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Power of anisotropic exchange interactions: Universality and efficient codes
for quantum computing
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We study the quantum computational power of a generic class of anisotropic solid-state Hamiltonians. A
universal set of encoded logic operations are found, which do away with difficult-to-implement single-qubit
gates in a number of quantum-computer proposals, e.g., quantum dots and donor atom spins with anisotropic
exchange coupling, quantum Hall systems, and electrons floating on helium. We show how to make the
corresponding Hamiltonians universal by encoding one qubit into two physical qubits, and by controlling
nearest-neighbor interactions.
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I. INTRODUCTION

While decoherence is the most significant fundamen
obstacle in the path towards the construction of a quan
computer~QC!, in the realm of scalable QC proposals@1–7#
a pressing concern is the technological difficulty of imp
menting single-qubit operations together with two-qubit o
erations. In general, these two types of operations may
pose very different constraints, or single-qubit operatio
may be hard. E.g., in the proposals utilizing quantum d
@1#, donor-atom nuclear@2# or electron@3# spins, and quan-
tum Hall systems@4#, single-qubit operations require contr
over a local magnetic field, are significantly slower than tw
qubit operations~mediated by an exchange interaction!, and
require substantially greater materials and device comple
In the quantum dots in cavities proposal@5# each dot needs to
be illuminated with a separate laser, and reduction in
number of lasers by elimination of single-qubit operations
a potentially significant technical simplification. In th
electrons-on-helium proposal@7# single-qubit operations re
quire slow microwave pulses, thereby limiting the number
logic operations executable before decoherence sets in.
thus clear that quite generally a significant gain may be
by enabling quantum logic operations to be perform
through two-qubit operations only. The need for single-qu
operations arises from the ‘‘standard paradigm’’ of~non-
fault-tolerant! universal quantum computation, which pr
scribes the use of single-qubit Hamiltonians that can ge
ate all one-qubit quantum gates@SU(2)# together with a
two-body interaction that can generate an entangling t
qubit gate, such as the controlledNOT gate@8#. The univer-
sality of this set essentially entails its ability to genera
SU(2N) with N qubits@9#. While it was recognized early on
that a universal QC can be constructed using at most t
body interactions@10#, the abstract theory hardly makes re
erence to the ‘‘natural talents’’ of a given quantum system
dictated by its intrinsic Hamiltonian. Indeed, most discu
sions of universality, e.g., Ref.@11#, rather than using the
physical notion of Hamiltonians, are cast in the comput
science language of unitary gates~exponentiated Hamilto-
nians!. Based on these observations a new paradigm
recently proposed in@12# and was termed ‘‘encoded unive
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sality’’ ~EU!: to study the quantum computational power o
systemas embodied in its naturally available Hamiltonian,
by using encoding@encoded gates—consisting of sequenc
of physical gates—act on encoded~logical! qubits generating
SU(2M), whereM is the dimension of the code space#. Ear-
lier work @13–18# had implicitly studied EU constructions
In this paper we introduce a general formalism, discove
by a mapping of qubits to parafermions described elsewh
@19#, that allows us to quickly assess the quantum compu
tional power of a given Hamiltonian, and construct encod
qubits and operations. Our main result is the classification
the EU power of generic classes of solid-state Hamiltonia
addressing in particular, the case ofanisotropicqubit-qubit
interactions pertinent to the quantum Hall@4#, quantum dots
@5# and atoms@6# in cavities, and the electrons-on-helium@7#
proposals. The proposals relying on purely isotropic~Heisen-
berg! exchange may also benefit from our analysis, in
case that some symmetry-breaking mechanism~e.g., surface
and interface effects, and/or spin-orbit coupling@20#! intro-
duces anisotropy. For all these cases we give explicit
constructions that avoid the use of the undesirable sin
qubit gates. In particular, we show how to make the ani
tropic exchange Hamiltonian universal byencoding one qu-
bit into two physical qubits, in contrast to previous results fo
the Heisenberg case where three physical qubits were
quired @12,17,18#. Only nearest-neighbor couplings a
needed in this construction. Thus we suggest ways to s
plify the operation of a variety of QC proposals, circumven
ing operations that appear to be dictated by the ‘‘stand
paradigm.’’

II. GENERAL STRUCTURE OF QUBIT OPERATORS

To set the stage for our discussion of the universa
properties of Hamiltonians, let us consider the general str
ture of operators in the Hilbert space ofN qubits in terms of
the lowering and raising operatorss i

65(s i
x7 is i

y)/2, where
i 51, . . . ,N and s i

a acts nontrivially only on thei th qubit.
Qubit statesu0i& and u1i& are, as usual, respectively, the11
and21 eigenvectors of the Paulis i

z matrix. Computational
basis states are all length-N bitstrings. Define anoccupation
numberfor the i th qubit as the eigenvalue of the operator
©2002 The American Physical Society18-1
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ni5~ I 2s i
z!/2,

(I is the identity operator!. This operator counts the numbe
of 1’s ~up-spins! in the i th position of the vectors of the
computational basis. Sinceni can only take on the values
or 1, the raising and lowering operators acting twice on
same qubit must annihilate a computational basis state.
most general operator that does not annihilate computati
basis states is, therefore, a linear combination of

Q$a%$b%5~sN
1!aN

•••~s1
1!a1~sN

2!bN
•••~sN

2!b1, ~1!

wherea i ,b j can be 0 or 1~see also Ref.@19#!. There are
2N32N such operators that form a complete set of genera
of the group U(2N) needed for universal quantum
computing.1 They can be rearranged into certain subsets
operators with clear physical meaning, which we now det

First, there is a subalgebra with conserved total occu
tion number,san. This is formed by all operators commutin
with the total number operatorn̂5( ini . Let k( l ) be the
number ofs i

1 (s i
2) factors inQ$a%$b% . san consists of the

operators for whichk5 l , so the dimension ofsan is
(n50

N (n
N)25(2N)!/N!N!.

Second, there is a subalgebra with conserved paritysap,
i.e., the operators commuting with the parity operator,
fined asp̂5(21)n̂, with eigenvalues 1 (21) for even~odd!
total occupation number.sap consists of those operators ha
ing k2 l even, so its dimension is 22N/2. Clearly,san,sap.

Third, there are types of su(2) subalgebras generate
the set$Q$a%$b% ,Q$a%$b%

† ,@Q$a%$b% ,Q$a%$b%
† #% in the subspace

satisfying the condition$Q$a%$b% ,Q$a%$b%
† %51, for specific

choices of $a%$b%. This results directly in encoding
schemes. The following two types of bilinear operators
i 5” j : s i

1s j
2 ~which conserve the occupation number!, and

s i
2s j

2 ,s i
1s j

1 ~which conserve parity!, are important ex-
amples that illustrate this case. Letm5( i j ), then

Tm
x 5s j

1s i
21s i

1s j
2 and Tm

z 5~s i
z2s j

z!/2 ~2!

generate an su(2) subalgebra, which we denote sum
t (2).

Clearly, sum
t (2)Psan.

The operators

Rm
x 5s i

2s j
21s i

1s j
1 and Rm

z 5~s i
z1s j

z!/2 ~3!

generate another su(2) subalgebra, which we denote sum
r (2).

Clearly, sum
r (2)Psap. It is easy to show that@sum

t (2),
sum

r (2)#50. It can be shown that$s i
1s j

2% ~allowing i 5 j )
generatessan, and $s i

1s j
2 ,s i

2s j
2 ,s i

1s j
1% generatesap

@19#.

1We use the convention that uppercase~lowercase! denotes a Lie
group ~algebra!.
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III. HAMILTONIANS AND UNIVERSAL SETS WITHOUT
SINGLE-QUBIT OPERATIONS

Now consider the properties of Hamiltonians relevant
scalable proposals for quantum computing. A generic tim
dependent Hamiltonian@1–7,9# has the form

H~ t ![H01V1F

5(
i

1

2
« i~ t !s i

z1(
i , j

(
a,b5x,y,z

Ji j
ab~ t !s i

as j
b

1(
i

@ f i
x~ t !s i

x1 f i
y~ t !s i

y#. ~4!

The first term is the sum of single-qubit energies,~with « i /\
being the frequency of theu0& i→u1& i transition! and is often
controllable using local potentials. The second term is
two-qubit interaction, which we assume can be turned on
at controllable timest. The third term is the~potentially
problematic! external field, often pulsed, used to manipula
single qubits. By turning the controllable parameters on/
one has access to a set of Hamiltonians$Hi%, which can be
used to generate unitary logic gates through the follow
three processes:~i! Arbitrary phasesare obtained by switch-
ing anHi on for a fixed time;~ii ! adding, or ~iii ! commuting
Hamiltonianscan be approximated by using a finite numb
of terms in the Lie sum and product formulas, e.g.,@9,10#,
ei (aA1bB)5 limn→`(eiaA/neibB/n)n, implying that the Hamil-
toniansA,B are switched on/off alternately. These operatio
are experimentally implementable and suffice to cover
Lie group generated by the set$Hi%. In practice it may be
easier to use Euler angle rotations rather than infinitesi
steps@18,21#, as done routinely in nuclear magnetic res
nance~NMR! @22#.

Let us now specialize to the caseJi j
ab5Ji j

a dab ~denotingV
by V8) which amounts to limiting the Hamiltonian to
exchange-type interactions that appear to be most rele
for solid-state QC. Usings i

6 ,ni we find

H05(
i

« i S 1

2
2ni D , F5(

i
~ f i* s i

21 f is i
1!, ~5!

V85(
i , j

@D i j ~s i
2s j

21s i
1s j

1!1Ji j ~s i
1s j

21s j
1s i

2!

1Ji j
z s i

zs i
z#, ~6!

where

f i5~ f i
x1 i f i

y!, D i j 5Ji j
x 2Ji j

y , Ji j 5Ji j
x 1Ji j

y .

The above analysis of the subalgebras of U(2N) now helps
us in drawing certain general conclusions.

~i! By appendings i
2 ,s i

1 to the set generatingsap it be-
comes possible to transform between states differ
by an odd occupation number. Thus the s
$s i

1s j
2 ,s i

2s j
2 ,s i

1s j
1 ,s i

2 ,s i
1% suffices to generate

SU(2N). This establishes the well-known universality ofH
of Eq. ~4!.
8-2
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~ii ! When F50, we have that@H01V8,p̂#50, so H0
1V8 is in sap. This implies that this Hamiltonian by itself i
not fully universal: it operates on a 2N21-dimensional invari-
ant subspace.

~iii ! Recalling that single-qubit operations are often dif
cult, which two-qubit interactions are sufficient for unive
sality? Reference@10# established that two-body Hamilto
nians are ‘‘generically’’ universal. The generic condition w
stated in terms of abstract group-theoretic properties. H
we are able to state the condition more explicitly for the cl
of Hamiltonians of Eq.~4!.

We define theparity of an operatoraccording to whether
the total number of raising and lowering operators is even
odd ~e.g.,n1 is even, buts2

2n1 is odd.!. The necessary con
dition for a Hamiltonian to be universal is that it contains
odd term, so that the system can leavesap. If F50 there
does not exist an odd term inH(t). Hence the next step is t
reconsider the most general interaction withJi j

ab arbitrary.H
of Eq. ~4! is universal forF50 if and only if there exists one
of the odd termss i

zs j
x5(122ni)(s j

11s j
2) or s i

zs j
y . Such

terms may arise due to perturbative spin-orbit coupling c
rections to the isotropic partJi j (t)sW i•sW j @where sW i

5(s i
x ,s i

y ,s i
z)# of Eq. ~4!. E.g., a recent estimate of the co

pling strength of the antisymmetric~Dzyaloshinskii-Moriya!
spin-exchange termdW i j (t)•(sW i3sW j ) showsudW i j u/Ji j to be as
large as 0.01 for coupled quantum dots in GaAs@20#. Unlike
the isotropic exchange parameterJi j (t), dW i j (t) is typically
not controllable. Nevertheless, its very presence allows
universal QC without the external fieldF. To see this, sup-
pose for simplicity thatdW i j is along thex axis @so that
dW i j •(sW i3sW j )5di j s i

ys j
z2s i

zs j
y)#, and that the termssW i•sW j ,

s i
z are controllable whiles i

ys j
z2s i

zs j
y is small and not con-

trollable. Then we can show that these operators generat
group SU(4) on the qubit pairi , j and therefore are univer
sal. The Hamiltonian is

Hi j 5di j ~s i
ys j

z2s i
zs j

y!1 1
2 ~« is i

z1« js j
z!1Ji j sW i•sW j .

When turning off the parameters« i , « j and Ji j , the gate
generated by the antisymmetric terms i

ys j
z2s i

zs j
y is ob-

tained. Since this term is very small compared toJi j , to a
good approximation we can neglect its effect when we t
on other terms, e.g.,Hi j 'Ji j (t)sW i•sW j when turning onJi j .
We can then show that SU(4) can be generated by com
tation. E.g.,

s i
y5@@s i

ys j
z2s i

zs j
y ,sW i•sW j #,s i

z#/2,

and similarly, we can generates j
y . Therefore, we have the

gate set generated by$s i
y ,s j

y ,s i
z ,s j

z ,sW i•sW j% which is
known to be universal@9#. It is interesting to note that the
approximation assuming a small antisymmetric term is
necessary@23,24#. If control over« i is unavailable, one may
eliminatedi j to first order by pulse shaping@25#.
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IV. ELIMINATION OF SINGLE-QUBIT OPERATIONS
THROUGH ENCODING

Our discussion of universality so far assumed that on
seeking to employ the full 2N-dimensional Hilbert space ofN
qubits. However, it was apparent from this discussion t
the symmetries of a given Hamiltonian determine an inva
ant subspace and that in physically generic circumstan
this subspace has reduced dimensionality. A common s
tion is to introduce an external field that breaks the symm
try. As discussed above~see also@18,21#!, this often leads to
significant engineering complications. However, as sho
first in @13# for the case of isotropic exchange, a Hamiltoni
may still becomputationally universal over a subspace, for
the price of using several physical qubits to encode a log
qubit. Here we analyze this concept for the anisotropic me
bers of the class of HamiltoniansH01V8. In each case we
assume that no external single-qubit operations are used
F50, and give an encoded universal set of gates. As dist
from @12–18# we explicitly takeH0 into account, as this is a
term that is generally difficult to turn off~e.g., due to inho-
mogeneous magnetic fields in quantum dots@26#!. Our
analysis provides simple encoding procedures along with
plicit recipes for universal computation in situations of e
perimental interest.

A. Axial symmetry

AssumeD i j 50. This axial symmetry is the case, e.g., f
the electrons floating on helium proposal@7#. The major
handle there is the single-qubit energies« i , which allows to
tune the qubits into and out of resonance with externa
applied radiation. This tuning is used to control the para
eters f i , Ji j

z , and Ji j of Eqs. ~5! and ~7!. However, it is
advantageous to do away with controlling the single-qu
parametersf i , as they are manipulated via a global and slo
microwave field. Limitations related to other QC proposa
were discussed above. Motivated by these difficulties a s
tion involving control of only thes i

xs j
x1s i

ys j
y term was

proposed in@12#, encoding a qutrit into three physical qubit
Here we give a more economical solution: we show how
compute universally on a logical qubit encoded into only tw
physical qubits.

Our solution makes use of the naturally availableH0

term, and assumes that theJi j
z and Ji j parameters can be

tuned separately. In fact not all of these parameters nee
be independently controllable, as is discussed below. Sinc
the axial symmetry caseV8 preserves occupation numbe
the encoding is simply

u0L&m5u0&2m21u1&2m ,

u1L&m5u1&2m21u0&2m ,

for themth logical qubit. To implement single-encoded-qub
operations, assume we can selectively turn on near
neighbor interactionsJ2m21,2m andJ2m21,2m

z in pairs encod-
ing a qubit~i.e., J2m,2m115J2m,2m11

z 50). Using the defini-
tions ~2! and~3! with m[m wheni 52m21 andj 52m, we
can rewrite the Hamiltonian~4! as
8-3
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HAS5 (
m51

N/2 S em

2
Tm

z 1JmTm
x D1h11h0 , ~7!

where

em[«2m212«2m ,

Jm[J2m21,2m ,

vm5«2m211«2m ,

h1[ (
m51

N/2
1

2
vmRm

z ,

h0[ (
m51

N/2

J2m21,2m
z @~Rm

z !22~Tm
z !2#.

The termh0 is an energy shift that commutes with all oth
operators, and will thus be omitted. It is then clear thatHAS
is a sum over independent modesm, so that the Hilbert space
decomposes into a tensor-product structure. The opera
Tm

z ,Tm
x generate an encoded SUm

t (2) group, while the term
h1Psum

r (2) acts as a constant~since@sum
t (2),sum

r (2)#50).
As a wholeHAS acts aŝ m51

N/2 SUm
t (2), meaning that experi-

mental control over the coefficientsem and Jm enables the
implementation of independent and arbitrary encoded-sin
qubit operations.

Next we need to show how to implement an encod
controlled operation. This can be done very simply by us
nearest-neighbor interactions only. All that is required is
turn on the couplingJ2m,2m11

z , since as is easily checke
s2m

z s2m11
z 52Tm

z Tm11
z in the encoded subspace. The tim

evolution of this interaction yields a controlled-phase ga
wherein the phase of one~encoded! qubit is flipped condi-
tional upon the state of the other~encoded! qubit @9#.

It may appear from the discussion so far that all the
rametersem , Jm , andJ2m,2m11

z should be controllable. How
ever, in analogy to NMR, we can further show thatindepen-
dent control over the coefficients Jm suffices to generate
arbitrary single-encoded qubit operations and an encod
controlled operation. Suppose thatem andJ2m,2m11

z are not
directly controllable, as is the case for the analogous par
eters in front of the termss i

z and s i
zs j

z in a typical liquid-
state NMR Hamiltonian@22#. Recouplingin terms ofTm

x then
plays the same role as recoupling usingsx in NMR @9#,
allowing control overem and J2m,2m11

z . This ‘‘encoded re-
coupling’’ method has been treated in detail in@21#.

B. Decoherence avoidance

The connection between encoding and immunity to de
herence is known from the theory of decoherence-free s
spaces ~DFSs! @27–30#. The present encoding i
decoherence-free under the following conditions. Assu
that the system-bath interaction is
04231
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i 51

N

s i
z
^ Bi

z ,

whereBi
z are bath operators. If pairs of qubits are sufficien

close compared to the bath wavelength, so thatB2m21
z

5B2m
z [B̃m

z ~‘‘block-collective phase damping’’@27,29#!
then

HI→HI
CPD52 (

m51

N/2

Rm
z

^ B̃m
z .

But Rm
z (au0L&m1bu1L&m)50 so that the interactionHI

CPD

leaves the encoded states invariant and therefore does
cause decoherence. Furthermore,HI

CPD commutes withHAS

and with Tm
z Tm11

z , so it follows from a general theorem
@13,30,31# that with the methods provided above, univers
encoded logic can be implemented without ever leaving
DFS.

C. Axially asymmetric interaction

Assume that one can control the axial asymmetry para
eter D i j 5Ji j

x 2Ji j
y in Eq. ~6!. Further assume only neares

neigbor interactions in pairs are on, and letDm[D2m21,2m .
The HamiltonianH01V8 now becomes

HAA5 (
m51

N/2 S em

2
Tm

z 1JmTm
x D1S vm

2
Rm

z 1DmRm
x D ,

where we have again omitted theh0 term. The appropriate
encoding for the Rm

z,x terms is u0L&m

5u0&2m21u0&2m , u1L&m5u1&2m21u1&2m for themth logical
qubit, since the axially asymmetric component of the Ham
tonian preserves parity but not occupation number. To imp
ment a controlled operation on themth^ (m11)th encoded-
qubits’ Hilbert space it suffices again to turn on the neare
neighbor couplingD2m,2m11, sinces2m

z s2m11
z 5Rm

z Rm11
z in

the encoded subspace. In analogy to the above analysis
subspace acted on by sum

t (2) operators is furthermore
decoherence-free if the system-bath interactionHI5( i 51

N s i
z

^ Bi
z has the symmetryB2m21

z 52B2m
z . The two subspaces

acted upon by the axially symmetric and antisymmet
terms are independent. They can be regarded as two inde
dent quantum computers.

V. STATE PREPARATION AND MEASUREMENT

For our two-qubit code to be useful we must show how
prepare and measure encoded states. The stateu01&
2u10&)/A25(u0L&2u1L&)/A2 is the ground state of the ax
ally symmetric Hamiltonian sxsx1sysy, while (u00&
2u11&)/A25(u0L&2u1L&)/A2 is the ground state of the ax
ally antisymmetric Hamiltoniansxsx2sysy. Thus by low-
ering the temperature to belowJ and D ~the respective
strengths of the interactions!, the system will relax into the
corresponding subspaces and computation can begin.
measurement can be done in the axially symmetric case
first applying an encoded Hadamard gate@which mapsu0L&
8-4
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→(u0L&1u1L&)/A2, u1L&→(u0L&2u1L&)/A2#, and then us-
ing, e.g., Kane’s ac capacitance scheme@2#, which distin-
guishes a singlet from a triplet state. In the axially antisy
metric case Kane’s scheme will distinguish the states (u00&
6u11&)/A2, so the same procedure applies.

VI. CONCLUSIONS

We studied here the quantum computational power o
generic class of anisotropic solid-state Hamiltonians. We p
sented simple encodings of one qubit into two physical
bits, and schemes that enable universal computation in
case of axially symmetric and/or antisymmetric exchan
type Hamiltonians, while avoiding difficult-to-implemen
single-qubit control terms. Only nearest-neighbor inter
,
A

N.
er

-

B.
e
on

s.

04231
-

a
e-
-

he
-

-

tions are needed for this implementation of encoded univ
sal quantum logic. These results can be generalized to
vide codes with higher rates@19#. The methods presente
here have the potential to offer significant simplifications
the construction of QCs based on quantum dots, donor-a
nuclear or electron spins, quantum Hall systems, and e
trons floating on helium.
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