that instan- pe considered over eigenvectors with distinct energies. Thus,
taneous eigenstates at one time evolve continuously to th@ general one can define adiabatic dynamics of closed quan-
corresponding eigenstates at later times, and that their corrgam systems as follows.
sponding eigenenergies do not cross. In particular, if the sys- Definition 1 A closed quantum system is said to undergo
tem begins its evolution in a particular eigenstat®)), then  adiabatic dynamics if its Hilbert space can be decomposed
it will evolve to the instantaneous eigenstaté)) at a later  into decoupled Schrédinger eigenspaces with distinct, time-
time t, without any transition to other energy levels. In ordercontinuous, and noncrossing instantaneous eigenvalues of
to obtain a general validity condition for adiabatic behavior,H(t).
let us expandy(t)) in terms of the basis of instantaneous It is conceptually useful to point out that the relationship
eigenvectors ofH(t), between slowly varying Hamiltonians and adiabatic behav-

whereH(t) denotes the Hamiltonian and(t)) is a quantum
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ior, which explicitly appears from Eq11), can also be dem- dH(s ,
onstrated directly from a simple manipulation of the Fri(®) = an(s)(k(s)| d(s)|n(5)>e_'yk(s)- (20
Schrédinger equation: recall thieft) can be diagonalized by
a unitary similarity tranformation However, for an adiabatic evolution as defined above, the
coefficientsa,(s) evolve without any mixing, which means
Hq(t) = U™ (OH(bU(Y), (13)  thata,(s)=~a,(0)é"®. Therefore,

whereH,(t) denotes the diagonalized Hamiltonian dd@)
is a unitary transformation. Multiplying E¢4) by U™(t) and
using Eq.(13), we obtain

Fr(S) = an(0)<k(S)|d';—(:)ln(S)>e‘i”k(s)‘7"<S”. (21)

In order to arrive at a condition oR, it is useful to separate
Hd|‘/’>d=i|';/f>d_iu_l|‘/’>r (14) out the fast oscillatory part from Eq19). Thus, the inte-
grand in Eq.(19) can be rewritten as

where|)q=U"Y) is the state of the system in the basis of F(s) , il d(F.s) )
eigenvectors ofH(t). Upon considering thaH(t) changes Lsre—iTIS ds”gma(s”):'_{_,(T_Se—iﬂ?,ds”gnk(s”))
slowly in time, i.e.,dH(t)/dt=0, we may also assume that 9nk(S") TLds'\ gnu(s')
the unitary transformatiotJ(t) and its inverseU(t) are o o d [Fods)
slowly varying operators, yielding — g Mo ds "ons >—( ne ) .
ds'\ gi(s))
H(O)a =1 A1) (15) (22)

Thus, sinceHy(t) is diagonal, the system evolves separaterSUbSt'tUtIon of Eq(22) into Eq. (19) results in

in each energy sector, ensuring the validity of the adiabatic . i Fod0)  FrdS) _rrsywre (o
approximation. In our derivation of the condition of adiabatic a(S)e™ K% =a,(0) + ?E = 0 2 (s) e
behavior for open systems below, we will make use of this n#k\ O Gnk

semi-intuitive picture in order to motivate the decomposition .\ fs ”)i Frs)

of the dynamics into Lindblad-Jordan blocks. ds'e"/o s ons™) —— = ) (23
0 ds’ gi(s’)

B. Condition on the total evolution time A condition for the adiabatic regime can be obtained from
Eg. (23) if the integral in the last line vanishes for larde
Let us assume that, 8— o, the energy difference remains
nonvanishing. We further assume tIuﬂFnk(s’)/gﬁk(s’)}/dsJ
8s integrable on the intervdD,s]. Then it follows from the
Riemann-Lebesgue lemni&2] that the integral in the last
. line of Eq.(23) vanishes in the limifT — o (due to the fast
eivk(t)i[ak(t)e—iyk(t)] == an<k|H|”> e/ odt gndt) oscillation of the integrand33]. What is left are therefore

at n=k  Onk ’ only the first two terms in the sum over# k of Eq. (23).
Thus, a general estimate of the time rate at which the adia-

The adiabaticity condition can also be given in terms of
the total evolution timél. We shall consider for simplicity a
nondegeneratél(t); the generalization to the degenerate cas
is possible. Let us then rewrite E(L1) as follows[31]:

(16) batic regime is approached can be expressed by
where y(t) denotes Berry's phasg’] associated with the =
state|k), T> et (24)
t
H ! ! | ! h
WO =i f dt/(k(t)[k(t)). (a here
0
dH(s)
: : : : F = max|a,(0)(k(s)| In(s)l,
Now let us define a normalized tingthrough the variable 0=s<1 ds
transformation
= min S 25
t=sT O<s<1. (18) g OgSﬂIan( )| (25

grating, we obtain obtained if the system starts its evolution in a particular

eigenstate of(t). Taking the initial state as the eigenvector

(eI =a(0) - Sds’ Fnk(s,)e—iT I gl |[m(0)), with a,(0)=1, adiabatic evolution occurs if
nzkJo  Onk(S'
(19 e

where where

(26)
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H(s) hence generally nondiagonalizable. However, it is always
7:=0Ts;a>§|<k(5)|_ds Im(s))], possible to obtain an elegant decomposition in terms of a
o block structure, the Jordan canonical fof&Y]. This can be

. achieved by the similarity transformation
G= min gnds). 27) Y Y

O=ss=<1

-1
Equation(26) gives an important validity condition for the £,(0) = STOLOSW), (3D)

adiabatic approximation, which has been used, e.g., to deter-

mine the running time required by adiabatic quantum algowhere L;(t)=diagJs, ...,J,) denotes the Jordan form of

rithms[16,17). L(t), with J,, representing a Jordan block related to an eigen-
vector whose corresponding eigenvalue\ js

Ill. THE DYNAMICS OF OPEN QUANTUM SYSTEMS

In this section, we prepare the mathematical framework Ae 10 0
required to derive an adiabatic approximation for open quan- 0 N 1 - 0
tum systems. Our starting point is the convolutionless master = & oo o] (32
equation(2). It proves convenient to transform to the super- 0 -~ 0 \ 1
operator formalism, wherein the density matrix is repre- N
sented by @?-dimensional “coherence vector” 0 .. .. 0\,
) =(p1 p2 - Pp2), (28)  The numbem of Jordan blocks is given by the number of

and the Lindblad superoperatorl becomes a Iinearly indep_enden_t eigenstates[dft)_, with ea_ch_eigenstate
(D2 x D?-dimensional supermatrij21]. We use the double associated with a different block,. Since£(t) is in general
bracket notation to indicate that we are not working in thenon-Hermitian, we generally do not have a basis of eigen-
standard Hilbert space of state vectors. Such a representati§i:tes, whence some care is required in order to find a basis

can be generated, e.g., by introducing a basis of Hermitiarfor describing the density operator. A systematic procedure
trace-orthogonal, and traceless operatgesg., s¢D)],  for finding a convenient discrete vector basis is to start from

whence the; are the expansion coefficients ofn this basis the instantaneous right and left eigenstates @f, which are

[21], with p, the coefficient ofl (the identity matrix. In this ~ defined by

case, the condition Tp?><1 corresponds td|p))|<1, p

=p'to p;=p;, and positive semidefiniteness wfs expressed L(O)| PO =N D[P, (1)), (33
in terms of inequalities satisfied by certain Casimir invariants

[e.g., of sUD)] [34-34. A simple and well-known example

of this procedure is the representation of the density operator {QMIL(1) = {Qut) N (D), (39
of a two-level systemqubit) on the Bloch sphere, via

:(|2T5'&)/_2’ where&.:(ox', ‘Tyv"z)_is the vector of Pauli \yhere, in our notation, possible degeneracies correspond to
matrices), is the 2x 2 identity matrix, and € R®is a three- No=N\g With @# . In other words, we reserve a different
dimensional coherence vector of norl. More generally, index « for each independent eigenvector since each eigen-
coherence vectors live in Hilbert-Schmidt space: a statgector is in a distinct Jordan block. It can immediately be
space of linear operators endowed with an inner product th&§hown from Eqs(33) and (34) that, for \,# X, we have

can be defined, for general vectarandv, as (Q4(0|P4(1)))y=0. The left and right eigenstates can be eas-
1 ily identified when the Lindblad superoperator is in the Jor-
(uv) = up)) = K[Tr(uTv), (290 dan form £,(t). Denoting|P,(1)));=SX(t)|P,(1))), i.e., the

right eigenstate of;(t) associated with a Jordan blodk,
where \ is a normalization factor. Adjoint element&| in  then Eq.(33) implies that|P,(t))); is time-independent and,
the dual state space are given by row vectors defined as tigdter normalization, is given by
transpose conjugate @f)): ((v|=(v1,v5, ... vp2). A density

matrix can then be expressed as a discrete superposition of 1

states over a complete basis in this vector space, with appro-

priate constraints on the coefficients so that the requirements |Pa>)J|Ja: ], (35

of Hermiticity, positive semidefiniteness, and unit tracepof ;

are observed. Thus, representing the density operator in gen- 0

eral as a coherence vector, we can rewrite (Qin a super-

operator language as where only the vector components associated with the Jordan

. block J, are shown, with all the others vanishing. In order to

LOp®)) = [p(1))), (30) « J

have a complete basis we shall define new states, which will
where £ is now a supermatrix. This master equation generbe chosen so that they preserve the block structurg,@dj.
ates nonunitary evolution, sincé(t) is non-Hermitian and A suitable set of additional vectors is

012331-4



ADIABATIC APPROXIMATION IN OPEN QUANTUM SYSTEMS PHYSICAL REVIEW A71, 012331(2009

0 0 batic approximation. We begin by defining the adiabatic

1 0 d_y_namig:s of an open system as a generalization of the defi-
@ _ (~1) _ nition given above for closed quantum systems.

DM, =) O [ DR Dl =1 0 |, Definition 2 An open quantum system is said to undergo

: : adiabatic dynamics if its Hilbert-Schmidt space can be de-
0 1 composed into decoupled Lindblad-Jordan eigenspaces with
distinct, time-continuous, and noncrossing instantaneous ei-

(36) genvalues ofZ(t).

wheren, is the dimension of the Jordan blodk and again This definition is a natural extension for open systems of
all the components outsidg, are zero. This simple vector the idea of adiabatic behavior. Indeed, in this case the master

structure allows for the derivation of the expression equation(2) can be decomposed into sectors with different
_ A _ and separately evolving Lindblad-Jordan eigenvalues, and

L5(1) [Py = DIy + N, (0) DD, (37)  we show below that the condition for this to occur is appro-

, - i . riate “slowness” of the Lindblad superoperator. The split-

with |Df)>>JE|Pa>>J.a”d |D_(a ")y=0. The Set{|D,(i)>>J' ] Eng into Jordan blocks of the Lind%ladpsuperoperatof is

=0, ... (n,~1)} can immediately be related to a right vector ychieved through the choice of a basis which preserves the

basis for the originalC(t) by means of the transformation jorgan block structure as, for example, the sets of right

1DV (1))y=5(t)| D)), which, applied to Eq(37), yields {|D2)(t)))} and left{((€"(t)[} vectors introduced in Sec. IlI.
L) |Dg)(t)>> - |D(Lj‘1)(t)>> ) |Dg)(t)>>. (38) tsolﬁgh a basis generalizes the notion of Schrédinger eigenvec-

Equation (38) exhibits an important feature of the set

{|D(B‘)(t)>>}, namely, it implies that Jordan blocks are invari- A. Intuitive derivation

ant under the action of the Lindblad superoperator. An analo- | ot s first show how the adiabatic Lindblad-Jordan

gous procedure can be employed to define the left eigenbgygeis arise from a simple argument, analogous to the one

sis. Denoting by((Q,(1)[=((Q,()|S(t) the left eigenstate of presented for the closed calegs. (13)—(15)]. Multiplying

L4(t) associated with a Jordan blodk, Eq.(34) leads to the Eq. (30) by the similarity transformation matri(t), we

normalized left vector obtain
Jdli=(0,...,0,2. 39 : :
KQll3, = (0...0.9 39 £5l0s= |- 57 o, (43)
The additional left vectors are defined as where we have used Eq31) and defined)p));=S"p)).
J<<5<0)||J =(1,0,0, ...,0, Now suppose thaf(t), and consequentl®(t) and its inverse

SY(t), changes slowly in time so th&(t)~0. Then, from
Eq. (43), the adiabatic dynamics of the system reads

L) [p)N3= [pt);. (44)

AEX?]]5,=(0,...,0,1,0, (40) | o _
a Equation(44) ensures that, choosing an instantaneous basis
which imply the following expression for the left basis vec- for the density operatop(t) which preserves the Jordan

tor ((52)(t)|: J<<Eg)|5“ (1) for £(1): block structure, the evolution gf(t) occurs separately in
) el 0 adiabatic blocks associated with distinct eigenvalues (of.
(€ MILM) = (O + (€ DN 4D of course, the conditions under which the approximation

Here we have used the notatiof(""|=(Q,| and S(t)=0 holds must be carefully clarified. This is the sub-

(€M =0. A further property following from the definition ject of the next two subsections.
of the right and left vector bases introduced here is

(i) () - DIV = J]
2 (t)mﬂ (0= (e |DB )= Oap. 42 Let us now derive the validity conditions for open-system
This orthonormality relationship between corresponding leftadiabatic dynamics by analyzing the general time evolution
and right states will be very useful in our derivation below of of a density operator under the master equat&f. To this
the conditions for the validity of the adiabatic approximation.end, we expand the density matrix for an arbitrary tinie
the instantaneous right eigenbaﬁi@fg)(t)))} as

B. Condition on the Lindblad superoperator

IV. THE ADIABATIC APPROXIMATION IN OPEN 1 ng-1
QUANTUM SYSTEMS e =22 2 rfOl D)), (45)
B:]_ j:()

We are now ready to derive our main result: an adiabatic
approximation for open quantum systems. We do this by obwherem is the number of Jordan blocks anglis the dimen-
serving that the Jordan decompositionit) [Eq. (31)] al-  sion of the blockl;. We emphasize that we are assuming that
lows for a nice generalization of the standard quantum adiathere are no eigenvalue crossings in the spectrum of the
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Lindblad superoperator during the evolution. Requiring then _ ng-1
that the density operatds(t))) in Eq. (45) evolves under the UED W UE S E rPEVIDY))
master equatio30) and making use of Eq38), we obtain BN g\, 1=0
m ng-1 ng 1
()| 0-D ) - X E DDy, (53)
rg (| D +Ng |D
EE:“% FUDE) +Ng[DE) fngin, 0
m ng-1 _— 0 where the termS(Sﬁ?lbg)», for Nz#\,, are given by Eq.
=2 2 G DYy +rY [DD)). (46)  (51). In accordance with our definition of adiabaticity above,
B=1 j=0

the adiabatic regime is obtained when the sum in the second
Equation(46) multiplied by the left eigenstatéié‘fm results  line is negligible. Summarizing, by introducing the normal-
in ized times defined by Eq(18), we thus find the following
from Egs.(51) and (53).

i : : : N Theorem 1A sufficient condition for open quantum sys-
PO =20 +r0P = 3 DUEVIDYY,  (47)  tem adiabatic dynamics as given in Definition 2 is

m ng-1

g=1 j=0
with r'"(t)=0. Note that the sum oveg mixes different (Ng=i) -0\ (EX7P° 1|—|D(J Sy
Jordan blocks. An analogous situation occurred in the closed max| > (H > ) " <1,
system case, in E¢11). Similarly to what was done there, in O<s<1| p=1 \g=1 k=0 (= )Spwf;as"

order to derive an adiabaticity condition we must separate (54)
this sum into terms related to the eigenvalygof £(t) and _ _ S _ _ _
terms involving mixing with eigenvalues; # \,,. In this lat- ~ With Az # X\, and for arbitrary indices and| associated with

ter case, an expression can be found((drﬂ)mg))) as fol-  the Jordan blocks and B, respectively.

oo ing h e deraive of 059 nd g 11 ST T U Shenes o ieng o o0
(i) : : o . (53),
by ((£,| we obtain, after using Eq#41) and (42), which in turn guarantees that sets of Jordan blocks belonging

to different eigenvalues of(t) have independent evolution.

Oy =~ OIIE (i+1)| (i) . . . .
((&q |DBJ n= o (& |£|DB’ N+ (& |D<BJ » Thus the accuracy of the adiabatic approximation can be es-
pa L timated by the computation of the time derivative of the
- (EVDI), (48)  Lindblad superoperator acting on right and left vectors.
) Equation(54) can be simplified by considering the term with
where we have defined maximum absolute value, which results in the following.
®ga(t) = Ng(t) = N, (1) (49) Corollary 1. A sufficient condition for open quantum sys-

tem adiabatic dynamics is
and assumed,# \g. Note that, whilewg, plays a role

analogous to that of the energy differeng,g in the closed <<g(l+p 1>| |DJ $))
case[Eq. (9)], wg, may be complex. A similar procedure can Nna”B 1 55
generate expressions for all the termsg)|Dﬁ_k))), with Kk oTi)i wg’;sp ’

-+ Thus, an iteration of Eq48) yields where the max is taken for any+ B, and over all possible

(- 1) e RPN values ofi € {0, ... n,~1}, j €{0, ... ng—1}, andp, with
(e = E et ((EILIDE )+ (I, () [ B (-0
©pa h_ X Ne—1+1+]
=3 (IS -1
(50) p=1 \g=1 ks=0 1+]
From a _second recursive iteration, now for the term _(n,=i+1+j)!
<<Sg+1)|Dg"k)>> in Eq. (50), we obtain T@+ptin - (56)
L (g=1) /P (1=Sg-0) <<g<i+P‘1>|Z;|D(J"Sp)>> Observe that the factokT«"s defined in Eq.(56) is just the
DUy = @ B N . -
(=2 (11 = 5 7S, number of terms of the sums in E&4). We have included a
P=1 \a=1 k=0 (= DPwp, superscriptng, even though there is no explicit dependence
(51) onng, sincej {0, ... ng—1}.
h Furthermore, an adiabatic condition for a slowly varying
where Lindblad superoperator can directly be obtained from Eg.
q P (-Sg-2) S S (54), yielding the following.
S=>2ks (Il => .. (52) Corollary 2. A simple sufficient condition for open quan-
s1 a=1 kg0 ki=0 kp=0 tum system adiabatic dynamics 4s=0.
with $=0. We can now split Eq(47) into diagonal and Note that this condition is in a sense too strong, since it
off-diagonal terms need not be the case thatis small in generali.e., for all its
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matrix elements Indeed, in Sec. V we show via an example t ) )

that adiabaticity may occur due to thexact vanishing of Qpo(1) =f dt’ wga(t'). (62)
relevant matrix elements &. The general condition for this °

to occur is the presence ofdynamical symmetr§37]. Equation(61) is very similar to Eq.(11) for closed systems,

Let us end this subsection by mentioning that we can alsbut the fact thatlg, is in general complex-valued leads to
write Eq. (54) in terms of the time variablé instead of the some important differences, discussed below. We next intro-
normalized times. In this case, the natural generalization of duce the scaled time=t/T and integrate the resulting ex-

Eq. (54 is pression. Using Eq59), we then obtain
i . o) - s
B T Lot/ ) Pu(9) = Pu(0) - f 48 P, (s')b, ()
max| 3 (1] S _— 0
O<t<T| p=1 \g=1 kq=0 (— 1) Wy
; S Vg (8) )
< min . 5 - ) —Pa TQpa(s")
min gl 57 > | ds L=l (63)

B#aJ 0 wﬁa(S’)

Note that, as in the analogous conditiit®) in the closed \hered (s) is defined by
case, the left-hand side has dimensions of frequency, and

hence must be compared to the natural frequency seale _ d

However, unlike the closed-systems case, whergE?).can Dls) = <<8a(s)|ds|Da(s))> (64)

immediately be derived from the time conditiq@4), we

cannot prove here thab, is indeed the relevant physical @ndVp.(s) by

scale. Therefore, Eq57) should be regarded as a heuristic dL(s)

eriterion. Vial®) = PASELI— D). (65)
C. Condition on the total evolution time The integrand in the last line of E€53) can be rearranged in

As mentioned in Sec. II, for closed systems the rate aft Similar way to Eq(22) for the closed case, yielding

which the adiabatic regime is approached can be estimated in y, (s) 1l d /v d vV
terms of the total time of evolution, as shown by E(®) B> M09 = —[—(—éﬂemﬁa(s)> - emﬁa(s)——%]_
and (26). We now provide a generalization of this estimate ®palS) TLds\ wg, dswis,

for adiabaticity in open systems. (66)

1. One-dimensional Jordan blocks Therefore, from Eq(63) we have

Let us begin by considering the particular case wh(tg _ ¢ , N, 1 V4(0)
has only one-dimensional Jordan blocks and each eigenvalue Pa(S) = Pul(0) 0 dS Pa(S)Po(s) + TBEM w%a(o)
corresponds to a single independent eigenvector, ig.,

=\z0 a=p. Bearing these assumptions in mind, E§3) ~ Vgal9) RONEN deS’eTnﬂ“(S,)nga(s,)>
can be rewritten as wéa(s) 0 ds wf;a(s’)
(67)

i’a = )\ara - ra<<ga|Da>> - E rﬁ«ga'Dﬁ»v (58)
pra Thus a condition for adiabaticity in terms of the total time of
evolution can be given by comparifgto the terms involv-
ing indicesB # a. This can be formalized as follows.
Proposition 1 Consider an open quantum system whose
Lindblad superoperataf(t) has the following propertiesa)

where the upper indicdsj have been removed since we are
considering only one-dimensional blocks. Moreover, for this
special case, we have from E&l)

_ «e |L‘|D ) The Jordan decomposition of(t) is given by one-
(D)) = < B (590  dimensional blocksb) Each eigenvalue of(t) is associated
WBa with a unique Jordan block. Then the adiabatic dynamics in

the interval G=s<1 occurs if and only if the following time

In order to eliminate the term,r, f Eq. (58), de- o .
n order to eliminate the term,r,, from Eq. (58), we rede conditions, obtained for each Jordan bloekof £(s), are

fine the variable ,(t) as

satisfied:
t ’ ’
I o(t) = pu(t)e/ora®dt (60)
T> max|>, (\—/‘g"ﬂ - \—/gaﬁemﬂa(s)
which, applied to Eq(58), yields 0=s=1| gra\ W5,(0)  @p,(9)
i . . 0 S , d V a(s/)
Pa="— pa<<5a|Da>> - 2 pﬁ<<ga|DB>>e Ba, (61) + f ds,eTQBOt(S )__QL (68)
BFa 0 ds wﬁa(sr)
with Equation(68) simplifies in a number of situations.
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(i) Adiabaticity is guaranteed whenevé, vanishes for ng1 g /P (iS40
all a#B. An example of this case will be provided in Sec. V. > => 11 . (72)
(i) Adiabaticity is similarly guaranteed whenevég,(s), ip =0 p=1 \g=1 k4=0

which can depend on throughpg, vanishes for alk, 8 such

that Ré();,) >0 and does not grow faster, as a function o

T, than exgT|Re,,|) for all B, « such that R&,,) <O0. ) . d .
(i) When Reé(,,)=0 and In{Qg,) #0 the integral in cpg{)(s):<<5§;>(s)|d—|pg>(s)>>, (73)

inequality (68) vanishes in the infinite time limit due to the S

Reimann-Lebesgue lemnj&2], as in the closed case dis- andv(ijp)(s) by

cussed before. In this case, again, adiabaticity is guaranteed = 5«

provided pg(s) [and henceVg,(s)] does not diverge as a ) . _ dc(s). .

function of T in the limit T— co. VER(s) = pR() (LT ()| — DT P(s)).  (74)
(iv) When Ré(g,) >0, the adiabatic regime can still be ds

reached for largd provided thatp(s) contains a decaying

exponential which compensates for the growing exponenti

(i

fThe functiond)lga

(s) is defined by

he termTdes’p(;*l)(s’) in the first line of Eq.(71), which

due to RéQ, ) as absent in the case of one-dimensional Jordan blocks ana-
B . . .. lyzed above, has no effect on adiabaticity, since it does not

. v) E_ven i the_re IS an overall growing exponentlal_m cause any mixing of Jordan blocks. Therefore, the analysis

inequality (68), adiabaticity could take place over a finite can proceed very similarly to the case of one-dimensional

time interval[0,T.] and, afterwards, disappear. In this Case,p|qcks. Rewriting the integral in the last line of EFJ), as

which would be an exclusive feature of open systems, thg o have done in Eq€23) and (67), and imposing the ab-
crossover timeTl. would be determined by an inequality of oqce of mixing of the eigenvaluas # ., i.e., the negligi-

the typeT>a+bexp(cT), with ¢>0. The coefficientsa,b ity of the last line of Eq.(71), we find the following gen-
andc are functions of the system-bath interaction. Whethelg i theorem ensuring the adiabatic behavior of an open
the latter inequality can be solved clearly depends on th‘%ystem.

values ofa, b, c so that a conclusion about adiabaticity in this ~ Theorem 3 Consider an open quantum system governed

case is model dependent. by a Lindblad superoperatat(s). Then adiabatic dynamics
in the interval B=s=<1 occurs if and only if the following
2. General Jordan blocks time conditions, obtained for each coefficient

We show now that the hypothesés and (b) can be re- pg)(s), are satisfied:
laxed, providing a generalization of Proposition 1 for the
case of multidimensional Jordan blocks and Lindblad eigen- -
values associated with more than one independent eigenvec- o<s<l
tor. Let us redefine our general coefﬁcieﬂl(t) as

> 21

Bl\g#Ng 1P
[vg{j”(O) VAiP) ()T alS

I’g)(t) = pg)(t)efgka(t')dt" (69) w%ZSerl(o) - wz:Serl(S)
. . . s (ijp) (!
which, applied to Eq(53), yields N ds’emﬂa(s')i Via (S') (75
ds p+Sp+l ’
ng-1 0 S Wpy (5 )
o) = i+ _ ()¢ e PHDVWa g4 . . .
Pa = Pa BIAE—A 2‘6 Ps (Ea |DB nes Theorem 3 provides a very general condition for adiaba-
A e ticity in open quantum systems. The comments made about
Nt D)7 o) simplifying circumstances, in the case of one-dimensional
- > E pg (& |Dy )€ pa. (700 plocks above, hold here as well. Moreover, a simpler suffi-
BNg#Aq 170 cient condition can be derived from E5) by considering

The above equation can be rewritten in terms of the scalef!® term with maximum absolute value in the sum. This pro-

time s=t/T. The integration of the resulting expression thencedure leads to the fo!lowing corollary: . .
reads Corollary 3. A sufficient time condition for the adiabatic

regime of an open quantum system governed by a Lindblad
‘ . s i+ s , superoperator(t) is
py(s)=pl(0) +T J dspl(s)- 2 X | dspd(s)
0

Bhg=r, | Y0 ViiP g Vi) () @T2ga(9
. , ’ T> M" max f“+(l ) Ve E)ﬂ
X(I)(BIB(S')GTQ'B”(S) O=ss<1 wZaSp (O) wZaSp (S)
s _ (ijp) (< s (ijp) (<
_ E 2 dSr( 1):zv a’ (S )eTQBa(s’), (71) + f dS,eTQB”(S,)i_\g% , (76)
Bhg#N, 1p 70 wﬁaSP(S) 0 ds wﬁasb (s)

where use has been made of Efl), with the sum ovei] where max is taken over all possible values of the indices
andp in the last line denoting No# Ng, 1, ], andp with
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(ng=D) (n,=1) / P (1-S4-1) 0 0
M= > XX (H > )1

Bhg#hg =0 =1 \G=1 kg=0 1p(1)) = % - (:)Uzy ;22:2;)( = % l:)x , (79
(ng+ng—i+1)! wox = 2 2y o
= ABa (n——i‘il)TB!_nB_l , (77) —462_2(’y2+262)vz v,

were A#% denotes the number of Jordan blocks such thatvhereu,(t), vy(t), anduv,(t) are real functions providing the
NoF Ng coordinates of the quantum stag€t))) on the Bloch sphere.
The Lindblad superoperator is then given by
D. Physical interpretation of the adiabaticity condition

. . . . : 0 0 0 0
There are various equivalent ways in which to interpret
the adiabatic theorem falosedquantum systemi8]. A par- £(t)= 0 -2 —w 0
ticularly useful modern interpretation follows from E&6): 0 0w —2-2v 0
the evolution time must be much longer than the ratio of the —42 0 0 — 42 -2y
norm of the time derivative of the Hamiltonian to the square
of the spectral gap. In other words, either the Hamiltonian (79

changes slowly, or the spectral gap is large, or both. It is o o
tempting to interpret our results in a similar fashion, which!n order to exhibit an example that has a nontrivial Jordan
we now do. block structure, we now assumé=w (which can in practice

The quantityvg’f), by Eq.(74), plays the role of the time be ob;ained b_y measuring the relaxation rat@and corre-
derivative of the Lindblad superoperator. However, the apSPondingly adjusting the system frequenay We then have
pearance of efff Re,(s)] in Eq. (75) has no analog in  three different eigenvalues fak(t),

the closed-systems case, because the eigenvalues of the

Hamiltonian are real, while in the open-systems case the ei- A =0,

genvalues of the Lindblad superoperator may have imaginary
parts. This implies that adiabaticity is a phenomenon which
is not guaranteed to happen in open systems even for very
slowly varying interactions. Indeed, from Proposition 1 and
Theorem 3, possible pictures of such system evolutions in- Na=— 4 - 297,

clude the decoupling of Jordan blocks only over a finite time

interval (disappearing afterwargisor even the case of com- \yhich are associated with the following three independent
plete absence of decoupling fro any tifigwhich implies no (unnormalized right eigenvectors:

adiabatic evolution whatsoever.

The quantitywg,, by Eq.(49), clearly plays the role of the
spectral gap in the open-system case. There are two notewor-
thy differences compared to the closed-system case. First, the 0
wg, Can be complex. This implies that the differences in 0 '
decay rates, and not just in energies, play a role in determin- 1
ing the relevant gap for the open-systems. Second, for mul-
tidimensional Jordan blocks, the termsg, depend on dis-
tinct powers for distinct pairg, «. Thus certainwg, (those
with the higher exponenkswill play a more dominant role
than others. DOy =

The conditions for adiabaticity are best illustrated further
via examples, one of which we provide next.

N, =—2€2- % (twofold degenerate

f(y,e)

DY) = (80)

. Dy =

O B B O
= O O O

V. EXAMPLE: THE ADIABATIC EVOLUTION with f(y,g):—l—(yZ/ZeZ). Similarly, for the left eigenvec-
OF AN OPEN QUANTUM TWO-LEVEL SYSTEM tors, we find

In order to illustrate the consequences of open quantum (0)] =
system adiabatic dynamics, let us consider a concrete ex- (€] = Wi(7.6.0,0.0,
ample that is analytically solvable. Suppose a quantum two-
level system, with internal Hamiltoniad =(w/2) o, and de- <<g<21>| =(0,72,- %40,
scribed by the master equatidi8), is subjected to two
sources of decoherence: spontaneous emidsjn=e(t)o_
and bit flipsI'5(t) = y(t) oy, Whereo_=oy~ig, is the lowering (EQ| = (- 1/f(7,€),0,0,D). (81)
operator. Writing the density operator in the basis
{l2,04,0y,04, i.e., asp=(l,+v-0)/2, Eq.(30) results in The Jordan form ofZ(t) can then be written as
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0 0 0 0 We note that in this simple example, the coupling between

0 —28- 9 1 0 r(t) andr(t) would in fact also be eliminated by impos-
Lyt) = ing the probability conservation condition p=1. However,

0 0 —2e - 0 in order to discuss the effects of the adiabatic regime, let us

0 0 0 -4 -2y permit a general time evolution of all coefficierite., prob-

(82) ability “leakage’) and analyze the adiabatic constraints. The

validity condition for adiabatic dynamics, given by H§7),
(observe the two-dimensional middle Jordan bjoekth the  yjelds

transformation matrix leading to the Jordan form being ‘

f(y,yee 0 0 O

(E|Z|DO)) ‘ ) ‘ 212l e- 27y

< |)\1 - )\3| . (87)

1420 A~ A3 ¥ +2¢
SV = o 1 0 ol (83 We first note that we have here the possibility of an adiabatic
1 0 0 1 evolution even withoutZ(t)=0 in general(i.e., for all its

_ _ _ ~ matrix elements Indeed, solvingy?e/ e=yy, Eq. (87) im-
Note that, in our example, each eigenvalueCéf) is associ-  plies that independent evolution in Jordan blocks will occur
ated with a unique Jordan block, since we do not have moreor «(t) « y(t). Sincef(y,e)=—1-(1?/2¢€) is then constant in
than one independent eigenvector for eaghWe then ex-  time, it follows, from Eq.(86), thatr'”(t) is constant in time,
pect that the adiabatic regime will be characterized by ayhich in turn ensures the decoupling ré?)(t) andr(o)(t). In
evolution which can be decomposed by single Jordan block§ is case, it is alynamical symmetrjconstancy ofgthe ratio

In order to show that this is indeed the case, let us constru - g e
; ; . ’ - of magnitudes of the spontaneous emission and bit-flip pro-
a right and left basis preserving the block structure. To this 9 P - pP

end, we need to introduce a right and a left vector for the"€SS€B rather than the general slownessZit), that is re-
Jordan block related to the eigenvalug As in Egs.(36) and sponsible for the adiabatic behavior. The same conclusion is

(40), we define the additional states as also obtained from the adiabatic conditi¢d). Of course,
Eq. (87) is automatically satisfied if(t) is slowly varying in
0 time, which meansy(t) =0 and e(t) = 0. Assuming this last
@ 0 case, the following solution is found:
|D2 >>J = 1 ) J<<52 | = (0111010- (84) (0) (0)
ry (t)= ry (0),
0
We then obtain, after applying the transformations rO(t) =[r(O)t +r(0)]e 2,
D O)=SMIDY)); and (€5 (H]=x(EP (S, the right
and left vectors () = rP(0)e 271,
0
2 rO(t) = r(0)e 4271, (88)
(D — (0)] —
D) = o |’ ((£271=(0,0,1,0. (85t is clear that the evolution is independent in the three dis-
0 tinct Jordan blocks, with functioné;)(t) belonging to differ-

_ ent sectors evolving separately. The only mixing is between
Expanding the coherence vector in the béﬁ%{i)(t)»}, asin r(zo)(t) andr(zl)(t), which are components of the same block.

Eq. (45), the master equatiof80) yields The decoupling of the coefficientélo)(t) and rgo)(t) in the
0L © adiabatic limit is exhibited in Fig. 1. Observe that the adia-
fly,ory +f(y,ery” =0, batic behavior is recovered as the dependence(®fand
¥(t) ont becomes negligible. The original coefficients vy,
L0 _ Zir(l) N Q - (22+ PO - Zér(” andv, in the Bloch sphere basis,, oy, 0,0} can be written
2 Y 2 P2 as combinations of the functiomgj. Equation(88) yields
— —2é-
(O =D — (2624 ), 0x(1) = {0(0) + [1,(0) ~ v, (0) ] t}e 2,
HO + 1D = (- 42— 2200, (86) () = {0,(0) + [04(0) ~ v, (0)] Yt} 2,
It is immediately apparent from E¢86) that the block re- 207
lated to the eigenvaluk, is already decoupled from the rest. vAt) = (Uz(o) T )>e(‘4 Tt (e (89)
On the other hand, by virtue of the last equation, the blocks V€ re
associated with,; and\5 are coupled, implying a mixing in  with the initial conditions
the evolution of the coefficient§” (t) andr(t). The role of o .
the adiabaticity will then be the suppression of this coupling. vx(0) =127(0) + ¥ r37(0),
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1

batic evolution. Thus, the present example, despite nicely
illustrating our concept of adiabaticity in open systems, does
not present us with the opportunity to derive a nontrivial
condition onT; such more general examples will be dis-
cussed in a future publication.

0.8

0.6

©
)

0.4

VI. CONCLUSIONS AND OUTLOOK
0.2

The concept of adiabatic dynamics is one of the pillars of
088 09 092 094 09 098 1 the theory of closed quantum systems. Here we have intro-
w0 duced its generalization to open quantum systems. We have
_ _ ) shown that under appropriate slowness conditions the time-
(O)F'G- 1. Parametric evolution of the Coﬁ)f)f'C'ent( )(t) and  dependent Lindblad superoperator decomposes into dynami-
ry (t) for O<t<1. The initial conditions are;"(0)=r;"(0)=1.0  cally decoupled Jordan blocks, which are preserved under
a_md the decoherence parameters are _taken as linear functions {le adiabatic dynamics. Our key results are summarized in
time, i.e., e(t)=€p+at and ¢ (t) = yo+at, with €=1.0 andy=0.5.  Theorems 1 and 3, which state sufficigahd necessary in
The master equation is solved numerically tor 0. '”(g‘e adia-  the case of Theorem)Zonditions for adiabaticity in open
batic regime, corresponding @=0, the evolution ofr, () and  guantum systems. In particular, Theorem 3 also provides the
ra))(t) is decoupled, withr;"(t)=1 independently of the value of condition for breakdown of the adiabatic evolution. This fea-
rs (0. ture has no analog in the more restricted case of closed quan-
tum systems. It follows here from the fact that the Jordan
v,(0) = r<20>(o), eigenvalues of the dynamical superoperator—the generaliza-
tion of the real eigenvalues of a Hamiltonian—can have an
1 © imaginary part, which can lead to unavoidable transitions
vA0) = (.0 +13°(0), (900 petween Jordan blocks. It is worth mentioning that all of our
s results have been derived considering systems exhibiting
where nowr”(0)=1/f(y,e) has been imposed in order to gaps in the Lindblad eigenvalue spectrum. It would be inter-
satisfy the Trp=1 normalization condition. The Bloch esting to understand the notion of adiabaticity when no gaps
sphere is then characterized by an asymptotic decay of th@re available, as similarly done for the closed case in Refs.
Bloch coordinates), and vy, with v, approaching the con- [29,30. Moreover, two particularly intriguing applications of
stant value 1f(y, ). the theory presented here are to the study of geometric
Finally, let us comment on the analysis of adiabaticity inphases in open systems and to quantum adiabatic algorithms,
terms of the conditions derived in Sec. IV C for the total timePoth of which have received considerable recent attention
of evolution. Looking at the matrix elements 6ft), it can [16,17,38-4Q We leave these as open problems for future

be shown that, fo3+# a, the only termvgg” defined by Eq. research.

(74) which can bea priori nonvanishing isv,3 Therefore,

we have to consider the energy differeneg;=4€%+22 ACKNOWLEDGMENTS
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