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A method is studied wherein two noninteracting quantum subsystems, that each interact with a third sub-
system, are entangled via repeated projective measurements of the state of the third subsystem. A variety of
condensed matter and quantum optical examples are presented. The method can be used to establish long range
entanglement between distant parties in one parallel measurement step, thus obviating the need for entangle-
ment swapping.
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I. INTRODUCTION

Entanglement is at the heart of quantum information pro-
cessing[1], and is a resource that allows quantum processes
to outperform their classical counterparts for tasks such as
computation[2], communication[3], and cryptography[4].
The standard way to generate entanglement between distin-
guishable and initially separable particles is to let them in-
teract directly for a certain amount of time: any nontrivial
two-body Hamiltonian is capable of generating entanglement
in this manner[5]. However, the direct interaction method
poses limitations in the context of the generation of long-
range entanglement, since in many systems the interaction
strength typically decreases at least as fast as some power of
the distance between particles. Here we consider a different
paradigm for entanglement generation: we show that it is
possible to entangle two particles that never interact directly
by means of repeated(noncontinuous) measurements of a
third subsystem that interacts with both. In addition to its
conceptual interest, we show that this scheme offers practical
advantages for long-range entanglement generation.

Our theoretical framework for measurement-generated
entanglement is inspired by the recent work by Nakazato,
Takazawa, and Yuasa(NTY) [6], who investigated the effects
of repeated rapid projective measurements on one subsystem
of a bipartite system. Under appropriate conditions, NTY
showed that the unobserved subsystem is gradually projected
into a pure state, independent of the initial state. This result
leads to the question of whether a similar measurement
scheme is capable of generating entanglement when the un-
observed subsystem is itself multipartite, noninteracting, and
in an arbitrary initial state. We answer this question in the
affirmative for a wide range of model systems, and establish
general conditions for validity of the method. We note that an
additional advantage of this measurement-based method for
generating entanglement over the direct-interaction based
method is that it does not depend on sensitive timing of
interactions: instead, entanglement is gradually purified as
the number of measurements increases, and(under appropri-
ate conditions) can be made arbitrarily high. An important
conclusion from our study is that the method can be used to
establish long range entanglement between distant particles,
by measuring along a chain of intermediate particles. This
provides an alternative to entanglement swapping that does

not scale with the chain length. A similar result—long range
entanglement from local(but nonrepeated) measurements—
was obtained in Ref.[7] for the ground state of an antiferro-
magnetic spin chain(see also Ref.[8]).

A second main source of inspiration for our work are
recent quantum optics proposals for measurement-generated
entanglement. It has been shown there that entanglement can
be generated conditional on the(null) detection of a light
mode that has interacted with two or more atoms or ions. The
first such proposal showed that atoms in a leaky cavity can
become entangled conditioned on null detection at a photo-
detector placed outside the cavity[9] (decoherence-induced
entanglement; see also Ref.[10]). In Refs.[11–15] entangle-
ment is generated in a similar manner conditioned instead
upon detection of the spontaneously emitted photons. This
method is particularly suitable for generation of long-range
entanglement, a subject we address here. The schemes de-
scribed in Refs.[13–15] are largely insensitive to control
errors, another important aspect that is addressed in our
work. Measurements of the phase of light transmitted
through a cavity have also been proposed in Ref.[16] as a
method to prepare entangled states and implement quantum
computation in the case of atoms in optical cavities.

In the quantum optics setting we have just mentioned, the
measurement typically consists of a photodetector monitor-
ing radiation from a cavity or a trap. In this case the mea-
surement is an act of continuous observation. In contrast, in
the scheme we study here, it is important that the measure-
ment is discontinuous, namely, is repeated often, but with
nonvanishing time interval. A second important distinction is
that the aforementioned quantum optical studies typically use
the Monte Carlo wave-function(or “quantum-jump”) ap-
proach[17,18], and hence apply the Markovian approxima-
tion. In contrast, in our case the Markovian limit is never
assumed.

The structure of this paper is as follows. In Sec. II we
briefly review the results of NTY[6] on purification via re-
peated measurements. In Sec. III we develop our general
theory of entanglement-generation via repeated measure-
ments. We show that both pure and mixed-state entanglement
can be generated. In Sec. IV we study a number of physically
relevant examples, borrowed from condensed matter and
quantum optics models. In Sec. V we develop a perturbative
treatment of the general measurement-based scheme. It is
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here that the distinction between our method and method of
continuous observation[9–16] becomes particularly trans-
parent, as the short-time limit in our case yields the quantum
Zeno effect, which cannot be captured in the pure Markovian
limit [19]. In Sec. VI we show how our method can be used
to prepare long range entanglement via repeated local mea-
surements, executed in parallel. We conclude in Sec. VII.

II. PRELIMINARIES

NTY considered the following scenario: Consider a bi-
partite system composed of subsystemsA, B, initially in the
separable staterABs0d= uflkfu ^ rB, whereA is in a pure state
ufl andrB is arbitrary. SubsystemA is subject to projective
measurementsPA= uflkfu applied with periodt. In between
measurements the system evolves under the Hamiltonian

H = HA + HB + HAB s1d

(respectively, the sum of free Hamiltonians and an interac-
tion). It can be shown[6] that afterM such measurements
the state of subsystemB, given that all outcomes wereufl, is

rBsMtd =
VBstdMrBVB

†stdM

PM
, s2d

wherePM is the survival probability, i.e., the probability of
finding subsystemA in its initial state,

PM = TrBfVBstdMrBVB
†stdMg, s3d

whereU=exps−itHd (we use units where"=1), and where

VBstd ; kfuUufl s4d

is an operator on subsystemB that is in general not Hermit-
ian. However, one may still find left- and right-eigenvectors
with complex eigenvalues, whose modulus can be shown to
be bounded between 0 and 1. The central result of NTY is
that in the limit of largeM and small but finitet, rBsMtd
tends to a pure state independent ofB’s initial state. This
result assumes that the largest eigenvaluelmax of VBstd is
nondegenerate. The final pure staterBsMtd is then the cor-
responding right eigenvectoruumaxl and this outcome is
found with probability

PM → ulmaxu2kumaxuumaxlkvmaxurBuvmaxl, s5d

whereuvmaxl is the corresponding left eigenvector. Note that
because oft’s finiteness the dynamics here is distinct from
the Zeno effect and “quantum Zeno dynamics”[20].

We now extend NTY’s model by allowingB itself to be
composed of multiple noninteracting subsystems,B
=hB1,B2,¯ ,BNj, and pose the following question: is the
NTY measurement procedure capable of generating en-
tanglement amongstB’s subsystems, assuming that they all
interact with the “station”A? The situation is illustrated in
Fig. 1. To answer this questions we consider the following
model: We set all internal HamiltoniansHA=HBi

=0, so that
H=HAB (equivalently, we can always transform to an inter-
action picture rotating with the internal Hamiltonians; this
will make HAB time dependent, but it will not introduce cou-

plings between subsystemsBi). We assume that theB sub-
systems are all qubits and the interaction betweenA and all
the Bi is identical. We can then define total quasispin opera-
tors sb;oi=1

N sb
i and write the interaction asHAB

=oaPhx,y,zjhaAa ^ sa (ha real) or, more simply,

HAB = AW · sW , s6d

where the parametersha are included in the vectorAW . We do
not restrict subsystemA.

III. GENERAL THEORY

A. A good basis

We construct a basis that block diagonalizes the effective
post-measurement evolution operatorVBstd. Let a basis for
theA subsystem be the measurement stateufl and any set of
states orthonormal to it, denotedufl

'l, l =1, . . . ,d−1. Let N
be even and let a basis for theB subsystem be constructed
out of the usual spin basisuS,MSl, whereS is the total qua-
sispin of theN particles andMS its projection along thez
axis. We denote the(orthonormal) singlet states byusjl, j
=1, . . . ,DN=N! / fsN/2+1d ! sN/2d ! g, and the remaining(or-
thonormal) states withS.0 by utkl, k=1, . . . ,KN, KN=2N

−DN.
Proposition 1. Consider the ordered basis

hufl , uf1
'l , . . . ,ufd−1

' lj ^ hus1l , . . . ,usDN
l , ut1l , . . . ,utKN

lj. In this
basis we have the block-diagonal representation

VBstd = SIDN
0

0 VB
s D , s7d

where IDN
is a DN3DN-dimensional identity matrix. The

maximal eigenvalue ofVBstd is 1, and is at leastDN-fold
degenerate.

Proof. The singlets states,uS,MSl= u0,0l, are annihilated
by the sb when N is even(since they are states with zero
total quasispin). ThereforeHABusjl=0, independent of the
state of subsystemA. In the ordered basisHAB is thus repre-
sented as

FIG. 1. Schematic illustration of our model: SystemsB1 andB2

are coupled to systemA; systemA can be measured with a projec-
tive measurement. Note that no direct coupling exists between sys-
temsB1 andB2.
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HAB = S0 0

0 HAB8
D , s8d

where the dimension of the upper-left block isDN3DN and
that of the lower-right block isKN3KN. Then

UAB = e−itHAB = SIDN
0

0 UAB8
D , s9d

whereUAB8 =W8e−itLW8† is unitary andW8 is the unitary ma-
trix that diagonalizes HAB8 : W8†HAB8 W8=L
=diagsl1, . . . ,lKN

d. Taking the expectation value with re-
sepect toufl we then find

VBstd = o
j=1

DN

usjlksju + VB
s , s10d

which is the claimed result, with VB
s

;ok,k8=1
KN utklsUAB8 dfk,fk8ktk8u a KN3KN-dimensional matrix.

That the maximal eigenvalue is 1 follows from unitarity of
UAB8 [6], and that it is at leastDN-fold degenerate is immedi-
ate from the representation(7). Q.E.D.

Proposition 2[6]. Nondegeneracy ofVBstd is a necessary
condition for obtaining a pure state in the limit of largeM.

Proof. In the degenerate case it follows from Eq.(2) that
the method yields an equally weighted sum of degenerate
pure states corresponding to the maximum eigenvalue of
VBstd. Q.E.D.

Note thatD2=1. Hence in the totally symmetric case we
have been considering so far, forN=2 the method will gen-
erate a pure(maximally entangled) singlet state, providedVB

s

has maximal eigenvalue with modulus smaller than 1. We
give examples of corresponding Hamiltonians below. On the
other hand,D4=2 and hence due to degeneracy the method
will not produce a pure entangled state forNù4. However,
we can still generate pure-state entanglement in theN=4
case by breaking the total permutation symmetry and only
preserving the symmetry between 1,2 and 3,4[e.g., having a
coupling to subsystemA such thatsb=a1ssb

1 +sb
2d+a2ssb

3

+sb
4d, a1Þa2Þ0]. We can then project out a one-

dimensional subspaceusl12usl34, usli j =su0i1jl− u1i0jld /Î2 is
the singlet state, which is entangled for 1,2 and 3,4 but sepa-
rable across the 12:34 partition. Similarly, forN=2nù6 and
sb=oi=1

n aissb
2i−1+sb

2id, ai Þaj Þ0 the projected state is
usl12usl34¯ usln−3,n−2usln−1,n.

B. Invariance

The results of the above discussion are invariant as long
as the Hamiltonians belong to the familyhUBHABUB

†j, where
UB is an arbitrary unitary transformation of the Hamiltonian
of subsystemB. This enables the method to generate en-
tangled states equivalent under local transformations. The
invariance of HABusjl=0 is HAB8 usj8l=0, where HAB8
=UBHABUB

† and usj8l=UBusjl. Thus, e.g., in the case ofN=2,
we can generate the other three Bell states by applyingUB
=X2,Y2,Z2 (where X2 is the Pauli matrixsx acting on
subsystem B2, etc.), which results, respectively,
in us8l=s1/Î2dsu11l+ u00ld, s1/Î2dsu00l− u11ld, s1/Î2dsu01l
+ u10ld as the outcome of the method.

C. Degenerate maximal eigenvalue

What happens when there are other states, either singlets
or coming fromVB

s , that also have an eigenvalue with modu-
lus 1? In this case NTY’s result does not apply and entangle-
ment may or may not be spoiled(though it is always reduced
from maximally entangled). Two examples will illustrate
this. (i) N=2, suppose there is a triplet stateu00l that
also hasulmaxu=1. Then the resulting state is the mixture
uslksu+ u00lk00u. This state is entangled as its partial transpose
[21] has a negative eigenvalue of −0.207. We will encounter
this case in the Heisenberg model below.(ii ) N=4,
suppose the two singlet statesus1l= usl12usl34 and
us2l=s1Î3dfut+l12ut−l34+ ut−l12ut+l34−2ut0l12ut0l34g (where utal
are triplets with projection quantum numbera) appear with
eigenvalue one, but no other states do. With respect to the
12:34 cutus1l is a product state butus2l is clearly entangled.
This state, just like in the previous example, has negative
partial transpose, and we have entanglement across the 12:34
cut. These examples illustrate that degeneracy still allows for
mixed state entanglement to be generated by our method.
This is useful entanglement in the sense that it can be used
for teleportation and all other QIP primitives[22].

IV. EXAMPLES

We now discuss examples, limiting ourselves toN=2.
Our task then reduces to calculating the eigenvalues of the
333 matrix VB

s =kfuUAB8 ufl. However, this requires diago-
nalization ofUAB8 , a 636 matrix, so it cannot be done ana-
lytically in complete generality. Our basis forA is hufl , uf'lj
and forB is

bW ;Husl =
1
Î2

su01l − u10ld,ut−l = u00lJ ,

s11d

ut0l = H 1
Î2

su01l + u10ld,ut+l = u11lJ ,

without loss of generality(recall the invariance discussion
above).

A. Axial symmetry model

SupposeAz=0 andAx,Ay satisfy fAx,Ay
2g=fAy,Ax

2g=0 (or
Ax or Ay=0), whence the Hamiltonian readsH=fAxsX1

+X2d+AysY1+Y2dg /2. We first consider as a special case the
XY model: Ax=JX and Ay=JY, relevant for quantum infor-
mation processing in solid state[23–25] and atomic[26]
systems. It follows after some algebra thatH3= uAu2H, where
uAu2=Ax

2+Ay
2. Therefore, the evolution is

UAB = e−itH = I − 2S H

uAuD
2

sin2 tuAu
2

− i
H

uAu
sintuAu, s12d

which means thatVB
s is a function only of kfuHufl and

kfuH2ufl. In particular, for theXY model we find, using
uAu=Î2J,
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VBstd = cos2
tJ
Î2

−
X1X2 + Y1Y2 − kZlsZ1 + Z2d

2
sin2 tJ

Î2

− i
kXlsX1 + X2d + kYlsY1 + Y2d

2Î2
sinÎ2tJ, s13d

where kXl;kfuXufl, etc. It is simple to check that, as re-
quired from our general result,VBusl= usl, i.e., the singlet
state has eigenvalue 1. Whether this eigenvalue is degenerate
is now seen to depend on the measurement of theA sub-
system: If we chooseufl to be asz-eigenstate then the ad-
ditional eigenvalues of VB are found to be
h1,cosÎ2tJ,cosÎ2tJj, while if we chooseufl to be asx or
sy eigenstate then we find that the additional eigenvalues are
hcos2 q,1+3 cos 2q±Îcos 4q+sin4 q−1j, where q=tJ/Î2.
Thus, if we measure alongz then there is never pure state
entanglement, but at timest other thannp /Î2J we have a
mixed entangled state, since the eigenstate corresponding to
the additional eigenvalue 1 is found to beu11l (and recall the
discussion above). In the case of measurement alongx or y
the eigenvalues periodically have modulus 1, and with the
exception of those times degeneracy is avoided and we do
obtain a pure entangled state[in particular, it is simple to
show that this is true for allt,Î2 arccoss1/3d /J].

Next we consider the performance of the scheme after a
finite number of steps(Fig. 2). To do so we calculate the
concurrence[27] afterM steps of evolution/measurement for
Jt=p /2,Î2arccoss1/3d, in the case ofufl a sx eigenstate.
In this case, as shown above, the singlet state is generated by
the scheme. We also plot the survival probabilityPM as given
by Eq. (3). After as few as three measurements the concur-
rence is essentially unity, indicating that the system is al-
ready in the desired singlet state. The scheme does, however,
not work with unit probability: The probabilityPM of having
projected systemA on the desiredsx eigenstate converges to
,0.2 for the values above, a value reached forM =3.

As another special case we consider a simplified form of
the d-wave grain boundary qubit[28]: H=DsX1+X2d
+JZsZ1+Z2d (D is a tunneling parameter andJ is the Joseph-

son coupling). ThusAW=2sD ,0 ,JZd, and we may use the gen-
eral result(12), replacingAy by Az. If we now chooseufl to
be asz eigenstate thenVB turns out to be unitary and hence

all its eigenvalues have modulus 1, and no entanglement is
generated. However, if we chooseufl to be asx eigenstate,
we find

VB = cos2 f − sin2 fscos2 uX1X2 + sin2uZ1Z2d

−
i

2
sin 2f cosusX1 + X2d, s14d

wheref=tÎD2+J2 and tanu=J/D. It is again easy to check
that VBusl= usl. One of the other three eigenvalues is 1
−2 sin2 f sin2 u. The other two are complex conjugates and
for short timest such that tan2 f,4 cos2 u /sin4 u have the
same amplitudes1−2 sin2 f sin2 ud1/2. For instance, when
u=p /4, the amplitudes of the three eigenvalues are
cos2 f ,cosf ,cosf, which vanish rapidly when raised to the
power of the number of measurements.

Finally, note that the results presented so far are not re-
stricted toA being a qubit: the unitary operator(12) is valid
even whenA is a multilevel system, as long as the condition
fAx,Ay

2g=fAy,Ax
2g=0 is satisfied.

B. Heisenberg model

We now consider the Heisenberg interactionH=JsW ·ssW 1

+sW 2d. After showing that sH+JsW 1·sW 2d2=9J2 and
fH ,JsW 1·sW 2g=0, it is simple to computee−itsH+JsW 1·sW 2d, from
which we directly obtain

UAB = e−itH = eitJsW1·sW2hcoss3tJd − i sins3tJdfsW · ssW1 + sW2d

+ sW1 · sW2g/3j. s15d

VB then is identical toUAB provided one replaces with
kfusW ufl the operatorsW in UAB. The four eigenvalues are
h1,e−2itJ,eitJscos 3tJ± i 1

3sin 3tJdj, the last two having the
same amplitude 1−89sin2 3tJ,1. The corresponding eigen-

vectors are, respectively,bW [Eq. (11)]. Since the first two
eigenvalues both have magnitude 1, we have the case dis-
cussed above: a pure entangled state cannot be projected out
by our method, but we can prepare a mixed entangled state
that is useful for all QIP protocols. Note further that these
Heisenberg model results hold for the entire class of Hamil-

toniansH=AW s ·ssW 1+sW 2d, whenAW s is generated from an arbi-

trary two-dimensional unitary transformationUA, AW s

=UAJsWUA
† (this is different from the invariance under a rota-

tion of theB system considered above).

C. Bosonic media

We now consider a photon or phononsAd interacting sym-
metrically with two identical qubitssBd. The Jaynes-
Cummings Hamiltonian is

H = eb†b + gss1
z + s2

zd +
J

2
fbss1

+ + s2
+d + b†ss1

− + s2
−dg,

s16d

where b is a bosonic annihilation operator, and whenceAW

=(Jsb+b†d , iJsb−b†d ,g). Such a model can easily be realized

FIG. 2. Concurrencesnd and success probabilitysjd PM for
ufl=s1/Î2dsu0l+ u1ld andtJ=p /2, for theXY model.
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using microwave cavity QED[29] (two atoms in one or two
cavities) or trapped ions[30]. We can exactly diagonalizeH
by writing it as a direct sum over three-dimensional matrices
in the basisun−1,t+l, un,t0l, and un+1,t−l, where unl are
number states andutal are triplet states of the two qubits.
Note thatN;fb†b+ss1

z+s2
zdg is a conserved quantity and

henceH is block diagonal in its eigenvalues. For simplicity
we consider the case withg=e and measure the single pho-
ton stateufl=b†u0l= u1l (this projects onto a single block of
the infinite matrixUAB). In this case we readily find the al-
ready diagonal

VBstd = diagH1,e−2iet3 + 2 cossÎ10tJd
5

,e−iet cossÎ6tJd,cossÎ2tJdJ s17d

in the ordered basishu1lusl , u1,t+l , u1,t0l , u1,t−lj. Thus, as
long as we make sure thatt,2p /Î10J the method will
project out a pure singlet state. It follows from our discussion
of invariance above that another Bell states1/Î2dsu01l
+ u10ld can be projected out if the two qubits couple to the
photon or phonon with opposite signs. We note that a similar
problem was considered in Ref.[9], using a different formal-
ism.

D. Multilevel systems

Let us now consider a rather general, though abstract mul-
tilevel case. Assume that subsystemB consists of two par-
ticles that haveM ù2 levels each, and that the interaction
Hamiltonian with subsystemA (also anM-level system) is of
the form

H = o
i,j=1

M

AijsOij
1 + Oji

2d, s18d

whereOij =Eij −Eji andEij = uilk j u is a matrix whose elements
are zero everywhere except for a 1 atpositionsi , jd. Namely,
there is an SOsMd symmetry for oddM or an SpsMd sym-
metry for evenM. In this caseH has a single nondegenerate
eigenvector with zero eigenvalue. This state is entangled. For
instance, whenN=3, we have two qutrits, which can be rep-
resented in the spherical basishu−1l , u0l , u+1lj. The state
with zero eigenvalue is

uCl = su1l1u− 1l2 − u0l1u0l2 + u− 1l1u1l2d/Î3, s19d

and is maximally entangled. In general, the one-dimensional
subspace containing the state with zero eigenvalue is the ir-
reducible representations0,0, . . . ,0d of SOsMd or SpsMd.
This state is the generalization of the singlet state that arose
in the general theory and examples treated above when the
subsystems were qubits.

V. PERTURBATIVE TREATMENT

It is apparent from the above examples that the success of
our method depends on keeping the periodt between two
measurements short. For instance, in the bosonic example,
we requiret,2p /Î10J in order to prevent the appearance

of another eigenvalue with amplitude 1. Let us therefore con-
sider a short-time expansion ofVBstd. To first order

VBstdM = sI − itkfuHABufldM ——→
M→`

exps− itkfuHABufld,

s20d

whereMt= t (constant), i.e., the evolution is unitary. This is
the quantum Zeno effect, which completely decouples the
interaction among all parties of subsystemB, so that no en-
tanglement can be generated in this limit. Thus the dominant
contribution to entanglement generation originates from the
second-order term, which contains the self-correlation of
subsystemB. Consider for simplicity the casekfuHABufl=0
(as in our last example). Letting Mt2/2=t2 (constant), we
have

VBstdM ——→
M→`

e−t2kfuHAB
2 ufl. s21d

All eigenstates ofkfuHAB
2 ufl with nonzero eigenvalues are

rapidly suppressed ast (in practiceM) increases, while those
with eigenvalue zero survive. Since it is much simpler to
analytically calculatekfuHAB

2 ufl thanVBstd, this perturbative
method provides a relatively simple tool for estimating the
possibility of entanglement generation via our method, for
complicated systems. We consider spin-orbital coupling as
another illustrative example:H=hLxsX1+X2d+hLysY1+Y2d,
denoting two spin-qubits that couple with the same orbital
angular momentum. If we measure the eigenstateufl= ul ,0l
of the orbital component, we findkfuHufl=0 and
kfuH2ufl=hlsl +1ds2+X1X2+Y1Y2d. The eigenvalues are

hlsl +1dh0,2,4,2j with respective eigenvectorsbW , meaning
that the singlet stateusl is projected out in the second-order
analysis. Note that this example is qualitatively different
from the previous one since subsystemA here does not refer
to a physically separate particle.

VI. PREPARATION OF LONG-DISTANCE
ENTANGLEMENT

Finally we come to our main result: the generation of
long-distance bipartite entanglement. Since in our discussion
above there was no restriction on the size of theA sub-
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system, in a sense long-distance entanglement generation al-
ready follows from the results above. However, it is impor-
tant to specify how the measurements onA can be carried
out. Assume that theA subsystem is composed ofN−2 qu-
bits 2,3, . . . ,N−1 and we wish to entangle the two
B-subsystem qubits 1,N. We consider again as an illustrative
example a simplified form of thed-wave grain boundary
qubit [28]:

UAB = expf− iJtsX1 + XNd − iDtsZ1Z2 + Z2Z3 + h3

+ ZN−2ZN−1 + ZN−1ZNdg, s22d

where h3=oi=3
N−3ZiZi+1. We choose ufl to be the state

u+l2uRlu+lN−1, where uRl= u+l3u+l4¯ u+lN−2, and where
u+l=su0l+ u1ld /Î2. It follows after some calculations that

VB = 1
2hafcos2 f − sin2 fscos2 uX1XN + sin2uZ1ZNd

− i 1
2 sin 2f cosusX1 + XNdg + bfcos2 f − sin2 f

3scos2 uX1XN − sin2 uZ1ZNd − i 1
2sin 2f

3cosusX1 + XNdgj , s23d

where

a = kRue−iDtsZ3+ZN−2+h3duRl = kRue−iDts−Z3−ZN−2+h3duRl,

s24d

b = kRue−iDtsZ3−ZN−2+h3duRl = kRue−iDts−Z3+ZN−2+h3duRl s25d

(and are real numbers for oddN), f=tÎJ2+D2, tanu=D /J.
Two of the eigenvalues and eigenstates are

E1 =
1

2
ha + bs1 − 2 sin2 f sin2udj;

1
Î2

su110Nl − u011Nld,

s26d

E2 =
1

2
hb + as1 − 2 sin2 fsin2 udj;

1
Î2

su010Nl − u111Nld.

s27d

Thus, as desired, entanglement is generated between theB
subsystem particles l,N. Note that since the measurement of
all the particles of theA subsystem is carried out in parallel

this method for long-range entanglement generation is inde-
pendent of the distanceN.

The amplitudes of the other two eigenvalues areÎE1E2 in
the case of oddNù5. Since maxsuE2u , uE1ud.ÎE1E2 for suf-
ficiently short time, andE1−E2=2ssinfd2ssinud2sa−bd as
long asaÞb, the procedure prepares eithers1/Î2dsu110Nl
− u011Nld or s1/Î2dsu010Nl− u111Nld. We find, e.g, forN=5,
a=cos 2Dt, b=1 and s1/Î2dsu00l− u11ld is projected out,
while for N=7, a= 1

4s3+cos 4Dtd, b=cos 2Dt, and
s1/Î2dsu01l− u10ld is projected out. The case of evenN is
more complicated since the amplitudes of two other eigen-
values depend on the values ofa andb. For example, in the
N=4 case,VB has the same form as above buta=e−iDt and
b=eiDt; all roots have the same amplitude and no pure state
will be projected out.

VII. CONCLUSIONS

We have studied a general framework for measurement-
based method for entangling two systems that only interact
indirectly, via a third system. Applications range from solid
state to atomic quantum information processing. One of the
advantages of this measurement-based method of entangle-
ment generation is that it does not depend on precisely timed
interactions, as are interaction-based schemes. The method
can be used to prepare arbitrarily long-distance entanglement
via a chain of intermediate particle in repeated parallel mea-
surement steps. This may have useful applications in reduc-
ing the latency overhead in quantum communication in
quantum computing architectures. An interesting open ques-
tion which we leave for future research is whether the same
method can be used to apply quantum logic gates between
noninteracting particles.
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