
PHYSICAL REVIEW A, VOLUME 63, 022306
Decoherence-free subspaces for multiple-qubit errors. I. Characterization
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4École Nationale Superieure des Te´lécommunications, Paris, France
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Coherence in an open quantum system is degraded through its interaction with a bath. This decoherence can
be avoided by restricting the dynamics of the system to special decoherence-free subspaces. These subspaces
are usually constructed under the assumption of spatially symmetric system-bath coupling. Here we show that
decoherence-free subspaces may appear without spatial symmetry. Instead, we consider a model of system-
bath interactions in which to first order only multiple-qubit coupling to the bath is present, with single-qubit
system-bath coupling absent. We derive necessary and sufficient conditions for the appearance of decoherence-
free states in this model, and give a number of examples. In a sequel paper we show how to perform universal
and fault tolerant quantum computation on the decoherence-free subspaces considered in this paper.
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I. INTRODUCTION

Quantum information must be protected against the de
mental effects of decoherence@1,2#. To this end
decoherence-free subspaces~DFSs! @3–10# have recently
been proposed, alongside quantum error correcting co
~QECCs! @11–14# and ‘‘dynamical decoupling’’ and symme
trization schemes@15–18#. A DFS is a ‘‘quiet corner’’ of the
system’s Hilbert space, where the evolution is decoup
from the bath and thus is entirely unitary. DFSs are a spe
class of~fully degenerate! QECCs@9#, so in order to properly
distinguish between DFSs and all other QECCs we note
DFSs arepassivecodes, in that the information encoded
them may not require any active stabilization procedu
@19,20#. All other QECCs, in contrast, always involve a
activeerror detection/correction process. Examples of DF
have so far focused almost exclusively on the presence
permutation symmetryof some sort in the system-bath co
pling. The most often used example is that of ‘‘collecti
decoherence’’@3–5,8,21#, where the bath couples in an ide
tical fashion to all qubits, implying that all qubits underg
the sameerror. In this case four physical qubits suffice
encode a logical qubit against any collective error, and
code efficiency~number of encoded per physical qubits! ap-
proaches unity asymptotically@5#. It has been shown that th
requirement of an exact symmetry can be lifted by allow
for a symmetry-breaking perturbation, without spoiling t
DFS property significantly@8,10#. Moreover, by concatena
tion with an active QECC, a symmetry-broken DFS can
stabilized completely@9#. While these results indicate that
small departure from the exact symmetry condition for
system-bath coupling is admissible, they leave unanswe
the question of whether a DFS may exist when no assu
tions are made regarding the spatial symmetry of this c
pling.

*Present address: Chemistry Department, University of Toro
80 St. George Street, Toronto, Ontario, Canada M5S 3H6.
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In this paper, the first of two, it will be shown that und
conditions that do not relate to a spatially symmetric syste
bath coupling DFSs may still exist. This result is exact, i.
it is not of a perturbative nature as in Refs.@8–10#. Instead,
it relies on the assumption that errors affecting single qu
are absent, and to lowest order only multiple-qubit errors
possible instead. Formally, the condition is that the qu
register is not affected by the full Pauli group of errors, b
only by a subgroup thereof. One may then proceed to fi
DFSs with respect to this subgroup. The interesting clas
system-bath interaction Hamiltonians that allow for su
processes generally involve only multiple-qubit operato
Relevant physical systems are therefore those where the
can couple only to multiple system excitations as is the c
for decoherence due to dipolar coupling, e.g., in NMR@22#.
Another interesting class of examples are composite p
ticles, such as biexcitons in quantum dots/wells@23#, or Coo-
per pairs in superconductors@24#.

The structure of this paper is as follows. In Sec. II w
briefly review the structure of Hamiltonians pertinent to sy
tems that may function as quantum computers, coupled
decohering environment. Using these Hamiltonians, we
call in Sec. III the derivation of the operator sum represe
tation evolution equation for the system density matrix. W
show in particular that for a qubit system the evolution c
be expressed entirely in terms of linear combinations of t
sor products of Pauli matrices. We then use this in Sec. IV
derive the DFS condition under the assumption that deco
ence is the result of a subgroup of the Pauli group. In Sec
we illustrate our general analysis with some examples,
find decoherence-free states for a number of subgroups.
derive the dimension of these DFSs in Sec. VI. Conclusi
and a summary are presented in Sec. VII. Finally, some
portant properties of the Pauli group are summarized in A
pendix A, and some examples of ‘‘nongeneric’’ DFSs a
presented in Appendix B. We show in a following paper@25#
how to perform universal fault tolerant quantum computat
using at most two-body Hamiltonians on the DFSs deriv
here.

o,
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II. STRUCTURE OF THE HAMILTONIAN FOR A
UNIVERSAL QUANTUM COMPUTER COUPLED

TO A BATH

This section provides a brief review of the structure
Hamiltonians relevant for a qubit system allowing for un
versal quantum computation and coupled to a decohe
bath.

The dynamics of a quantum systemScoupled to a bathB
~which together form a closed system! evolves unitarily un-
der the combined Hamiltonian

H5HS^ IB1IS^ HB1HI , ~2.1!

whereHS , HB , andHI are the system, bath, and interacti
Hamiltonians, respectively;I is the identity operator. Letsi

a

denote theath Pauli matrix,a5$0,x,y,z%, acting on qubiti.
The 232 identity matrix is denotedsi

0 . For K qubits the
components ofH can often be written as follows:

HS5(
i 51

K

(
a5x,z

« i
as i

a1(
iÞ j

K

Ji j s i
1s j

21H.c., ~2.2!

where s i
65(s i

x7 is i
y)/2. The first sum contains the qub

energies (« i
z) and tunneling elements (« i

x) @26#, and the sec-
ond sum expresses tunneling between sitesi and j. Other
forms are also possible, e.g., in an anisotropic dipolar m
dium such as solid state NMR@22#, where one would typi-
cally encounter an IsingJi j

z s i
zs j

z term. A Hamiltonian of the
form above is sufficiently general to allow for univers
quantum computation by satisfying the following two r
quirements@27–29#. ~i! Arbitrary single-qubit operations ar
made possible by the presence ofs i

x , which allows for the
implementation of a continuous SU~2! rotation in the i th
qubit Hilbert space, while thes i

z term allows for the intro-
duction of an arbitrary phase shift between theu0& and u1&
states. Whens i

x ands i
z are exponentiated, they can be com

bined, using the Lie sum and product formulas@30#

lim
n→`

~eiaA/neibB/n!n5ei (aA1bB),

lim
n→`

~eiA/AneiB/Ane2 iA/Ane2 iB/An!n5e[A,B] , ~2.3!

to close the Lie algebra su~2!, and thus to construct an
evolution in the Lie group SU~2! of all possible operations
on a single qubit@28#. ~ii ! The second ingredient needed f
universal quantum computation is the controlled-not~CNOT!
gate, which is made possible through the ability to imp
ment each of the~nearest neighbor! (Ji j s i

1s j
21H.c.) terms.

When exponentiated, such a term yields

Uu5S 1 0 0 0

0 cosu i sinu 0

0 i sinu cosu 0

0 0 0 1

D

02230
f

g

-

-

-

with u}Ji j t. For u5p/4 this is~up to a phase! the ‘‘square-
root-swap’’ operation, which when combined with singl
qubit rotations allows for the implementation ofCNOT. Al-
ternatively, aJi j

z s i
zs j

z term alone is sufficient, since it can b
used to implement a controlled phase shift, as is done r
tinely in NMR @31#. It is important to emphasize that th
universal gate construction just described is but one of m
different ways to achieve universal quantum computation
fact, universal gates implementing logic operations direc
on physical qubits~as above! are generally inappropriate fo
the purpose offault tolerantcomputation@32#. We consider
a different gate construction in the sequel paper@25#, oper-
ating instead on ‘‘encoded’’ qubits, which can be used
implement universal fault tolerant quantum computation. F
a useful survey of different universal and fault tolerant s
of gates, see Ref.@33#.

The bath Hamiltonian can be written as

HB5(
k

vkBk , ~2.4!

where, e.g., for the spin-boson Hamiltonian,Bk5bk
†bk @26#,

and bk
† and bk are, respectively, creation and annihilatio

operators of bath modek.
Finally, the system-bath interaction Hamiltonian is

HI5(
i 51

K

(
a51,2,z

(
k

gik
a s i

a
^ B̃k

a , ~2.5!

wheregik
a is a coupling coefficient. In the spin-boson mod

one would haveB̃k
15bk , B̃k

25bk
† , and B̃k

z5bk
†1bk . Thus

s i
6

^ B̃k
6 expresses a dissipative coupling~in which energy is

exchanged between system and environment!, and s i
z
^ B̃k

z

corresponds to a phase damping process~in which the envi-
ronment randomizes the system phases, e.g., through e
collisions!.

An interesting limiting case arises when the coupling co
stants are independent of the qubit index:gik

a [gk
a . This situ-

ation, known as ‘‘collective decoherence,’’ arises when th
is full permutational symmetry of qubit positions, and im
plies the existence of a large DFS@5,21#. Defining collective
system operatorsSa[( i 51

K s i
a , one can then express the in

teraction Hamiltonian in greatly simplified form as

HI
coll5 (

a51,2,z
Sa

^ S (
k

gk
aB̃k

aD .

A case of intermediate symmetry arises when the coup
constants are equal not over the entire qubit register
rather only over finite clustersj 51 –C. One can then define
cluster system operatorsSj

a[( i j 51
K j s i j

a , where K j is the

number of qubits in clusterj. The interaction Hamiltonian
becomes

HI
clus5(

j 51

C

(
a51,2,z

Sj
a

^ S (
k

gjk
a B̃k

aD .
6-2
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In this case too DFSs can be found. The point we wish
emphasize presently is that the underlying assumption
cluster decoherence is that ofspatial symmetryin the system-
bath coupling. This is to be contrasted with the decohere
models studied in this paper, where DFSs will be shown
arise without the need for spatial symmetry.

Returning to the general case,HI can be rewritten as

HI5(
i 51

K

(
a5x,y,z

(
k

s i
a

^ Bik
a , ~2.6!

whereBik
z [B̃k

z andBik
x , Bik

y are appropriate linear combina

tions of B̃k
1 and B̃k

2 :

Bik
x 5

1

2
~gik

2B̃k
21gik

1B̃k
1!, ~2.7!

Bik
y 5

i

2
~gik

2B̃k
22gik

1B̃k
1!. ~2.8!

The qubit-coupling term inHS can also be expressed entire
in terms ofs i

a , wherea5x, y, or z. Thus all system com-
ponents of the HamiltonianH can be expressed in terms
tensor products of the single-qubitPauli matrices.

III. TIME EVOLUTION OF THE DENSITY MATRIX

The purpose of this section is to show that the evolut
of the density matrix of an open system can be expande
terms of tensor products of the Pauli matrices~the Pauli
group!, and that this follows from the structure of the Ham
tonians assumed above for a qubit register. This resu
obvious from a formal mathematical point of view~since the
elements of the Pauli group of orderK form a complete
orthogonal set for the 2K32K matrices! @34#, so that the
reader for whom this type of argument is satisfactory m
safely skip ahead to the next section. We present the de
tion of this result here in order to motivate the appearanc
the multiple-qubit errors that are the subject of this pape

We first transform to the interaction picture@35# defined
by the system and bath Hamiltonians:

H→H~ t !5USB~ t !HUSB
† ~ t !5HS^ IB1IS^ HB1HI~ t !,

~3.1!

where

USB~ t !5exp@2~HS^ IB1IS^ HB!i t /\#5exp@2 i tHS /\#

^ exp@2 i tHB /\#5US~ t ! ^ UB~ t !.

Because the system and bath operators commute, the i
action picture interaction Hamiltonian can be written as

HI~ t !5USB~ t !HIUSB
† ~ t !5(

i 51

K

(
a5x,y,z

(
k

s i
a~ t ! ^ Bik

a ~ t !,

~3.2!

where
02230
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s i
a~ t !5US~ t !s i

aUS
†~ t !5(

j ,b
l i j

ab~ t !s j
b ,

Bik
a ~ t !5UB~ t !Bik

a UB
†~ t ! ~3.3!

@see, e.g., Ref.@35# for an explicit calculation of thel i j
ab(t)

for some examples#. The system-bath density matrix is tran
formed accordingly from the Schro¨dinger into the interaction
picture ~denoted by a prime!:

rSB~ t !°rSB8 ~ t !5USB
† ~ t !rSB~ t !USB~ t !, ~3.4!

and the full dynamics is

rSB8 ~ t !5U~ t !rSB8 ~0!U†~ t !, ~3.5!

where

U~ t !5T expF2
i

\E0

t

HI~t!dtG ~3.6!

andT is the Dyson time-ordering operator~defined explicitly
below!. From now on we work in the interaction pictur
only, so for notational simplicity the prime is dropped fro
the density matrices. Att50 the Schro¨dinger and interaction
pictures coincide. Thus, assuming that system and bath
initially decoupled so thatrSB(0)5r(0)^ rB(0), wherer
andrB are, respectively, the system and bath density ma
ces, the system dynamics is described by the reduced de
matrix

r~0!°r~ t !5TrB$U~ t !@r~0! ^ rB~0!#U†~ t !%.

Here TrB is the partial trace over the bath. By using a spe
tral decomposition for the bath,rB(0)5(npnun&^nu,1 this
can be rewritten in the ‘‘operator sum representatio
@10,36–38#:

r~ t !5(
d

Ad~ t !r~0!Ad
†~ t ! ~3.7!

where

Ad~ t !5Apn^muU~ t !un&, d5~m,n!. ~3.8!

Also, by unitarity ofU, one derives the normalization con
dition,

(
d

Ad
†Ad5IS , ~3.9!

which guarantees preservation of the trace ofr:

1For a bath in thermal equilibrium,un& would be an energy eigen
state with energyEn , andpn5exp(2bEn)/Z, whereb is the inverse
temperature andZ5Tr@exp(2bHB)# is the canonical partition
function.
6-3
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Tr@r~ t !#5TrF(
d

Adr~0!Ad
†G

5TrFr~0!(
d

Ad
†AdG

5Tr@r~0!#. ~3.10!

The $Ad%, called theKraus operators, belong to the~Banach
or Hilbert-Schmidt! spaceB(H) of bounded operators actin
on the system Hilbert space, and forK qubits are represente
by 2K32K matrices, just liker.2

Consider now a formal Taylor expansion of the propa
tor:

U~ t !5 (
n50

`
~2 i !n

n!
T S E t

HI~t!dt D n

5I1 (
n51

`
~2 i !n

n! E
0

t

dtnE
0

t

dtn21•••E
0

t

dt1

3T $HI~ t1!•••HI~ tn!%

[I1 (
n51

`
~2 i !n

n!
Un~ t !. ~3.11!

The Dyson time-ordered product is defined with respec
any set of operatorsOi(t i) as @39#

T $O1~ t1!•••On~ tn!%5Ot1
~ tt1

!•••Otn
~ ttn

!

~ tt1
.tt2

.•••.ttn
!.

Using Eq.~2.6! we have for the terms in the above sum

)
j 51

n

HI~ t j !5(
i51

K

(
a5x,y,z

(
k

^ j 51
n s i j

a j~ t j ! ^ j 51
n Bi j kj

a j ~ t j !,

where i5$ i 1 ,i 2 , . . . ,i n%, a5$a1 ,a2 , . . .an%, and k
5$k1 ,k2 , . . . ,kn%. The important point to notice in this
complicated expression is that, after taking the bath ma
elementŝ mu•••un& @because of Eq.~3.8!#, one is left with
all possible tensor productŝ j 51

n s i j

a j(t j ) over n out of K

qubits. The integration and time-ordering operation will n
change this conclusion. Thus, using, the expansion ofs i

a(t)
in Eq. ~3.3!, after a timeO(tK) one finds the tensor produc
^ j 51

K s i j

a j , i.e., all qubits are involved~here a j50, corre-

sponding to the identity matrix, is allowed!. At this point the
entire Pauli groupPK appears~all possible 4K11 tensor prod-
ucts of the three Pauli matrices and the identity matrix, a
the four roots of unity$6,6 i %—see Appendix A!, and one
has ‘‘complete decoherence,’’ i.e., multiple-qubit errors ov
the entire system Hilbert space. In the usual approach

2See, however, Ref.@38# for a discussion of Kraus operators re
resented by non-square matrices.
02230
-
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QECC one does not consider such high orders in time s
one assumes that error correction can be done qui
enough. Instead the error analysis is usually confined to t
evolution toO(t) only, which leads to ‘‘independent deco
herence,’’ i.e., single-qubit errors affecting only one qubit
a time.3 It is possible to use multiple-error-correcting qua
tum codes forO(tn) with arbitrary n, but these codes ar
rather unwieldy~i.e., the number of encoding qubits becom
large!. In the case of ‘‘burst errors’’~a spatially contiguous
cluster of errors such asI •••IX•••XI•••I ) some particu-
larly efficient codes are known@41#.

On the other hand, a DFS that exists by virtue of a s
tially symmetric system-bath coupling is not affected by th
proliferation of errors, which all occur in the subspace o
thogonal to the DFS@9#. The assumption of spatial symmetr
manifests itself in restrictions on the coefficientsgik

a appear-
ing in the interaction Hamiltonian@Eq. ~2.5!#. For example,
as mentioned above, collective decoherence correspond
the conditiongik

a 5gk
a; i , i.e., the bath cannot distinguish be

tween the qubits@5#. In this paper no such spatial symmet
assumptions will be made. Instead, onlymultiple-qubiterrors
will be allowed to lowest order instead of single-qubit erro
This condition will be defined more precisely in the ne
section.

As for the Kraus operators, it can be seen from the cal
lations above that they may be expanded as sums over te
products of the Pauli matrices:

Ad~ t !5 (
n51

4K11

ad,n~ t !pn , ~3.12!

where pnPPK . The Kraus operators thus belong to th
group algebra~the space of linear combinations of grou
elements! of PK @42#. As alluded to in the beginning of this
section, that this expansion is possible actually follows s
ply from the fact that the Pauli group forms a complete
thogonal set~with respect to the trace inner product! for the
expansion~with complex coefficients! of arbitrary 2K32K

matrices. However, here we have seen how the expansio
terms of the Pauli group~rather than some other basis! is
physically motivated by virtue of the structure of the Ham
tonian.

A simple example will now serve to illustrate the poi
made above about multiple-qubit errors. Consider an inte
tion Hamiltonian of the formHI5( i 51

2 s i
z
^ Bi ~on two qu-

bits!. Some algebra suffices to show that thenAd(t)
5c0(t)IS1c1(t)s1

z1c2(t)s2
z1c12(t)s1

z
^ s2

z . In this case
the single-qubit errorss1

z ,s2
z appear, as well as the multiple

qubit error s1
z

^ s2
z . This situation does not allow for the

appearance of DFSs~unless spatial symmetry is presen!.
Alternatively, consider the interaction HamiltonianHI5(s1

z

^ s2
z) ^ B121(s3

z
^ s4

z) ^ B34 ~on four qubits!. In this case
one finds Ad(t)5c0(t)IS1c12(t)s1

z
^ s2

z1c34(t)s3
z

^ s4
z

1c1234(t)s1
z

^ s2
z

^ s3
z

^ s4
z . Thus only multiple-qubit terms

3In fact, spatially correlated errors can also be dealt with b
QECCs@40#.
6-4



h

m
l-
o
f

a
pl
ec

th
et

Ss
ta
r
b
y

y
r

to

-

ng

d

-
le-
ic-
r

se-
x-

er-
-

as

ion,
e of
tial
-
ly
auli
for

.

DECOHERENCE-FREE SUBSPACES . . . . I. . . . PHYSICAL REVIEW A63 022306
appear, and, as will be shown below, this allows for t
existence of nontrivial DFSs, even though no spatial symm
try assumptions were made.

An important example of this correlated type of syste
bath interaction is the dipolar-coupling Hamiltonian, re
evant, e.g., to decoherence resulting from spin-rotation c
pling in NMR @22#.4 The dipolar Hamiltonian for a system o
spins interacting with a bath of rotations is

HI5(
j ,k

g jgk

r jk
3 @sj•sk23~sj•r jk!~sk•r jk!#, ~3.13!

where g j is the gyromagnetic ration of spinj , r jk is the
distance between spinsj andk, ands is the vector of Pauli
matrices. Introducing an anistropy tensorgjk

ab , this can be
rewritten as

HI5(
j ,k

g jgk

r jk
3 (

a,b521

1

gjk
ab~s j

a
^ sk

b!Y2
2a2b , ~3.14!

where Yl
m are the spherical harmonics, ands0[sz. Even

though only multiple-qubit terms appear here it is necess
to further impose anisotropy in order to obtain an exam
with a nontrivial DFS, as we discuss in more detail in S
V A 4. This is the case, e.g., when onlys j

z
^ sk

z terms remain
~i.e., gjk

ab5da0db0gjk), coupled toY2
0 rotations.

With these observations, we are now ready to study
question of DFSs in open systems without spatial symm
in the system-bath couplings.

IV. DECOHERENCE-FREE SUBSPACES FROM
SUBGROUPS OF THE PAULI GROUP

We begin this section by recalling the condition for DF
within the framework of the Kraus operator-sum represen
tion, derived in Ref.@9#. We then analyze the conditions fo
the appearance of DFSs when the errors are spanned
subgroup of the Pauli group. The result is summarized b
theorem presented at the end of the section.

A. Condition for decoherence-free subspaces

A DFS is a subspaceH̃5Span$u j̃ &% of the full system
Hilbert spaceHK over which the evolution of the densit
matrix is unitary. Necessary and sufficient conditions fo
DFS were derived in the Markovian case in Ref.@8# and in
the exact~non-Markovian! case in Ref.@6#. A formulation of
the exact DFS condition was given in terms of the opera
sum representation in Ref.@9#, and will be briefly reviewed.

Let $u j̃ &% be a set of system states satisfying

Adu j̃ &5cdŨu j̃ & ;d, ~4.1!

4We thank Professor Dieter Suter for suggesting this example
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where Ũ is an arbitrary,d-independent but possibly time
dependent unitary transformation, andcd a complex con-
stant. Under this condition, an initially pure state belongi
to Span@$u j̃ &%],

uc in&5(
j

g j u j̃ &,

will be decoherence-free, since

ufd&5Aduc in&5(
j

g j cdŨu j̃ &5cdŨuc in&

so

rout5(
d

Adr̃ inAd
†

5(
d

cdŨuc in&^c inuŨ†cd*

5Ũuc in&^c inuŨ†,

where we used the normalization of the Kraus operators@Eq.
~3.9!# to set (ducdu251. This means that the time-evolve
staterout is pure, and its evolution is governed byŨ. This
argument is easily generalized to an initial mixed stater̃ in

5( j j 8r j j 8u j̃ &^ j̃ 8u, in which caserout5Ũr̃ inŨ
†. The unitary

transformationŨ is a ‘‘gauge freedom’’ which can be ex
ploited in choosing a driving system Hamiltonian that imp
ments a useful evolution on the DFS. In the interaction p
ture used in the previous section,Ũ can be made to disappea
by redefining all Kraus operators asŨ†Ad . The calculation
above shows that Eq.~4.1! is a sufficient condition for a
DFS. It follows from the results of Refs.@6,43# that it is also
a necessary condition for a DFS~under ‘‘generic’’
conditions—to be explained below!.

Equation~4.1!, however, does not seem to be a very u
ful characterization of a DFS if one does not know the e
plicit form of the Kraus operators~in general, this cannot be
found in closed analytical form, although they can be det
mined experimentally@34#!. When the Kraus operators de
rive from a Hamiltonian, as in Eq.~3.8!, an equivalent DFS
condition is@9#

Sau j̃ &5aau j̃ & ;a, ~4.2!

where the system-bath interaction Hamiltonian is written
HI5(aSa ^ Ba @compare to Eq.~2.6!#, with $Sa% being the
system operators. To make use of this last DFS condit
one needs to introduce assumptions about the structur
system-bath coupling, and this is how one is led to spa
symmetry considerations@8#. Here, however, the DFS con
dition of Eq. ~4.1! will be considered directly, based pure
on the expansion of the Kraus operators in terms of the P
group elements, and without resorting to an explicit form
these operators.
6-5
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B. Representation theory construction
of decoherence-free states

When the Kraus operators are viewed as operators in
algebra of the Pauli group, the DFS condition@Eq. ~4.1!# has
a natural interpretation: the decoherence-free states$u j̃ &% be-
long to the one-dimensional irreducible representations~ir-
reps! of the Pauli group. Motivated by this observation w
now consider a group representation theory construction
decoherence-free states.

The general criterion for the reducibility of a represen
tion $G(Gn)%n51

N of a finite groupG5$Gn% of orderN is @44#

(
n51

N

ux@G~Gn!#u2.N, ~4.3!

wherex is the character of the representationG @trace of the
matrix G(Gn)#. If equality holds, then the representation
irreducible.

The full Pauli groupPK is irreducible over the Hilbert
spaceHK of K qubits: since all Pauli matrices are tracele
only the four elements proportional to the identity mat
contribute~see also Appendix A!:

(
n51

4K11

ux@pn#u25u2Ku21u22Ku21u i2Ku21u2 i2Ku254K11,

which is just the order ofPK ~generally the direct produc
representation of irreps of any direct product group is its
an irrep of that group@44#!.

Now we come to the central assumption setting the st
for the DFSs considered in this paper:what if the Kraus
operators belong to the group algebra of a subgroup Qof
PK? The motivation for this situation could be the case
which either ~i! only higher order errors occur, such th
first-order terms of the formI ^ •••^ I ^ s i

a
^ I ^ •••^ I are

absent in the Pauli group expansion of the Kraus operat
or ~ii ! only errors ofone kind, either sx, sy, or sz take
place. Case~i! would imply one of the following.~a! There
are certain cancellations involving bath matrix element ter
such that first-order system operators are absent in the
pansion of Eq.~3.11!. This would be a rather nongener
situation, involving a very special ‘‘friendly’’ bath.~b! The
system-bath Hamiltonian is in fact not of the form in E
~2.6!, but rather involves only second-order terms such
s i

a
^ s j

b ~identity on all the rest!.5 Case~ii ! is applicable in,
e.g., the case of pure phase damping~relevant to NMR@22#!
and optical lattices using cold controlled collisions@45#!,
wheresz errors are dominant.

In the subgroup case under consideration, we may
nontrivial irreducible representations ofQ over HK ~a so-
called ‘‘subduced’’ representation@42#!. This situation can
be interesting especially if there exist one-dimensional

5Note that in this case the expansion of the Kraus operator
terms of tensor products of Pauli matrices, Eq.~3.12!, remains
valid.
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reps, as known from the general theory of DFSs@6,8#. As
will be shown next, the recipe for finding these DFSs us
the standard projection operators from elementary group
resentation theory. The projection is onto the subspace tr
forming according to a particular irrep.

First, recall the multiplicity formula for unitary irreps
~which we can always assume in this case since the P
group is finite!:

mk5
1

N (
n51

N

x@Gk~Gn!#* x@G~Gn!#, ~4.4!

where mk is the number of times irrepGk appears in the
given reducible representation;x@Gk(Gn)# is the character of
the Gk irrep on the group elementGn ; andx@G(Gn)# is the
character ofGn in the given reducible representationG.

We denote a set of~orthonormal! basis states transform
ing according to an irrepGk by $uc1

k&, . . . ,ucdk

k &%. These

states span the invariant subspace of the irrepGk and trans-
form according to

Gnucm
k &5 (

n51

dk

Gk~Gn!nmucn
k&. ~4.5!

Furthermore, they obey the orthogonality relation

^cm
l ucn

k&5d lkdmn . ~4.6!

Next, a projection operator onto the subspace belonging
the dk-dimensional irrepk is given by the appropriate sum
over group elements@44#

Pmn
k 5

dk

N (
n51

N

Gk~Gn!mn* Gn , m,n51, . . . ,dk , ~4.7!

and has the following properties:

Pmn
k Pkl

l 5dkldnkPml
k ,

Pmn
l ucl

k&5dkldnlucm
k &. ~4.8!

To obtain a set of ~orthonormal! basis states
$uc1

k&, . . . ,ucdk

k &% transforming as a set of partners in th

basis forGk from an arbitrary stateuf&, one can apply the se
of operators$Pmn

k % for a fixedn ~such thatPnn
k uf&Þ0) and

renormalize the states thus obtained. Every stateuf& can be
expanded in terms of basis states for the constituting irr
Gk as

uf&5(
k

(
n51

dk

un
kucn

k&, ~4.9!

where Pnn
k uf&5un

kucn
k& and the summation overk is over

inequivalent irreps@44#.
Let us now consider the effect of applying the operat

Ad5(nad,nGn from the group algebra to an arbitrary sta
uf&:

in
6-6
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Aduf&5(
k

(
m51

dk

um
k Aducm

k &

5 (
n51

N

ad,n(
k

(
m51

dk

um
k (

n51

dk

Gk~Gn!nmucn
k&.

~4.10!

We would like to find the conditions such that this tran
forms into the DFS condition, Eq.~4.1!. Consider the case
when Gk are all one-dimensional irreps, possibly appearing
with multiplicity mk :

Gk~Gn!mn5gn
k , m,n51. ~4.11!

In this case the indicesm,n are irrelevant and we will omit
them. Then,

Aduf&5 (
n51

N

ad,n(
k

gn
kukuck&. ~4.12!

For uf& to be a decoherence-free state, one would like
have this proportional touf&5(ku

kuck& @as in the original
expansion of Eq.~4.9!#. However, this does not work be
cause of the presence ofgn

k in the sum. We thus see that th
initial function uf& must be restricted to be one of the ba
statesuck&. Then, with

cd
k[ (

n51

N

ad,ngn
k , ~4.13!

we have finally

Aduck&5cd
kuck&. ~4.14!

At this point it is useful to introduce another indexz for the
multiplicity of the irrep k, i.e., z51, . . . ,mk . The Hilbert
space ofK-qubit states splits into invariant one-dimension
subspacesVz

k that are spanned by~fixed! basis statesucz
k&.

Each of theuck& in Eq. ~4.9! is a linear combination of the
ucz

k&:

uck&5(
z51

mk

uz
kucz

k&. ~4.15!

@Because of Eq.~4.9!, theuz
k depend on the initial stateuf&.#

Thus for uf& to be a decoherence-free state, it is allowed
be an arbitrary superposition inside copies of agiven irrep
~different z’s!, but not to be a superposition between diffe
ent irreps~different k’s!. In particular we have within each
copy of the irrepGk

Aducz
k&5cd

kucz
k&, z51, . . . ,mk . ~4.16!

This is just the DFS condition, Eq.~4.1!, with the $ucz
k&%

being the basis states for the DFS. Therefore Eq.~4.11! is a
sufficientcondition for a DFS, provided that our initial sta
satisfies the condition that it is a superposition of sta
within a fixed irrep, Eq.~4.15!.
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It will now be shown that Eq.~4.11! is also anecessary
condition for a DFS under the ‘‘genericity’’ assumption th
the error coefficients$ad,n% are arbitrary. In other words, i
will be shown under these conditions that, if a set of ba
states$u j̃ &% satisfies the DFS condition Eq.~4.1!, then the
$u j̃ &% belong to the invariant subspace of some on
dimensional irrep of our subgroup.

Assume that theAd have been redefined to incorporate t
~constant! unitary transformationŨ such that Eq.~4.1! be-
comesAdu j̃ &5cdu j̃ &. Expand the stateu j̃ & as in Eq.~4.9!:6

u j̃ &5(
k

(
m51

dk

um
j̃ ,kucm

k & ~4.17!

wherePmm
k uf&5um

j̃ ,kucm
k &. Now, using Eq.~4.10!,

Adu j̃ &5cdu j̃ &

5cd(
k

(
m51

dk

um
j̃ ,kucm

k &

5(
k

(
m51

dk

um
j̃ ,kAducm

k &

5(
k

(
m51

dk

um
j̃ ,k(

n
ad,nGnucm

k & ~4.18!

5(
k

(
m51

dk

um
j̃ ,k(

n
ad,n(

l51

dk

Gk~Gn!lmucl
k&

~4.19!

and taking inner products@using Eq.~4.6!#

^cs
l uAdu j̃ &5cd(

k
(
m51

dk

um
j̃ ,k^cs

l ucm
k &

5cdus
j̃ ,l

5(
k

(
m51

dk

um
j̃ ,k(

n
ad,n(

l51

dk

Gk~Gn!lm^cs
l ucl

k&

5 (
m51

dl

um
j̃ ,l(

n
ad,nG l~Gn!sm . ~4.20!

Using this result we would like to show that theG l(Gn) that
appear here must be one-dimensional irreps. Let us esta
‘‘generic’’ conditions for this purpose.

Equation~4.20! can be rewritten as an eigenvalue equ
tion

A d
l uW j

l 5cduW j
l , ~4.21!

where

A d
l [(

n
ad,nG l~Gn!, ~4.22!

6For notational simplicity we avoid introducing another index f
the multiplicity of the irrep here. That such superpositions are
lowed for DF states is clear from Eq.~4.15!.
6-7
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uW j
l [~u1

j̃ ,l , . . . ,udl 8

j̃ ,l !. ~4.23!

The vectoruW j
l may be zero for a given irrepG l , in which case

Eq. ~4.21! is trivially satisfied. Let us assume this is not th
case for somel @it cannot be the case forall l , by Eq.~4.17!#.
Then the most general way in which Eq.~4.21! can be sat-
isfied is foruW j

l to be an eigenvector ofA d
l for all codewords

u j̃ &, with eigenvaluecd . However, while this is the mos
general condition, it isnongeneric. By genericwe mean that
we take the errors to be arbitrary, i.e., we do not want
make any assumptions on thead,n . Now, if the eigenvalue
equation were to be satisfied, the vector of coefficientsuW j

l

would have to be ‘‘special.’’ In other words,it would have to
be adjusted to be an eigenvector ofA d

k . To make this ad-
justment would require two conditions:~i! having a priori

knowledge of thead,n and ~ii ! being able to controluW j
l . We

would like to avoid assuming~i! because fine-tuning the bat
is physically unacceptable. In contrast, control ofuW j

l is cer-
tainly desirable. However, we would like to avoid the situ
tion where only certain special choices ofuW j

l , compatible
with specific bath parameters, yield decoherence-free st
u j̃ &.7 We thus conclude that to avoid fine-tuning of the ba
parameters and/or special initial conditions,A d

l must be pro-
portional to the identity. But sinceG l is an irrep this is only
possible if it is one dimensional, i.e.G l(Gn)mn5gn

l , m,n
51, andcd5(nad,ngn

l . In addition we see thatcd can only

be l independent if the DFS statesu j̃ & are spannedonly by
basis states of copies of thesameirrep G l . Q.E.D.

We summarize with the following theorem.
Theorem 1. Suppose that the Kraus operators belong

the group algebra of some groupG5$Gn%, i.e., Ad

5(n51
N ad,nGn . If a set of states$u j̃ &% belong to a given

one-dimensional irrepGk of G, then the DFS condition
Adu j̃ &5cdu j̃ & holds. If no assumptions are made on the b
coefficients$ad,n%, then the DFS conditionAdu j̃ &5cdu j̃ & im-
plies thatu j̃ & belongs to a one-dimensional irrepGk of G.

For completeness we give in Appendix B an example
the ‘‘nongeneric DFSs,’’ which result from ‘‘accidentally’
satisfying Eq.~4.21! with irreps of dimension greater than 1

V. EXAMPLES OF SUBGROUPS WITH
DECOHERENCE-FREE STATES

The general considerations from the previous section
now be illustrated with some examples. To simplify the n
tation, letX,Y,Z represent thesx,sy,sz Pauli matrices, and
let us drop the tensor product symbol~i.e., let ZI[Z
^ I , X2[X^ X, etc.!. Also, we will ignore normalization
factors in this section.

7This statement of what are generic conditions that lead to a D
is very similar to that in Ref.@8#.
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A. Abelian subgroups

The simplest nontrivial example of a subgroup is fou
already forK52 qubits:

QZ5$I 2,ZI,IZ,Z2%. ~5.1!

This subgroup~generated byZI and IZ) describes phase
damping.

As another simple example, letK54 qubits and conside
the following subgroup:

QX5$I 4,X2I 2,I 2X2,X4%.

Physically, this would correspond to the error process wh
bit flips happen on certain clusters of two or four qubits on
~note thatXIXI and IXIX were left out—this case will be
considered in the sequel paper@25#!.

Another example is

Q45$I 4,X4,Y4,Z4%,

with all Pauli errors occurring just on clusters of four qubi
QZ , QX , andQ4 are isomorphic and Abelian. All element
of these subgroups, exceptI 4, are traceless.I 4 has trace 16,
so that(n51

4 ux@G(Gn)#u25256.4 and thus the natural rep
resentation of these subgroups on four qubits is reduci
Since they are Abelian, they have only one-dimensional
reps. These irreps are given in the following table, expres
in terms of the elements ofQX :

I 4 X2I 2 I 2X2 X4

G1 1 1 1 1

G2 1 1 21 21

G3 1 21 1 21

G4 1 21 21 1

~5.2!

Motivated by Theorem 1, this reducibility implies the exi
tence of DFSs, as long as the Kraus operators belong to
group algebra of these subgroups.

1. The subgroup QX

Consider the case ofQX , i.e., assume that the Kraus op
erators can be written as

Ad5ad,0I
41ad,1X

2I 21ad,2I
2X21ad,3X

4 ~5.3!

@the coefficientsad, j are of course constrained by the no
malization condition Eq.~3.9!#.

Using the general arguments of Sec. IV B and in partic
lar Eq. ~4.7!, we can just read off the matrix elements of th
four ~one-dimensional! irreps from the table in Eq.~5.2!.
Thus the four projection operators are
S

6-8
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P15I 41X2I 21I 2X21X4, P25I 41X2I 22I 2X22X4,

P35I 42X2I 21I 2X22X4, P45I 42X2I 22I 2X21X4.
~5.4!

The multiplicity of each of the four one-dimensional irreps
the reducible representation generated here by theK54 qu-
bits is 4. To see this, recall the multiplicity formula Eq.~4.4!.
In the present case, the given representation yieldsx
5$16,0,0,0% ~for I 4,X2I 2,I 2X2,X4 respectively! and so, with
xk(I 4)51, mk5 1

4 xk(I 4)1654 for all k.
Now, let us explicitly find the decoherence-free states.

do so we can pick an arbitrary, convenient four-qubit st
and project it onto a given irrep. For example, starting w
u0000&:

P1u0000&5u0000&1u1100&1u0011&1u1111&[uc1
1&,

P2u0000&5u0000&1u1100&2u0011&2u1111&[uc1
2&,

~5.5!

P3u0000&5u0000&2u1100&1u0011&2u1111&[uc1
3&,

P4u0000&5u0000&2u1100&2u0011&1u1111&[uc1
4&.

Each of these four states belongs to a different irrep, and
to a different DFS, which can be verified by applying
arbitrary Kraus operator, as in Eq.~5.3!. For example,

Aduc1
1&5ad,0~ u0000&1u1100&1u0011&1u1111&)

1ad,1~ u1100&1u0000&1u1111&1u0011&)

1ad,2~ u0011&1u1111&1u0000&1u1100&)

1ad,3~ u1111&1u0011&1u1100&1u0000&)

5~ad,01ad,11ad,21ad,3!uc1
1&. ~5.6!

Similarly,

Aduc1
2&5~ad,01ad,12ad,22ad,3!uc1

2&,

Aduc1
3&5~ad,02ad,11ad,22ad,3!uc1

3&, ~5.7!

Aduc1
4&5~ad,02ad,12ad,21ad,3!uc1

4&.

This is in agreement with Eq.~4.16!.
Now, recall that each irrep appears four times. This me

we should be able to find three more independent states
longing to each of the irreps. Indeed, by performing proj
tions on the statesu0001&, u0100&, andu1001& ~usingu0010&
andu1000& does not produce new states! we obtain the com-
plete basis for the DFSs. For example,

P1u0001&5u0001&1u1101&1u0010&1u1110&[uc2
1&,

P1u0100&5u0100&1u1000&1u0111&1u1011&[uc3
1&,

~5.8!

P1u1001&5u1001&1u0101&1u1010&1u0110&[uc4
1&,
02230
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and again

Aduc2
1&5@ad,0I

41ad,1X
2I 21ad,2I

2X21ad,3X
4#~ u0001&

1u1101&1u0010&1u1110&)

5~ad,01ad,11ad,21ad,3!uc2
1&, ~5.9!

with similar results for the other states. All of this is in agre
ment with the general results of Sec. IV B. Finally, we m
consider an arbitrary superposition of decoherence-free s
taken from the multiple appearances of a given irrep,ufk&
5(z51

4 uz
kucz

k&, and this will again be decoherence-free.

2. The subgroup Q4

In this case the Kraus operators can be written as

Ad5ad,0I
41ad,1X

41ad,2Y
41ad,3Z

4. ~5.10!

Again, using the general arguments of Sec. IV B, in the c
of Q4 we can just read off the matrix elements of the fo
~one-dimensional! irreps from the table in Eq.~5.2!. Thus the
four projection operators are

P15I 41X41Y41Z4, P25I 41X42Y42Z4,

P35I 42X41Y42Z4, P45I 42X42Y41Z4.
~5.11!

Using the multiplicity formula, Eq.~4.4!, the given represen
tation again yieldsx5$16,0,0,0% ~for I 4,X4,Y4,Z4 respec-
tively! and so once moremk5 1

4 xk(I 4)1654 for all k.
To find the decoherence-free states let us start again

u0000&. We find

P1u0000&52~ u0000&1u1111&)[uc1
1&,

P2u0000&5u0000&1u1111&2u1111&2u0000&50,
~5.12!

P3u0000&5u0000&2u1111&1u1111&2u0000&50,

P4u0000&52~ u0000&2u1111&)[uc1
4&.

The vanishing of the projections ofP2 and P3 implies that
u0000& has no components in the irrepsG2 and G3. Thus a
different starting state is needed, e.g.,u0001&. Then

P2u0001&52~ u0001&1u1110&)[uc1
2&,

P3u0001&52~ u0001&2u1110&)[uc1
3&. ~5.13!

That these states are decoherence-free is again easily ve
by application of an arbitrary Kraus operator, e.g.,

Aduc1
2&5@ad,0I

41ad,1X
41ad,2Y

41ad,3Z
4#

32~ u0001&1u1110&)

5~ad,01ad,12ad,22ad,3!uc1
2&, ~5.14!

etc. The full DFS corresponding to the projectionP1 is found
by applyingP1 to the initial statesu0011&,u0101&,u1001&,
6-9
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P1u0011&52~ u0011&1u1100&)[uc2
1&,

P1u0101&52~ u0101&1u1010&)[uc3
1&, ~5.15!

P1u1001&52~ u1001&1u0110&)[uc4
1&,

in addition touc1
1& above.

Since the decoherence process described byQ4 is differ-
ent from that ofQX , the decoherence-free states are,
surprisingly, different in the two cases.

3. The subgroup QZ

As another example of an Abelian subgroup, assume n
that the Kraus operators, forK52 qubits, can be written as

Ad5ad,0I
21ad,1ZI1ad,2IZ1ad,3Z

2. ~5.16!

The four projection operators are thus

P15I 21ZI1IZ1Z2, P25I 21ZI2IZ2Z2,

P35I 22ZI1IZ2Z2, P45I 22ZI2IZ1Z2.
~5.17!

In this case, the given representation on two qubits yie
x5$4,0,0,0% ~for I 2,ZI,IZ,Z2, respectively! and so mk
5 1

4 xk(I 2)451 for all k. Thus, as expected~since the repre-
sentation is four dimensional!, the multiplicity of each of the
four one-dimensional irreps is 1.

Let us again explicitly find the decoherence-free state

P1u00&54u00&[uc1&,

P2u01&54u01&[uc2&,
~5.18!

P3u10&54u10&[uc3&,

P4u11&54u11&[uc4&.

And indeed

Aduck&5~ad,01ad,11ad,21ad,3!uck&, k51, . . . ,4.

This means that each of the four ‘‘computational ba
states’’ uck& is by itselfa DFS. However, since these DFS
belong to different irreps, a superposition is not decoheren
free. This agrees with the well known fact that phase dam
ing leads to decay of the off diagonal elements of the den
matrix in the computational basis, but does not cause
population decay.

4. The subgroup Q2Z

As a final example of an Abelian subgroup, let us retu
to the anisotropic dipolar-coupling Hamiltonian@Eq. ~3.14!#
discussed in Sec. III. Note first that it is necessary to tra
form from thes6 basis used there tosx,y in order for our
Pauli-group-based discussion to apply. Having done tha
is clear that unless anisotropy is imposed this Hamilton
generates the entire Pauli group, since all bilinear comb
tions sa

^ sb appear in it. Assume therefore that we have
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four-spin molecule constrained to rotate only about thez
axis. This amounts to settinggjk

ab5da0db0gjk in Eq. ~3.14!,
so that onlys j

z
^ sk

z terms remain. The corresponding su
group is

Q2Z5$IIII ,ZZII,ZIIZ,IIZZ,ZIZI,IZZI,IZIZ,ZZZZ%.

~5.19!

To find the DFS underQ2Z , construct the projectorP1

5 1
8 (qPQ2Z

q corresponding to the identity irrep ofQ2Z . Ap-

plying this projector to the initial statesu0000& and u1111&
we find a two-dimensional DFS, spanned by these two sta
This DFS thus encodes a single qubit.

B. Non-Abelian subgroups?

It would have been interesting to find examples of no
Abelian subgroups that have one-dimensional irreps and
support a DFS. However, no such subgroups exist in the c
of the Pauli group, as we now prove.

Each two elements of the Pauli groupPK either commute
or anticommute~Appendix A!. Let Q be a non-Abelian sub-
group ofPK . Then there must be at least two elements ofQ,
say q1 and q2, that anticommute. Assume that the stateu i &
belongs to a one-dimensional irrepG̃ of Q. Then G̃(q1)u i &
5c1u i & and G̃(q2)u i &5c2u i &, where c1 ,c2 are numbers.
Now, by assumption G̃(q2q1)5G̃(2q1q2). Therefore
G̃(q1q2)u i &5G̃(q1)G̃(q2)u i &5c1c2u i &, and alsoG̃(q1q2)u i &
5G̃(2q2q1)u i &5G̃(2q2)G̃(q1)u i &5c1G̃(2q2)u i &. If G̃

(2q2)52G̃(q2) then we haveG̃(q1q2)u i &52c1c2u i & so
thatc1c252c1c2. This implies that at least one ofc1 andc2
is zero. However, this cannot be true since the representa
is unitary. Is there another possibility? Note thatG̃(2q2)
5G̃(2Iq2)5G̃(2I )G̃(q2), so the question boils down to
the value ofa in G̃(2I )5aG̃(I ). But since (2I )(2I )5I it
follows that G̃(2I )G̃(2I )5G̃(I )51, so thatG̃(2I )561.
Assume then that the other case,G̃(2I )51, holds. Let us
use Eq.~4.4! while recalling that only the four multiples o
the identity have nonvanishing trace:

mk5
1

N (
n51

N

x@Gk~pn!#* x@G~pn!#

5
1

N
$x@Gk~ I !#* ~2K!1x@Gk~2I !#* ~22K!

1x@Gk~ i I !#* ~ i2K!1x@Gk~2 i I !#* ~2 i2K!%.

~5.20!

Since the irrepGk is one dimensional,x@Gk#5Gk, i.e., the

character is the element itself. Now letGk5G̃. Then since

G̃(2I )51, and usingGk(2 i I )5G̃(2I )G̃( i I ), we find m̃
50. Therefore such irreps do not appear at all.
6-10
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Thus an anticommuting pair of elements inQ is incom-
patible with a one-dimensional irrep, so that ifQ has a one-
dimensional irrep, it must be Abelian.8

Recall that the DFS condition of theorem 1 applies
arbitrary groups. Groups other than the Pauli group may s
port non-Abelian subgroups with one-dimensional irreps~the
above proof relied strongly on a property specific to the Pa
group, that its elements either commute or anticommu!.
However, at least within the Hamiltonian framework e
pounded in Secs. II and III, it is the Pauli group that appe
naturally for the group algebra to which the Kraus operat
belong.

VI. DIMENSION OF THE DECOHERENCE-FREE
SUBSPACES

We showed in the previous section that for the Pa
group DFSs can exist only for Abelian subgroups. This o
servation allows us to calculate the dimension of these DF
Recall from the general discussion in Sec. IV B that in t
generic case a superposition of states belonging to diffe
irreps will decohere, whereas a superposition of states wi
copies of a given irrep will be decoherence-free~see also the
examples in the previous section!. Also, by the Abelian prop-
erty, each such copy supports only a single decoherence
state. Hencethe dimension of the DFS associated with
given irrepGk is simply its multiplicity mk.

Let Q be an order-N Abelian subgroup of the Pauli grou
on K qubits. Using Eq.~5.20! and Gk(2I )561 again, we
have two~and only two! cases:~i! If Gk(2I )51 then mk
50, so such irreps do not support a DFS;~ii ! If Gk(2I )
521 then

mk52K12/N.

This shows that all irreps that support a DFS have the s
multiplicity, and thus all these DFSs have the same dim
sion.

If the subgroup does not include elements with the61,
6 i factors, as in the examples in Sec. V, then only the te
Gk(I ) appears in Eq.~5.20!, and consequently

mk52K/N, no $61,6 i % factors.

In any case, the dimension of the DFS is inversely prop
tional to the order of the subgroup. This implies a trade-
between the number of errors that can be dealt with by
code ~N! and the number of decoherence-free qub
(log2 mk).

As an interesting corollary we see that the largest Abe
subgroup of the Pauli group has order 2K12 ~since mk>1
implies N<2K12). Examples of such subgroups are~1!
the group generated by all the single-qubitX’s ~or Y’s
or Z’s! with 61,6 i ; ~2! the group generated
by XXII•••II , YYII•••II , ZZII•••II , IIXXII •••II ,
IIYYII•••II , IIZZII •••II , . . . ,II •••IIZZ with 61,6 i .

8We thank Dr. P. Zanardi for discussions regarding this point
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These groups support only one-dimensional DFSs. The
group is relevant for errors due to exchange on pairs of id
tical qubits @46#, and we see that the correspondin
decoherence-free state is automatically immune to excha
errors.~See Ref.@21# for a discussion of protection of DFS
against exchange errors arising in the spatially correlated
lective decoherence case.!

VII. SUMMARY AND CONCLUSIONS

Decoherence-free subspaces are associated most
monly with the existence of a spatial symmetry in t
system-bath coupling, as in the collective decohere
model. Here we have considered the case when no such
metry is assumed, and have shown that one can neverth
find DFSs under certain conditions. The essential assu
tions are that either to lowest order onlymultiple-qubit errors
are possible, meaning that the bath can couple only to m
tiple system excitations; or that only one type of error p
cess~such as phase damping! occurs, which can be relevan
for NMR quantum computer schemes and optical lattices~or
any other realization where scattering-induced phase s
are the dominant decoherence mechanism!. In either case,
instead of the full Pauli group of errors, only a subgro
needs to be considered. Barring certain nongeneric cases
DFSs then correspond to states that transform accordin
the one-dimensional irreducible representations of suc
subgroup. This characterization of DFSs, while forma
similar to previous results, is different in that it trades t
assumption of spatial symmetry for one of multiple-qu
coupling to the bath.

We show in a sequel paper@25# how to perform universal
fault tolerant quantum computation on the DFSs found
this paper using only one- and two-body Hamiltonians.
would further be desirable to identify in detail the physic
conditions under which the Pauli subgroup model is relev
for current proposals for quantum computers. An import
example we have discussed is the dipolar-coupling-indu
decoherence in NMR.

ACKNOWLEDGMENTS

This material is based upon work supported by the U
Army Research Office under Contract/Grant No. DAAG5
98-1-0371, and in part by NSF Grant No. CHE-9616615.

APPENDIX A: THE PAULI GROUP

The Pauli matrices are

s0[I 5S 1 0

0 1D , sx5S 0 1

1 0D ,

~A1!

sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D .

They have the following properties:

sa
25I , a50,x,y,z,
6-11
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@sa ,sb#52i«abgsg ,

$sa ,sb%52dabI , ~A2!

sasb5 i«abgsg1dabI ,

Tr~sa!50, a5x,y,z.

ThePauli groupof orderK is the set of all 4K11 possible
tensor products ofK of the Pauli matrices and6,6 i :

PK56,6 i $ ^ k51
K sa,k%a . ~A3!

Some of its useful properties are the following.
~i! Let p1 ,p2PPK . Since either @sa,k ,sb,k#50 or

$sa,k ,sb,k%50 it follows that

either @p1 ,p2#50 or $p1 ,p2%50. ~A4!

~ii ! Sincesa are all unitary, so are allpPPK .
~iii ! Sincesa are all Hermitian but we allow for6 i fac-

tors, pPPK is either Hermitian or anti-Hermitian. Thus
pPPK thenp†PPK .

~iv! Since Tr(A^ B)5Tr A3Tr B, the only elements in
PK that are not traceless are the four6,6 i multiples of the
identity, and each has trace 2K.

APPENDIX B: EXAMPLES OF NONGENERIC
DECOHERENCE-FREE SUBSPACES

We will show here an example of a DFS that arises ou
a two-dimensional irrep of anon-Abeliansubgroup, in the
‘‘nongeneric’’ case. Let us consider the non-Abelian eig
element subgroupQ85$6III ,6XXI,6IZZ,6 iXYZ%. In
this standard representation it is reducible and splits into f
copies of a two-dimensional irreducible representation
Q8. Since there is just one irrep, we drop the irrep indexk on
Gk, etc. The two-dimensional representation ofQ8 is the
following:

G~6III !56S 1 0

0 1D , G~6XXI!56S 0 1

1 0D ,

G~6IZZ!56S 1 0

0 21D , G~6 iXYZ!56S 0 21

1 0 D .

~B1!

The eight-dimensional Hilbert space is split into four irr
ducible subspacesVz ~corresponding to the four copies ofG)
spanned by
02230
f

-

r
f

V15~ uc0
1&,uc1

1&)5~ u000&,u110&),

V25~ uc0
2&,uc1

2&)5~ u111&,u001&),
~B2!

V35~ uc0
3&,uc1

3&)5~ u100&,u010&),

V45~ uc0
4&,uc1

4&)5~ u011&,u101&).

On each of these two-dimensional subspaces the group
like G. A codeword in the DFS can be expanded asu j̃ &
5(z51

4 (m50
1 uz,m

j ucm
i &.9 Let us take as our code just the fir

basis vector of each irreducible subspace, i.e.,

C5$u1̃&,u2̃&,u3̃&,u4̃&%[$uc0
z&:z51, . . . ,4%

5$u000&,u111&,u100&,u011&%. ~B3!

Denoting the vector of coefficients asuW z
j 5(uz,0

j ,uz,1
j ), this

means thatuW z
z5(1,0) anduW z

j Þz5(0,0). In this case we can
show that there are Kraus operatorsAd that satisfy the DFS
condition on the code, by searching for matricesAd that
haveuW z

j as eigenvectors. An example is

A15S c1 d1

0 e1
D , A25S c2 d2

0 e2
D , ~B4!

with the conditionsc1* d11c2* d250, uc1u21uc2u251, and
ud1u21ud2u21ue1u21ue2u251 for normalization@Eq. ~3.9!#.
The corresponding Kraus operators are

A15
c11e1

2
III 1

d1

2
XXI1

c12e1

2
IZZ1

d1

2
iXYZ,

A25
c21e2

2
III 1

d2

2
XXI1

c22e2

2
IZZ1

d2

2
iXYZ.

~B5!

The codeC is a DFS. It is the particular equality~i.e., the
‘‘conspiring,’’ nongeneric or accidental relationship! be-
tween the coefficients of theXXI and XYZ terms that is
responsible for the existence of this DFS.

9Note that our indices here differ somewhat from the notations
Sec. IV B, because there we either considered one-dimensiona
reps, or mostly avoided explicitly indicating superpositions betwe
copies of a given irrep.
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