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Adiabatic Quantum Computation in Open Systems
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We analyze the performance of adiabatic quantum computation (AQC) subject to decoherence. To this
end, we introduce an inherently open-systems approach, based on a recent generalization of the adiabatic
approximation. In contrast to closed systems, we show that a system may initially be in an adiabatic
regime, but then undergo a transition to a regime where adiabaticity breaks down. As a consequence, the
success of AQC depends sensitively on the competition between various pertinent rates, giving rise to
optimality criteria.
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Adiabatic quantum computation (AQC) is a promising
paradigm for quantum information processing, which ap-
pears particularly well suited to physical implementations
[1]. In AQC, an algorithm is implemented via the slow
evolution of a time-dependent Hamiltonian H�t�. AQC
schemes have recently been proposed based on supercon-
ducting flux qubits [2]. An experimental implementation of
an adiabatic optimization algorithm using nuclear mag-
netic resonance (NMR) techniques has already been re-
ported [3]. Moreover, it has recently been shown that AQC
and the standard circuit model of quantum computation are
equivalent up to polynomial resource overhead [4,5].

The robustness of AQC against errors has recently been
analyzed in several contexts [6,7]. An important consid-
eration is that, if decoherence occurs in the instantaneous
eigenstate basis, then AQC can be intrinsically robust
against environmental noise provided one runs the algo-
rithm at a temperature that is small compared to the mini-
mum gap [6]. However, despite the importance of this
result for the robustness of AQC, the choice of the system
eigenstate basis as a preferred basis may not always be a
good approximation (especially for non-Markovian envi-
ronments), since it implicitly assumes that the environment
keeps track of the Hamiltonian evolution. Moreover, from a
more general point of view, a methodology to systemati-
cally study AQC under decoherence has not yet been
developed. In this work, we introduce such a methodology
and analyze the performance of AQC under decoherence
modeled by a rather general class of master equations. Our
approach is based on a recently introduced adiabatic ap-
proximation genuinely conceived for open quantum sys-
tems [8]. We show that this framework can be used to
provide the optimal runtime of adiabatic quantum algo-
rithms. This allows for the understanding of the perform-
ance and robustness of open-system AQC. We illustrate our
method by discussing the adiabatic implementation of the
Deutsch-Jozsa algorithm under dephasing.
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Adiabaticity in open quantum systems.—Let us consider
a quantum system coupled to an environment, or bath,
evolving under the convolutionless master equation

_��t� � L�t���t�: (1)

An example of this class of master equations is given by
(we use @ � 1 units throughout)

_� � �i�H;�� �
1

2

X
i

���i; ��yi � � ��i�;�
y
i ��: (2)

Here H�t� is the time-dependent effective Hamiltonian of
the open system and �i�t� are time-dependent operators
describing the system-bath interaction. Equation (2) with
time-independent operators �i is usually referred to as the
Markovian master equation, or Lindblad equation [9]. In a
slight abuse of nomenclature, we will refer to the time-
dependent generator L�t� [Eq. (1)] as the Lindblad super-
operator and the �i�t� [Eq. (2)] as Lindblad operators.

The key idea required to establish a natural adiabatic
approximation for open systems is to replace the concept of
adiabatic evolution of eigenspaces of the Hamiltonian by
adiabatic evolution of the Jordan blocks of the Lindblad
superoperator [8]. In the superoperator formalism, the
density matrix for a quantum state in a D-dimensional
Hilbert space is represented by a D2-dimensional ‘‘coher-
ence vector’’ j�ii � ��1; �2; . . . ; �D2�t and the Lind-
blad superoperator L becomes a (D2 �D2)-dimensional
supermatrix [9]. The master equation (1) generates a non-
unitary evolution, since L�t� is non-Hermitian, and there-
fore, generally, nondiagonalizable. However, one can
always transform L�t� into the Jordan canonical form,
where it has a block-diagonal structure. This is achieved
via the similarity transformation LJ�t� � S�1�t�L�t�S�t�,
where LJ�t� � diag �J1; . . . ; Jm� is the Jordan form of L�t�,
with J� denoting the Jordan blocks. Instantaneous right
fjD�j�

� �t�iig and left fhhE�i�� �t�jg bases in the state space of
linear operators can always be systematically constructed
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such that they obey the orthonormality condition
hhE�i�� �t�jD

�j�
� �t�ii � ����

ij, and such that the Jordan block
structure is preserved under the action
of the Lindblad superoperator, i.e., L�t�jD�j�

� �t�ii �
jD�j�1�

� �t�ii � ���t�jD
�j�
� �t�ii and hhE�i�� �t�jL�t� �

hhE�i�1�
� �t�j � hhE�i�� �t�j���t�, with jD��1�

� ii 	 0 and
hhE�n��� j 	 0 [8]. Here subscripts enumerate Jordan blocks
(� 2 f1; . . . ; mg), superscripts enumerate basis states in-
side a given Jordan block (i; j 2 f0; . . . ; n� � 1g, n� is the
dimension of the Jordan block), and f��g are the (generally
complex-valued) Lindblad-Jordan (LJ) eigenvalues. Then,
an open quantum system is said to undergo adiabatic
dynamics when its Hilbert-Schmidt space can be decom-
posed into decoupled LJ eigenspaces with distinct, time-
continuous, and noncrossing instantaneous eigenvalues of
L�t� [8]. Just as in the closed-systems case, one can
express the condition for adiabaticity in terms of the total

time of evolution. To this end, we expand j��t�ii �Pm
��1

Pn��1
j�0 p�j�� �t�e

R
t

0
���t0�dt0 jD�j�

� �t�ii. It is convenient to
express the variables in terms of the dimensionless time
s � t=T, where T denotes the total evolution time. Then,
adiabatic dynamics in the interval 0 
 s 
 1 occurs if and
only if the following time condition is satisfied: T �
max�fTc�g, where Tc� denotes the crossover time for the
Jordan block J� [8]. For the particular case of one-
dimensional blocks, which appears in our example below,
we have [8]

Tc� � max
0
s
1

��������
X
���

�
Q���0� �Q���s�e

T����s�

�
Z s

0
ds0eT����s0�dQ���s0�=ds0

���������; (3)

where ����s� �
R
s
0 !���s0�ds0, !���s� � ���s� � ���s�

(the gap between Jordan eigenvalues), Q���s� 	

V���s�=!
2
���s�, and V���s��p��s�hhE��s�j

dL�s�
ds jD��s�ii

(matrix elements of the time derivative of the Lindblad
superoperator). Note that a quantity analogous to Q��

appears in the standard condition for adiabaticity in closed
systems [8]. In the expression for V���s�, upper indices in

p�j�� �s� and in the basis vectors fjD�j�
� �s�iig and fhhE�i�� �t�jg

were removed because the Jordan blocks are one dimen-
sional. The crossover time Tc� provides a decoupling time
scale for each Jordan block: provided T � Tc� the Jordan
block J� is adiabatically decoupled from all other blocks
associated to a different eigenvalue.

Performance of open-systems adiabatic quantum algo-
rithms.—The performance of AQC under decoherence can
be analyzed consistently within the present picture of
open-systems adiabaticity. In particular, the maximal
crossover time max�fTc�g determined by Eq. (3) provides
the time scale over which the adiabatic approximation
holds. Provided the evolution is as slow as is set by this
time scale, the density operator evolves separately in sets
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of Jordan blocks related to distinct eigenvalues of L�t�.
Thus, if the initial density matrix is associated to a certain
set of instantaneous Jordan blocks, it will remain associ-
ated to the same instantaneous set at all times. Note that, if
there is an overall growing exponential in the right-hand
side of Eq. (3), then the adiabatic behavior takes place over
a finite time interval and, afterwards, disappears. In this
case, which is an exclusive feature of open systems, we
have the existence of a privileged time for adiabaticity.
Having determined the adiabatic time interval, the per-
formance of the algorithm can be understood from the
adiabatic density operator �a�s; �i; T�, where �i are the
system-bath coupling constants. This operator is obtained
by solving the adiabatic master equation (1), where we
disregard any coupling among Jordan blocks associated to
distinct eigenvalues.

The final result, coming from �a�1; �i; T�, will then
depend on a competition between the adiabatic runtime T
and the coupling constants �i. On the one hand, the adia-
batic approximation is favored for a certain time interval.
On the other hand, decohering processes tend to progres-
sively destroy the performance of the algorithm over time
(intuitively, decoherence causes broadening of the energy
levels, until they overlap). This compromise between adia-
baticity and decoherence generates an optimal runtime for
the algorithm, which provides the optimal success proba-
bility for given system-bath coupling strength. In agree-
ment with this picture, an optimal time has indeed been
detected in the experimental NMR AQC algorithm re-
ported in Ref. [3]. Here, we provide a general explanation
for such an optimal time in terms of the decoupling of the
Jordan blocks of L�s�.

Constancy of the gap.—An important condition for the
decoupling of the Jordan blocks is the existence of gaps in
the spectrum of LJ eigenvalues f��g. This is relevant for
AQC, where a major concern is the scaling of the gap with
problem input size. In fact, there have been indications that
AQC may take an exponential time to solve certain hard
instances of NP-complete problems due to vanishingly
small gaps [10]. A physical interpretation for the exponen-
tial delay has been proposed in terms of the quantum
tunneling of a large spin during the computation [11]. In
the closed-systems case, it is in principle possible to keep
the gap constant throughout the execution of AQC via a
‘‘unitary interpolation’’ scheme [5]. However, the trade-off
in using this method is that, in general, it may require
many-body interactions. In spite of this difficulty, schemes
with a constant gap are an interesting possibility, since they
constitute a favorable situation for closed-systems AQC.
Thus, it is natural to ask whether a constant gap setting may
also be implemented within an open-systems context. Our
methodology for AQC can be used to answer this question.
In fact, we will see that this possibility persists in the open-
systems setting only under very special conditions. We
emphasize that the general approach we introduced above
applies to all interpolation schemes, in particular, to stan-
dard, linear interpolation AQC [1,6]. The latter has the
3-2



PRL 95, 250503 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
16 DECEMBER 2005
advantage of avoiding the many-body interactions associ-
ated with unitary interpolation [4,5].

Let us first show that if the Hamiltonian changes by a
unitary transformation, then the corresponding supero-
perator H �s� also changes by a unitary transforma-
tion. The eigenvalues of H �s� are given by the set of
energy differences f�mn�s� � Em�s� � En�s�g and the ei-
genvectors by the set fj m�s�ih n�s�jg. Therefore, if the
Hamiltonian giving rise to H �s� changes by a unitary
transformation U�s�, then the eigenvectors of H �s� evolve
as j m�s�ih n�s�j � Uy�s�j m�0�ih n�0�jU�s�. Expressing
them as vectors j�mn�s�ii in Hilbert-Schmidt space, we
have j�mn�s�ii � V y�s�j�mn�0�ii, with V �s�V y�s� � I,
which follows from the orthonormality of j�mn�s�ii.
Hence, from H �s�j�mn�s�ii � �mn�s�j�mn�s�ii, we obtain
H �s� � V y�s�H �0�V �s�.

Theorem 1.—Consider a Lindblad superoperator
L�s� �H �s� �R�s�, where H �s� [R�s�] denotes the
Hamiltonian [decohering] component. If the Hamiltonian
changes as H �s� � V y�s�H �0�V �s� with V unitary,
then a sufficient condition for a constant spectrum of
L�s� is R�s� � V y�s�R�0�V �s�. If the Jordan form of
L�s� contains just one-dimensional Jordan blocks, this is
also a necessary condition. In the case of time-independent
R�s�, this simplifies to �R;V �s�� � 0 or �R;V y�s�� �
0. Under these conditions open-systems AQC with unitary
interpolation is possible

Proof.—Sufficiency: By assumption we have L�s� �
V y�s��H �0� �V �s�R�s�V y�s��V �s�. Therefore, if
R�0� � V �s�R�s�V y�s� then L�s� �V y�s�L�0�V �s�.
By inserting this equation into the right-eigenvector equa-
tion L�s�jD��s�ii � ���s�jD��s�ii, we obtain that the
eigenvalues of L�s� are independent from s. The simplifi-
cation in the case of time-independent R�s� is immediate.
Necessity: Assuming, in the eigenvector equation
L�s�jD��s�ii � ���s�jD��s�ii, that L�s� has a con-
stant spectrum, we obtain �H �s� �R�s��jD��s�ii �
���0�jD��s�ii )V �s�R�s�V y�s�j ~D��s�ii � ����0�I�
H �0��j ~D��s�ii, where j ~D��s�ii � V �s�jD��s�ii. But
then, if the Jordan form of L�s� contains just one-
dimensional Jordan blocks, we have that the set
fjD��s�iig is complete and constitutes a basis in Hilbert-
Schmidt space. It follows that V �s�R�s�V y�s� �
���0�I �H �0� �R�0�.�

Theorem 1 implies that constant gaps in the spectrum of
L�s� are a priori nongeneric. This places a limit on AQC
with constant gap in the presence of decoherence.

Adiabatic implementation of the Deutsch-Jozsa (DJ)
algorithm under dephasing.—Given a binary function f
which is promised to be either balanced or constant, the
Deutsch problem is to determine which type the function is
[12]. Here we construct an adiabatic implementation for
the optimized version of the algorithm [13]. The input state
is j �0�i � j�1i �    � j�Ni, where j�ii � �j0ii �
j1ii�=

���
2
p

, with fj0ii; j1iig being the computational basis
for the ith qubit (eigenstates of the Pauli matrix �z). The
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initial Hamiltonian is chosen such that its ground state is
j �0�i, i.e., H�0� � !

PN
i�1 j�iih�ij, where ! is the en-

ergy scale. The Deutsch problem can be solved by a single
computation of the function f through the unitary trans-
formation Ujxi � ��1�f�x�jxi (x 2 f0; 1gN) [13], so that in
the fjxig (computational) basis U is represented by the
diagonal matrix U � diag ���1�f�0�; . . . ; ��1�f�2

N�1��. An
adiabatic implementation requires a final Hamiltonian
H�1� such that its ground state is j �1�i � Uj �0�i. This
is accomplished by a unitary transformation on H�0�, i.e.,
H�1� � UH�0�Uy [5]. Then the final Hamiltonian encodes
the solution of the Deutsch problem in its ground state,
which can be extracted via a measurement of the qubits in
the basis fj�i; j�ig. A suitable interpolation between H�0�
andH�1�, which preserves the spectral gaps, can be defined
by H�s� � ~U�s�H�0� ~Uy�s�, where ~U�s� � exp�i 	2 sU�.
The runtime of the closed-system version of the algorithm
can be determined from the standard adiabatic theorem,
yielding T � 	=2!. This result is independent of N, as
required.

We now analyze the effect of dephasing in the computa-
tional basis fj0i; j1ig�N . For simplicity, we consider the
case of a single qubit, i.e., N � 1. Dephasing is modeled
by the Lindblad operator � � �

����
!
p

�z, where � is a di-
mensionless parameter denoting the strength of the dephas-
ing and the factor

����
!
p

is introduced to make the energy
scale explicit. Thus, expanding the coherence vector j�ii in
the Pauli basis fI; �x; �y; �zg, the Lindblad superoperator
for the master equation (2) is found to be

L �s� � !

0 0 0 0
0 �2�2 0 q�s�
0 0 �2�2 �r�s�
0 �q�s� r�s� 0

0
BBB@

1
CCCA; (4)

where r�s� � � cos	F2 s, q�s� � sin	F2 s, with F 	
��1�f�0� � ��1�f�1�. In our DJ implementation the
Hamiltonian superoperator evolves unitarily, i.e., H �s� �
V y�s�H �0�V �s�. Explicit evaluation of V �s� yields that
�R;V �s�� � �R;V y�s�� � 0. Hence, it follows from
Theorem 1 that (nongenerically) the LJ spectral gaps are
constant in this example. Interestingly, this property is not
restricted to dephasing in this example, but holds also, e.g.,
for spontaneous emission, where � / ��. Indeed, explicit
evaluation of the eigenvalues of L�s� shows that they are
independent from s and given by �1 � 0, �2 � �2!�2,
�3 � !���2 �

���������������
�4 � 1
p

�, and �4 � !���2 �
���������������
�4 � 1
p

�.
These eigenvalues are nondegenerate for 0< �< 1 and
define four one-dimensional Jordan blocks for the
Lindblad superoperator, denoted by J� (� 2 f1; . . . ; 4g)
(thus the condition in Theorem 1 is both necessary and
sufficient). Expanding the coherence vector as j��s�ii �P4
��1 p��s�e

T��sjD��s�ii, where the jD��s�ii (��) de-
note the eigenstates (eigenvalues) of L�s�, and using it in
the master Eq. (1), we can show that the block J1 is already
decoupled from the others. Therefore, adiabaticity is re-
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FIG. 1 (color online). Tc� as a function of T for the Jordan
blocks J2, J3, and J4. The inset of (a) shows that J2 has non-
negligible couplings for T � 103 (in units such that ! � 1).
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lated here to the decoupling of the remaining three Jordan
blocks.

Next we compute the crossover times for decoupling of
all the Jordan blocks, so as to test for the adiabatic time
interval, as defined by the condition T � max�fT

c
�g. We

work in units such that ! � 1. As anticipated above, one
important result is a finite time interval for adiabaticity.
This is illustrated in Fig. 1, where we plot the crossover
time Tc� as a function of the evolution time T for two values
of �. Observe that Tc3 ; T

c
4 asymptotically approach a con-

stant value, implying the decoupling of blocks J3; J4 for
sufficiently slow evolutions (large T) since the condition
T � max�fT

c
�g is satisfied. On the other hand, the block J2

can only decouple from the others during a finite interval
[see inset of Fig. 1(a)]. While the adiabatic interval T �
Tc2 is large for � � 0:1, it decays rapidly as the dephasing
parameter � increases, as shown in Fig. 1(b).

In order to understand the algorithm’s performance we
still need to analyze the adiabatic solution of the Lindblad
equation. Let us select T such that, for given �, adiabaticity
is a good approximation, i.e., we can disregard the Jordan
block couplings. Then, with ��0� � �I � �x�=2, the
straightforward solution of the Lindblad equation yields
��1� � �I � e�2�2T��1�f�0��f�1��x�=2. The probabilities
p� of finding the system in one of the final states
fj�i; j�ig are then p� � �1� e

�2�2T��1�f�0��f�1��=2. In
the closed-system case (� � 0) whether f is constant or
balanced is determined, respectively, by p� � 1 or p� �
1. In the open-system case, for each given value of �, we
can determine an optimal runtime T, provided we impose a
certain success probability for the algorithm. For instance,
take � � 0:1. Then, imposing a certainty of 90% (either
p� � 0:9 or p� � 0:9), we find T � 11. This result is
compatible with the adiabatic interval for � � 0:1, where
the condition T � max�fT

c
�g for T � 11 is relatively well

satisfied, with Tc2 � 0:82 and Tc3 � Tc4 � 1:43. Therefore,
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for this dephasing scale, the algorithm has a high proba-
bility of success. In order to generalize the results to many
qubits, we consider N independent dephasing operators
�i � �i

����
!
p

�zi acting individually on each qubit. For N �
2, it is easy to show that Theorem 1 applies. We conjecture
the validity of this result for any N due to the simple
diagonal form of R�s�. A multiqubit analysis can then be
implemented similarly as done before. For N qubits, the
success probability may still be improved by repeating the
algorithm execution several times.

Conclusions.—We introduced and illustrated a general
methodology to analyze the performance of AQC in open
quantum systems described by arbitrary convolutionless
master equations. We have shown (Theorem 1) that a
closed-systems unitary interpolation (constant gap)
scheme translates into an open-system constant gap
scheme only under specific, nongeneric assumptions. The
limited robustness of AQC in an open-systems setting
suggests that the development of quantum error correction
methods tailored to AQC is an important direction of future
research.
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