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We generalize the standard quantum adiabatic approximation to the case of open quantum systems. We
define the adiabatic limit of an open quantum system as the regime in which its dynamical superoperator can
be decomposed in terms of independently evolving Jordan blocks. We then establish validity and invalidity
conditions for this approximation and discuss their applicability to superoperators changing slowly in time. As
an example, the adiabatic evolution of a two-level open system is analyzed.
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I. INTRODUCTION

The adiabatic theoremf1–3g is one of the oldest and most
useful general tools in quantum mechanics. The theorem
posits, roughly, that if a state is an instantaneous eigenstate
of a sufficiently slowly varying HamiltonianH at one time,
then it will remain an eigenstate at later times, while its
eigenenergy evolves continuously. Its role in the study of
slowly varying quantum mechanical systems spans a vast
array of fields and applications, such as energy-level cross-
ings in moleculesf4,5g, quantum field theoryf6g, and geo-
metric phasesf7,8g. In recent years, geometric phases have
been proposed to perform quantum information processing
f9–11g, with adiabaticity assumed in a number of schemes
for geometric quantum computationse.g., f12–15gd. More-
over, additional interest in adiabatic processes has arisen in
connection with the concept of adiabatic quantum comput-
ing, in which slowly varying Hamiltonians appear as a prom-
ising mechanism for the design of new quantum algorithms
and even as an alternative to the conventional quantum cir-
cuit model of quantum computationf16,17g.

Remarkably, the notion of adiabaticity does not appear to
have been extended in a systematic manner to the arena of
openquantum systems, i.e., quantum systems coupled to an
external environmentf18g. Such systems are of fundamental
interest, as the notion of a closed system is always an ideali-
zation and approximation. This issue is particularly impor-
tant in the context of quantum information processing, where
environment-induced decoherence is viewed as a fundamen-
tal obstacle on the path to the construction of quantum infor-
mation processorsse.g.,f19gd.

The aim of this work is to systematically generalize the
concept of adiabatic evolution to the realm of open quantum
systems. Formally, an open quantum system is described as
follows. Consider a quantum systemS coupled to an envi-
ronment, or bathB swith respective Hilbert spacesHS,HBd,
evolving unitarily under the total system-bath Hamiltonian
HSB. The exact system dynamics is given by tracing over the
bath degrees of freedomf18g

rstd = TrBfUstdrSBs0dU†stdg, s1d

where rstd is the system state,rSBs0d=rs0d ^ rBs0d is the
initially uncorrelated system-bath state, andUstd
=T expf−ie0

t HSBst8ddt8g sT denotes time-ordering; we set"
=1d. Such an evolution is completely positive and trace pre-
servingf18,20,21g. Under certain approximations, it is pos-
sible to convert Eq.s1d into the convolutionless form

ṙstd = Lstdrstd. s2d

An important example is

ṙstd = − ifHstd,rstdg +
1

2o
i=1

N

sfGistd,rstdGi
†stdg

+ fGistdrstd,Gi
†stdgd. s3d

HereHstd is the time-dependent effective Hamiltonian of the
open system andGistd are time-dependent operators describ-
ing the system-bath interaction. In the literature, Eq.s3d with
time-independent operatorsGi is usually referred to as the
Markovian dynamical semigroup, or Lindblad equation
f18,21–23g fsee also Ref.f24g for simple derivation of Eq.
s3d from Eq. s1dg. However, the case with time-dependent
coefficients is also permissible under certain restrictionsf25g.
The Lindblad equation requires the assumption of a Markov-
ian bath with vanishing correlation time. Equations2d can be
more general; for example, it applies to the case of non-
Markovian convolutionless master equations studied in Ref.
f26g. In this work we will consider the class of convolution-
less master equationss2d. In a slight abuse of nomenclature,
we will henceforth refer to the time-dependent generatorLstd
as the Lindblad superoperator, and theGistd as Lindblad op-
erators.

Returning to the problem of adiabatic evolution, concep-
tually, the difficulty in the transition from closed to open
systems is that the notion of Hamiltonian eigenstates is lost,
since the Lindblad superoperator—the generalization of the
Hamiltonian—cannot in general be diagonalized. It is then
not a priori clear what should take the place of the adiabatic
eigenstates. Our key insight in resolving this difficulty is that
this role is played byadiabatic Jordan blocks of the Lindblad
superoperator. The Jordan canonical formf27g, with its as-
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sociated left and right eigenvectors, is in this context the
natural generalization of the diagonalization of the Hamil-
tonian. Specifically, we show that, for slowly varying Lind-
blad superoperators, the time evolution of the density matrix,
written in a suitable basis in the state space of linear opera-
tors, occurs separately in sets of Jordan blocks related to
each Lindblad eigenvalue. This treatment for adiabatic pro-
cesses in open systems is potentially rather attractive as it
can simplify the description of the dynamical problem by
breaking down the Lindblad superoperator into a set of de-
coupled blocks. In order to clearly exemplify this behavior,
we analyze a simple two-level open system for which the
exact solution of the master equations2d can be analytically
determined.

The paper is organized as follows. We begin, in Sec. II,
with a review of the standard adiabatic approximation for
closed quantum systems. In Sec. III, we describe the general
dynamics of open quantum systems, review the superopera-
tor formalism, and introduce a strategy to find suitable bases
in the state space of linear operators. Section IV is devoted to
deriving our adiabatic approximation, including the condi-
tions for its validity. In Sec. V, we provide a concrete ex-
ample which illustrates the consequences of the adiabatic
behavior for systems in the presence of decoherence. Finally,
we present our conclusions in Sec. VI.

II. THE ADIABATIC APPROXIMATION IN CLOSED
QUANTUM SYSTEMS

A. Condition on the Hamiltonian

To facilitate comparison with our later derivation of the
adiabatic approximation for open systems, let us begin by
reviewing the adiabatic approximation in closed quantum
systems, subject to unitary evolution. In this case, the evolu-
tion is governed by the time-dependent Schrödinger equation

Hstducstdl = i uċstdl, s4d

whereHstd denotes the Hamiltonian anducstdl is a quantum
state in aD-dimensional Hilbert space. For simplicity, we
assume that the spectrum ofHstd is entirely discrete and
nondegenerate. Thus we can define an instantaneous basis of
eigenenergies by

Hstdunstdl = Enstdunstdl, s5d

with the set of eigenvectorsunstdl chosen to be orthonormal.
In this simplest case, where to each energy level there corre-
sponds a unique eigenstate,adiabaticity is then defined as
the regime associated with an independent evolution of the
instantaneous eigenvectors of Hstd. This means that instan-
taneous eigenstates at one time evolve continuously to the
corresponding eigenstates at later times, and that their corre-
sponding eigenenergies do not cross. In particular, if the sys-
tem begins its evolution in a particular eigenstateuns0dl, then
it will evolve to the instantaneous eigenstateunstdl at a later
time t, without any transition to other energy levels. In order
to obtain a general validity condition for adiabatic behavior,
let us expanducstdl in terms of the basis of instantaneous
eigenvectors ofHstd,

ucstdl = o
n=1

D

anstde−ie0
t dt8Enst8dunstdl, s6d

with anstd being complex functions of time. Substitution of
Eq. s6d into Eq. s4d yields

o
n

sȧnunl + anuṅlde−ie0
t dt8Enst8d = 0, s7d

where use has been made of Eq.s5d. Multiplying Eq. s7d by
kkstdu, we have

ȧk = − o
n

ankkuṅle−ie0
t dt8gnkst8d, s8d

where

gnkstd ; Enstd − Ekstd. s9d

A useful expression forkku ṅl, for kÞn, can be found by
taking the time derivative of Eq.s5d and multiplying the
resulting expression bykku, which reads

kkuṅl =
kkuḢunl

gnk
sn Þ kd. s10d

Therefore, Eq.s8d can be written as

ȧk = − akkkuk̇l − o
nÞk

an

kkuḢunl
gnk

e−ie0
t dt8gnkst8d. s11d

Adiabatic evolution is ensured if the coefficientsakstd evolve
independently from each other, i.e., if their dynamical equa-
tions do not couple. As is apparent from Eq.s11d, this re-
quirement is fulfilled by imposing the conditions

max
0øtøT

U kkuḢunl
gnk

U ! min
0øtøT

ugnku, s12d

which serves as an estimate of the validity of the adiabatic
approximation, whereT is the total evolution time. Note that
the left-hand side of Eq.s12d has dimensions of frequency
and hence must be compared to the relevant physical fre-
quency scale, given by the gapgnk f3,28g. For a discussion of
the adiabatic regime when there is no gap in the energy spec-
trum see Refs.f29,30g. In the case of a degenerate spectrum
of Hstd, Eq. s10d holds only for eigenstatesukl and unl for
which EnÞEk. Taking into account this modification in Eq.
s11d, it is not difficult to see that the adiabatic approximation
generalizes to the statement that each degenerate eigenspace
of Hstd, instead of individual eigenvectors, has independent
evolution, whose validity conditions given by Eq.s12d are to
be considered over eigenvectors with distinct energies. Thus,
in general one can define adiabatic dynamics of closed quan-
tum systems as follows.

Definition 1. A closed quantum system is said to undergo
adiabatic dynamics if its Hilbert space can be decomposed
into decoupled Schrödinger eigenspaces with distinct, time-
continuous, and noncrossing instantaneous eigenvalues of
Hstd.

It is conceptually useful to point out that the relationship
between slowly varying Hamiltonians and adiabatic behav-
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ior, which explicitly appears from Eq.s11d, can also be dem-
onstrated directly from a simple manipulation of the
Schrödinger equation: recall thatHstd can be diagonalized by
a unitary similarity tranformation

Hdstd = U−1stdHstdUstd, s13d

whereHdstd denotes the diagonalized Hamiltonian andUstd
is a unitary transformation. Multiplying Eq.s4d by U−1std and
using Eq.s13d, we obtain

Hducld = i uċld − iU̇−1ucl, s14d

whereucld;U−1ucl is the state of the system in the basis of
eigenvectors ofHstd. Upon considering thatHstd changes
slowly in time, i.e.,dHstd /dt<0, we may also assume that
the unitary transformationUstd and its inverseU−1std are
slowly varying operators, yielding

Hdstducstdld = i uċstdld. s15d

Thus, sinceHdstd is diagonal, the system evolves separately
in each energy sector, ensuring the validity of the adiabatic
approximation. In our derivation of the condition of adiabatic
behavior for open systems below, we will make use of this
semi-intuitive picture in order to motivate the decomposition
of the dynamics into Lindblad-Jordan blocks.

B. Condition on the total evolution time

The adiabaticity condition can also be given in terms of
the total evolution timeT. We shall consider for simplicity a
nondegenerateHstd; the generalization to the degenerate case
is possible. Let us then rewrite Eq.s11d as followsf31g:

eigkstd ]

] t
fakstde−igkstdg = − o

nÞk

an

kkuḢunl
gnk

e−ie0
t dt8gnkst8d,

s16d

where gkstd denotes Berry’s phasef7g associated with the
stateukl,

gkstd = iE
0

t

dt8kkst8duk̇st8dl. s17d

Now let us define a normalized times through the variable
transformation

t = sT, 0 ø sø 1. s18d

Then, by performing the changet→s in Eq. s16d and inte-
grating, we obtain

akssde−igkssd = aks0d − o
nÞk
E

0

s

ds8
Fnkss8d
gnkss8d

e−iTe0
s8ds88gnkss88d,

s19d

where

Fnkssd = anssdkkssdu
dHssd

ds
unssdle−igkssd. s20d

However, for an adiabatic evolution as defined above, the
coefficientsanssd evolve without any mixing, which means
that anssd<ans0deignssd. Therefore,

Fnkssd = ans0dkkssdu
dHssd

ds
unssdle−ifgkssd−gnssdg. s21d

In order to arrive at a condition onT, it is useful to separate
out the fast oscillatory part from Eq.s19d. Thus, the inte-
grand in Eq.s19d can be rewritten as

Fnkss8d
gnkss8d

e−iTe0
s8ds88gnkss88d =

i

T
F d

ds8
SFnkss8d

gnk
2 ss8d

e−iTe0
s8ds88gnkss88dD

− e−iTe0
s8ds88gnkss88d d

ds8
SFnkss8d

gnk
2 ss8d

DG .

s22d

Substitution of Eq.s22d into Eq. s19d results in

akssde−igkssd = aks0d +
i

To
nÞk

SFnks0d
gnk

2 s0d
−

Fnkssd
gnk

2 ssd
e−iTe0

sds8gnkss8d

+E
0

s

ds8e−iTe0
s8ds88gnkss88d d

ds8

Fnkss8d
gnk

2 ss8d D , s23d

A condition for the adiabatic regime can be obtained from
Eq. s23d if the integral in the last line vanishes for largeT.
Let us assume that, asT→`, the energy difference remains
nonvanishing. We further assume thatdhFnkss8d /gnk

2 ss8dj /ds8
is integrable on the intervalf0,sg. Then it follows from the
Riemann-Lebesgue lemmaf32g that the integral in the last
line of Eq. s23d vanishes in the limitT→` sdue to the fast
oscillation of the integrandd f33g. What is left are therefore
only the first two terms in the sum overnÞk of Eq. s23d.
Thus, a general estimate of the time rate at which the adia-
batic regime is approached can be expressed by

T @
F

g2 , s24d

where

F = max
0øsø1

uans0dkkssdu
dHssd

ds
unssdlu,

g = min
0øsø1

ugnkssdu s25d

with max and min taken over allk andn. A simplification is
obtained if the system starts its evolution in a particular
eigenstate ofHstd. Taking the initial state as the eigenvector
ums0dl, with ams0d=1, adiabatic evolution occurs if

T @
F
G2 , s26d

where
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F = max
0øsø1

ukkssdu
dHssd

ds
umssdlu,

G = min
0øsø1

ugmkssdu. s27d

Equations26d gives an important validity condition for the
adiabatic approximation, which has been used, e.g., to deter-
mine the running time required by adiabatic quantum algo-
rithms f16,17g.

III. THE DYNAMICS OF OPEN QUANTUM SYSTEMS

In this section, we prepare the mathematical framework
required to derive an adiabatic approximation for open quan-
tum systems. Our starting point is the convolutionless master
equations2d. It proves convenient to transform to the super-
operator formalism, wherein the density matrix is repre-
sented by aD2-dimensional “coherence vector”

urll = sr1 r2 . . . rD2 dt, s28d

and the Lindblad superoperatorL becomes a
sD23D2d-dimensional supermatrixf21g. We use the double
bracket notation to indicate that we are not working in the
standard Hilbert space of state vectors. Such a representation
can be generated, e.g., by introducing a basis of Hermitian,
trace-orthogonal, and traceless operatorsfe.g., susDdg,
whence theri are the expansion coefficients ofr in this basis
f21g, with r1 the coefficient ofI sthe identity matrixd. In this
case, the condition Trr2ø1 corresponds toiurlliø1, r
=r† to ri =ri

* , and positive semidefiniteness ofr is expressed
in terms of inequalities satisfied by certain Casimir invariants
fe.g., of susDdg f34–36g. A simple and well-known example
of this procedure is the representation of the density operator
of a two-level systemsqubitd on the Bloch sphere, viar
=sI2+vW ·sW d /2, wheresW =ssx,sy,szd is the vector of Pauli
matrices,I2 is the 232 identity matrix, andvW PR3 is a three-
dimensional coherence vector of normø1. More generally,
coherence vectors live in Hilbert-Schmidt space: a state
space of linear operators endowed with an inner product that
can be defined, for general vectorsu andv, as

su,vd ; kkuuvll ;
1

NTrsu†vd, s29d

whereN is a normalization factor. Adjoint elementskkvu in
the dual state space are given by row vectors defined as the
transpose conjugate ofuvll: kkvu=sv1

* ,v2
* , . . . ,vD2

* d. A density
matrix can then be expressed as a discrete superposition of
states over a complete basis in this vector space, with appro-
priate constraints on the coefficients so that the requirements
of Hermiticity, positive semidefiniteness, and unit trace ofr
are observed. Thus, representing the density operator in gen-
eral as a coherence vector, we can rewrite Eq.s2d in a super-
operator language as

Lstdurstdll = uṙstdll, s30d

whereL is now a supermatrix. This master equation gener-
ates nonunitary evolution, sinceLstd is non-Hermitian and

hence generally nondiagonalizable. However, it is always
possible to obtain an elegant decomposition in terms of a
block structure, the Jordan canonical formf27g. This can be
achieved by the similarity transformation

LJstd = S−1stdLstdSstd, s31d

where LJstd=diagsJ1, . . . ,Jmd denotes the Jordan form of
Lstd, with Ja representing a Jordan block related to an eigen-
vector whose corresponding eigenvalue isla,

Ja =1
la 1 0 ¯ 0

0 la 1 ¯ 0

A � � � A
0 ¯ 0 la 1

0 ... ... 0 la

2 . s32d

The numberm of Jordan blocks is given by the number of
linearly independent eigenstates ofLstd, with each eigenstate
associated with a different blockJa. SinceLstd is in general
non-Hermitian, we generally do not have a basis of eigen-
states, whence some care is required in order to find a basis
for describing the density operator. A systematic procedure
for finding a convenient discrete vector basis is to start from
the instantaneous right and left eigenstates ofLstd, which are
defined by

LstduPastdll = lastduPastdll, s33d

kkQastduLstd = kkQastdulastd, s34d

where, in our notation, possible degeneracies correspond to
la=lb, with aÞb. In other words, we reserve a different
index a for each independent eigenvector since each eigen-
vector is in a distinct Jordan block. It can immediately be
shown from Eqs.s33d and s34d that, for laÞlb, we have
kkQastd uPbstdll=0. The left and right eigenstates can be eas-
ily identified when the Lindblad superoperator is in the Jor-
dan form LJstd. Denoting uPastdllJ=S−1stduPastdll, i.e., the
right eigenstate ofLJstd associated with a Jordan blockJa,
then Eq.s33d implies thatuPastdllJ is time-independent and,
after normalization, is given by

uuuPallJuJa
=1

1

0

A
0
2 , s35d

where only the vector components associated with the Jordan
block Ja are shown, with all the others vanishing. In order to
have a complete basis we shall define new states, which will
be chosen so that they preserve the block structure ofLJstd.
A suitable set of additional vectors is
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uuuDa
s1dllJuJa

=1
0

1

0

A
0
2, ¯ , uuuDa

sna−1dllJuJa
=1

0

0

0

A
1
2 ,

s36d

wherena is the dimension of the Jordan blockJa and again
all the components outsideJa are zero. This simple vector
structure allows for the derivation of the expression

LJstduuDa
s jdllJ = uuDa

s j−1dllJ + lastduuDa
s jdllJ, s37d

with uDa
s0dllJ;uPallJ and uDa

s−1dllJ;0. The sethuDa
s jdllJ, j

=0, . . . ,sna−1dj can immediately be related to a right vector
basis for the originalLstd by means of the transformation
uDa

s jdstdll=SstduDa
s jdllJ which, applied to Eq.s37d, yields

LstduuDa
s jdstdll = uuDa

s j−1dstdll + lastduuDa
s jdstdll. s38d

Equation s38d exhibits an important feature of the set
huDb

s jdstdllj, namely, it implies that Jordan blocks are invari-
ant under the action of the Lindblad superoperator. An analo-
gous procedure can be employed to define the left eigenba-
sis. Denoting byJkkQastdu=kkQastduSstd the left eigenstate of
LJstd associated with a Jordan blockJa, Eq. s34d leads to the
normalized left vector

uJkkQauuJa
= s0, . . . ,0,1d. s39d

The additional left vectors are defined as

JkkEa
s0duuJa

= s1,0,0, . . . ,0d,

¯

JkkEa
sna−2duuJa

= s0, . . . ,0,1,0d, s40d

which imply the following expression for the left basis vec-
tor kkEa

sidstdu=JkkEa
sid uS−1std for Lstd:

kkEa
sidstduLstd = kkEa

si+1dstdu + kkEa
sidstdulastd. s41d

Here we have used the notationJkkEa
sna−1du; JkkQau and

JkkEa
snadu;0. A further property following from the definition

of the right and left vector bases introduced here is

kkEa
sidstduDb

s jdstdll = JkkEa
siduDb

s jdll = dabdi j . s42d

This orthonormality relationship between corresponding left
and right states will be very useful in our derivation below of
the conditions for the validity of the adiabatic approximation.

IV. THE ADIABATIC APPROXIMATION IN OPEN
QUANTUM SYSTEMS

We are now ready to derive our main result: an adiabatic
approximation for open quantum systems. We do this by ob-
serving that the Jordan decomposition ofLstd fEq. s31dg al-
lows for a nice generalization of the standard quantum adia-

batic approximation. We begin by defining the adiabatic
dynamics of an open system as a generalization of the defi-
nition given above for closed quantum systems.

Definition 2. An open quantum system is said to undergo
adiabatic dynamics if its Hilbert-Schmidt space can be de-
composed into decoupled Lindblad-Jordan eigenspaces with
distinct, time-continuous, and noncrossing instantaneous ei-
genvalues ofLstd.

This definition is a natural extension for open systems of
the idea of adiabatic behavior. Indeed, in this case the master
equations2d can be decomposed into sectors with different
and separately evolving Lindblad-Jordan eigenvalues, and
we show below that the condition for this to occur is appro-
priate “slowness” of the Lindblad superoperator. The split-
ting into Jordan blocks of the Lindblad superoperator is
achieved through the choice of a basis which preserves the
Jordan block structure as, for example, the sets of right
huDb

s jdstdllj and left hkkEa
sidstduj vectors introduced in Sec. III.

Such a basis generalizes the notion of Schrödinger eigenvec-
tors.

A. Intuitive derivation

Let us first show how the adiabatic Lindblad-Jordan
blocks arise from a simple argument, analogous to the one
presented for the closed casefEqs. s13d–s15dg. Multiplying
Eq. s30d by the similarity transformation matrixS−1std, we
obtain

LJuurllJ = uuṙllJ − Ṡ−1uurll, s43d

where we have used Eq.s31d and definedurllJ;S−1urll.
Now suppose thatLstd, and consequentlySstd and its inverse

S−1std, changes slowly in time so thatṠ−1std<0. Then, from
Eq. s43d, the adiabatic dynamics of the system reads

LJstduurstdllJ = uuṙstdllJ. s44d

Equations44d ensures that, choosing an instantaneous basis
for the density operatorrstd which preserves the Jordan
block structure, the evolution ofrstd occurs separately in
adiabatic blocks associated with distinct eigenvalues ofLstd.
Of course, the conditions under which the approximation

Ṡ−1std<0 holds must be carefully clarified. This is the sub-
ject of the next two subsections.

B. Condition on the Lindblad superoperator

Let us now derive the validity conditions for open-system
adiabatic dynamics by analyzing the general time evolution
of a density operator under the master equations30d. To this
end, we expand the density matrix for an arbitrary timet in
the instantaneous right eigenbasishuDb

s jdstdllj as

uurstdll =
1

2o
b=1

m

o
j=0

nb−1

rb
s jdstduuDb

s jdstdll, s45d

wherem is the number of Jordan blocks andnb is the dimen-
sion of the blockJb. We emphasize that we are assuming that
there are no eigenvalue crossings in the spectrum of the
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Lindblad superoperator during the evolution. Requiring then
that the density operatorurstdll in Eq. s45d evolves under the
master equations30d and making use of Eq.s38d, we obtain

uo
b=1

m

o
j=1

nb−1

rb
s jdsuDb

s j−1dll + lbuuDb
s jdlld

= o
b=1

m

o
j=0

nb−1

sṙb
s jduuDb

s jdll + rb
s jdsuḊb

s jdlld. s46d

Equations46d multiplied by the left eigenstatekkEa
sidu results

in

ṙa
sid = lara

sid + ra
si+1d − o

b=1

m

o
j=0

nb−1

rb
s jdkkEa

siduḊb
s jdll, s47d

with ra
snadstd;0. Note that the sum overb mixes different

Jordan blocks. An analogous situation occurred in the closed
system case, in Eq.s11d. Similarly to what was done there, in
order to derive an adiabaticity condition we must separate
this sum into terms related to the eigenvaluela of Lstd and
terms involving mixing with eigenvalueslbÞla. In this lat-

ter case, an expression can be found forkkEa
sid uḊb

s jdll as fol-
lows: taking the time derivative of Eq.s38d and multiplying
by kkEa

sidu we obtain, after using Eqs.s41d and s42d,

kkEa
siduḊb

s jdll =
1

vba

skkEa
siduL̇uDb

s jdll+ kkEa
si+1duḊb

s jdll

− kkEa
siduḊb

s j−1dlld, s48d

where we have defined

vbastd ; lbstd − lastd s49d

and assumedlaÞlb. Note that, whilevba plays a role
analogous to that of the energy differencegnk in the closed
casefEq. s9dg, vba may be complex. A similar procedure can

generate expressions for all the termskkEa
sid uḊs j−kd

b ll, with k
=0, . . . ,j . Thus, an iteration of Eq.s48d yields

kkEa
siduḊb

s jdll = o
k=0

j
s− 1dk

vba
k+1 skkEa

siduL̇uDb
s j−kdll+ kkEa

si+1duḊb
s j−kdlld.

s50d

From a second recursive iteration, now for the term

kkEa
si+1d uḊb

s j−kdll in Eq. s50d, we obtain

kkEa
siduḊb

s jdll = o
p=1

sna−id Sp
q=1

p

o
kq=0

s j−Sq−1d D kkEa
si+p−1duL̇uDb

s j−Spdll

s− 1dSpvba
p+Sp

,

s51d

where

Sq = o
s=1

q

ks, Sp
q=1

p

o
kq=0

s j−Sq−1d D = o
k1=0

j−S0

¯ o
kp=0

j−Sp−1

s52d

with S0=0. We can now split Eq.s47d into diagonal and
off-diagonal terms

ṙa
sid = lara

sid + ra
si+1d − o

bulb=la

o
j=0

nb−1

rb
s jdkkEa

siduḊb
s jdll

− o
bulbÞla

o
j=0

nb−1

rb
s jdkkEa

siduḊb
s jdll, s53d

where the termskkEa
sid uḊb

s jdll, for lbÞla, are given by Eq.
s51d. In accordance with our definition of adiabaticity above,
the adiabatic regime is obtained when the sum in the second
line is negligible. Summarizing, by introducing the normal-
ized times defined by Eq.s18d, we thus find the following
from Eqs.s51d and s53d.

Theorem 1. A sufficient condition for open quantum sys-
tem adiabatic dynamics as given in Definition 2 is

max
0øsø1

* o
p=1

sna−id Sp
q=1

p

o
kq=0

s j−Sq−1d D kkEa
si+p−1du

dL
ds

uDb
s j−Spdll

s− 1dSpvba
p+Sp * ! 1,

s54d

with lbÞla and for arbitrary indicesi and j associated with
the Jordan blocksa andb, respectively.

The conditions54d ensures the absence of mixing of co-
efficients ra

sid related to distinct eigenvaluesla in Eq. s53d,
which in turn guarantees that sets of Jordan blocks belonging
to different eigenvalues ofLstd have independent evolution.
Thus the accuracy of the adiabatic approximation can be es-
timated by the computation of the time derivative of the
Lindblad superoperator acting on right and left vectors.
Equations54d can be simplified by considering the term with
maximum absolute value, which results in the following.

Corollary 1. A sufficient condition for open quantum sys-
tem adiabatic dynamics is

Ni j
nanb max

0øsø1
* kkEa

si+p−1du
dL
ds

uDb
s j−Spdll

vba
p+Sp

* ! 1, s55d

where the max is taken for anyaÞb, and over all possible
values ofi P h0, . . . ,na−1j, j P h0, . . . ,nb−1j, andp, with

Ni j
nanb = o

p=1

sna−id Sp
q=1

p

o
kq=0

s j−Sq−1d D1 =Sna − i + 1 + j

1 + j
D − 1

=
sna − i + 1 + jd!
s1 + jd ! sna − id!

− 1. s56d

Observe that the factorNi j
nanb defined in Eq.s56d is just the

number of terms of the sums in Eq.s54d. We have included a
superscriptnb, even though there is no explicit dependence
on nb, since j P h0, . . . ,nb−1j.

Furthermore, an adiabatic condition for a slowly varying
Lindblad superoperator can directly be obtained from Eq.
s54d, yielding the following.

Corollary 2. A simple sufficient condition for open quan-

tum system adiabatic dynamics isL̇<0.
Note that this condition is in a sense too strong, since it

need not be the case thatL̇ is small in generalsi.e., for all its
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matrix elementsd. Indeed, in Sec. V we show via an example
that adiabaticity may occur due to theexact vanishing of

relevant matrix elements ofL̇. The general condition for this
to occur is the presence of adynamical symmetryf37g.

Let us end this subsection by mentioning that we can also
write Eq. s54d in terms of the time variablet instead of the
normalized times. In this case, the natural generalization of
Eq. s54d is

max
0øtøT

U o
p=1

sna−id Sp
q=1

p

o
kq=0

s j−Sq−1d D kkEa
si+p−1duL̇uDb

s j−Spdll

s− 1dSpvba
p+Sp

U
! min

0øtøT
uvbau. s57d

Note that, as in the analogous conditions12d in the closed
case, the left-hand side has dimensions of frequency, and
hence must be compared to the natural frequency scalevba.
However, unlike the closed-systems case, where Eq.s12d can
immediately be derived from the time conditions24d, we
cannot prove here thatvba is indeed the relevant physical
scale. Therefore, Eq.s57d should be regarded as a heuristic
criterion.

C. Condition on the total evolution time

As mentioned in Sec. II, for closed systems the rate at
which the adiabatic regime is approached can be estimated in
terms of the total time of evolution, as shown by Eqs.s24d
and s26d. We now provide a generalization of this estimate
for adiabaticity in open systems.

1. One-dimensional Jordan blocks

Let us begin by considering the particular case whereLstd
has only one-dimensional Jordan blocks and each eigenvalue
corresponds to a single independent eigenvector, i.e.,la

=lb⇒a=b. Bearing these assumptions in mind, Eq.s53d
can be rewritten as

ṙa = lara − rakkEauḊall − o
bÞa

rbkkEauḊbll, s58d

where the upper indicesi , j have been removed since we are
considering only one-dimensional blocks. Moreover, for this
special case, we have from Eq.s51d

kkEauḊbll =
kkEauL̇uDbll

vba

. s59d

In order to eliminate the termlara from Eq. s58d, we rede-
fine the variablerastd as

rastd = pastdee0
t last8ddt8, s60d

which, applied to Eq.s58d, yields

ṗa = − pakkEauḊall − o
bÞa

pbkkEauḊblleVba, s61d

with

Vbastd =E
0

t

dt8vbast8d. s62d

Equations61d is very similar to Eq.s11d for closed systems,
but the fact thatVba is in general complex-valued leads to
some important differences, discussed below. We next intro-
duce the scaled times= t /T and integrate the resulting ex-
pression. Using Eq.s59d, we then obtain

passd = pas0d −E
0

s

ds8pass8dFass8d

− o
bÞa

E
0

s

ds8
Vbass8d
vbass8d

eTVbass8d, s63d

whereFassd is defined by

Fassd = kkEassdu
d

ds
uDassdll s64d

andVbassd by

Vbassd = pbssdkkEassdu
dLssd

ds
uDbssdll. s65d

The integrand in the last line of Eq.s63d can be rearranged in
a similar way to Eq.s22d for the closed case, yielding

Vbassd
vbassd

eTVbassd =
1

T
F d

ds
SVba

vba
2 eTVbassdD − eTVbassd d

ds

Vba

vba
2 G .

s66d

Therefore, from Eq.s63d we have

passd = pas0d −E
0

s

ds8pass8dFass8d +
1

To
bÞa

SVbas0d
vba

2 s0d

−
Vbassd
vba

2 ssd
eTVbassd+E

0

s

ds8eTVbass8d d

ds8

Vbass8d
vba

2 ss8dD .

s67d

Thus a condition for adiabaticity in terms of the total time of
evolution can be given by comparingT to the terms involv-
ing indicesbÞa. This can be formalized as follows.

Proposition 1. Consider an open quantum system whose
Lindblad superoperatorLstd has the following properties:sad
The Jordan decomposition ofLstd is given by one-
dimensional blocks.sbd Each eigenvalue ofLstd is associated
with a unique Jordan block. Then the adiabatic dynamics in
the interval 0øsø1 occurs if and only if the following time
conditions, obtained for each Jordan blocka of Lssd, are
satisfied:

T @ max
0øsø1

Uo
bÞa

SVbas0d
vba

2 s0d
−

Vbassd
vba

2 ssd
eTVbassd

+E
0

s

ds8eTVbass8d d

ds8

Vbass8d
vba

2 ss8dDU s68d

Equations68d simplifies in a number of situations.
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sid Adiabaticity is guaranteed wheneverVba vanishes for
all a?b. An example of this case will be provided in Sec. V.

sii d Adiabaticity is similarly guaranteed wheneverVbassd,
which can depend onT throughpb, vanishes for alla ,b such
that ResVbad.0 and does not grow faster, as a function of
T, than expsTuReVba u d for all b ,a such that ResVbad,0.

siii d When ResVbad=0 and ImsVbadÞ0 the integral in
inequality s68d vanishes in the infinite time limit due to the
Reimann-Lebesgue lemmaf32g, as in the closed case dis-
cussed before. In this case, again, adiabaticity is guaranteed
provided pbssd fand henceVbassdg does not diverge as a
function of T in the limit T→`.

sivd When ResVbad.0, the adiabatic regime can still be
reached for largeT provided thatpbssd contains a decaying
exponential which compensates for the growing exponential
due to ResVbad.

svd Even if there is an overall growing exponential in
inequality s68d, adiabaticity could take place over a finite
time intervalf0,T*g and, afterwards, disappear. In this case,
which would be an exclusive feature of open systems, the
crossover timeT* would be determined by an inequality of
the typeT@a+b expscTd, with c.0. The coefficientsa,b
and c are functions of the system-bath interaction. Whether
the latter inequality can be solved clearly depends on the
values ofa,b,c so that a conclusion about adiabaticity in this
case is model dependent.

2. General Jordan blocks

We show now that the hypothesessad and sbd can be re-
laxed, providing a generalization of Proposition 1 for the
case of multidimensional Jordan blocks and Lindblad eigen-
values associated with more than one independent eigenvec-
tor. Let us redefine our general coefficientra

sidstd as

ra
sidstd = pa

sidstdee0
t last8ddt8, s69d

which, applied to Eq.s53d, yields

ṗa
sid = pa

si+1d − o
bulb=la

o
j=0

nb−1

pb
s jdkkEa

siduḊb
s jdlleVba

− o
bulbÞla

o
j=0

nb−1

pb
s jdkkEa

siduḊb
s jdlleVba. s70d

The above equation can be rewritten in terms of the scaled
time s= t /T. The integration of the resulting expression then
reads

pa
sidssd = pa

sids0d + TE
0

s

ds8pa
si+1dss8d − o

bulb=la

o
j
E

0

s

ds8pb
s jdss8d

3Fba
si j dss8deTVbass8d

− o
bulbÞla

o
j ,p
E

0

s

ds8
s− 1dSpVba

si jpdss8d
vba

p+Spss8d
eTVbass8d, s71d

where use has been made of Eq.s51d, with the sum overj
andp in the last line denoting

o
j ,p

; o
j=0

nb−1

o
p=1

sna−id Sp
q=1

p

o
kq=0

s j−Sq−1d D . s72d

The functionFba
si j dssd is defined by

Fba
si j dssd = kkEa

sidssdu
d

ds
uDb

s jdssdll, s73d

andVba
si jpdssd by

Vba
si jpdssd = pb

s jdssdkkEa
si+p−1dssdu

dLssd
ds

uDb
s j−Spdssdll. s74d

The termTe0
sds8pa

si+1dss8d in the first line of Eq.s71d, which
was absent in the case of one-dimensional Jordan blocks ana-
lyzed above, has no effect on adiabaticity, since it does not
cause any mixing of Jordan blocks. Therefore, the analysis
can proceed very similarly to the case of one-dimensional
blocks. Rewriting the integral in the last line of Eq.s71d, as
we have done in Eqs.s23d and s67d, and imposing the ab-
sence of mixing of the eigenvalueslbÞla, i.e., the negligi-
bility of the last line of Eq.s71d, we find the following gen-
eral theorem ensuring the adiabatic behavior of an open
system.

Theorem 3. Consider an open quantum system governed
by a Lindblad superoperatorLssd. Then adiabatic dynamics
in the interval 0øsø1 occurs if and only if the following
time conditions, obtained for each coefficient
pa

sidssd, are satisfied:

T @ max
0øsø1

U o
bulbÞlau

o
j ,p

s− 1dSp

3F Vba
si jpds0d

vba
p+Sp+1s0d

−
Vba

si jpdssdeTVbassd

vba
p+Sp+1ssd

+E
0

s

ds8eTVbass8d d

ds8

Vba
si jpdss8d

vba
p+Sp+1ss8dGU s75d

Theorem 3 provides a very general condition for adiaba-
ticity in open quantum systems. The comments made about
simplifying circumstances, in the case of one-dimensional
blocks above, hold here as well. Moreover, a simpler suffi-
cient condition can be derived from Eq.s75d by considering
the term with maximum absolute value in the sum. This pro-
cedure leads to the following corollary:

Corollary 3. A sufficient time condition for the adiabatic
regime of an open quantum system governed by a Lindblad
superoperatorLstd is

T @ Mi j
nanb max

0øsø1
U Vba

si jpds0d
vba

p+Sp+1s0d
−

Vba
si jpdssdeTVbassd

vba
p+Sp+1ssd

+E
0

s

ds8eTVbass8d d

ds8

Vba
si jpdss8d

vba
p+Sp+1ss8d

U , s76d

where max is taken over all possible values of the indices
laÞlb, i, j , andp with

M. S. SARANDY AND D. A. LIDAR PHYSICAL REVIEW A 71, 012331s2005d

012331-8



Mi j
nanb = o

bulbÞla

o
j=0

snb−1d

o
p=1

sna−id Sp
q=1

p

o
kq=0

s j−Sq−1d D1

= LbaF sna + nb − i + 1d!
sna − i + 1d ! nb!

− nb − 1G , s77d

were Lba denotes the number of Jordan blocks such that
laÞlb

D. Physical interpretation of the adiabaticity condition

There are various equivalent ways in which to interpret
the adiabatic theorem forclosedquantum systemsf3g. A par-
ticularly useful modern interpretation follows from Eq.s26d:
the evolution time must be much longer than the ratio of the
norm of the time derivative of the Hamiltonian to the square
of the spectral gap. In other words, either the Hamiltonian
changes slowly, or the spectral gap is large, or both. It is
tempting to interpret our results in a similar fashion, which
we now do.

The quantityVba
si jpd, by Eq.s74d, plays the role of the time

derivative of the Lindblad superoperator. However, the ap-
pearance of expfT Re Vbassdg in Eq. s75d has no analog in
the closed-systems case, because the eigenvalues of the
Hamiltonian are real, while in the open-systems case the ei-
genvalues of the Lindblad superoperator may have imaginary
parts. This implies that adiabaticity is a phenomenon which
is not guaranteed to happen in open systems even for very
slowly varying interactions. Indeed, from Proposition 1 and
Theorem 3, possible pictures of such system evolutions in-
clude the decoupling of Jordan blocks only over a finite time
interval sdisappearing afterwardsd, or even the case of com-
plete absence of decoupling fro any timeT, which implies no
adiabatic evolution whatsoever.

The quantityvba, by Eq.s49d, clearly plays the role of the
spectral gap in the open-system case. There are two notewor-
thy differences compared to the closed-system case. First, the
vba can be complex. This implies that the differences in
decay rates, and not just in energies, play a role in determin-
ing the relevant gap for the open-systems. Second, for mul-
tidimensional Jordan blocks, the termsvba depend on dis-
tinct powers for distinct pairsb ,a. Thus certainvba sthose
with the higher exponentsd will play a more dominant role
than others.

The conditions for adiabaticity are best illustrated further
via examples, one of which we provide next.

V. EXAMPLE: THE ADIABATIC EVOLUTION
OF AN OPEN QUANTUM TWO-LEVEL SYSTEM

In order to illustrate the consequences of open quantum
system adiabatic dynamics, let us consider a concrete ex-
ample that is analytically solvable. Suppose a quantum two-
level system, with internal HamiltonianH=sv /2dsz, and de-
scribed by the master equations3d, is subjected to two
sources of decoherence: spontaneous emissionG1std=estds−

and bit flipsG2std=gstdsx, wheres−=sx− isy is the lowering
operator. Writing the density operator in the basis
hI2,sx,sy,szj, i.e., asr=sI2+vW ·sW d /2, Eq. s30d results in

kuṙstdll =
1

21
0

− vvy − 2e2vx

vvx − 2sg2 + e2dvy

− 4e2 − 2sg2 + 2e2dvz

2 =
1

21
0

v̇x

v̇y

v̇z

2 , s78d

wherevxstd, vystd, andvzstd are real functions providing the
coordinates of the quantum stateurstdll on the Bloch sphere.
The Lindblad superoperator is then given by

Lstd =1
0 0 0 0

0 − 2e2 − v 0

0 v − 2e2 − 2g2 0

− 4e2 0 0 − 4e2 − 2g2
2 .

s79d

In order to exhibit an example that has a nontrivial Jordan
block structure, we now assumeg2=v swhich can in practice
be obtained by measuring the relaxation rateg and corre-
spondingly adjusting the system frequencyvd. We then have
three different eigenvalues forLstd,

l1 = 0,

l2 = − 2e2 − g2 stwofold degenerated,

l3 = − 4e2 − 2g2,

which are associated with the following three independent
sunnormalizedd right eigenvectors:

uD1
s0dl =1

fsg,ed
0

0

1
2 , s80d

uuD2
s0dll =1

0

1

1

0
2, uuD3

s0dll =1
0

0

0

1
2 ,

with fsg ,ed=−1−sg2/2e2d. Similarly, for the left eigenvec-
tors, we find

kkE1
s0du = „1/fsg,ed,0,0,0…,

kkE2
s1du = s0,g2,− g2,0d,

kkE3
s0du = „− 1/fsg,ed,0,0,1…. s81d

The Jordan form ofLstd can then be written as
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LJstd =1
0 0 0 0

0 − 2e2 − g2 1 0

0 0 − 2e2 − g2 0

0 0 0 − 4e2 − 2g2
2

s82d

sobserve the two-dimensional middle Jordan blockd, with the
transformation matrix leading to the Jordan form being

Sstd =1
fsg,ed 0 0 0

0 1 g−2 0

0 1 0 0

1 0 0 1
2 . s83d

Note that, in our example, each eigenvalue ofLstd is associ-
ated with a unique Jordan block, since we do not have more
than one independent eigenvector for eachla. We then ex-
pect that the adiabatic regime will be characterized by an
evolution which can be decomposed by single Jordan blocks.
In order to show that this is indeed the case, let us construct
a right and left basis preserving the block structure. To this
end, we need to introduce a right and a left vector for the
Jordan block related to the eigenvaluel2. As in Eqs.s36d and
s40d, we define the additional states as

uuD2
s1dllJ =1

0

0

1

0
2, JkkE2

s0du = s0,1,0,0d. s84d

We then obtain, after applying the transformations
uD2

s1dstdll=SstduD2
s1dllJ and kkE2

s0dstdu=JkkE2
s0duS−1std, the right

and left vectors

uuD2
s1dll =1

0

g−2

0

0
2, kkE2

s0du = s0,0,1,0d. s85d

Expanding the coherence vector in the basishuDa
s jdstdllj, as in

Eq. s45d, the master equations30d yields

fsg,edṙ1
s0d + ḟsg,edr1

s0d = 0,

ṙ2
s0d − 2

ġ

g3r2
s1d +

ṙ2
s1d

g2 = − s2e2 + g2dr2
s0d − 2

e2

g2r2
s1d,

ṙ2
s0d = r2

s1d − s2e2 + g2dr2
s0d,

ṙ1
s0d + ṙ3

s0d = s− 4e2 − 2g2dr3
s0d, s86d

It is immediately apparent from Eq.s86d that the block re-
lated to the eigenvaluel2 is already decoupled from the rest.
On the other hand, by virtue of the last equation, the blocks
associated withl1 andl3 are coupled, implying a mixing in
the evolution of the coefficientsr1

s0dstd andr3
s0dstd. The role of

the adiabaticity will then be the suppression of this coupling.

We note that in this simple example, the coupling between
r1

s0dstd and r3
s0dstd would in fact also be eliminated by impos-

ing the probability conservation condition Trr=1. However,
in order to discuss the effects of the adiabatic regime, let us
permit a general time evolution of all coefficientssi.e., prob-
ability “leakage”d and analyze the adiabatic constraints. The
validity condition for adiabatic dynamics, given by Eq.s57d,
yields

U kkE3
s0duL̇uD1

s0dll
l1 − l3

U = U2g2ė/e − 2gġ

g2 + 2e2 U ! ul1 − l3u. s87d

We first note that we have here the possibility of an adiabatic

evolution even withoutL̇std<0 in generalsi.e., for all its
matrix elementsd. Indeed, solvingg2ė /e=gġ, Eq. s87d im-
plies that independent evolution in Jordan blocks will occur
for estd~gstd. Sincefsg ,ed=−1−sg2/2e2d is then constant in
time, it follows, from Eq.s86d, thatr1

s0dstd is constant in time,
which in turn ensures the decoupling ofr1

s0dstd andr3
s0dstd. In

this case, it is adynamical symmetrysconstancy of the ratio
of magnitudes of the spontaneous emission and bit-flip pro-

cessesd, rather than the general slowness ofL̇std, that is re-
sponsible for the adiabatic behavior. The same conclusion is
also obtained from the adiabatic conditions54d. Of course,
Eq. s87d is automatically satisfied ifLstd is slowly varying in
time, which meansġstd<0 and ėstd<0. Assuming this last
case, the following solution is found:

r1
s0dstd = r1

s0ds0d,

r2
s0dstd = fr2

s1ds0dt + r2
s0ds0dges−2e2−g2dt,

r2
s1dstd = r2

s1ds0des−2e2−g2dt,

r3
s0dstd = r3

s0ds0des−4e2−2g2dt. s88d

It is clear that the evolution is independent in the three dis-
tinct Jordan blocks, with functionsra

sidstd belonging to differ-
ent sectors evolving separately. The only mixing is between
r2

s0dstd and r2
s1dstd, which are components of the same block.

The decoupling of the coefficientsr1
s0dstd and r3

s0dstd in the
adiabatic limit is exhibited in Fig. 1. Observe that the adia-
batic behavior is recovered as the dependence ofestd and
gstd on t becomes negligible. The original coefficientsvx, vy,
andvz in the Bloch sphere basishI2,sx,sy,szj can be written
as combinations of the functionsra

sid. Equations88d yields

vxstd = hvxs0d + fvxs0d − vys0dgg2tjes−2e2−g2dt,

vystd = hvys0d + fvxs0d − vys0dgg2tjes−2e2−g2dt,

vzstd = Svzs0d −
1

fsg,edDes−4e2−2g2dt +
1

fsg,ed
s89d

with the initial conditions

vxs0d = r2
s0ds0d + g−2r2

s1ds0d,
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vys0d = r2
s0ds0d,

vzs0d =
1

fsg,ed
+ r3

s0ds0d, s90d

where nowr1
s0ds0d=1/ fsg ,ed has been imposed in order to

satisfy the Trr=1 normalization condition. The Bloch
sphere is then characterized by an asymptotic decay of the
Bloch coordinatesvx and vy, with vz approaching the con-
stant value 1/fsg ,ed.

Finally, let us comment on the analysis of adiabaticity in
terms of the conditions derived in Sec. IV C for the total time

of evolution. Looking at the matrix elements ofL̇std, it can
be shown that, forbÞa, the only termVba

si jpd defined by Eq.
s74d which can bea priori nonvanishing isV13. Therefore,
we have to consider the energy differencev13=4e2+2g2.
Assuming that the decoherence parameterse andg are non-
vanishing, we havev13.0 and henceV13.0. This signals
the breakdown of adiabaticity, unlessV13=0. However, as we

saw above,V13~ kkE3
s0duL̇uD1

s0dll=2g2ė /e−2gġ and thusV13

=0 indeed implies the adiabaticity conditionestd~gstd, in
agreement with the results obtained from Theorem 1. In this
sdynamical symmetryd case adiabaticity holds exactly, while
if estd is not proportional togstd, then, there can be no adia-

batic evolution. Thus, the present example, despite nicely
illustrating our concept of adiabaticity in open systems, does
not present us with the opportunity to derive a nontrivial
condition on T; such more general examples will be dis-
cussed in a future publication.

VI. CONCLUSIONS AND OUTLOOK

The concept of adiabatic dynamics is one of the pillars of
the theory of closed quantum systems. Here we have intro-
duced its generalization to open quantum systems. We have
shown that under appropriate slowness conditions the time-
dependent Lindblad superoperator decomposes into dynami-
cally decoupled Jordan blocks, which are preserved under
the adiabatic dynamics. Our key results are summarized in
Theorems 1 and 3, which state sufficientsand necessary in
the case of Theorem 3d conditions for adiabaticity in open
quantum systems. In particular, Theorem 3 also provides the
condition for breakdown of the adiabatic evolution. This fea-
ture has no analog in the more restricted case of closed quan-
tum systems. It follows here from the fact that the Jordan
eigenvalues of the dynamical superoperator—the generaliza-
tion of the real eigenvalues of a Hamiltonian—can have an
imaginary part, which can lead to unavoidable transitions
between Jordan blocks. It is worth mentioning that all of our
results have been derived considering systems exhibiting
gaps in the Lindblad eigenvalue spectrum. It would be inter-
esting to understand the notion of adiabaticity when no gaps
are available, as similarly done for the closed case in Refs.
f29,30g. Moreover, two particularly intriguing applications of
the theory presented here are to the study of geometric
phases in open systems and to quantum adiabatic algorithms,
both of which have received considerable recent attention
f16,17,38–40g. We leave these as open problems for future
research.
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