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Two long-standing open problems in quantum theory are to characterize the class of initial system-bath

states for which quantum dynamics is equivalent to (i) a map between the initial and final system states,

and (ii) a completely positive (CP) map. The CP map problem is especially important, due to the

widespread use of such maps in quantum information processing and open quantum systems theory. Here

we settle both these questions by showing that the answer to the first is ‘‘all’’, with the resulting map being

Hermitian, and that the answer to the second is that CP maps arise exclusively from the class of separable

states with vanishing quantum discord.
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Introduction.—Every natural object is in contact with its
environment, so its dynamics is that of an ‘‘open’’ system.
The problem of the formulation and characterization of the
dynamics of open systems in the quantum regime has a
long and extensive history [1]. Consider a quantum system
S coupled to another system B, with respective Hilbert
spaces H S and H B, such that together they form one
isolated system, described by the joint initial state (density
matrix) �SBð0Þ. B represents the environment, or bath, so
the object of interest is the system S, whose state at time t is
governed according to the standard quantum-mechanical
prescription by the following quantum dynamical process
(QDP):

�SðtÞ ¼ TrB½�SBðtÞ� ¼ TrB½USBðtÞ�SBð0ÞUSBðtÞy�: (1)

The propagator USBðtÞ is a unitary operator, the solution to
the Schrödinger equation _USB ¼ �ði=@Þ½HSB;USB�, where
HSB is the joint system-bath Hamiltonian. TrB represents
the partial trace operation, corresponding to an averaging
over the bath degrees of freedom [1].

The QDP (1) is a transformation from �SBð0Þ to �SðtÞ.
However, since we are not interested in the state of the
bath, it is natural to ask: under which conditions is the QDP
a map from �Sð0Þ to �SðtÞ? When is this map linear? When
is it completely positive (CP) [1]? These are fundamental
questions which have been the subject of intense studies
with a long history [2–10]. One reason that these questions
have attracted so much interest is the fundamental role
played by CP maps in quantum information [11] and
open quantum systems theory [1]. CP maps are the ‘‘work-
horse’’ in these fields, and hence an understanding of their
domain of validity is essential. For this reason it is perhaps
surprising that the problem of identifying the general
physical conditions under which CP maps are valid has
remained open since it was first posed in a vigorous debate
[3,4]. In particular, while sufficient conditions have been
developed for complete positivity [4,10], it is not known
which is the most general class of states for which the QDP
(1) is always CP, for arbitrary USB. In this work we settle

this old open question. We prove that the QDP yields a CP
map �Sð0Þ � �SðtÞ iff �SBð0Þ has vanishing ‘‘quantum
discord’’ [12], i.e., is purely classically correlated.
In order to arrive at this result we introduce a class of

states we call ‘‘special linear’’ (SL), with the property of
being of full measure in the set of mixed bipartite states.
We show that the QDP (1) is always a linear Hermitian map
�H: �Sð0Þ � �SðtÞ if �SBð0Þ in the SL class. Vanishing
discord states are a subset of SL states, and CP maps are a
subset of Hermitian maps; we use the SL construction to
prove our main result about CP maps. We then argue that
the restriction to the SL class can be lifted, and that in fact
the QDP (1) is always a linear Hermitian map, for arbitrary
�SBð0Þ. This result settles another old open question: is
quantum subsystem dynamics always a map, and if so, of
what kind?
Linear maps.—A linear map is ‘‘Hermitian’’ if it pre-

serves the Hermiticity of its domain. We first present an
operator sum representation for arbitrary and Hermitian
linear maps:
Theorem 1.—A map �: Mn � Mm (where Mn is the

space of n�nmatrices) is linear iff it can be represented as

�ð�Þ ¼ X
�

E��E
0y
� ; (2)

where the ‘‘left and right operation elements’’ fE�g and
fE0

�g are, respectively, m� n and n�m matrices.
�H is a Hermitian map iff

�Hð�Þ ¼
X
�

c�E��E
y
�; c� 2 R: (3)

(See Refs. [13,14] for a proof). A linear map is called
‘‘completely positive’’ (CP) if it is a Hermitian map with
c� � 0 8 �. There is a tight connection between CP and
Hermitian maps [7,9]: a map is Hermitian iff it can be
written as the difference of two CP maps.
The definition of a CP map �CP implies that it can be

expressed in the Kraus operator sum representation [1]:

�SðtÞ¼
P

�E�ðtÞ�Sð0ÞEy
�ðtÞ¼�CPðtÞ½�Sð0Þ�. If the opera-

tion elements E� satisfy
P

�E
y
�E� ¼ I then Tr½�SðtÞ� ¼ 1.
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The standard argument in favor of the ubiquitousness of CP
maps is that, since Smay be coupled with B, the maps�Ph

describing physical processes on S should be such that all
their extensions into higher dimensional spaces should
remain positive, i.e., �Ph � In � 0 8 n 2 Zþ, where
In is the n-dimensional identity operator; this means that
�Ph is a CP map [15]. However, one may question whether
this is the right criterion for describing quantum dynamics
on the grounds that this imposes restrictions on the allowed
class of initial system-bath states [3]. An alternative view-
point is to seek a description that applies to arbitrary
�SBð0Þ. However, it was recently shown [16] that the QDP
(1) with arbitrary �SBð0Þ becomes a CP map iff a most
restrictive condition is satisfied by USBðtÞ, namely, it must
be locally unitary: USBðtÞ ¼ USðtÞ �UBðtÞ, i.e., the effec-
tive system-bath interaction must vanish. If one gives up
the consistency condition �S ¼ TrB½�SB� for all �S, or
gives up linearity except in the weak coupling regime,
CP maps arise for more general initial states [4].

A recent breakthrough due to Rodriguez et al. [10]
shows that CP maps arise for arbitraryUSB even for certain
nonfactorized initial conditions, namely, provided the ini-
tial state �SBð0Þ is invariant under the application of a
complete set of orthogonal one-dimensional projections
on S, i.e., the state has vanishing quantum discord. Here
we show that vanishing quantum discord is not only suffi-
cient but also necessary for the QDP to induce a CP map
(Theorem 3). To this end we first show that the larger class
of Hermitian maps is compatible with general initial con-
ditions. (Theorem 2).

Special-linear states.—We now define a class of states
we call ‘‘special-linear’’ (SL) states for which the QDP (1)
always results in a linear, Hermitian map. An arbitrary
bipartite state on H S �H B can be written as

�SB ¼ X
ij

%ijjiihjj ��ij; (4)

where fjiigdimH S

i¼1 is an orthonormal basis for H S, and

f�ijgdimH S

i;j¼1 : H B � H B are normalized such that if

Tr½�ij� � 0 then Tr½�ij� ¼ 1. The corresponding reduced

system and bath states are then �S ¼ P
ði;jÞ2C%ijjiihjj,

where C � fði; jÞjTr½�ij� ¼ 1g, and �Bð0Þ ¼
P

i%ii�ii.

Hermiticity and normalization of �SB, �S, and �B imply

%ij ¼ %�
ji, �ij ¼ �y

ji, and
P

i%ii ¼ 1.

Definition 1.—A bipartite state �SB is in the SL class iff
either Tr½�ij� ¼ 1 or �ij ¼ 0, 8 i, j.

The following is a key result which we prove at the end:
Theorem 2.—If �SBð0Þ is an SL class state then the QDP

(1) is a linear, Hermitian map �H: �Sð0Þ � �SðtÞ.
Next we need to be precise about the block structure

associated with a matrix A ¼ ½aij�:
Definition 2.—We call two diagonal elements ai1i1 and

aiBiB ‘‘block-connected via the path fibgB�1
b¼2 ’’ if there exists

a set of unequal indexes fibgBb¼1 such that faibibþ1
gB�1
b¼1 are all

nonzero, i.e., they can be connected via a path that involves

only horizontal and vertical (but not diagonal) moves. The

‘‘block-index set’’ Dð�Þ
A is the set of all index pairs fði; jÞg

of the elements of the �th block of A.
This is just the standard notion of a block in a matrix,

possibly before permutation matrices are applied to sort it
into the standard block-diagonal structure. We are now
ready to state our main result.
Lemma 1.—Let �SBð0Þ [Eq. (4)] be an SL class state, let

� � ½�ij� ¼ L
��

ð�Þ (a supermatrix), and let f�� �P
ði;iÞ2Dð�Þ

�

jiihijg� be a complete set of projectors from

H S to H S. Let C
ð�Þ
� � fði; jÞ 2 Dð�Þ

� jTr½�ij� ¼ 1g and
�ð�Þ
S � ���Sð0Þ��=p� ¼ X

ði;jÞ2Cð�Þ
�

%ijjiihjj=p�; (5)

where p� ¼ Tr½�Sð0Þ���. Let �ð�Þ
B be a density matrix.

The Hermitian map �H: �Sð0Þ � �SðtÞ induced by the

QDP (1) is a CP map iff ð�ð�ÞÞij ¼ f0 or �ð�Þ
B g 8 ði; jÞ 2

Dð�Þ
� :

�SBð0Þ ¼
X
�

p��
ð�Þ
S � �ð�Þ

B : (6)

Clearly, �ð�Þ
S can be thought of as the post-measurement

state arising with probability p� from �Sð0Þ after the
application of the projective measurement described by
the set f��g. Moreover, �SBð0Þ is not merely separable:
Theorem 3.—The Hermitian map �H: �Sð0Þ � �SðtÞ is

a CP map iff the initial system-bath state �SBð0Þ has
vanishing quantum discord (VQD), i.e., can be written as

�SBð0Þ ¼
X
k;�

�k
��SBð0Þ�k

�; (7)

where f�k
�g are one-dimensional projectors onto the ei-

genvectors of �ð�Þ
S , and

P
k�

k
� ¼ ��.

Proof.—By expanding �ð�Þ
S as

P
kp

k
��

k
�, with pk

�¼
Tr½�Sð0Þ�k

���0 and
P

kp
k
� ¼ 1, we obtain using Eq. (6):

�SBð0Þ ¼ P
��

ð�Þ
S � �ð�Þ

B ¼ P
k;�p

k
��

k
� � �ð�Þ

B , which im-

plies Eq. (7). On the other hand
P

k;��
k
��SBð0Þ�k

� is the

state after a nonselective projective measurement f�k
�g on

S, so that �SBð0Þ ¼
P

k;�p
k
��

k
� � �ð�Þ

B . j

The quantum discord has a deep information-theoretic
origin and interpretation, for the details of which we refer
the reader to Ref. [12]; we shall merely remark that when
the discord vanishes all the information about B that exists
in the S-B correlations is locally recoverable just from the
state of S, which is not the case for a general separable state
of S and B. In this sense a VQD state is ‘‘completely
classical.’’
Proof of Lemma 1.—We start with necessity; sufficiency

will turn out to be trivial. Let us assume that the Hermitian
map �H: �Sð0Þ � �SðtÞ induced by the QDP, �SðtÞ ¼
TrB½U�SBð0ÞUy�, is CP, and determine the class of allowed
initial states. We start from an SL class state since we know
(Theorem 2) that in this case the QDP (1) is indeed equiva-
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lent to a Hermitian map. Let ~M ¼ j�ih�j, where j�i ¼
1ffiffiffiffi
dS

p PdS
i¼1 jii � jii is a maximally entangled state over

H S �H S, and where dS ¼ dimH S. It follows directly
from Eq. (14) below that �H½jiihjj� ¼ TrB½Ujii�
hjj ��ijU

y�. Thus the Choi matrix [15] for �L is

M � ðI ��HÞ½ ~M� ¼ 1

dS

X
ij

jiihjj ��H½jiihjj�

¼ 1

dS

X
ij

jiihjj � TrB½Ujiihjj ��ijU
y�: (8)

We assume that M is positive as this is equivalent to �H

being CP [15]. A useful fact is that a matrix A is positive iff
every principal submatrix of A is positive (a principal sub-
matrix is the matrix obtained by deleting from A some
number of columns and rows with equal indexes). There-
fore, let us focus on the pair of rows and columns (k, l) (k�
l) of dSM, and consider the 2�2 principal submatrix

Pkl ¼ TrB½Ujkihkj ��kkU
y� TrB½Ujkihlj ��klU

y�
TrB½Ujlihkj ��lkU

y� TrB½Ujlihlj ��llU
y�

� �
:

(9)

The submatrix Pkl must be positive for any U, and we
choose to examine the case U ¼ 1ffiffi

2
p ðI � I � iX � AÞ,

where A is Hermitian and unitary (hence A2 ¼ I), and X ¼
jkihlj þ jlihkj þP

i�k;ljiihij. This will allow us to find re-

strictions on f�klg. Note that it follows from Hermiticity of

A, �kk and �ll, and from �y
kl ¼ �lk, that Tr½A�kk�,

Tr½A�ll� 2 R, and that Tr½A�kl� ¼ ðTr½A�lk�Þ�. Thus
some algebra yields:

Pkl ¼ 1

4

tkk ia ib tkl
�ia tkk tkl �ib
�ib� tkl tll �ic
tkl ib� ic tll

0
BBB@

1
CCCA;

a ¼ Tr½A�kk� 2 R; b ¼ Tr½A�kl�;
c ¼ Tr½A�ll� 2 R; tij ¼ Tr½�ij� ¼ 1 or 0:

(10)

To proceed we require the following Lemma [17]:
Lemma 2.—If Tr½AX� ¼ 0 for any unitary and Hermitian

matrix A then X ¼ 0.
Proposition 1.—If �kk ¼ 0 or �ll ¼ 0 then �kl ¼

�lk ¼ 0.
Proof.—Assume that �ll ¼ 0 or �kk ¼ 0, but not both,

so that either (tll ¼ 0, tkk ¼ 1), or (tll ¼ 1, tkk ¼ 0).
Construct the principal submatrix obtained by deleting
rows and columns 1 and 3 from Pkl. This leaves a principal

submatrix with eigenvalues ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jbj2p Þ=8. The pos-

itivity of these requires b ¼ Tr½A�kl� ¼ 0, so that by

Lemma 2 �kl ¼ �y
lk ¼ 0. When �ll ¼ �kk ¼ 0 the same

principal submatrix has eigenvalues �jbj, so that again

�kl ¼ �y
lk ¼ 0. j

Proposition 2.—If all of �kk, �ll, �kl � 0 then �kk ¼
�ll ¼ �kl ¼ �lk [17].

It is simple to check that the only permissible case not
covered by Propositions 1 and 2 is when �kk, �ll � 0 and
�kl ¼ �lk ¼ 0; in this case we have no further restrictions.
Lemma 3.—The matrix � � ½�ij� can be decomposed

as� ¼ L
��

ð�Þ, where ð�ð�ÞÞði;jÞ2Dð�Þ
�

¼ �ð�Þ (a constant)
or 0.
Proof.—Every matrix is a direct sum of blocks (possibly

only one). Therefore our task is to prove that the matrix

elements of the �th block�ð�Þ obey ð�ð�ÞÞði;jÞ2Dð�Þ
�

¼ �ð�Þ

or 0. Collecting the results above we see that there are only
four cases: Proposition 1 ) (i) �kk ¼ �kl ¼
�lk ¼ �ll ¼ 0, (ii) �kk ¼ �kl ¼ �lk ¼ 0 and �ll � 0;
Proposition 2 ) (iii) �kk ¼ �kl ¼ �lk ¼ �ll � 0;
(iv) �kk, �ll � 0 and �kl ¼ �lk ¼ 0. First note that if
�kk ¼ 0 then by cases (i) and (ii) also �kl ¼ �lk ¼
0 8 l, i.e., the row and column crossing at a zero diagonal

element must be zero. Now let �ð�Þ
ij denote the 2� 2

principal submatrix f�ð�Þ
ii ;�ð�Þ

ij ;�ð�Þ
ji ;�

ð�Þ
jj g, i � j.

Assume �ð�Þ
ij � 0 and consider �ð�Þ

ij . Only case (iii) ap-

plies, so �ð�Þ
ii ¼ �ð�Þ

ij ¼ �ð�Þ
ji ¼ �ð�Þ

jj . We can use this to

show that any two block-connected diagonal elements are

equal. Indeed, assume that�ð�Þ
i1i1

and�ð�Þ
iBiB

are both nonzero

and block-connected via the path fibgB�1
b¼2 . Then by case (iii)

all elements of each member of the set of principal sub-

matrices f�ð�Þ
ibibþ1

gB�1
b¼1 are equal, and since successive mem-

bers always share a diagonal element, their elements are all

equal, to an element we call�ð�Þ. We have thus shown that

ð�ð�ÞÞði;jÞ2Dð�Þ
�

¼ �ð�Þ or 0. Finally, note that case (iv) with
�kk � �ll can only arise between two different blocks,
since if �kk � �ll the previous argument shows that they
cannot be block-connected. j
We are now ready to conclude the proof of Lemma 1: It

follows from Lemma 3 that ð�Þij ¼ ð�ð�ÞÞij ¼ �ð�Þ or 0
for ði; jÞ 2 Dð�Þ

� . Moreover, since �SBð0Þ is an SL class

state, Tr½�ð�Þ� ¼ 1. Thus the total index set D� for the
initial state �SBð0Þ splits into a union of disjoint index sets

Dð�Þ
� , so that Eqs. (5) and (6) are satisfied, where �Sð0Þ¼P
�

P
ði;jÞ2Cð�Þ

�

%ijjiihjj¼
P

����Sð0Þ��¼
P

��
ð�Þ
S , where

�ð�Þ
S ¼ p��

ð�Þ
S and where �ð�Þ

B � �ð�Þ. Here �� is the

projector onto the subspace corresponding to block �
(as defined above). Next we need to show that the ��

B’s

are density matrices. From the properties of the �ð�Þ we
already have Tr�ð�Þ

B ¼ 1, so what is left to prove is

that �ð�Þ
B > 0. Indeed, by definition of positivity

hið�Þjhc Bj�SBð0Þjið�Þijc Bi> 0 for any state jið�Þi in the
support of�� and any bath state jc Bi. Inserting �SBð0Þ ¼P

�p��
ð�Þ
S � �ð�Þ

B into this inequality, we find

hc Bj�ð�Þ
B jc Bi> 0; 8jc Bi 2 H B. This completes the

proof of necessity. Sufficiency: using the spectral decom-
position ��

B ¼ P
j�

�
j j��

j ih��
j j and defining E�

ij �
h�ijUj��

j i��: H S � H S, where fj�iig is an orthonor-
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mal basis for H B, we have, using Eqs. (1) and (5)

�SðtÞ ¼ TrB½U�SBð0ÞUy� ¼ X
�ij

��
i E

�
ij�Sð0ÞE�y

ij : (11)

Now we simply note that if �SBð0Þ satisfies Eq. (6) with

�ð�Þ
B > 0 (i.e., ��

j > 0), then Eq. (11) is already in the form

of a CP map, with operation elements f ffiffiffiffiffiffi
��
i

p
E�
ijg�ij. j

Discussion.—What is the physical meaning of fixing the
bath-only operators �ij, as is required in our formulation?

The answer is that this corresponds to fixing the initial
system-bath correlations: the purely classical part is deter-
mined by the �ii (since �SB ¼ P

i%iijiihij ��ii is a VQD
state with respect to the projectors �i ¼ jiihij), while the
quantum part is determined by the �ij with i � j (since

�SB � �SB is a general non-VQD SL-state). Further, note
that Tr½jjihij � IB�SB� ¼ %ijTr½�ij�, so that non-SLness

can also be written as Tr½jjihij � IB�SB� ¼ 0, i.e., as hjii�
hjj � IB; �SBi ¼ 0 (Hilbert-Schmidt inner product
hA; Bi � Tr½AyB�) and hence �SB must lie in the hyper-
plane orthogonal to jiihjj � IB. Thus non-SL class states
are confined to a lower-dimensional surface in the space of
bipartite states, and must be sparse. Note that, conversely,
the SL condition Tr½�ij� ¼ 1 yields Tr½jjihij � IB�SB� ¼
%ij, which is not a constraint since %ij is arbitrary.

Moreover, using a mapping from affine to linear maps
[13,18], it is not hard to show that the zero-measure subset
of non-SL states does not spoil Theorem 2, i.e., the QDP
(1) is a linear, Hermitian map from �Sð0Þ � �SðtÞ for any
initial state �SBð0Þ.

Conclusions.—In this work we have identified the con-
ditions for the validity of quantum subsystem dynamics. In
particular, we have found the precise initial state condi-
tions for the ubiquitous class of CP maps. This establishes
a foundation for their widespread use in quantum informa-
tion and open systems theory. We have also shown that the
basic quantum-mechanical transformation (1) is always
representable as a Hermitian map between the initial and
final system states. This result establishes that quantum
subsystem dynamics is always a meaningful concept.

Proofs.—In order to prove Theorem 2 we first need:
Lemma 4.—If �SBð0Þ is an SL class state then the QDP

(1) is a linear map �L: �Sð0Þ � �SðtÞ.
Proof.—Consider the singular value decomposition

(SVD) �ij ¼
P

��
ij
�jx�ijihy�ijj, where �ij

� are the singular

values and jx�iji (hy�ijj) are the right (left) singular vectors.
Let fjc kig be an orthonormal basis for the bath Hilbert
space H B, and define the system operators V�

kij �
hc kjUSBjx�iji, W�

kij � hc kjUSBjy�iji. Since �SBð0Þ is an SL

class state, a QDP (1) generated by an arbitrary unitary
evolution USB yields (recall C � fði; jÞjTr½�ij� ¼ 1g):
�SðtÞ ¼ TrB½�SBðtÞ� ¼

X
ij

%ijTrB½USBjiihjj ��ijU
y
SB�

¼ X
ði;jÞ2C;k;�

�ij
�%ijV

�
kijjiihjjðW�

kijÞy: (12)

Now note that Pi�Sð0ÞPj ¼ %ijjiihjj, where Pi � jiihij is a
projector and ði; jÞ 2 C. Therefore,

�L½�Sð0Þ� �
X

ði;jÞ2C;k;�

�ij
�V�

kijPi�Sð0ÞPjðW�
kijÞy (13)

¼ X
ði;jÞ2C;k;�

�ij
�%ijV

�
kijjiihjjðW�

kijÞy; (14)

which equals �SðtÞ according to Eq. (12). This defines the
linear map �L ¼ fEijk�; E

0
ijk�g, whose left and right op-

eration elements are fEijk� �
ffiffiffiffiffiffi
�ij
�

q
V�
kijPig and fE0

ijk� �ffiffiffiffiffiffi
�ij
�

q
W�

kijPjg, respectively. j

Proof of Theorem 2.—We need to show that �SðtÞ ¼
�H½�Sð0Þ� ¼ �y

S ðtÞ if �Sð0Þ ¼ �y
S ð0Þ. This is now a simple

calculation which uses Eqs. (13) and (14), the definitions of

V�
kij and W�

kij, �ij ¼ �y
ji, and the SVD of �ij. j
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Rev. A 77, 042113 (2008).
[10] C. A. Rodrı́guez-Rosario et al., J. Phys. A 41, 205301

(2008).
[11] M.A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[12] H. Ollivier and W.H. Zurek, Phys. Rev. Lett. 88, 017901
(2001).

[13] A. Shabani and D.A. Lidar, arXiv:0902.2478.
[14] R. D. Hill, Linear Algebra Appl. 6, 257 (1973).
[15] M.D. Choi, Linear Algebra Appl. 10, 285 (1975).
[16] H. Hayashi, G. Kimura, and Y. Ota, Phys. Rev. A 67,

062109 (2003).
[17] See EPAPS Document No. E-PRLTAO-102-064912 for a

proof. For more information on EPAPS, see http://www.
aip.org/pubservs/epaps.html.

[18] T. F. Jordan, Phys. Rev. A 71, 034101 (2005).

PRL 102, 100402 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 MARCH 2009

100402-4



1

Appendix

Here, we supply the proofs of Lemma 2 and Proposition 2.

Proof of Lemma 2. Since A is unitary and Hermitian its eigenvalues are both roots of unity and real, i.e., it can always be

parameterized in the form A = UDU †, where U is unitary and the diagonal matrix D has diagonal elements ±1. Consider

two special choices of D: D1 = diag(+1,+1, ...,+1) = I and D2 = diag(−1,+1,+1, ...,+1) = I − 2|0〉〈0|. Since

Tr[D1U
†XU ] = Tr[D2U

†XU ] = 0 we find Tr[(D1 −D2)U
†XU ] = 0, or Tr[|0〉〈0|U †XU ] = 0. However, U is arbitrary, so

that 〈ψ|X |ψ〉 = 0, ∀|ψ〉 (|ψ〉 = U |0〉). This can only be true if X = 0.

Proof of Proposition 2. After a couple of elementary row and column operations on Pkl we obtain:

P ′
kl =

(

12 B
B† 12

)

; 12 =

(

1 1
1 1

)

, B =

(

ib ia
ic ib∗

)

.

Diagonalizing the two diagonal blocks 12 using Q = 1√
2
(I + iσy) yields P ′′

kl = Q⊕2P ′
kl(Q

†)⊕2, where

P ′′
kl =

(

C D
D† C

)

; C =

(

2 0
0 0

)

, D = i

(

α β
γ δ

)

;

α = (a+ b+ b∗ + c)/2, β = (a− b+ b∗ − c)/2,

γ = (−a− b+ b∗ + c)/2, δ = (−a+ b+ b∗ − c)/2.

Positivity of Pkl implies that also P ′′
kl > 0, so that we can again apply the principal submatrix method. Let e(i, j) denote

the eigenvalues of the P ′′
kl submatrix obtained by retaining only the ith and jth rows and columns of P ′′

kl. We find e(1, 4) =

1 ±
√

1 + |β|2, e(2, 3) = 1 ±
√

1 + |γ|2 and e(2, 4) = ±|α|2. Since all these eigenvalues must be positive we conclude that

α = β = δ = 0, i.e., Tr[Aφkk ] = Tr[Aφkl] = Tr[Aφlk] = Tr[Aφll]. Applying Lemma 2 we have Tr[A(φkk − φkl)] = 0, so

that φkk = φkl, and similarly φkl = φlk = φll.


