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Abstract

A central problem in the theory of the dynamics of open quantum systems is the derivation of a rigorous and
computationally tractable master equation for the reduced system density matrix. Most generally, the evolution of an
open quantum system is described by a completely positive linear map. We show how to derive a completely positive
Markovian master equation (the Lindblad equation) from such a map by a coarse-graining procedure. We provide a
novel and explicit recipe for calculating the coefficients of the master equation, using perturbation theory in the weak-
coupling limit. The only parameter external to our theory is the coarse-graining time-scale. We illustrate the method by
explicitly deriving the master equation for the spin-boson model. The results are evaluated for the exactly solvable case
of pure dephasing, and an excellent agreement is found within the time-scale where the Markovian approximation is
expected to be valid. The method can be extended in principle to include non-Markovian effects. © 2001 Elsevier

Science B.V. All rights reserved.

1. Introduction

The problem of the emergence of irreversible
quantum dynamics from closed-system, unitary
dynamics has occupied the attention of many re-
searchers since the birth of quantum mechanics [1-
6]. It is generally believed that an acceptable
solution is to view every quantum system as cou-
pled to an environment, i.e., true quantum systems
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are always “open”. The action of the environment
is to perform measurements on the system, thus
establishing a preferred “pointer basis” and lead-
ing to decoherence [7,8]. Within a Hamiltonian
framework, recipes for deriving the associated re-
duced-dynamics were known since the early 1960s,
starting with the Zwanzig projection technique:
one writes down the Heisenberg equation of mo-
tion for the combined system—environment state,
and then projects out the system by tracing out the
environment degrees of freedom [9]. This yields an
integro-differential equation involving an envi-
ronment memory kernel, which must be subjected
to approximations in order to become useful. The
two main techniques available are the derivation
of master equations by the use of the Born—-Mar-
kov approximation [5], or a representation in
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terms of path integrals and influence functionals
[6]. Unfortunately, in the former approach it is
often unclear whether or not complete positivity is
preserved in the sequence of approximations one
makes [10], while in the latter approach one must
make a semiclassical approximation in order to
obtain a tractable theory [11].

Complete positivity in reduced dynamics is the
very common-sensical idea * that the open-system
dynamics must preserve the positivity of a system’s
density matrix (a necessary condition for the
probability interpretation to hold) in the presence
of any other non-interacting system. Building on
this notion, two seminal contributions have been
made. Kraus established an “operator-sum repre-
sentation” which describes the most general com-
pletely positive linear map on the density matrix of
a quantum system [14]. This is a formal represen-
tation of the dynamics, which has been used
profitably in the quantum information processing
community [15], but is impractical to use for dy-
namics calculations. To address this, Lindblad
has derived the most general completely positive
Markovian semigroup master equation for the
dynamics of the density matrix [16]. This master
equation can be integrated and solved to provide
the time development of the system density matrix.
Both of these results were derived on the basis of
axiomatic quantum mechanics. While systemati-
cally satisfying, this approach nevertheless pos-
sesses the disadvantage that the resulting theories
are necessarily phenomenological, in the sense that
they contain no recipe for deriving their parame-
ters from first principles [4].

Previous formal approaches therefore suffer
from one of two disadvantages. Either the final
equations are not necessarily completely positive,
or they contain parameters which are not derived
from first principles and must therefore be treated
as phenomenological. In this paper we provide a
derivation of the semigroup master equation
(SME) from the Kraus operator-sum representa-
tion (OSR) which overcomes both of the above
problems. Thus, the SME we derive is completely
positive (i.e., it is of Lindblad form), while we can

2 See Refs. [12,13] for a debate concerning this assertion.

also provide a recipe for calculating the parame-
ters that appear in the equation. Our technique
involves a coarse-graining procedure which leaves
us with just one phenomenological parameter: the
coarse-graining time-scale 7. The work presented
here is a continuation and generalization of Ref.
[17], where the derivation of the SME from the
OSR was provided for the first time. Here we
verify the validity of the approach in Ref. [17],
by proving now that the resulting SME is, as
required, completely positive (Section 2). Fur-
thermore, we greatly expand the utility of the
derivation by now also showing explicitly how to
calculate the parameters that appear in the SME
(Section 3). The method uses a perturbative ex-
pansion in the system-bath coupling strength. We
apply our formalism to the simple example of a
collection of spins coupled to a boson bath, and
compare the result to the exact solution (Section
4). We conclude with an overview and assessment
of possible extensions (Section 5).

2. From the operator-sum representation of reduced
dynamics to the semigroup master equation

2.1. Brief review of the operator-sum representation

The dynamics of a quantum system S coupled
to a bath B, which together form a closed system,
evolves unitarily under the combined system-bath
Hamiltonian

Hgs = Hs ® Iy + Is @ Hg + H;. (1)

Here Hs, Hy and Hj are, respectively, the system,
bath and interaction Hamiltonians, and I is the
identity operator. Assuming that S and B are ini-
tially decoupled, so that the total initial density
matrix is a tensor product of the system and bath
density matrices (p and pg respectively), the system
dynamics are described by the reduced density
matrix:

p(0)—p(1) = Tra[U(p @ pg)U']. (2)

Here Trp is the partial trace over the bath and

U =exp < - ;HSBI). (3)
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By using a spectral decomposition for the bath,
pe = >_, ©ul)(ul (where >° o, =1), and intro-
ducing a basis {|n)}_, for the N-dimensional
system Hilbert space J#, this can be rewritten in
the OSR as [14]:

=3 AP0 (1), 4)

i=0

where the Kraus operators {A;} have matrix ele-
ments given by

(Al (8) = VOu(m[(u[U@O) ) n); i = (w,v). (5)

K = N3, where Np is the number of bath degrees of
freedom. Also, by unitarity of U, one derives the
normalization condition

K

D _AIA =1, (6)

i=0

which guarantees preservation of the trace of p:
Trlp(t)] = Tr[, Aip(0)A]] = Trlp(0) 3=, A/A] =
Tr[p(0)]. The Kraus operators belong to the Hil-
bert-Schmidt space .o () (itself a Hilbert space)
of bounded operators acting on the system Hilbert
space, and are represented by N x N matrices, just
like p.

2.2. Fixed-basis form of the operator-sum represen-
tation

While the OSR evolution equation, Eq. (4), is
perfectly general, it presents two major difficul-
ties: (i) It is an evolution equation, rather than a
differential equation, which expresses p(¢) in terms
of the initial condition and time-dependent oper-
ators. Calculating these is equivalent to diagonal-
izing the entire system—bath Hamiltonian. This is
impractical in all but a very few exactly solvable
models. (ii) It is not clear how to separate out the
unitary evolution of the system from the possibly
non-unitary one, which occurs from the coupling
of the system to the bath and leads to decoherence.
The reason is that in general, each Kraus operator
will contain a contribution from both the unitary
and the non-unitary components of the evolution.
When one makes the assumption of Markovian
dynamics, however, as in the SME (Egs. (12) and

(13) below), both of these problems are solved, i.e.,
one obtains a differential equation in which there is
an explicit separation between terms leading to
unitary and to non-unitary evolution. This pro-
vided the motivation in Ref. [17] to develop an
alternative representation of the OSR in a form
which approaches the form of the SME as much as
is possible, without yet making any Markovian
assumption. We provide only the main steps of
this derivation here, and refer the interested reader
to Ref. [17] for full details.

It is convenient for this purpose to introduce a
fixed operator basis for o7 (#). Let {K,},, with
Ky =L, be such a basis, so that the expansion of
the Kraus operators is given by

=Y bu(0K.. (7)

=0

Under this expansion, the OSR evolution equa-
tion, Eq. (4), becomes

=" 1s(OK.p(0)K], (8)

2,$=0

where y,,(¢) is the matrix with elements

K
71[i Z bis (1) ,/f )
i=0

The matrix y is clearly Hermitian, with positive
diagonal elements. With some algebraic manipu-
lation [17] one can transform Eq. (8) into:

op(r) i
Tor = S0 z%kw
x(mmmmxm+mwmx@0. (10)

where S(7) is the hermitian operator defined by

M
EZ]: Lot

Eq. (10) is the desired result: it represents a fixed-
basis OSR evolution equation, with a strong re-
semblance to the SME, as we now detail.

5

~ Zo,(K}]. (11)
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2.3. From the fixed-basis operator-sum representa-
tion equation to the semigroup master equation

2.3.1. Derivation of the semigroup master equation
by a coarse-graining procedure

We recall that in the semigroup approach, un-
der the assumptions of (i) Markovian dynamics,
(i1) initial decoupling between the system and the
bath, and (iii) the requirement of complete posi-
tivity, the system evolves according to the SME
[4,16]:

i

5 Hs, p()] + Iop(r)],  (12)

O)‘
Q
I
=
=
—
~
=
Il

Iolp(1)] = % > auy([Fy, p(1)F}] + [Fop(2), F}]),
a,f=1

(13)

where a,s is a constant positive semidefinite ma-
trix. This equation bears a clear resemblance to
Eq. (10). Analyzing the differences between the
SME Eq. (13) and this OSR evolution equation
(10) allows one to understand the precise manner
in which the semigroup evolution arises from the
OSR evolution under the above-mentioned three
conditions. An important difference between these
two equations is the fact that the SME provides a
prescription for determining p(¢) at all times ¢,
given p(¢') as an initial condition at any other time
t >t >0, whereas Eq. (10) determines p(¢) in
terms of p(0), i.e., at the special time ¢ = 0 where
the system and the bath are in a product state.

In Ref. [17] a coarse-graining procedure was
introduced which allows to transform the exact
Eq. (10) to the approximate SME. For conve-
nience we repeat and clarify the derivation here.
We consider three time-scales: (i) the inverse of
the bath density of states frequency cutoff 7, (ii) a
coarse-graining time-scale t which is essentially the
time-scale for the bath’s “memory” to disappear
(the definition will be made more precise below),
and (iii) a system time-scale 6 which is the typical
time-scale for changes in the system density matrix
in the frame rotating with the system Hamiltonian.
We require that

K10, (14)

and coarse-grain the evolution of the system in
terms of 1 p; = p(j7); Xup; = Xp(J7), j an integer.
Further, rewriting the OSR Eq. (10) as p(z) =
A(t)p(0) and defining L(z) through A(r) =
Texp [[;L(s)ds] (T indicates time-ordering) we
have

S0 _ 2o (15)

Define I; = fgﬂ)r L(s)ds, with tn = ¢: fé L(s)ds =
TZ;;(: L;. Next we make the assumption that on
the coarse-graining time-scale 7, the evolution
generators L(#) commute in the “average” sense
that [L;, L;] = 0, Vj, k. Physically, we imagine this
operation as arising from the “resetting” of the
bath density operator over the time-scale t. This
means that T must be larger than any characteristic
bath time-scale, and explains the requirement
7. < 7. Under this assumption, the evolution of
the system is Markovian when ¢>> w1 A(¢) =
[0y exp [¢L,]. Further, under the discretization
of the evolution, this product form of the evolu-
tion implies that p;,; = exp [tL;][p,]. In the limit
of T <« t we expand this exponential, to find that

b5 p). (16)
This equation is simply a discretization of Eq. (15)
under the assumption that v < 0, where 0 is the
time-scale of change for the system density matrix.
Notice in particular that the RHS of Eq. (16)
contains the average value of L(¢) over the interval.
Now, from the OSR evolution equation (10), we
know the explicit form of L(¢) over the first in-
terval from 0 to 7. Discretizing over this interval
we find that

M

pPi—P e 1 . -
% =7 [(S), po] + 5 Z (Zap) ([Km poKj]
Py

+ [Kup(0),K}]) = Talp), (17)

where

(X) E%/OTX(S)dS. (18)
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Thus, in the sense of the coarse graining above we
have arrived at an explicit form for L,. However,
deriving an explicit form for L; and for higher
terms beyond this first interval is impossible be-
cause Eq. (10) gives the evolution in terms of p(0).
Since we have made the assumption that the bath
“resets” over the time-scale 7, we expect the bath
to interact with the system in the same manner
over every t-length coarse-grained interval. This is
equivalent to assuming that I, = Lo, Vi (which of
course is the most trivial way of satisfying the
Markovian evolution condition [L;, L;] = 0, Vi, j).
Then, under the natural identification of the K’s
with the F’s of the SME, and using Eq. (16), one is
led to the well known form of the semigroup
equation of motion:

% 32 i) (I pl0K]
K})). (19)

2.3.2. Positivity of the coefficient matrix

The positive semidefiniteness of the coefficient
matrix a,s in Eq. (13) is a sufficient condition for
the preservation of complete positivity of the sys-
tem dynamics [4]. Thus, to complete the identifi-
cation of Eq. (19) as a Lindblad equation, it only
remains to be shown that (7,,) is positive semi-
definite. To do so let us show first that y,, itself is
positive semidefinite, i.e., that for any vector ¢, the
matrix y satisfies cyc* = 0:

ey = Zc;imc/; = Z Czbmbfﬁc/;
ofp ioff

“by| >0, (20)

where we used Eq. (9). Next,
. 1 [, 1
i) =7 [ 2t =3 (s = 200)). (2D

so that we must show that x(0) does not spoil the
positivity. Now, from Egs. (3) and (5) A;(0) =

VO U0) ) = /50, Is =30 b, (0)K,, so that
bi,(0) = /9000 () (recall Ko = Is). Thus

Xaz/i Z bi (0 ,/;

= > 0u000p00i ) = 20050 (22)
o)

But in Eq. (19) we are concerned with (f,,) only
for o, > 1, so that finally, from Eq. (21), the
submatrix <j(1ﬁ> with o, f > 1 is indeed positive
semidefinite. The important conclusion is that Eq.
(19) is in Lindblad form, i.e., it preserves complete
positivity. This establishes the validity of our result
for the SME, and should be contrasted with pro-
jection-operator type derivations of the master
equation [5,18], which do not necessarily satisfy
the complete positivity criterion.

2.3.3. Separating out the Hamiltonian

We can write Eq. (19) in an alternative form
which distinguishes between the system and bath
contributions to the unitary part of the evolution.
Because Eq. (102 is linear in the y,,(¢) matrix, one
can calculate Xaﬁ() for the isolated system and
hence define the new terms which come about
from the coupling of the system to the bath:
Laup(t) = xg;f)(t) + ,{fy};(t) The terms which corre-
spond to the isolated system will then produce a
normal —(i/%)[Hs, p(¢)] Liouville term in Eq. (19).
Thus Eq. (19) can be rewritten as

oplt 9 M
% 7 [Hs + (S, +3 /;Z Lop)
x ([Ka,pumm +[Kp(0).K)]).  (23)

Identifying (j,;) With a5, and K, with F,, this is
seen to be equivalent to Eqgs. (12) and (13), except
for the presence of the second term in the Liou-
villian. This second term (S'"), inducing unitary
dynamics on the system, is referred to as the Lamb
shift. It explicitly describes the effect the bath has
on the unitary part of the system dynamics, and
“renormalizes” the system Hamiltonian. It is often
implicitly assumed to be present in Eq. (12) [19].
In summary, we have shown in this section how
coarse graining the evolution over the bath mem-
ory time-scale 7 allows one to understand the
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connection between the OSR evolution and the
semigroup dynamics. The importance of Eq. (10)
lies in the fact that it allows one to pinpoint the
exact point at which the assumption of Markovian
dynamics is made. Furthermore, due to the gen-
eral likeness of its form to the SME, it provides
an easily translatable connection from the non-
Markovian OSR to the Markovian SME. Notice
also that the assumption of Markovian dynamics
introduces an arrow of time in the evolution of the
system, through the ordering of the environmental
states: The system evolves through time in the di-
rection of successive resettings of the bath. Addi-
tionally, it is important to note that we have
shown that our procedure leads to an explicitly
Lindbladian (completely positive) form of the
SME, as written in final form in Eq. (23).

Finally, we address the question of the inclusion
of non-Markovian effects. The approach presented
here also offers a route to a systematic inclusion of
non-Markovian effects, i.e., higher order dynamics
which include bath memory terms. Such a deri-
vation of a ““post-Markovian” master equation is a
long sought — after goal of the field of open
quantum systems. Several attempts have been re-
ported, but generally the resulting equations are
not satisfactory because complete positivity is vi-
olated [20]. In the context of the present approach,
the formal extension to go beyond the Markovian
regime can be made by replacing the assumption
that the evolution generators L; commute to first-
order (see text below Eq. (15)), by a higher order
commutator. The derivation of this commutator
and the resulting post-Markovian master equation
is left to a future publication.

3. Explicit derivation of the semigroup master
equation parameters

We can now exploit the coarse-grained first-
order (in time) perturbation expansion of the
OSR, Eq. (10), made in the previous section, in
order to derive the explicit form of the parameters
and operators appearing in the resulting SME. To
do so, it turns out to be most convenient to work
in the interaction picture (IP) defined with respect
to the free system and bath Hamiltonians. Let us

the system-bath interaction Hamiltonian of Eq.
(1) in the following perfectly general form: *

H =) 18,98, (24)

where {S,} and {B,} are the system and bath
operators respectively, and {4,} are coupling co-
efficients. In the IP we do not have to deal directly
with the free system and bath Hamiltonians.
However, as will be seen below, we do recover the
Lamb shift.

3.1. The interaction picture

Transformation to the IP is accomplished by
means of the unitary operator

Ur = CXp(fitHs) X CXp(fitHB) = Ug ® Usg. (25)
Operators in the IP will be denoted using explicit

time-dependence (and where there already was a
time-dependence, with an I subscript). Thus:

Hi(1) = UfHUr = ) _ 2,8,(1) @ B, (1), (26)

where

S.(1) = ULS,Us = > p.s(1)Sy, (27)
B

B,(1) = UB,Up = > _ q,5(1)By, (28)
B

with p,s(0) = ¢,4(0) = d,5. The density matrix for
the system and bath combined is denoted p,(¢)
in the Schrodinger picture, and is transformed to
the IP by p1(¢) = Ul p(£)Ur. The dynamics of
Prora(t) 18 governed by the unitary propagator
U(7) = Ul exp(—itHsg)Ur, where Hgg is the full
system-bath Hamiltonian: p(f) = U(#)p,01(0)
U'(¢). The Schrodinger and IPs coincide at ¢ = 0 so
that p,1(0) = pie(0) = p(0) ® pg(0). It is a stan-
dard exercise to show that [21]

3 Note that {S,} and {B,} are not assumed to be linear

operators, and that any interaction Hamiltonian can be
decomposed into a sum of terms acting separately on system
and bath. Furthermore, we allow {S,} and {B,} to be time-
dependent.
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U(t) = Texp [—% /0 tHI(f)df}
=1+ i 'y (1) (29)
where
:/Otdt,,/otdt,,l.../otdtlT
x {Hi(#1) ... Hi(t,)}. (30)

The Dyson time-ordered product is defined with
respect to any set of operators O;(z;) as [21]:
T{O(t;)...0,(t,)} = O (%) ... 0O (t,), where
ty, >t, >--->t,. The system density matrix in
the IP is obtained, as usual, by tracing over the
bath, which leads to the OSR:

pi(0) = Tre[poa(n)] = ) A)p(0Al(r),  (31)

-

Il
o

1

where the Kraus operators are now defined in the
IP:

Ai(t) = Vou(uU@)]y). (32)

Repeating the derivation of Sections 2.2 and 2.3
we thus obtain the very same form for the SME as
in Eq. (19), but now it is a SME for the interaction
representation, p;(¢). Finally, the transformation
back to the Schrodinger picture is accomplished by

p(t) = Uspy (1)UL, (33)

3.2. Perturbation theory expansion of the Kraus
operators

Our next task is to calculate the Kraus opera-
tors. We do so by using the expansion for U(¢) and
Egs. (29) and (32). We have then:

Ai(t) = \/@_/45#\/15 + ZAI(«H>(Z), (34)
n=1

where

()\/_

Z /dt/dtn] /dt1

. T[ﬁzu,.szx )] Wt | TTBy o) |10,

(35)

and we used [S, (1), B, ()] =0 to separate the
time-ordering operations. A;"” is proportional to
(2,)", so that in the weak-coupling case of 4, < 1,
we can truncate the expansion at small 7.

3.3. First-order case

First we note that from Eq. (34), with Ky = Ig:
bi(t) = V/#u0u. Now, let us calculate the expres-
sion for n = 1. In this case there is no need to
worry about time ordering, and we have:

AL = =ivEr Y [ dn 48 ulBy(n) )
B 0

= —ity/5, 3 Sy (ulB V)T (1)

offy
= Zbioc(t)Koca (36)

where the second line follows using Eqs. (27) and
(28) the third from the fixed-basis operator ex-
pansion in Eq. (7), and we defined

Fﬁ} / dtlpa/s tl)qx’(tl) (37)

This dimensionless quantity thus depends en-
tirely on the transformation to the IP i.e., it con-
tains no information on the system—bath coupling,
but only on the internal system and bath dynam-
ics. Next, let us identify K, =S, (the system op-
erators) and assume that our basis is trace
orthogonal:

Tr[S!Ss] = d.5/N., (38)

where N, i1s a normalization constant. Then

bilt) = —it/or S A (WB NI (1) 2> 1.

ol o
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Using these results and 11[;(1) = Z, C bi(1)b} ()
we can reconstruct the y matrix: (7 ) =
Z;, 9, =1, and for « > 1

Tao(t) = D biu(D)by(1) Z VOB (1)
i=p
= —it Z /lzx’ <Boc”>BFZ’“”(t)v (40)
where we used
(X)p = Tr[ppX] = Zm ulX|u), (41)

defining the bath-averaged expectation value of an
arbitrary operator X. Finally, for both o, f > 1

X zx/f Z bi(2)

i=py

. t e 37 A\
= 3" Juiy (BBl (1) (rg{ (t)) ,

2o B
(42)

where in the last line we used the completeness
relation Y, [v)(v| = Ip.
Now, as shown in Egs. (21) and (22):

1

; (Xx/; (’L') Xot/i (T)

L) =22 @)

Aup = <j(:xﬂ> =

unless both o = =0 (in which case (j,,) = 0).
Together with the SME Eq. (19) we thus have all
the ingredients. In particular, we can calculate the
(S) Lamb shift term in Eq. (19) from Eq. (11):

2 Z XVO /CaO ST
2Z¢s + ¢3S, (44)
where
= Z ;La’ <B“U>BF;’1”(T) (45)

is a correlation function which contributes to the
Lamb shift. Note that unlike in Eq. (23), (S) does
not contain the system Hamiltonian, as indeed it
should not in the IP.

As for the decoherence term, we find
Ayp = <Xc<ﬂ>

=T Yy (BBl I (1) ()"

o BB
(46)

Note that both the Lamb shift parameters ¢, and
the decoherence parameters a,; formally depend
on the coarse-graining time 7. Since 7 is a “dum-
my” differentiation parameter in our theory, the
dependence upon it should disappear in an explicit

calculation. We deal with this in the example
studied in Section 4.

3.4. Second-order case

Expanding the Kraus operators to second-order
yields:

A? (1) = \/_Ziul%/ dzz/ dz

oy,002

X T[Sy, (11)Sa, () {1l T [Bs, (11)Bay (12)][v),
.utz
. Mg_ 38,8,

o0

X Z /l/fl)‘/fz <M‘B71B72 |V>F;;;22;Yﬁ2 (t)’
BiB2nva

(47)

where

1 t t
rhlnn () = t_2/ de/ At T [pay p, (01) Py (12)]
0 0

X T [y, (1), (82)]- (48)

We need to compare this expression to the ex-
pansion of the Kraus operators in terms of the
fixed basis, A;(1) = 3V b (1)K, (Eq. (7). To do
so we must now extend the fixed basis set so that it
includes product terms:

me DK, —me )Su + Y Binn (1)

oy ,0p = =0

(49)

Comparing this expansion to Eq. (47) we can read
off the second-order time-dependent coefficients
Dinyu, AS
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Vol

bi;°¢1°¢2 == 2 Z )“/)'1)‘/32 <:u‘B"/1B"Vz |V>
BiB2:172
x I (0), (50)

provided that the basis of system operators is
closed under multiplication (or more generally: is
trace-orthonormal for all products of basis ele-
ments). The decoherence and Lamb shift para-
meters can then be calculated as in the first-order
case.

3.5. Putting it all together

In conclusion, we have derived an explicit form
for the SME of Eq. (19) (with S, replacing K,). To
find the full SME for a given problem, it is nec-
essary to:

1. Identify the system operators {S,} in the in-
teraction Hamiltonian (and recall that these
operators must be trace orthogonal in our for-
malism).

2. Solve for the time-dependent system and bath
operators in the IP (Egs. (27) and (28)), and
thus find I' from Eq. (37).

3. Calculate the expectation values of the bath op-
erators. The results of this step will depend on
the initial state of the bath (e.g., thermal equi-
librium, coherent state, squeezed state, etc.).

4. Use the results of the previous steps to calculate
the Lamb shift term (S), the decoherence ma-
trix (,4), and finally, to write down the SME.

Since this SME is of the Lindblad form [16] it is
guaranteed to preserve positivity of the density
matrix. Systematic corrections may be derived by
continuing the expansion in Eq. (34) to higher
orders in 7.

4. Example: spin-boson model
4.1. Pure dephasing of multiple qubits
As a concrete and simple example of the pro-

cedure described above, we consider the form of
the SME derived for a collection of independent

two-level systems (qubits) coupled via a phase-
damping (non-dissipative) interaction to a boson
bath. The Hamiltonians in this spin-boson model
are [22]:

1 o
Hy= - > hojol, (51)
1
HB = ;hwk<Nk+§>, (52)
H; = Z ol @ (Zibg + b)), (53)
ik

where /i) are the qubit energies, 4, are coupling
coefficients, b, and b,t are the kth bath mode an-
nihilation and creation operators obeying the
boson commutation relation [bk,bﬂ =10y, and
N, = b,f,bk is the number operator. Comparing to
Eq. (24) we read off the system operators as
S. = o', and the bath operators as B, = b;. Below
we deal with the required modifications to our
treatment of the indices in order to account for
these assignments.

We assume that the boson bath is in thermal
equilibrium at temperature T = 1/(kgf}) (kg is the
Boltzman constant). Thus the bath density matrix
is pp = (1/2)e ™ = (1/2) 3, € 7[1) (], where
u=A{n,ny,...,n,...} are the numbers of quanta
in all bath modes, E, is the energy of the field at a
given occupation p, and Z(T) = Trlexp(—fH3)] =
[, e #/2/(1 — e Phr) is the canonical partition
function. Some useful results for the average
number of quanta in the kth bath mode and the
averages of the creation and annihilation opera-
tors are:

1
N ey s
(bbi)g = (bibi) —0s = Ot gro— (54)

(b)) = (be)y = (bibl)y = (byby) = 0.

We now proceed to calculate the various
quantities appearing in the SME.

4.1.1. Form of the interaction representation oper-
ators

Formally, we need to solve Egs. (27) and (28)
for the time-dependent system and bath opera-
tors. In the present simple example, however it
is clear that since ¢/ commutes with the system
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Hamiltonian, ¢’(f) = ¢/(0) = .. Further, it is an
elementary exercise to show that by(¢) = bye'.
Therefore the interaction Hamiltonian in the IP is:

£) = ol ® (4 + Ae 'b]). (55)
ik

4.1.2. Calculation of the Lamb shift and decoher-
ence parameters

In the derivation of Section 3.3 the interaction
Hamiltonian was expressed as a sum over the
single index o, in order to reduce the clutter of
indices to a minimum. However, as seen from the
interaction Hamiltonian of Eq. (53), in reality we
need more indices. In particular, we need to clarify
the indexation of I'¥” of Eq. (37): each of the in-
dices o, f and y may now correspond to a qubit
position (denoted i or j), a Pauli matrix index
(denoted & = x, y,z), or a bath mode (denoted k or
/). Qubits variables can have both position and
Pauli indices, but bath variables have only a mode
index. We will use a comma to separate qubit and
bath variables, as in o = (i¢, k), when all three in-
dices are needed. When one of the indices is ir-
relevant it will simply be dropped. To separate
groups of indices, such as the By in I'¥’, we will use
a semicolon. For example, IS} is short for rk
with o = (iz, k), p = (j&, k), y = (¢, 1), where k’
j' and &, are irrelevant. With these preparations we
are now ready to calculate I'¥. By comparing
ai(t) = o, b(t) = be'* to Egs. (27) and (28) and
using the correct index convention, we have that
p;lé(l) = 5[[’55; and qkk//(t) = 5kkuei“’“. Therefore:

i/ A 1 d ol
rE O = [ anpnautn)

: . ot
= 5,-i/5kk/«5§Ze"’)k’/25m07k , (56)

where sinc(x) = sin (x)/x.

Before proceeding to calculate the Lamb shift
and decoherence parameters, we should note that
in the definition of S, and B, in Eq. (24), each S, is
coupled to a B, with the same index o, whereas in
the present case each S, (i.e., ;) is coupled to both
B, (i.e., b)) and B]. Let us briefly again suppress
for clarity the ij, kI indices of the present example.

By linearity, the required modification is clearly
that Eq. (39) should be replaced with

Bunalt) = —it/5r S (B I (1)

oo

2 BT ()] a=1 (5T)

(where it is assumed that the expansion coefficients
of S,, the p,4(t), are real, as in the example treated
here). Using Egs. (40) and (45) this leads to Lamb
shift parameters of the form:

¢, =2

ol o

Rel/s (B )% (1)) = 0, (58)

since using Eq. (54) expectation values of creation
and annihilation operators between number states
vanish. As for the decoherence part, using Eq. (54)
again we find that (B,/By); and (Bi,,B;,,)B vanish,
so that using Egs. (42) and (46), the decoherence
parameters are:

<X1ﬂ> =7 Z /10(//1;}’[
o(/9(//[‘#/;//
+ (BL By )y % (1) T (1), (59)

Bl I (T (1)

or, using the results for the spin-boson case:

. 1"
(ligje,) =1 /“k’)j *[<bk”b/v> Ficzl;c'( )
ij'/ kll/ k//ll/

x (P35 (2))" + (bjby ) (T (1)) T2 (1))
= 10:0¢,2 Z A}{Afsmc (ant/2)
ﬁ Wy
2

x coth

==, (60)

i

Our final result for the SME in the IP can thus
be written as

0 . .
o) 22 (o2 p1(0)a2] + ol (1), ).

where
ﬁhwk

u = 2 Z’V ﬂk sinc (wkT/Z) coth

and we reintroduced 7.
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As commented above, the dependence on 7
should disappear after all is done. Let us see how
this comes about within a simple continuum
model. If we assume that |/1k|2 only depends on wy,
we can rewrite this expression as an integral over
:

a,, / dwg )

ﬂhw

. 2(0'[
*(w)tsinc 7

x coth—— (63)
where g(w) is the density of states. In any rea-
sonable physical model the density of states has a
cut-off frequency .. Now, tsinc’(wt/2) is a
function that peaks strongly at 0, has a width 1/t
and its integral is finite: (1/m) [;° dwtsinc?(wt/
2)=1,1e.,

é(t,w) = %rsincz(wr/Z)
lim 6(t, ) = &(w).

=00

(64)

But 7, the coarse-graining time-scale, must indeed
be large compared to the time-scale of the bath
7. = 1/w, (recall Eq. (14)), so in this limit we can
perform the integral and we finally get:

fho (65)

a; = = lulmg( )2 ()X ()" coth
Thus, the dependence on 7 has indeed disappeared.

We now apply this result to the case of a single
two-level atom coupled to a harmonic bath. In
the case of phonons and electromagnetic radia-
tion, the interaction couples to the amplitude of
the oscillators: x = (A/(2mw))"*(b' +b), so that
|A(w)]  1/w. At the relevant low-frequency re-
gime we can equivalently use the high-temperature
result:

kT

(b'b), = (bb) ~ (66)

ho'
For a three-dimensional crystal (or radiation field)
g2(w) o< w?. Collecting terms, we see that the limit
yielding ¢* is well defined. Decoherence depends
quadratically on the coupling, and linearly on
temperature and on the density of low-frequency
phonons.

4.2. Model with dissipation

We now generalize our model to include dissi-
pative terms. On the other hand, to keep the
analysis tractable, we will consider the case of a
single spin coupled to a boson bath. We keep the
system and bath Hamiltonians of Egs. (51) and
(52). The new interaction Hamiltonian is:

=S

@ (Asby + 25, b) + 0- @ (Z_bg + 4;_b})

® (Jicby + 2Lb)) + 0,

(where A, = 4;_). Transforming to the IP we find:
0, (t) = 0,e%" and by(t) = b;e'’ where o = z, +,
and wo, = 0, wor = Fwy. As above, this translates
into diagonal p and ¢ (recall Egs. (27) and (28)):

qkkf(f) = (3kkleiwkt, (67)

iwoyt

pocﬂ( ) = 50(/56

and we find for a,:

aup(t = Z Aol b i) gL (@0, + )
x T'(—wop — @) + Ay 2 (bib) )
X I'(woy — ) I(—wop + ). (68)

Here /4, is the coupling coefficient for o, we al-
ready dropped the vanishing (b/b/), and (biby)p
terms, and

1 [*. : .
I'w)=- / e dr = e*"*sinc(wt/2). (69)
0

T

In particular, for the diagonal terms we obtain:
T
au(®) = 2 D sl (blbe)yl (0 + )
k

+ o | (0ibL) g T (00, — ). (70)

For a.. this yields the same result as above. For the
new decoherence parameters a, . and a__ we find:

@) = 43 D Vs P(bfbe)sine” (o — on)e/2)
+ (byb})sinc? ((wy + wo)7/2))
a_(1) = % 3 Ve P(blbe)sine (e + wo)7/2)

+ (byb})sine? ((wy — wo)t/2)),

(71)
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or, using the integral form:

a++ hz/ d(Ug “+( )|

((b'B)d( — wp) + (bbYS(w + y))
“ (=5 / dog(o)]i ()

x ((b'b)0 (e + p) + (bb)S( — ep)).

(72)

With the appearance of the system’s unitary time-
scale (1/wg) we have to redefine our coarse-
graining procedure. We can consider two opposite
limits, where either (i) the system energy, or (ii) the
interaction energy is dominant. These two limits
correspond respectively to (i) the system’s internal
unitary evolution being fast (so we are actually
coarse graining this out as well), and (i) the sys-
tem’s unitary evolution being slow.

4.2.1. The fast-system limit

In this case wyt > 1. The § functions are cen-
tered at wy and at —wg, much further from zero
than their width. The ones at —w, thus do not
contribute (off-resonance), so, similarly to a.. we
find:

27 .

a.. =23 lim g()|2 () (bb), (73)
2 2 et

a- =7 lim g(o)]i ()] (bb). (74)

The off-diagonal Lindblad parameters a,; vanish,
as they involve the product of two 0 functions that
are centered further apart than their widths. The
coefficient matrix is diagonal in the fast-system
limit. If we assume for further simplicity that
J4(w) = A_(w), then the diagonal parameters a,
and a__ only differ in the bath expectation values
at wy. It then follows that

a_=a, e, (75)

Let us now consider briefly the resulting IP
master equation. Using the notation a = a.., b =
a, ., c = a__ for simplicity, we obtain:

i

dp < cpir — bpy
bpyy — cpni

—(2a + %)Pm )
; . 76
—(2a +5)py (76)
The off- diagonal elements decay exponentially,
with a rate 7, = (2a + ((b + ¢)/2)). The diagonal
elements approach the thermal equilibrium values

piber and pifer, where

ther

Poo~ _ € _ a; — efhoo (77)

ther
P11 b ai.

The exponential rate of convergence of the diag-
onal elements, i.e., the dissipation rate, is 75! =
a__ +a,,. Within the framework of our model,
both rates depend linearly on temperature and
quadratically on the corresponding coupling
strengths. The important difference between them
is the presence of a.. in the dephasing rate. The
parameters a,. and a__ depend on the bath’s
density of states at w,. Dissipation therefore can
be quite slow in a number of important cases, for
example when there is a gap in the phonon spec-
trum, or when j is actually greater than the cutoff
frequency. In these cases only much weaker multi-
phonon processes cause dissipation.

The parameter a.., on the other hand, depends
on the density of low-frequency phonons. This can
be small only in very special circumstances (e.g.,
superfluidity, or a discrete phonon density of states
as would be found in a quantum dot [23]) and its
vanishing indeed wusually causes macroscopic
quantum-effects. In typical situations the rate of
dephasing will be greater than the rate of dissipa-
tion.

The important general conclusion is the fol-
lowing: If our coarse graining includes the (fast)
system as well, then the density matrix rapidly
decoheres into the system’s energy eigen-basis [24].
Then, (typically slower) it converges into the
thermalized density matrix (which is of course also
diagonal in the system’s energy eigen-basis). See
Ref. [25] for a more detailed discussion of these
different regimes.

4.2.2. The slow-system limit

In this case wyt < 1. We consider only the ze-
roth approximation, i.e., set wy, = 0. Using Eq.
(68) we obtain:
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() 7 Z (Akap (bibe) + Ay, s (L) [ (),

or, integrating out the ¢ function again, using Eq.
(66) for the present low-frequency limit, and as-
suming real A, for simplicity:

g(®)

ayp = —le h—/ux( )/1/;((1)) = ayag
(78)
2n g(o) 2 2
= =Tl .
a, (hkmoha)k@o))

Unlike in the fast-system case, the off-diagonal
elements of the coefficient matrix do not vanish.
Instead, in the slow-system limit a,z is a projection,
i.e., a,p is an outer product of the vector of com-
ponents {a,} with itself. This allows us to write the
SME using just one Lindblad operator:

G=> a0, (79)

This coarse-grained interaction operator is just a
linear combination of the system operators as they
appear in the interaction Hamiltonian, but with
the dependence on the bath degrees of freedom
already averaged out. Using G, the SME becomes:

%) _ y16, p(1)6]

- +[Gp(0), G)). (30)

Diagonalizing G and transforming p into G’s ei-
genbasis then leads to uncoupled equations for the
components of the transformed p. Therefore, in
the slow-system limit, the density matrix becomes
diagonal in the eigenbasis of the course-grained
interaction Hamiltonian (i.e., G), and for the rate
of this decoherence we find:

ot = 2ty (£ 0200 + 2 (0) + 2 0) ).

=0

(81)

4.3. Comparison of the Markovian result to exact
solution of spin-boson model for pure dephasing

The spin-boson model is exactly solvable in the
pure dephasing limit, and we present the detailed
solution in Appendix A. The result for an initial

thermal bath is that the time-dependence of the
off-diagonal terms is proportional to e 7" with

27 2. 2 hay
I = = zk: | 44| "sinc” (wy2/2) YeaT (82)

This exact result holds for arbitrary times ¢ and for
both finite and infinite baths.

On the other hand, recall that the SME result
for the single qubit case was (Eq. (62)):

hay
2kgT"

) coth

(83)

ZZ

This is the dephasing rate for a single qubit satis-
fying the Lindblad master equation

d
d_[t) - %azzqo—zp? O—Z] + [0—27 po—z])’ (84)

whence the off-diagonal p,, « exp(—2a..t).
How do these results relate to one another? We
have in the Markovian case:

27 o
PSIME o exp (— l‘? Zk:|/1k| 5(1 cok)cothzk T)
(85)

whereas in the exact case:

por o<exp< f— ZMA| S(t, wy) s T>

(86)

While superficially the similarity between these
results is striking, there is nevertheless a crucial
difference: the exact solution has recurrences, since
its time-dependence is periodic (for a finite bath),
whereas the SME result is a purely exponential
decay. Thus they describe very different behaviors.
Indeed, for small ¢ (w;t < 1) the exact result de-
cays as exp(—#*) (quantum Zeno effect [26,27]),
while the Markovian result always decays as
exp(—t). This is of course not a surprise: the
Markovian result cannot describe the dynamics
for times shorter than the coarse-graining time-
scale, .

Let us now turn to see the limit in which the two
solutions do agree. To prevent recurrences in the
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exact solution we once again replace the sum over
modes by an integral, to obtain:

2 )
pME o exp ( t? /dwg(co)\ﬂ(co)\z

< hw
h
x 0(t, w) cot 2kBT>

exac 271: 1
i e (< [doetolio)f

< hw
X 0(t, w) coth 2kBT) .

The only difference is the appearance of 7 and ¢ in
the widths of the ¢ functions. Now, our coarse-
graining procedure was defined such that 7>
1/, (recall the discussion surrounding Eq. (64)),
and in this limit d(t, w) = 6(w). For times ¢ > 1,
(t, ) = &(w) also holds, so we can summarize the
condition for the exact and Markovian solutions
to agree as:

t>1> /.. (87)

To illustrate this let us consider the Debye model
as a simple example. Then:

w*  for w < w,
g(“’)“{o for w > w,’

As before, let the coupling coefficient 1 depend
on » only due to amplitude-coupling: |A(w)[*
o~'. In the high-temperature limit coth(iw/
2kpT) < w1, so that in all we have

PSME o exp (— Ctr/ dwsinc? (wr/2)> (88)
0

PS5 o exp ( - sz/ " dwsin ((4)1,‘/2))7 (89)
0

where C is the temperature-dependent coupling
strength, with dimensions of frequency. Fig. 1
shows the argument of the exponential, I'(¢), for
the exact solution and for the SME results, cor-
responding to different values of the coarse-
graining time-scale, 7. The curves corresponding to

the SME solutions of coarse are just straight lines,
as they all describe simple exponential decays. It is
clear that the SME solutions cannot account for
the initial transition period, but for sufficiently
large 7 (in units of the bath cutoff time 1/w,) the
SME result approximates the exact solution very
well at large times, in accordance with Eq. (87).

Let us summarize: the Markovian approxima-
tion we introduced gives reliable results for times
greater than the coarse-graining time-scale, which
in turn must be greater than the bath cutoff time. It
does not account for the initial (transitional) time
evolution, and it should be applied in cases of an
infinite bath with continuous spectrum.

4.4. The Lamb shift

Finally, in the exact solution for multiple qubits
there is also a non-vanishing Lamb shift, which
arises as a consequence of the Hamiltonian not
commuting with itself at different times [28]. The
Lamb shift does vanish for a single qubit in the
exact solution of the pure dephasing spin-boson
model (see Appendix A and Ref. [28]). The Lamb
shift also vanished in our Markovian calculation.
This discrepancy is not only due to the fact that we
considered a single qubit: the more fundamental
reason is that we only carried out our Markovian
calculations to first-order in perturbation theory,
where time ordering did not play a role. However,
when we consider the multiple-qubit case in sec-
ond-order perturbation theory (recall Section 3.4)
there is a Lamb shift. This arises because of terms
like ¢ a/b}b;. Physically, this is a phonon-induced,
indirect, exchange-interaction between the two
spins. It is quadratic in 4, linear in temperature,
and acts to pull the spin-energies towards an av-
erage value.

5. Conclusions

A central task of modern condensed phase
chemistry and physics is the quantitative descrip-
tion of open quantum systems. These are systems
that are coupled to an external uncontrollable en-
vironment (bath), a coupling which generally leads
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Fig. 1. Comparison of exact solution of the spin-boson model for single-qubit pure dephasing to the result obtained from the
Markovian master equation. Straight lines correspond to the Markovian solution, which intersects the exact solution (thick line) at
t = 1, as seen from Egs. (88) and (89). The density of states of the boson bath is represented by the Debye model here. Data is plotted

for C =0.05 and w, = 1.

to decoherence. In this paper we provided such a
quantitative description, by deriving a practical
way to calculate the coefficients in the quantum
Markovian semigroup master equation (com-
monly known as the Lindblad equation). Our
starting point was the exact Kraus operator sum
representation, which presents the evolution of an
open quantum system as a general, completely
positive, linear map. By coarse-graining this evo-
lution over a time-scale typical of the bath (the
inverse of the bath density-of-states frequency-
cutoff), we showed how the Lindblad equation can
be derived, and how its coefficients can be sys-
tematically calculated using perturbation theory in
the system-bath coupling strength. This resolves
an important shortcoming in the theory of open
quantum systems: so far no practical general
method was known which takes as input an in-
teraction Hamiltonian, and then produces the
Lindblad equation together with all its coefficients.
The complexity of our method is determined by
the difficulty of calculating certain time-ordered
integrals, which of course increases with higher
orders of perturbation theory. In principle, this is
equivalent to the calculation of standard Feynman
diagrams, and thus the arsenal of techniques

known in many-body physics could be employed
here as well. To test the validity of our theory, we
compared it here to an exactly solvable model,
namely, the spin-boson Hamiltonian with pure
phase-damping. For times longer than the coarse-
graining time, the agreement was found to be
excellent already at the level of first-order pertur-
bation theory.
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Appendix A. Analytical solution of the spin-boson
model for pure dephasing

We present here the analytical solution of the
spin-boson model for pure dephasing. The deri-
vation is based on Ref. [28].
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Starting from the IP Hamiltonian:

ZO_ ® /ljfe"““ak—i— () ) w;;,t T} (Al)

we want to find the system density matrix

p1<l) = Trp [ptol,l(t)]
= Tr [U(1)p(0) ® pg(0)U'(¢)], (A2)

where
U(¢) = T exp [; /O[Hl(r)dr}

A.1. Calculation of the evolution operator

Note that H;(¢) does not commute with itself at
different times, which is why we need the time-
ordered product:

[Hi(r), Hy()] = " 2iolo! @ Re[4(4;)"]

ik

x sin oy (1 — )1,

Wherq: we used the boson commutation relations
[ar, a]] = 18y, [a,a;] = 0. Note that further,

[[Hi(), Hy ()], Hy ()] = 0. (A.3)

This means that we can use the Baker-Haus-
dorf formula exp(4 + B) = exp(—[4, B]/2) exp(4) x
exp(B) (valid if [[4, B], 4] = [[4,B],B] = 0) to cal-
culate U(¢). To do so note the generalization

exp (zA,,) - (11 exp<—%[A,,,Anf]>>
X ( H exp(A,J) , (A.4)

which is valid if every second-order commutator
vanishes. To apply this result for our case let us
formally discretize the integrals and denote
A, = —(1/h)Hi(n At). Then:

U(t) =T exp [—%/OtHl(r)dr]
= TELI%) exp [imm}
= lim H exp ( — A0, A ] (AD) )

n<n'

X H exp(H#, At) = lim

At—0

<1 (1 - ;fn,m](m)z)

Vl<n

x [T =, A0

. 1 ) 2
i ll S ]

n<n’

X [1 - Z H, At
Y, ffmm)z)

= lim ex
At—0 p /
n<n

X exp (Z H At)

n

— exp K_%)z/o dn /0 dtz[HI(tz),HI(tl)]l
xexp{—%/otHl(f)dr].

In the second line we explicitly invoked time-or-
dering by using the Campbell-Hausdorf formula
to deal with the non-commuting problem; in the
subsequent lines we used the re-exponentiation
trick. In the final line there is no need for explicit
time-ordering left, i.e., the integrals can be calcu-
lated as such. We find:

__/HI )dt =d' ®Z al — ol ( ),
(A.5)

where

o (1) = CO NG} (A.6)

ha%
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Further:
t f 1 t—
/ dll/ ds, Sinwk(tz—t1):w,
0 0 Wy
(A.7)
and
t n l _ t
/ dn / dty cos ay(ty — 1) = ———
0 0 Wy
(A.8)
so that
' i 2t 1
f(f) = —1( —£> / dll/ dtz[HI(fz),HI(tl)]
0
—ZZO‘IG’ ®Re ( )]wkt—smwkt
i’k (hwk)
(Ukt — sin wkt
=y = Z Mol @1.
3
(A.9)

Note that f is an operator acting just on the
system, and is a simple phase for the case of a
single qubit. Since the a; operators commute for
different modes we have as our final simplified
result for the evolution operator:

H exp [o L(a, — oi(t)'a))].

ik
(A.10)

A.2. Calculation of the density matrix

Now recall the definition of the coherent states.
These are eigenstates of the annihilation operator:

ajo) = afo). (A.11)

They are minimum-uncertainty states in a har-
monic potential, etc. As is well known,

ol /zz_‘n

where |n) are number (Fock) states. The com-
pleteness relation for the coherent states is

(A.12)

1 2
Z -1
» [ sl =1,

where the integration is over the entire complex
plane. They are useful in our context since they are
created by the displacement operator

(A.13)

D(x) = exp (va’ — a*a) = D(—a)' (A.14)
acting on the vacuum state:
D(«)|0) = o), (A.15)

which is clearly related to U(¢). We will need the
result:

D)D) = exp™ P Do 1) (A.16)
which is easily derived from D(a) = exp (aa’—
«*a), [a,al] = 1, and the Baker-Hausdorf formula
exp(4 + B) = exp(—[4, B]/2) exp(4) exp(B) (again,
valid if [[4,B], 4] = [[4,B],B] = 0).

Now let Ry (1) = o (f)a) — o () a; and consider
exp [o! @ Ry (1)]:

0 2n+1

Z 2n+1

explo. R =I5 ® Y > )
n=0 ( =0

=Iy®coshR + 0. ® sinhR
= Is ® 3[D(«) + D(—0)]
+ 0. ®3[D(2) — D(~a)]

=10){0] ® D(a) + [1){1] ® D(~2).
(A.17)

This is an important result since it shows that
depending on whether the field is coupled to the
qubit |0) or |1) state, the field acquires a different
displacement. This is the source of the dephasing
the qubits undergo, since when acting on a su-
perposition state of a qubit, the qubit and field
become entangled:

exp [0: @ R](al0) + b[1))|B) = al0) ® D(«)|f) + b1)

® D(—2)|f) = " P4|0) @ |oc + B)
e TDp|1) @ | — a).
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The evolution operator can be written as

U(t) = /O TT [10),(0] ® Do) + [1),(1]

ik

@ D(—o)]. (A.18)

Now assume that the boson bath is in thermal
equilibrium:

le*ﬁHB
Z
e—Bhox/2 -
H 1 — e—ﬂhmk
k

X exp <—ﬁ2hwk(Nk+%>>

SIfa

k

P =

where the mean boson occupation number is

1

(Ny) = W (A.20)
As shown in Ref. [5, pp. 122-123], this can be
transformed into the coherent-state representa-

tion, with the result:

P = HpB,k (A.21)
where
R AV
pB«,k _TC<Nk> /d kexp< <Nk>>| k>< k|’
(A.22)

Now consider the system density matrix. Let
Pry = 1X);(v] where x,y ={0,1}. Since we are
dealing with qubits the system density matrix is a
sum of all possible tensor products of single qubit
pure states, i.e., of terms of the form p, ., =
Py @ @ py, - Thus it can be expanded as

Z Cxi, v,}p{x, i}

{xiyi}

(A.23)

Recall that we set out to evaluate p(¢) =
Trp [U(#)p(0) ® pg(0)U'(#)]. For simplicity let us
now consider the case of a single qubit. It suffices

to calculate the evolution of each of the four pure
states |x)(y| separately. Thus

pey(t) = Tra [U(0) ) (v] @ py(0)U'(1)]
/O TT10)(0l @ D(o) + 1)1

@ D( = oy)]|x) (¥
®HmeH 0)(0] ® D' (o) + [1)(1]

= TrB

—

The terms in the three products match one-to-one
for equal indices, so we can write everything as a
product over a single index k. Using Tr(4 ® B) =
Trd x TrB to rearrange the order of the trace and
the products, and D'(—a) = D(«), we have:

Py (1) = 8,090,067 ]0) (O]
® HTrB OCk ,OB kD( — ogk)]
+ 5x05v1€f \0><1|e’iﬁ<’>
& H TrB (o) 3. kD(ak)]

+ 818,067 [1)(0[e 'O
® HTI‘B — o) Pg kD( - O‘k)]
+6,18,,€7O[1)(1]e 'O

& HTrB

Consider the Try terms: for |0)(0| and |1)(1] by
cycling in the trace the displacement operators
cancel and Trg[pg,] = 1. Thus, as expected the
diagonal terms do not change (apart from the
Lamb shift due to f(¢)). As for the off-diagonal
terms (evaluating the trace in any complete basis):

/dzﬁke p< |ﬁk>>

X Z<H\D( + 200) | B) (B m)

_ ! 2 Bl
m/dﬁkeXI’(‘@)

X (BelD( £ 204) | By)-

— %) Pp kD(OCk)]

TI'B [D( + 2O(k),0Bk =
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Now:
(BID(23)[8) = exp [+ (s — ' B))(Bl o+ f)
—expl (o o plexp | (2204 )
~5 (18P + 2+ )|
= exp ( 2o £ 2(af — oc*[)’)).
Thus:

Trp [D( £ 20)pps] = exp(— 2eul) <11V ) / h

X ex ‘ﬁkl o
p ( <N > + 2( kﬁk kﬂk))

exp (= 2)ou|’
- o

><exp< Ao |* (N )]

:exp[ A (< Kt %)}

)», 10yt ]
~ e [ MEACEED Y

hwk

1 1
X ebhoy _ | + 2

5 1 —coswyt
(hay)?

)

:exp[4A

k )

x coth fhwy /2} .

Thus decay of the off-diagonal terms goes as
e ') with

r4Z

which is equivalent to the result that appeared in
Eq. (82) above.

— COS Wyt hoy
h A.24
)2 cot Yl ( )

Vk
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