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Protecting quantum information encoded in decoherence-free states against exchange errors
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The exchange interaction between identical qubits in a quantum-information processor gives rise to unitary
two-qubit errors. It is shown here that decoherence-free subsaE&s for collective decoherence undergo
Pauli errors under exchange, which, however, do not take the decoherence-free states outside of the DFS. In
order to protect DFSs against these errors it is sufficient to employ a recently proposed concatenated DFS
guantum-error-correcting code schepie A. Lidar, D. Bacon, and K.B. Whaley, Phys. Rev. L&, 4556

(1999].
PACS numbeis): 03.67.Lx, 03.65.Bz, 03.65.Fd, 89.7a

[. INTRODUCTION couples to the system: instead of independent errors, as as-
sumed in the active QECC approach, one assumes that errors
Preserving the coherence of quantum states and contraire strongly correlated, in the sense that all qubits can be
ling their unitary evolution is one of the fundamental goalspermuted without affecting the coupling between system and
of quantum_information processinl—g_]_ When the system bath. This is clearly a very strong assumption, and it may not
Hamiltonian is invariant under particle permutations, the ex-nold exactly in a realistic system-bath coupling scenario. To
change operatdF_ij interchanging particlesandj is a con- deal with thI.S.llmlta.tlon, we have shown recently how DFSs
stant of the motion, and definite symmetry of a state will becan be stabilized in the presence of errors that perturb the
conserved. Models of quantum computers based on identicgXact permutation symmetry, by concatenating DFSs with
bosons or fermions must of course respect this elementafECCs[9]. Concatenation is a general technique that is use-
requirement. It was pointed out in a recent paf@rthat ful for achieving fault-tolerant quantum computatidr2,13,
active quantum-error-correcting cod€ECCS [3] designed and trades stability of quantum information for the price of
to correct independent single-qubit errors, will fail fden- ~ longer code words. It is our purpose here to analyze the
tical particles in the presence of exchange errors. The reasdiffect of exchange errors on DFSs for collective decoher-
is that exchange acts astao-qubit error that has the same ence. These errors are fundamentally different from those
effect as a simultaneous bit flip on two different qubits. Ofinduced by the system-bath coupling, since they originate
course, QECCs dealing explicitly with multiple-qubit errors entirelyfrom the internal system Hamiltonian. We will show
are also available, so that exchange errors can readily g8at by use of the very same concatenation scheme as intro-
dealt with, provided one accepts longer code words than arduced in Ref[9] (which was designed originally to deal with
needed to deal with Sing|e_qubit errcﬂ@]_ For examp|e, in System-bath induced err()rs—:t DFS can be stabilized in the
Ref. [2] a nine-qubit code is presented that can correct alpresence of exchange errors as well.
single-qubit errors and all Pauli exchange errors. This is to The structure of the paper is as follows. We begin by
be compared with the five-qubit “perfect” code that protects briefly recalling the origin of the exchange interaction in Sec.
(only) against all single-qubit errof§]. While the nine-qubit |l and present some Hamiltonians modeling this interaction.
code is longer than the “perfect” code, it is shorter than a\WWe then present, in Sec. lll, a short review of the Hamil-
code required to protect aga"’wt two-qubit errors. tonian theory of DFSs. Next we discuss in Sec. IV the sim-
A different error model that has been considered by sevpPlest model, of constant exchange matrix elements, and show
eral authors is that in which qubits undergallectiverather ~ that DFSs are immune to exchange errors in this case. Our
than independent errof$—9]. The underlying physics of Main resultis then presented in Sec. V, when we analyze the
this model has a rich history: it dates back at least to Dicke'€ffect of exchange errors in the case of arbitrary exchange
quantum Optics work on Superradiance of atoms Coup|ed to @atrix elements. We show that a DFS is invariant under such
radiation field, where it arose in the consideration of system&rrors, and conclude that concatenation with a QECC can
confined to a region whose linear dimensions are small comgenerally stabilize DFSs against exchange.
pared to the shortest wavelength of the figl@]. The model
was later treated' e>§tensively by Agarwal in the context of Il. MODELING EXCHANGE IN QUBIT ARRAYS
spontaneous emissigll]. It was only recently realized,
however, that in the collective decoherence model there exist The exchange interaction arises by virtue of permutation
large decoherence-free subspad@B8Ss, which are “quiet”  symmetry between identical particles, in addition to some
Hilbert subspaces in which no environmentally induced erdinteraction potential. Exchange is caused by the system
rors occur at al[7,8]. Such subspaces offer a passive protecHamiltonian and is unrelated to the coupling to an external
tion against decoherence. Collective decoherence is an asnvironment. Exchange thus induces an extranemitary
sumption about the manner in which the environmentevolution on the system, but does not lead to decoherence.
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To model exchange it is sufficient to consider a Hamiltonian

of the form

K
2. JijE (1)
i

ij

N| -

He=

where the sum is over all qubit paird;; are appropriate
matrix elements, and

Eij|€li e y€iy e

=|er, .. .6, ... 2

where ;=0 or 1. Ej;; thus written is a general exchange

operator operating on qubitsandj of a K-qubit state.
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1 1
(6)
it is easily checked that Eq2) is satisfied 15].

Ill. REVIEW OF DECOHERENCE-FREE SUBSPACES

We briefly recall the Hamiltonian theory of DF$8,16].
Given is a system-bath interaction Hamiltonian

HSBZE F)\®B}\, (7)

whereF, andB, are, respectively, the system and bath op-

Typical examples of Hamiltonians leading to exchangeerators. The decoherence-free states are those and only those

are[14]: (i) the Heisenberg interaction between spins

1
Hueis=5 2 IS (3)
i#]
where S = (o7 ,0?,07) is the Pauli matrix vector of spii
(i) the Coulomb interaction

1
_ c.t T
HCouI_EZ > Jij@is8i 58,85

71 0,0’

(4)

wherea/ (a;,) is the creationannihilation operator of an
electron of spino in Wannier orbitali. J;; is the exchange
matrix element and is given for electrons by

Jﬁ=—e2J drdr’

(T ROW(T —R)W (' —RpW(r =R
r=r']

. (5

whereR,; is a lattice vector an@/ is a Wannier functiofl14].

stateg|¢)} that are simultaneous degenerate eigenvectors of
all system operators appearinghtyg:

Falw)=cyli). ®

The eigenvaluegc,} do not depend o). The subspace
spanned by these states is a DFS, meaning that tihglethe
evolution in this subspace is unitary, and there is no deco-
herence. This results in a passive protection against errors, to
be contrasted with the active QECC approach. Of particular
interest is the case where tfiE,} are collective operators,
such as the total spin operators

K
Sa=2 o, a=X)y,z. 9
=1

These operators satisfy (@I commutation relations, just like
the localo{* Pauli operators:
[S. . Sgl=2ie

S (10)

aByy:

This situation, referred to above as collective decoherence,
arises when the bath couples in a permutation-invariant fash-

This is a rather generic form for the exchange matrix €lejon tg ail qubits. In this paper we shall confine our attention
ment; in other cases would be replaced by the appropriate 5 collective decoherence and employ the term DFS exclu-

wave function and the Coulomb interactief(|r —r’| by the

sively in this contexf17]. With a system-bath interaction of

appropriate potential. The important point to notice is thatye formHgg==,S,®B, (as, e.g., in the Lamb-Dicke limit
the exchange integral depends on the overlap between thg the spin-boson modgla combinatorial calculation shows

wave functions at locationsandj. Thus exchange effects
generally decay rapidly as the distadcfe—Rj| increases.

(see Appendix that the number of encoded qubits is
limg . logKI/[(K/2+ 1)1 (K/2)!]~K — 2log,K. The result-

An important simplification is possible when interactions be-jng decoherence-free code thus asymptotically approaches

yond nearest neighbors can be negle¢ted, J;;=0 if i and
j are not nearest neighborén which case the approximation
Jij=J is often made.

In the Coulomb case the interpretationaigaiola;rg,ajg
as an exchange operator is quite clear: gpis destroyed at
orbitalj and is created at orbital while sping’ is destroyed
at orbitali and is created at orbitgl The net effect is that

unit efficiency (number of encoded qubits per physical qu-
bits), and is therefore of significant interest. In the collective
decoherence case, since theare the generators of the se-
misimple Lie algebra @), the DFS condition Eq(8) is
satisfied withc,=0 [8]. This means that the decoherence-
free stateq|j)} aresu(2) singlets they are states of zero
total spin, and belong to the one-dimensional irreducible rep-

spinso ando’ are swapped between the electrons in orbitalgesentation of s). For example, foK =2 qubits undergo-
i andj. In the Heisenberg case one can verify that the operaing collective decoherence, there is just one decoherence-free

tor §-S; also implements an exchange. Letdenote the
identity operatorX; the Pauli matrixs} operating on qubit,

state: (01)—|10))/12, i.e., the familiar singlet state of two
spin-1/2 particles. For as few &&=4 there are already two

etc. A qubit state is written as usual as a superposition ovesinglet states, spanning a full encoded decoherence-free qu-

o, eigenstate$0) and|1). Then, defining

bit [7].
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IV. DECOHERENCE-FREE STATES AND EXCHANGE A. Decoherence-free subspaces are invariant under exchange

WITH CONSTANT MATRIX ELEMENTS The exchange operator commutes with the total-spin op-

A Simp|e situation arises when we can assume mjat erators. To see thiS, use”the definitions of these operators in
=JIK for all i,j, i.e., without the restriction to nearest- Egs.(2) and(9), and letS)= (S}, ;o). Since they act on
neighbor interactions. This long-range Ising model is ther-different qubits,S) clearly commutes withg;; . Now, using
modynamically equivalent to the mean-field theory of metal-o*o*= Oapl Tieap,0”
lic ferromagnets, and there exist some examples of metals
(e.g., HORRB,) that are well described by [i8]. At present  S«Eij=[S.— (07" + o) JEj; + (o7 + o) Ejj
the relevance of such materials to quantum computer archi- K
tectures is not clear. We also stress that in the vast majority _( > ot
of physical examples exchange correlations decay exponen- K#1,j
tially fast with the distance between particles. The case of i
arbitrary exchange matrix elements is dealt with in the next _dip 4 ay a, L Beor ~¥t Y B
section. We consider the long-range model here mainly for SaBy it 2 ,32‘7 Sap 0T @ O]+ 07O T]).
its simplicity and for the remarkable result that DFSs are
completely immune to exchange errors in this case.

We have forS=(S,,S,,S,) The last term in this expression vanishes singg;,=
—&,,5 and we are summing over gl, y values. Thus

1
Eij+§(cri“+oja) I+ > a'i'3®a'jﬁ

B=xy,z

(14)

P=55=3KI+22 X;@X;+Y,®Y;+Z8Z, (11

< S.Ejj=SIEjj+af+0=E;S,. (15
so that the exchange Hamiltonian can be rewritten as Now let [) be a decoherence-free statghich it is for
collective decoherence if6,|¢)=0 [8]). SinceS,(E;;|¥))
3 X =E;;S,|#)=0, it follows thatE;j|#) is also decoherence
He= 7 ;J (1+X®X+Y,®Y;+Z,8Z) free. We have thus proved:

Theorem I Let H be a decoherence-free subspace against
3 collective decoherence errors, aBg an exchange operation
= [(K2—4K)l +S2]. (12)  on qubitsi andj. ThenE;;H="H.

8K The significance of this result is that exchange errors act

- as errors on theencoded DFS qubits, i.e., they keep
Whereas the DFS condition guarantees that no decoherenggcoherence-free states inside the DFS. The exact way in

is caused by the coupling to the bath, uncontrolled unitaryyhich these errors are manifested is a difficult problem. Ex-
evolution due to the system Hamiltonian may still pose achange operations are transpositions in the language of the

significant problem. This is exactly the case in the presencgermutation grougSy and are known to generate this group
of exchange errors, as described above. However, using EE119]. For a given numbekK of physical qubits the action of
(12) and recalling that the DFS states have zero total spinpe exchange operators will realize 4-8imensional reduc-
we see that in the collective decoherence case the DFS is jg|e representation o8 . The DFS for collective decoher-
fact automatically protected against exchange errors: ence on thes& qubits is the set of one-dimensional irreduc-
ible subspaces in the irreducible representatiomeps of
(13) Sk, which appear with multiplicityK!/[ (K/2+1)!(K/2)!]
(see Appendix For K=4 the DFS is two-dimensional
(equal to the multiplicity of the one-dimensional irr¢psn-
where|y) is a DFS state and=(J/K)(K?—4K)/8. Since  coding one qubit. Therefore in this case exchange errors will
the constant does not depend o#, this implies that under act as the usual Pauli errors on a singémcoded qubit.
the unitary evolution generated bi;,, a DFS state accumu- Correction of exchange errors fét=4 can then be done
lates an overall, global phag&'. This phase is not measur- entirely within the DFS by using a quantum error correcting
able and does not affect the decoherence time. Thus in theode for single-qubit errors. This observation naturally leads
Jij=J model a DFS does not undergo exchange errors, andne to consider concatenating the DFS code words with such
the smallest DFSK =4 physical qubitsalready suffices to a code, as done in the concatenated code of Réf.That
encode a full logical qubit. paper showed that the concatenated DFS-QECC code can in
fact deal with the more general casebafth errors inside the
DFS (as is our case hereand errors that take states outside
of the DFS. We investigate the correction of exchange errors
in detail for theK=4 case in Sec. VB. Fd(>4 qubits, the
We now analyze the effect of arbitrary exchange errors ordimension of the DFS is greater than&g., forK=6 it is
DFS states for collective decoherence. We show that by corb), and the action of exchange errors will correspondingly be
catenation with QECCs, DFSs can be stabilized against thesepresented by higher-dimensional irrepsSpf. To correct
errors. such unitary errors it will be necessary to resort to codes for

J 2
Hex|¢>: V|+8_KS |¢>:V|¢>1

V. DECOHERENCE-FREE STATES AND ARBITRARY
EXCHANGE MATRIX ELEMENTS
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“qukits” (k>2), such as stabilizer codes for higher- (andnoton the physical qubiis Thus, exchange errors act as
dimensional sytemf20], or polynomial code$13]. We de- encoded Pauli errors on the DFS states.

fer the discussion of this case to a future publicafi@h] and Using this observation, it is possible to protect DFS states
focus here on th& =4 case. against such errors by concatenation with a QECC designed
to correct single-qubit errors. The critical point is that this
B. Effect of exchange errors on the four qubit QECC will now correct singleencodedqubit errors. This
decoherence-free subspace requires an additional encoding layer to be constructed. In

) _ articular, suppose we add such an encoding layer by using
Suppose that the qubits undergo collective decoherence {§gg qubits to build code words of the five-qubit “perfect”

clusters of four identical particles, but different clusters a'COECC [5]. These code words have the form
AAAABBEBARA A type of ordel. Each dlster woul  |£01€2) ) 4)[e). wheree=0.1, and ins is now aclus-
then support a two-dimensional DFS, accommodating Jer index. Since the five-qubit QECC can correct any single-

; - _ . . qubit error, in particular it can correct the specific errors of
32?; g;ﬁigig t?eFfvrgye?:t%He 4 physical qubits DFS Eq. (18) that the encoded DFS qubits would undergo under

an exchange interaction on the physical qubits in a given

~lay=|b) - 2lc)—|a)y—|b) cluster. However, Fhe error dgt(_action and correction proce-
|0)= , |1)= , (16)  dure must be carried out sufficiently fast so that exchange
2 23 errors affecting multiple blocks at a time do not occur, or
else concatenation with a code that can deal Wit inde-
where pendent errors is needed. The typical time scale for exchange

errors to occur is 1/(3;|), whereJ;; is the relevant ex-
change matrix element.

This 20-qubit concatenated DFS-QECC code is precisely
the one discussed in Ref9], where it was shown that it
offers protection against general collective decoherence
.. symmetry-breaking perturbations. Our present result shows
sums of complgmentary states. Moreover, the four. quIt?hat this concatenated code is stable against exchange errors
play a symmetrical roldi.e., 0 and 1 appear equally in all as well.
four positions in both0) and[1)). This dictates that ex-  we note that it is certainly possible to find a shorter
change of qubits in symmetrical positions should have the)ECC than the five-qubit one to protect against the restricted
same effect. In other words, we expéet, to be indistin-  set of errors in Eq(18). However, such a code would not
guishable from E3,, and similarly for {Ei3,Ez} and  offer the full protection against general errors that is offered
{E23,E14} (although for a linear geometry most physical ex- by concatenation with the perfect five-qubit code, and thus
change mechanisms will yield,4 >|J14). This expectation would not be as useful.
is borne out; in the[|0),|1)} basis we find, using straight-
forward algebra, that the six exchange operators can be writ-
ten as

|a)=0110+|1003), |b)=|1010+|0101),
|c)=|0011)+|1100. (17)

Note that the mutually orthogonal states,|b), and|c) are

VI. SUMMARY AND CONCLUSIONS

To conclude, in this paper we considered the effect of
-1 0 — unitary exchange errors between identical qubits on the pro-
0 1 tection of quantum information by decoherence-free sub-
spacegDFS9 defined for a qubit array. We showed that in
B B 1 the important case of ideal collective decoherefpeits are
Ei3=E,=R(7/3)= 7x+§z, (18) coupled symmetrically to the bathfor which a perfectly
stable DFS is obtained, DFSs are additionally invariant to
exchange errors. Thus such errors generate rotations inside
Eu= E,— R(— m/3) = — \/—§Y+Ef the DFS, but do not take decoherence-free states outside of
14— =23 2 27 the DFS. Consequently it is possible to use, without any
modification, the concatenated DFS-QECC scheme of Ref.
whereR(6) = R(e)Z and [9] in order to protect DFSs against exchange errors, while at
the same time relaxing the constraint of ideal collective de-
cosé _Sing) coherence, and allowing for symmetry-breaking perturba-

E1o=Eg= (

tions. This is useful for quantum memory applications. Since
exchange interactions preserve a DFS, an interesting further
~ , , ) question is whether they can be usmahstructivelyin order
Thus R(0) is a reflection about the axis followed by a {5 perform controlled logic operations inside a DFS. We
counterclockwise rotation in the,y plane. In writing these  have found the answer to be positive, and that it is actually
expressions, the matrices operate on column vectors su@bssible to perform universal computation in a fault-tolerant
that [0)=(3) and|1)=(9), andX,Z are theencodedPauli  manner inside a DFS for collective decoherence using only
matrices, i.e., the Pauli matrices acting on the DFS statesvo-body exchange interactiof22].

sind cosé

R(0)=<
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APPENDIX: DIMENSION OF DECOHERENCE-FREE
SUBSPACES FOR COLLECTIVE DECOHERENCE

In view of the fact that the total spin operat@s satisfy
spin-1/2 commutation relations, it follows from the addition
of angular momentum that the operat&sandS, have si-
multaneous eigenstates given by

S?|S,my=S(S+1)|S,m), S,|S,my=m|S,m),
(

Al)
where m=—-S,—-S+1,...S and S=0,1,...K/2 (for K
even, S=1/2,3/2... K/2 (for K odd). The |S,m) states are
known as Dicke stategl0,11]. The degeneracy of a state
with given Sis
KI(2S+1)
(K/2+S+1)1(K[2=9)!"

(A2)

which for S=0, i.e., the singlet states, coincides with the
dimension of the DFS foK qubits undergoing collective
decoherence cited in the text.

It is interesting to derive this formula from combinatorial
arguments relating to the permutation groupkKofobjects,
which we will do for S=0. The result follows straightfor-
wardly from the Young diagram technique. As is well known
(see, e.g.[19]), the singlet states of §2) belong to the rect-
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angular Young tableaux df/2 columns and 2 rows. The
multiplicity \ of such states is the number of “standard tab-
leaux” (tableaux containing an arrangement of numbers that
increase from left to right in a row and from top to bottom in
a column, which is also the dimension of the irreducible
representation of the permutation group corresponding to the
Young diagramzy,» (an empty tableguof K/2 columns
and two rows. This number is found using the “hook
recipe” [19], where one writes the “hook lengthy; (the
sum of the number of positions to the right of bigxplus the
number of positions below it, plus) bf each boxi in the
Young diagram:

K!
A= (A3)
_H Oi
i=1
For example, fory, , the hook lengths are
+1 —1{---13(2
c c |C (A4)
¢ le—=1fe—-2}---{21
and one finds, witlt=K/2,
Kl
Mz = (K DRI (A5)

which is indeed theéS=0 case of the general degeneracy
formula, Eq.(A2).
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