
ARTICLES
PUBLISHED ONLINE: 28 FEBRUARY 2014 | DOI: 10.1038/NPHYS2900

Evidence for quantum annealing with more than
one hundred qubits
Sergio Boixo1, Troels F. Rønnow2, Sergei V. Isakov2, Zhihui Wang3, DavidWecker4, Daniel A. Lidar5,
John M. Martinis6 and Matthias Troyer2*
Quantum technology is maturing to the point where quantum devices, such as quantum communication systems, quantum
random number generators and quantum simulators may be built with capabilities exceeding classical computers. A quantum
annealer, in particular, solves optimization problems by evolving a known initial configuration at non-zero temperature towards
the ground state of a Hamiltonian encoding a given problem. Here, we present results from tests on a 108 qubit D-Wave One
device based on superconducting flux qubits. By studying correlations we find that the device performance is inconsistent
with classical annealing or that it is governed by classical spin dynamics. In contrast, we find that the device correlates well
with simulated quantum annealing. We find further evidence for quantum annealing in the form of small-gap avoided level
crossings characterizing the hard problems. To assess the computational power of the device we compare it against optimized
classical algorithms.

Annealing a material by slow cooling is an ancient technique
to improve the properties of glasses, metals and steel that
has been used for more than seven millennia1.Mimicking

this process in computer simulations is the idea behind simulated
annealing as an optimization method2, which views the cost
function of an optimization problem as the energy of a physical
system. Its configurations are sampled in a Monte Carlo simulation
using the Metropolis algorithm3, escaping from local minima by
thermal fluctuations to find lower energy configurations. The
goal is to find the global energy minimum (or at least a close
approximation) by slowly lowering the temperature and thus obtain
the solution to the optimization problem.

The phenomenon of quantum tunnelling suggests that it can
be more efficient to explore the state space quantum mechanically
in a quantum annealer4–6. In simulated quantum annealing7,8, one
makes use of this effect by adding quantum fluctuations, which
are slowly reduced while keeping the temperature constant and
positive—ultimately ending up in a low-energy configuration of
the optimization problem. Simulated quantum annealing, using
a quantum Monte Carlo algorithm, has been observed to be
more efficient than thermal annealing for certain spin glass
models8, although the opposite has been observed for k-satisfiability
problems9. A further acceleration may be expected in physical
quantum annealing, either as an experimental technique for
annealing a quantum spin glass10, or—and this is what we will focus
on here—as a computational technique in a programmable device.

In this work we report on computer simulations and
experimental tests on a D-Wave One device11 to address central
open questions about quantum annealers: is the device actually a
quantum annealer, namely do the quantum effects observed on
8 qubits11,12) and 16 qubits13 persist when scaling problems up to
more than 100 qubits, or do short coherence times turn the device
into a classical, thermal annealer? Which problems are easy and

which problems are hard for a quantum annealer, for a simulated
classical annealer, for classical spin dynamics, and for a simulated
quantum annealer? How does the effort to find the ground state
scale with problem size? Does the device have advantages over
classical computers?

We consider the problem of finding the ground state of an Ising
spin glass model with the ‘problem Hamiltonian’

HIsing=−
∑
i<j

Jijσ z
i σ

z
j −

∑
i

hiσ
z
i

with N binary variables σ z
i = ±1, where Jij are the couplings

and hi are the local fields. This problem is non-deterministic
polynomially (NP) hard14, meaning that it is at least as hard as
the hardest problems in NP, a class which includes notoriously
difficult problems such as the travelling salesman and satisfiability
of logical formulas. It also implies that no efficient (polynomial
time) algorithm to find these ground states is known and the
computational effort of all existing algorithms scales with problem
size asO(exp(cN a)). Although quantummechanics is not expected
to turn the exponential scaling into a polynomial scaling, the
constants c and a can be smaller on quantum devices, potentially
giving a substantial acceleration over classical algorithms.

To perform quantum annealing, we map each of the Ising
variables σ z

i to the Pauli z-matrix (which defines the ‘computational
basis’) and add a transverse magnetic field in the x-direction to
induce quantum fluctuations, obtaining the time-dependent N -
qubit Hamiltonian

H(t)=−A(t)
∑

i

σ x
i +B(t)HIsing, t ∈[0, tf ]

where A(t) and B(t) are the ‘annealing schedules’.

1Information Sciences Institute and Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA,
2Theoretische Physik, ETH Zurich, 8093 Zürich, Switzerland, 3Department of Chemistry and Center for Quantum Information Science and Technology,
University of Southern California, Los Angeles, California 90089, USA, 4Quantum Architectures and Computation Group, Microsoft Research, Redmond,
Washington 98052, USA, 5Department of Electrical Engineering, Chemistry and Physics, and Center for Quantum Information Science and Technology,
University of Southern California, Los Angeles, California 90089, USA, 6Department of Physics, University of California, Santa Barbara, California
93106-9530, USA. *e-mail: troyer@phys.ethz.ch

218 NATURE PHYSICS | VOL 10 | MARCH 2014 | www.nature.com/naturephysics
© 2014 Macmillan Publishers Limited. All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys2900
mailto:troyer@phys.ethz.ch
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS2900 ARTICLES
500a b

c d

DW SQA

SD

400

300

200

N
um

be
r o

f i
ns

ta
nc

es
N

um
be

r o
f i

ns
ta

nc
es

N
um

be
r o

f i
ns

ta
nc

es
N

um
be

r o
f i

ns
ta

nc
es

Success probability Success probability

Success probability Success probability

100

0

0 0

0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

500

400

300

200

100

500

400

300

200

100

500

400

300

200

100

SA

Figure 1 | Success probability distributions. Shown are histograms of the success probabilities of finding the ground states for N= 108 qubits and 1000
di�erent spin glass instances. We find similar bimodal distributions for the D-Wave results (DW, a) and the simulated quantum annealer (SQA, b), and
somewhat similar distributions for spin dynamics (SD, d). The unimodal distribution for the simulated annealer (SA, c) does not match. Error bars indicate
1σ statistical errors, but do not include systematic errors due to uncertainties in the annealing schedule and calibration errors of the D-Wave device.

Quantum annealing at positive temperature T starts in the
limit of a strong transverse field and weak problem Hamiltonian,
A(0)�max(kBT , B(0)), with the system state close to the ground
state of the transverse field term, the equal superposition state (in the
computational basis) of allN qubits. Monotonically decreasingA(t)
and increasing B(t), the system evolves towards the ground state of
the problem Hamiltonian, with B(tf )�A(tf ).

Unlike adiabatic quantum computing15, which has a similar
schedule but assumes fully coherent adiabatic ground state
evolution at zero temperature, quantum annealing4–6,10 is a positive
temperature method involving an open quantum system coupled to
a thermal bath. Nevertheless, one expects that, similar to adiabatic
quantum computing, small gaps to excited statesmay thwart finding
the ground state. In hard optimization problems, the smallest gaps
of avoided level crossings have been found to close exponentially fast
with increasing problem size16–18, suggesting an exponential scaling
of the required annealing time tf with problem size N .

Results
We performed our tests on a D-Wave One device, comprised of
superconducting flux qubits with programmable couplings (see
Methods). Of the 128 qubits on the device, 108 were fully
functioning and were used in our tests. The ‘chimera’ connectivity
graph of these qubits is shown in Supplementary Fig. 1. Instead of
trying to map a specific optimization problem to the connectivity
graph of the chip19,20, we chose random spin glass problems that can
be directly realized. For each coupler Jij in the device we randomly
assigned a value of either +1 or −1, giving rise to a rough energy
landscape. Local fields hi 6=0 give a bias to individual spins, tending
to make the problem easier to solve for annealers. We thus set all
hi=0 for most data shown here and provide data with local fields
in the Supplementary Methods. We performed tests for problems of
sizes ranging from N =8 to N =108. For each problem size N , we
selected 1,000 different instances by choosing 1,000 sets of different
random couplings Jij=±1 (and for some of the data also random

fields hi=±1). For each of these instances, we performedM=1,000
annealing runs and determined whether the system reached the
ground state.

Our strategy is to discover the operating mechanism of the D-
Wave device (DW) by comparing the performance of the device on
many instances to three models: simulated classical annealing (SA),
simulated quantum annealing (SQA) and classical spin dynamics
(SD). All three models are described in detail in the Supplementary
Information. We gain insight into the workings of the device by
investigating the success probabilities of finding ground states for
different instances, and by studying the correlations in these success
probabilities between the D-Wave device and the models.

To start, we counted for each instance the number of runs MGS
in which the ground state was reached, to determine the success
probability as s=MGS/M . Plots of the distribution of s over many
different instances are shown in Fig. 1, where we see that the DW
results match well with SQA, moderately with SD, and poorly with
SA. We find a unimodal distribution for the simulated annealer
model for all schedules, temperatures and annealing times we tried,
with a peak position that moves to the right as one increases tf
(see Supplementary Methods). In contrast, the D-Wave device, the
simulated quantum annealer and the spin dynamics model exhibit a
bimodal distribution, with a clear split into easy and hard instances.
Moderately increasing tf in the simulated quantum annealer makes
the bimodal distribution more pronounced, as does lowering the
temperature (see Supplementary Methods).

A much greater insight is obtained from Fig. 2, which plots
the correlation of the success probabilities between the DW data
and the other models. As a reference for the best correlations
we may expect, we show in Fig. 2a the correlations between two
different gauges of the same problem on the device (Methods and
Supplementary Methods): as a result of calibration errors no better
correlations than the device with itself can be expected. Figure 2b
shows a scatter plot of the hardness of instances for the simulated
quantum annealer and the D-Wave device for a single gauge. The
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Figure 2 | Correlations. Scatter plots of correlations of the success probabilities p(s) for di�erent methods compared against the D-Wave device (DW).
The colour scale indicates the number of instances found in a pixel. The red lines indicate perfect correlation. a, Correlation of the D-Wave device with itself
by choosing two di�erent gauges. This data shows the baseline imperfections in the correlation due to calibration errors in the D-Wave device.
b, Correlation of the D-Wave device with simulated quantum annealing (SQA) using the same annealing schedule as the D-Wave device. This correlation is
nearly as good as in a, indicating that the two methods are well correlated. c,d, show the much poorer correlation of the D-Wave device with simulated
annealing (SA) and classical spin dynamics (SD), respectively. The case of SA is most sensitive to the annealing time and we show data for 5,000 updates
per spin. Correlation plots for di�erent annealing schedules for SA are shown in the Supplementary Methods.

high density in the lower left corner (hard for both methods)
and the upper right corner (easy for both methods) confirms the
similarities between the D-Wave device and a simulated quantum
annealer. The similarity to Fig. 2a suggests a strong correlation with
SQA, to within calibration uncertainties. To quantify the degree of
correlation we performed a variant of a χ 2-test of the differences
between the success probabilities s (Supplementary Methods for
details). As expected we obtain a value of χ 2/M ≈ 1 between
two different gauges on the D-Wave device, as the gauge-to-gauge
variation was used to determine the expected error on s on the
device. The statistical test for Fig. 2b gives a value of χ 2/M ≈1.2,
almost as good as the correlation of the D-Wave device with itself.
Figure 2c,d show the correlations with a simulated classical annealer
(SA) and classical mean-field spin dynamics (SD), respectively. The
correlations are weaker, as can be seen both visually and by a χ 2 test
giving χ 2/M>2.24 for SA and χ 2/M≈9.5 for SD. Some instances
are easily solved by the classical mean-field dynamics, simulated
annealing, simulated quantum annealing, and the device. However,
as can be expected from inspection of their respective distributions
in Fig. 1, there is no apparent correlation between the hard instances
for the spin dynamics model and the success probability on the
device, nor does there seem to be a correlation for instances of
intermediate hardness, in contrast to the correlations seen in Fig. 2a.
Similarly, there are poor correlations with a classical spin dynamics
model.

Owing to calibration errors of the device the correlation plots—
including those between two different gauges on the D-Wave
device—show some anti-correlated instances in the lower right and
upper left corner. To reduce these calibration errors we can average
the success probabilities s on the device over eight gauge choices.

The resulting correlation plots in Fig. 3, show much improved
correlations of the device with itself Fig. 3a. These are again
comparable to the correlations of SQA with the device (Fig. 3b).
Simulated annealing (Fig. 3c) does not correlate as well and classical
mean-field spin dynamics (Fig. 3d) again correlate poorly. A χ 2

analysis of this data, discussed in detail in the Supplementary
Methods, confirms this visual impression.

We next provide evidence for the bimodality seen in Fig. 1
being related to the device performing quantum annealing. Our
first evidence comes from the simulated quantum annealer.
When lowering the temperature, thermal updates are suppressed,
quantum tunnelling dominates thermal barrier crossing, and
we observe a stronger bimodality. In contrast, thermal effects
become more important as we increase the temperature, and
eventually the bimodality vanishes and correlations become weaker
(Supplementary Methods). To provide further evidence we picked
five hard and five easy instances, then performed extensive QMC
simulations to estimate the spectral gap between the ground state
and the first excited state using a method similar to that described
in refs 21,22. A representative result of one easy and one hard
instance is shown in Fig. 4; results for the other instances are
shown in the Supplementary Methods. For all instances, we found
that the gap trivially closes around a ratio Γ =A(t)/B(t)≈ 2.3 of
transverse field to Ising coupling, related to a globalZ2 spin inversion
symmetry. The gap also closes towards the end of the schedule as
Γ → 0, when multiple states are expected to become degenerate
ground states. Neither of these small gaps has a detrimental effect
on finding the ground state, as even after choosing thewrong branch
at these avoided level crossings (either by thermalization or diabatic
transitions) the system still ends up in a ground state at the end of the
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Figure 3 | Correlations of gauge-averaged data. Scatter plots of correlations of the success probabilities p(s) obtained after averaging the success
probabilities over eight di�erent gauges of each instance on the device. The colour scale indicates the number of instances found in a pixel. The red lines
indicate perfect correlation. a, D-Wave device (DW) between two sets of eight di�erent gauges. This data shows the baseline imperfections in the
correlations due to calibration errors in the D-Wave device. b, Simulated quantum annealer (SQA) using a single transverse field and the D-Wave device,
with the latter averaged over 16 random gauges. This correlation is nearly as good as in a, indicating good correlations between the two methods.
c,d, Poorer correlations of simulated annealing (SA) and classical spin dynamics (SD) respectively.

3.5

3.0

2.5

Δ
/T

Δ
/T

2.0

Γ = A(t)/B(t) Γ = A(t)/B(t)

1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

a b
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for a ‘hard’ instance with success probability 8% (b). Errors bars indicate systematic uncertainties (for details see the Supplementary Methods).

annealing. The hard instances, however, typically have extra avoided
level crossings with small gaps, as is seen at Γ ≈0.5 in Fig. 4b. These
extra avoided level crossings cause failures of the annealing due to
transitions to higher energy states, thus making the problem ‘hard’.
An explanation of the origin of small gap avoided level crossings for
the hardest instances is presented in the Supplementary Methods.

Investigating the excited states found by the device provides
further confirmation for the ‘hard’ instances being due to avoided
level crossings with small gaps. In Fig. 5 we show a scatter plot of the
meanHamming distance of excited states versus success probability.
The Hamming distance is the number of spins that need to be
flipped to reach the closest ground state. We find that for the ‘easy’
instances the Hamming distance is typically small. The associated

spin flips are often due to thermal errors that can easily be corrected
classically, as discussed in the Supplementary Methods. The ‘hard’
instances, on the other hand, typically result in excited states with a
large Hamming distance. This means that in these cases the device
typically finds localminima far away fromground states.Many spins
would need to be flipped to reach a ground state, resulting in small
tunnelling matrix elements between the state found and the true
ground state, and thus small gap avoided level crossings23.

Combining all these observations we have evidence that the
device’s performance is consistent with quantum annealing: unlike
the classical annealer and classical spin dynamics, the simulated
quantum annealer and the device split instances into hard and easy
cases whose success probability is strongly and positively correlated.
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correlation between the success probabilities for N= 108 spin instances
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Hamming distance. The colour scale indicates the number of instances
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The bimodality of the success probability distribution in the case of
the device can be understood as having its origin in the transverse
field quantum Ising model implemented by a quantum annealer,
with the hard instances being such owing to small tunnelling matrix
elements (and corresponding small gaps) resulting between rarely
found ground states and easily found excited states during the
evolution. However, our results do not rule out the possibility that
there exists a classical model that is consistent with SQA, QA and
the device’s performance.

Scaling
We finally investigate the scaling of the annealing effort with
problem size N to try to answer the question of whether quantum
effects help the device to solve the hard problems faster than SQA,
SA or other classical algorithms. As a first reference we investigated
four exact algorithms discussed in the Supplementary Methods. An
exact version of belief propagation24 performed fastest, requiring
around 60 ms for N = 128 and 3 min for N = 512 on 16 cores of
an Intel Xeon CPU—comparable to previously reported values25.

Because the tree width of the chimera graph scales as
√
N 26, exact

solvers making use of the graph structure scale asymptotically no
worse than exp(c

√
N ) and similar scaling is observed also for the

simulated annealers discussed below.
For theD-Wave device (and the simulated annealers)we take into

account only the intrinsic annealing time andnot any overhead from
programming the couplers and readout of the results. We calculate
the total annealing time Rtf , defined as the product of the annealing
time tf of one annealing runmultiplied by the number of repetitions
R needed to find the ground state at least once with 99% probability.
From the success probability s of a given percentile we calculate
the required number of repetitions Rp=dlog(1− p)/ log(1− s)e,
with p=0.99.

In Fig. 6a we show the scaling of the typical (median) instance as
well as various percentiles of hardness on the D-Wave device. The
rapid increase of the higher percentiles is due to calibration issues
that cause problems for a fraction of problem instances. Focusing
on the median we see only a modest increase in total annealing time
from 5 to 15µs, corresponding to three repetitions of the annealing.
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Figure 6 | Scaling with problem size. Scaling of the total e�ort to find the
ground state with 99% probability for the D-Wave device (a), the simulated
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(0.01 percentile) to the 1% hardest instances (0.99 percentile). For the
simulated annealers the vertical axis shows the total e�ort in number of
spin updates for the simulated classical and quantum annealer. Arrows
mark the number of spin updates that can be done in 1 ms or 1 s on the
reference machines, as indicated. Error bars indicate 1σ statistical errors
obtained by a bootstrap analysis.

Although an extrapolation of the observed scaling is tempting,
this will not yield the true asymptotic scaling. The reason is that the
total annealing time depends sensitively on the choice of tf and for
the device the minimal time of tf =5µs turns out to be suboptimal
(Supplementary Methods).

For the simulated classical and quantum annealer, on the other
hand, we can calculate the optimal annealing time and plot the
scaling in Fig. 6b and c, respectively. The effort here is measured
in the number of spin updates, defined as RNNupdates, where Nupdates
is the optimal number of updates per spin to minimize the total
effort. Indicated by an arrow is the number of spin updates that
can be performed in a millisecond on an 8-core Intel Xeon E5-2670
CPU and on an Nvidia K20X GPU. At N = 108 this yields total
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annealing times of 4.3µs and 0.8µs respectively, slightly faster than
the D-Wave device, whereas the simulated quantum annealer is
substantially slower. Classical spin dynamics is not competitive (as
we showed above, it suffers from an abundance of hard instances)
and was not considered.

Increasing the problem size up to N =512 spins our simulated
quantum annealer shows that the fraction of easy instances drops
rapidly (Supplementary Methods); perhaps surprisingly, N = 200
is still a ‘small’ problem. As a consequence, both the annealing
time and number of repetitions need to be increased and the total
effort grows exponentially both in the simulated quantum annealer
and in the simulated classical annealer. We find an increase of the
median effort by about three orders of magnitude when increasing
the problem size from N =108 to N =512 spins. We note that even
then the simulated annealer finds solutions in a few milliseconds,
which is faster than the first benchmarks reported for a next-
generation 512 qubit D-Wave device25. We also observe that the
simulated quantumannealer scales slightlyworse than the simulated
classical annealer for our problems. Investigating for which class
of problems simulated quantum annealing is better than simulated
classical annealing is an important open question to be addressed in
future work.

Although for 108 spins a majority of optimization problems
are still relatively easy, it will be possible to address the open
question of quantum acceleration on future devices with more
qubits, by comparing the scaling results of the simulated classical
and quantum annealers (Supplementary Methods) to such devices.
Going to even larger problem sizes we soon approach the limits of
classical computers. Optimistically extrapolating, using the scaling
observed in our simulations, the median time to find the best
solution for our test problemusing simulated annealingwill increase
from milliseconds for 512 variables to minutes for 2,048 variables,
and months for 4,096 variables. It will be interesting to explore
whether a quantum annealer might exhibit better scaling than
classical algorithms for these problem sizes—and hence quantum
acceleration—or whether it can be efficiently matched, or even
surpassed by classical algorithms such as simulated annealing,
simulated quantum annealing, mean-field approaches, or other
algorithms that exploit the structure of the chimera graph.

After completion of this work we learned of recent results which
indicate that both our DW and SQA data correlate well with a
mean-field version of SQA (S. W. Shin, J. A. Smolin, G. Smith and
U. Vazirani, personal communications).This suggests that although
the device’s performance is consistent with quantum annealing, it
operates in a temperature regime where, for most random Ising spin
glass instances, a quantum annealer may have an effective semi-
classical description.

Methods
Quantum annealing was performed on the D-Wave One Rainer chip installed at
the Information Sciences Institute of the University of Southern California. The
device has been described in extensive detail elsewhere27–29. After programming
the couplings, the device was cooled for 2.5 s, and then 1,000 annealing runs were
performed using an annealing time of tf =5µs. Annealing is performed at a
temperature of 0.4GHz, with an initial transverse field starting at A(0)≈5GHz,
going to zero during the annealing, while the couplings and local fields are
ramped up from near zero to about B(tf )≈5GHz at the end of the schedule.
Details of the schedule and results for longer annealing times are provided in the
Supplementary Methods.

Simulated annealing was performed using the Metropolis algorithm with local
spin flips with codes optimized for the ±1 couplings used as test problems. A
total of Nupdates flips per spin were attempted, increasing the inverse temperature
β=1/kBT linearly in time from 0.1 to 3.

Simulated quantum annealing is a quantum Monte Carlo algorithm following
the same annealing schedule as a quantum annealer, but using Monte Carlo
dynamics instead of unitary evolution of the quantum system. Simulations were

performed in both discrete and continuous time path integral quantum Monte
Carlo simulations, with cluster updates along the imaginary time direction to
account for the transverse field, combined with Metropolis rejection sampling for
the Ising interactions (see Supplementary Methods for details).

The classical spin dynamics model replaces the quantum spins by O(3) classical
unit vectors Mi, where the sign of the z-component of each spin is the value of
the Ising variable. The spins are propagated via the equations of motion
∂Mi/∂t=Hi(t)×Mi, where the time-dependent field Hi(t) acting on spin i is the
sum of a decaying transverse field (along the x direction) and a growing coupling
term (along the z direction): Hi(t)≡(1− t/tf )hêx−(t/tf )

∑
j JijM z

i êz . The initial
condition is to have all spins perturbed slightly from alignment along the x
direction: (−

√
1−δ2

i −η
2
i ,δi,ηi), where |δi|, |ηi|<0.1.

Gauge averaging was performed on the device by using gauge symmetries to
obtain a new model with the same spectrum. This was achieved by picking a
gauge factor ai=±1 for each qubit, and transforming the couplings as Jij→aiajJij
and hi→aihi. Success probabilities sg obtained from G gauge choices were
arithmetically averaged for the correlation plots and as s=

∏G
g=1(1− sg )1/G for the

scaling of total effort (see Supplementary Methods for a derivation).

The ground state energies were obtained using exact optimization algorithms,
an exact version of belief propagation using bucket sort24 and a related optimized
divide-and-conquer algorithm described in the Supplementary Methods.
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