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Protecting quantum information encoded in decoherence-free states against exchange errors
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The exchange interaction between identical qubits in a quantum-information processor gives rise to unitary
two-qubit errors. It is shown here that decoherence-free subspaces~DFSs! for collective decoherence undergo
Pauli errors under exchange, which, however, do not take the decoherence-free states outside of the DFS. In
order to protect DFSs against these errors it is sufficient to employ a recently proposed concatenated DFS
quantum-error-correcting code scheme@D. A. Lidar, D. Bacon, and K.B. Whaley, Phys. Rev. Lett.82, 4556
~1999!#.

PACS number~s!: 03.67.Lx, 03.65.Bz, 03.65.Fd, 89.70.1c
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I. INTRODUCTION

Preserving the coherence of quantum states and con
ling their unitary evolution is one of the fundamental goa
of quantum-information processing@1#. When the system
Hamiltonian is invariant under particle permutations, the
change operatorEi j interchanging particlesi and j is a con-
stant of the motion, and definite symmetry of a state will
conserved. Models of quantum computers based on iden
bosons or fermions must of course respect this elemen
requirement. It was pointed out in a recent paper@2# that
active quantum-error-correcting codes~QECCs! @3# designed
to correct independent single-qubit errors, will fail foriden-
tical particles in the presence of exchange errors. The rea
is that exchange acts as atwo-qubit error that has the sam
effect as a simultaneous bit flip on two different qubits.
course, QECCs dealing explicitly with multiple-qubit erro
are also available, so that exchange errors can readily
dealt with, provided one accepts longer code words than
needed to deal with single-qubit errors@4#. For example, in
Ref. @2# a nine-qubit code is presented that can correct
single-qubit errors and all Pauli exchange errors. This is
be compared with the five-qubit ‘‘perfect’’ code that protec
~only! against all single-qubit errors@5#. While the nine-qubit
code is longer than the ‘‘perfect’’ code, it is shorter than
code required to protect againstall two-qubit errors.

A different error model that has been considered by s
eral authors is that in which qubits undergocollectiverather
than independent errors@6–9#. The underlying physics o
this model has a rich history: it dates back at least to Dick
quantum optics work on superradiance of atoms coupled
radiation field, where it arose in the consideration of syste
confined to a region whose linear dimensions are small c
pared to the shortest wavelength of the field@10#. The model
was later treated extensively by Agarwal in the context
spontaneous emission@11#. It was only recently realized
however, that in the collective decoherence model there e
large decoherence-free subspaces~DFSs!, which are ‘‘quiet’’
Hilbert subspaces in which no environmentally induced
rors occur at all@7,8#. Such subspaces offer a passive prot
tion against decoherence. Collective decoherence is an
sumption about the manner in which the environm
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couples to the system: instead of independent errors, as
sumed in the active QECC approach, one assumes that e
are strongly correlated, in the sense that all qubits can
permuted without affecting the coupling between system
bath. This is clearly a very strong assumption, and it may
hold exactly in a realistic system-bath coupling scenario.
deal with this limitation, we have shown recently how DF
can be stabilized in the presence of errors that perturb
exact permutation symmetry, by concatenating DFSs w
QECCs@9#. Concatenation is a general technique that is u
ful for achieving fault-tolerant quantum computation@12,13#,
and trades stability of quantum information for the price
longer code words. It is our purpose here to analyze
effect of exchange errors on DFSs for collective decoh
ence. These errors are fundamentally different from th
induced by the system-bath coupling, since they origin
entirely from the internal system Hamiltonian. We will sho
that by use of the very same concatenation scheme as i
duced in Ref.@9# ~which was designed originally to deal wit
system-bath induced errors!, a DFS can be stabilized in th
presence of exchange errors as well.

The structure of the paper is as follows. We begin
briefly recalling the origin of the exchange interaction in Se
II and present some Hamiltonians modeling this interacti
We then present, in Sec. III, a short review of the Ham
tonian theory of DFSs. Next we discuss in Sec. IV the si
plest model, of constant exchange matrix elements, and s
that DFSs are immune to exchange errors in this case.
main result is then presented in Sec. V, when we analyze
effect of exchange errors in the case of arbitrary excha
matrix elements. We show that a DFS is invariant under s
errors, and conclude that concatenation with a QECC
generally stabilize DFSs against exchange.

II. MODELING EXCHANGE IN QUBIT ARRAYS

The exchange interaction arises by virtue of permutat
symmetry between identical particles, in addition to so
interaction potential. Exchange is caused by the sys
Hamiltonian and is unrelated to the coupling to an exter
environment. Exchange thus induces an extraneousunitary
evolution on the system, but does not lead to decohere
©2000 The American Physical Society07-1
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To model exchange it is sufficient to consider a Hamilton
of the form

Hex5
1

2 (
iÞ j

K

Ji j Ei j , ~1!

where the sum is over all qubit pairs,Ji j are appropriate
matrix elements, and

Ei j ue1 , . . . ,e i , . . . ,e j , . . . ,eK&

5ue1 , . . . ,e j , . . . ,e i , . . . ,eK&, ~2!

where e i50 or 1. Ei j thus written is a general exchang
operator operating on qubitsi and j of a K-qubit state.

Typical examples of Hamiltonians leading to exchan
are @14#: ~i! the Heisenberg interaction between spins

HHeis5
1

2 (
iÞ j

Ji j
HSi•Sj , ~3!

whereSi5(s i
x ,s i

y ,s i
z) is the Pauli matrix vector of spini;

~ii ! the Coulomb interaction

HCoul5
1

2 (
iÞ j

(
s,s8

Ji j
Cais

† ais8aj s8
† aj s , ~4!

whereais
† (ais) is the creation~annihilation! operator of an

electron of spins in Wannier orbitali. Ji j is the exchange
matrix element and is given for electrons by

Ji j
C52e2E drdr 8

3
w* ~r2Ri !w~r 82Ri !w* ~r 82Rj !w~r2Rj !

ur2r 8u
, ~5!

whereRi is a lattice vector andw is a Wannier function@14#.
This is a rather generic form for the exchange matrix e
ment; in other casesw would be replaced by the appropria
wave function and the Coulomb interactione2/ur2r 8u by the
appropriate potential. The important point to notice is th
the exchange integral depends on the overlap between
wave functions at locationsi and j. Thus exchange effect
generally decay rapidly as the distanceuRi2Rj u increases.
An important simplification is possible when interactions b
yond nearest neighbors can be neglected~i.e., Ji j 50 if i and
j are not nearest neighbors!, in which case the approximatio
Ji j [J is often made.

In the Coulomb case the interpretation ofais
† ais8aj s8

† aj s

as an exchange operator is quite clear: spins is destroyed at
orbital j and is created at orbitali, while spins8 is destroyed
at orbital i and is created at orbitalj. The net effect is that
spinss ands8 are swapped between the electrons in orbit
i and j. In the Heisenberg case one can verify that the ope
tor Si•Sj also implements an exchange. LetI denote the
identity operator,Xi the Pauli matrixs i

x operating on qubiti,
etc. A qubit state is written as usual as a superposition o
sz eigenstatesu0& and u1&. Then, defining
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Ei j [
1

2
~ I 1Si•Sj !5

1

2
~ I 1Xi ^ Xj1Yi ^ Yj1Zi ^ Zj !,

~6!

it is easily checked that Eq.~2! is satisfied@15#.

III. REVIEW OF DECOHERENCE-FREE SUBSPACES

We briefly recall the Hamiltonian theory of DFSs@9,16#.
Given is a system-bath interaction Hamiltonian

HSB5(
l

Fl ^ Bl , ~7!

whereFl andBl are, respectively, the system and bath o
erators. The decoherence-free states are those and only
states$uc&% that are simultaneous degenerate eigenvector
all system operators appearing inHSB:

Fluc&5cluc&. ~8!

The eigenvalues$cl% do not depend onuc&. The subspace
spanned by these states is a DFS, meaning that underHSB the
evolution in this subspace is unitary, and there is no de
herence. This results in a passive protection against error
be contrasted with the active QECC approach. Of particu
interest is the case where the$Fl% are collective operators
such as the total spin operators

Sa5(
i 51

K

s i
a , a5x,y,z. ~9!

These operators satisfy su~2! commutation relations, just like
the locals i

a Pauli operators:

@Sa ,Sb#52i«abgSg . ~10!

This situation, referred to above as collective decoheren
arises when the bath couples in a permutation-invariant fa
ion to all qubits. In this paper we shall confine our attenti
to collective decoherence and employ the term DFS ex
sively in this context@17#. With a system-bath interaction o
the formHSB5(aSa ^ Ba ~as, e.g., in the Lamb-Dicke limi
of the spin-boson model!, a combinatorial calculation show
~see Appendix! that the number of encoded qubits
limK→`log2K!/@(K/211)!(K/2)!#'K2 3

2 log2K. The result-
ing decoherence-free code thus asymptotically approac
unit efficiency ~number of encoded qubits per physical q
bits!, and is therefore of significant interest. In the collecti
decoherence case, since theSa are the generators of the se
misimple Lie algebra su~2!, the DFS condition Eq.~8! is
satisfied withca50 @8#. This means that the decoherenc
free states$u j &% are su(2) singlets: they are states of zero
total spin, and belong to the one-dimensional irreducible r
resentation of su~2!. For example, forK52 qubits undergo-
ing collective decoherence, there is just one decoherence
state: (u01&2u10&)/A2, i.e., the familiar singlet state of two
spin-1/2 particles. For as few asK54 there are already two
singlet states, spanning a full encoded decoherence-free
bit @7#.
7-2



t-
er
al
ta

ch
r

ne
o

ex
fo
r

en
ar

nc
E

pi
is

-
r-

t
a

o
o
e

op-
rs in

inst
n

act

y in
x-

f the
p

f

-
c-

l

will

ng
ds
uch

n in

e
ors

be

for

PROTECTING QUANTUM INFORMATION ENCODED IN . . . PHYSICAL REVIEW A61 052307
IV. DECOHERENCE-FREE STATES AND EXCHANGE
WITH CONSTANT MATRIX ELEMENTS

A simple situation arises when we can assume thatJi j
[J/K for all i , j , i.e., without the restriction to neares
neighbor interactions. This long-range Ising model is th
modynamically equivalent to the mean-field theory of met
lic ferromagnets, and there exist some examples of me
~e.g., HoRh4B4) that are well described by it@18#. At present
the relevance of such materials to quantum computer ar
tectures is not clear. We also stress that in the vast majo
of physical examples exchange correlations decay expo
tially fast with the distance between particles. The case
arbitrary exchange matrix elements is dealt with in the n
section. We consider the long-range model here mainly
its simplicity and for the remarkable result that DFSs a
completely immune to exchange errors in this case.

We have forS5(Sx ,Sy ,Sz)

S25S•S53KI 12(
iÞ j

Xi ^ Xj1Yi ^ Yj1Zi ^ Zj , ~11!

so that the exchange Hamiltonian can be rewritten as

Hex5
J

4K (
iÞ j

K

~ I 1Xi ^ Xj1Yi ^ Yj1Zi ^ Zj !

5
J

8K
@~K224K !I 1S2#. ~12!

Whereas the DFS condition guarantees that no decoher
is caused by the coupling to the bath, uncontrolled unit
evolution due to the system Hamiltonian may still pose
significant problem. This is exactly the case in the prese
of exchange errors, as described above. However, using
~12! and recalling that the DFS states have zero total s
we see that in the collective decoherence case the DFS
fact automatically protected against exchange errors:

Hexuc&5FnI 1
J

8K
S2G uc&5n uc&, ~13!

where uc& is a DFS state andn[(J/K)(K224K)/8. Since
the constantn does not depend onc, this implies that under
the unitary evolution generated byHex, a DFS state accumu
lates an overall, global phaseeint. This phase is not measu
able and does not affect the decoherence time. Thus in
Ji j [J model a DFS does not undergo exchange errors,
the smallest DFS (K54 physical qubits! already suffices to
encode a full logical qubit.

V. DECOHERENCE-FREE STATES AND ARBITRARY
EXCHANGE MATRIX ELEMENTS

We now analyze the effect of arbitrary exchange errors
DFS states for collective decoherence. We show that by c
catenation with QECCs, DFSs can be stabilized against th
errors.
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A. Decoherence-free subspaces are invariant under exchange

The exchange operator commutes with the total-spin
erators. To see this, use the definitions of these operato
Eqs.~2! and ~9!, and letSa

i j [((kÞ i , j
K sk

a). Since they act on
different qubits,Sa

i j clearly commutes withEi j . Now, using
sasb5dabI 1 i«abgsg

SaEi j 5@Sa2~s i
a1s j

a!#Ei j 1~s i
a1s j

a!Ei j

5S (
kÞ i , j

K

sk
aDEi j 1

1

2
~s i

a1s j
a!S I 1 (

b5x,y,z
s i

b
^ s j

bD
5Sa

i j Ei j 1s i
a1s j

a1
i

2 (
b,g

«abg~s i
b

^ s j
g1s i

g
^ s j

b!.

~14!

The last term in this expression vanishes since«abg5
2«agb and we are summing over allb,g values. Thus

SaEi j 5Sa
i j Ei j 1s i

a1s j
a5Ei j Sa . ~15!

Now let uc& be a decoherence-free state~which it is for
collective decoherence iffSauc&50 @8#!. SinceSa(Ei j uc&)
5Ei j Sauc&50, it follows that Ei j uc& is also decoherence
free. We have thus proved:

Theorem I.Let H̃ be a decoherence-free subspace aga
collective decoherence errors, andEi j an exchange operatio
on qubitsi and j. ThenEi j H̃5H̃.

The significance of this result is that exchange errors
as errors on theencoded DFS qubits, i.e., they keep
decoherence-free states inside the DFS. The exact wa
which these errors are manifested is a difficult problem. E
change operations are transpositions in the language o
permutation groupSK and are known to generate this grou
@19#. For a given numberK of physical qubits the action o
the exchange operators will realize a 2K-dimensional reduc-
ible representation ofSK . The DFS for collective decoher
ence on theseK qubits is the set of one-dimensional irredu
ible subspaces in the irreducible representations~irreps! of
SK , which appear with multiplicityK!/ @(K/211)!(K/2)!#
~see Appendix!. For K54 the DFS is two-dimensiona
~equal to the multiplicity of the one-dimensional irreps!, en-
coding one qubit. Therefore in this case exchange errors
act as the usual Pauli errors on a single~encoded! qubit.
Correction of exchange errors forK54 can then be done
entirely within the DFS by using a quantum error correcti
code for single-qubit errors. This observation naturally lea
one to consider concatenating the DFS code words with s
a code, as done in the concatenated code of Ref.@9#. That
paper showed that the concatenated DFS-QECC code ca
fact deal with the more general case ofbotherrors inside the
DFS ~as is our case here!, and errors that take states outsid
of the DFS. We investigate the correction of exchange err
in detail for theK54 case in Sec. V B. ForK.4 qubits, the
dimension of the DFS is greater than 2~e.g., forK56 it is
5!, and the action of exchange errors will correspondingly
represented by higher-dimensional irreps ofSK . To correct
such unitary errors it will be necessary to resort to codes
7-3
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LIDAR, BACON, KEMPE, WHALEY PHYSICAL REVIEW A 61 052307
‘‘qukits’’ ( k.2), such as stabilizer codes for highe
dimensional sytems@20#, or polynomial codes@13#. We de-
fer the discussion of this case to a future publication@21# and
focus here on theK54 case.

B. Effect of exchange errors on the four qubit
decoherence-free subspace

Suppose that the qubits undergo collective decoherenc
clusters of four identical particles, but different clusters a
independent~as they might be, e.g., in a polymer with a
AAAABBBBAAA A . . . type of order!. Each cluster would
then support a two-dimensional DFS, accommodating
single encoded DFS qubit. TheK54 physical qubits DFS
states can then be written as@7#

u0̃&5
ua&2ub&

2
, u1̃&5

2uc&2ua&2ub&

2A3
, ~16!

where

ua&[u0110&1u1001&, ub&[u1010&1u0101&,

uc&[u0011&1u1100&. ~17!

Note that the mutually orthogonal statesua&,ub&, anduc& are
sums of complementary states. Moreover, the four qu
play a symmetrical role~i.e., 0 and 1 appear equally in a
four positions in bothu0̃& and u1̃&). This dictates that ex-
change of qubits in symmetrical positions should have
same effect. In other words, we expectE12 to be indistin-
guishable from E34, and similarly for $E13,E24% and
$E23,E14% ~although for a linear geometry most physical e
change mechanisms will yielduJ23u.uJ14u). This expectation
is borne out; in the$u0̃&,u1̃&% basis we find, using straight
forward algebra, that the six exchange operators can be w
ten as

E125E345S 21 0

0 1D 52Z̄,

E135E245R̃~p/3!5
A3

2
X̄1

1

2
Z̄, ~18!

E145E235R̃~2p/3!52
A3

2
X̄1

1

2
Z̄,

whereR̃(u)5R(u)Z̄, and

R~u!5S cosu 2sinu

sinu cosu D .

Thus R̃(u) is a reflection about thex axis followed by a
counterclockwise rotation in thex,y plane. In writing these
expressions, the matrices operate on column vectors
that u0̃&5(0

1) and u1̃&5(1
0), and X̄,Z̄ are theencodedPauli

matrices, i.e., the Pauli matrices acting on the DFS st
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~andnot on the physical qubits!. Thus, exchange errors act a
encoded Pauli errors on the DFS states.

Using this observation, it is possible to protect DFS sta
against such errors by concatenation with a QECC desig
to correct single-qubit errors. The critical point is that th
QECC will now correct singleencodedqubit errors. This
requires an additional encoding layer to be constructed
particular, suppose we add such an encoding layer by u
DFS qubits to build code words of the five-qubit ‘‘perfect
QECC @5#. These code words have the for
u ẽ1&u ẽ2&u ẽ3&u ẽ4&u ẽ5&, wheree50,1, andj in ẽ j is now aclus-
ter index. Since the five-qubit QECC can correct any sing
qubit error, in particular it can correct the specific errors
Eq. ~18! that the encoded DFS qubits would undergo un
an exchange interaction on the physical qubits in a giv
cluster. However, the error detection and correction pro
dure must be carried out sufficiently fast so that excha
errors affecting multiple blocks at a time do not occur,
else concatenation with a code that can deal witht.1 inde-
pendent errors is needed. The typical time scale for excha
errors to occur is 1/(2uJi j u), where Ji j is the relevant ex-
change matrix element.

This 20-qubit concatenated DFS-QECC code is precis
the one discussed in Ref.@9#, where it was shown that i
offers protection against general collective decohere
symmetry-breaking perturbations. Our present result sh
that this concatenated code is stable against exchange e
as well.

We note that it is certainly possible to find a short
QECC than the five-qubit one to protect against the restric
set of errors in Eq.~18!. However, such a code would no
offer the full protection against general errors that is offer
by concatenation with the perfect five-qubit code, and th
would not be as useful.

VI. SUMMARY AND CONCLUSIONS

To conclude, in this paper we considered the effect
unitary exchange errors between identical qubits on the p
tection of quantum information by decoherence-free s
spaces~DFSs! defined for a qubit array. We showed that
the important case of ideal collective decoherence~qubits are
coupled symmetrically to the bath!, for which a perfectly
stable DFS is obtained, DFSs are additionally invariant
exchange errors. Thus such errors generate rotations in
the DFS, but do not take decoherence-free states outsid
the DFS. Consequently it is possible to use, without a
modification, the concatenated DFS-QECC scheme of R
@9# in order to protect DFSs against exchange errors, whil
the same time relaxing the constraint of ideal collective
coherence, and allowing for symmetry-breaking pertur
tions. This is useful for quantum memory applications. Sin
exchange interactions preserve a DFS, an interesting fur
question is whether they can be usedconstructivelyin order
to perform controlled logic operations inside a DFS. W
have found the answer to be positive, and that it is actu
possible to perform universal computation in a fault-tolera
manner inside a DFS for collective decoherence using o
two-body exchange interactions@22#.
7-4
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APPENDIX: DIMENSION OF DECOHERENCE-FREE
SUBSPACES FOR COLLECTIVE DECOHERENCE

In view of the fact that the total spin operatorsSa satisfy
spin-1/2 commutation relations, it follows from the additio
of angular momentum that the operatorsS2 andSz have si-
multaneous eigenstates given by

S2uS,m&5S~S11!uS,m&, SzuS,m&5muS,m&,
~A1!

where m52S,2S11, . . . ,S and S50,1, . . . ,K/2 ~for K
even!, S51/2,3/2, . . . ,K/2 ~for K odd!. The uS,m& states are
known as Dicke states@10,11#. The degeneracy of a stat
with given S is

K! ~2S11!

~K/21S11!! ~K/22S!!
, ~A2!

which for S50, i.e., the singlet states, coincides with t
dimension of the DFS forK qubits undergoing collective
decoherence cited in the text.

It is interesting to derive this formula from combinatori
arguments relating to the permutation group ofK objects,
which we will do for S50. The result follows straightfor-
wardly from the Young diagram technique. As is well know
~see, e.g.,@19#!, the singlet states of su~2! belong to the rect-
ev

c

tt.

tt.

n

05230
.
-

angular Young tableaux ofK/2 columns and 2 rows. The
multiplicity l of such states is the number of ‘‘standard ta
leaux’’ ~tableaux containing an arrangement of numbers t
increase from left to right in a row and from top to bottom
a column!, which is also the dimension of the irreducib
representation of the permutation group corresponding to
Young diagramhK/2,2 ~an empty tableau! of K/2 columns
and two rows. This number is found using the ‘‘hoo
recipe’’ @19#, where one writes the ‘‘hook length’’gi ~the
sum of the number of positions to the right of boxi, plus the
number of positions below it, plus 1! of each boxi in the
Young diagram:

l~h!5
K!

)
i 51

K

gi

. ~A3!

For example, forhc,2 the hook lengths are

~A4!

and one finds, withc5K/2,

l~hK/2,2!5
K!

~K/211!! ~K/2!!
, ~A5!

which is indeed theS50 case of the general degenera
formula, Eq.~A2!.
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