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A method is studied wherein two noninteracting quantum subsystems, that each interact with a third sub-
system, are entangled via repeated projective measurements of the state of the third subsystem. A variety of
condensed matter and quantum optical examples are presented. The method can be used to establish long range
entanglement between distant parties in one parallel measurement step, thus obviating the need for entangle-
ment swapping.
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I. INTRODUCTION not scale with the chain length. A similar result—long range
Entanglement is at the heart of quantum information pro_entan%lemerét from Iocabuthnonrepe(;atedneasurements—
cessing[1], and is a resource that allows quantum processe¥@s obtaine |nhR¢[.7] forlt e ground state of an antiferro-
to outperform their classical counterparts for tasks such a1agnetic spin chaigsee asofR'efLS]_). ion f K
computation[2], communication(3], and cryptographyd]. A second main source of inspiration for our work are

The standard way to generate entanglement between distiff€Nt quantum optics proposals for measurement-generated
guishable and initially separable particles is to let them in-entanglement. It has been shown there that entanglement can

be generated conditional on tligull) detection of a light
ode that has interacted with two or more atoms or ions. The
st such proposal showed that atoms in a leaky cavity can

teract directly for a certain amount of time: any nontrivial
two-body Hamiltonian is capable of generating entanglemenm

in this ma.nngr[S]..However, the direct Interaction method become entangled conditioned on null detection at a photo-
poses limitations in th? con.text of the generaﬂon. of Iong’detector placed outside the cavil§] (decoherence-induced
range entanglement, since in many systems the mteractlo&aanglemem; see also REf0]). In Refs.[11-15 entangle-

strength typically decreases at least as fast as some power ot s generated in a similar manner conditioned instead
the distance between particles. Here we consider a differenf,on detection of the spontaneously emitted photons. This
paradigm for entanglement generation: we show that it iSnethod is particularly suitable for generation of long-range
possible to entangle two particles that never interact directlntanglement, a subject we address here. The schemes de-
by means of repeatethoncontinuous measurements of a scribed in Refs[13-15 are largely insensitive to control
third subsystem that interacts with both. In addition to itserrors, another important aspect that is addressed in our
conceptual interest, we show that this scheme offers practicalork. Measurements of the phase of light transmitted
advantages for long-range entanglement generation. through a cavity have also been proposed in RES] as a

Our theoretical framework for measurement-generatednethod to prepare entangled states and implement quantum
entanglement is inspired by the recent work by Nakazatogomputation in the case of atoms in optical cavities.
Takazawa, and Yuag&lTY) [6], who investigated the effects In the quantum optics setting we have just mentioned, the
of repeated rapid projective measurements on one subsysteameasurement typically consists of a photodetector monitor-
of a bipartite system. Under appropriate conditions, NTYing radiation from a cavity or a trap. In this case the mea-
showed that the unobserved subsystem is gradually projectesirement is an act of continuous observation. In contrast, in
into a pure state, independent of the initial state. This resulthe scheme we study here, it is important that the measure-
leads to the question of whether a similar measuremennent is discontinuous, namely, is repeated often, but with
scheme is capable of generating entanglement when the unenvanishing time interval. A second important distinction is
observed subsystem is itself multipartite, noninteracting, anthat the aforementioned quantum optical studies typically use
in an arbitrary initial state. We answer this question in thethe Monte Carlo wave-functiorgor “quantum-jumpj ap-
affirmative for a wide range of model systems, and establisiproach[17,18, and hence apply the Markovian approxima-
general conditions for validity of the method. We note that artion. In contrast, in our case the Markovian limit is never
additional advantage of this measurement-based method fassumed.
generating entanglement over the direct-interaction based The structure of this paper is as follows. In Sec. Il we
method is that it does not depend on sensitive timing obriefly review the results of NTY6] on purification via re-
interactions: instead, entanglement is gradually purified apeated measurements. In Sec. Ill we develop our general
the number of measurements increases,(ander appropri- theory of entanglement-generation via repeated measure-
ate conditiony can be made arbitrarily high. An important ments. We show that both pure and mixed-state entanglement
conclusion from our study is that the method can be used toan be generated. In Sec. IV we study a number of physically
establish long range entanglement between distant particlesslevant examples, borrowed from condensed matter and
by measuring along a chain of intermediate particles. Thigjuantum optics models. In Sec. V we develop a perturbative
provides an alternative to entanglement swapping that dogseatment of the general measurement-based scheme. It is
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here that the distinction between our method and method of B,
continuous observatiof9—16 becomes particularly trans-
parent, as the short-time limit in our case yields the quantum

Zeno effect, which cannot be captured in the pure Markovian

limit [19]. In Sec. VI we show how our method can be used _(Iw A
to prepare long range entanglement via repeated local mea-

surements, executed in parallel. We conclude in Sec. VII. Measurement

Il. PRELIMINARIES B.

NTY considered the following scenario: Consider a bi-  FIG. 1. Schematic illustration of our model: SysteBisand B,
partite system composed of subsyste®, initially in the  are coupled to system; systemA can be measured with a projec-
separable statg,g(0)=|p){ $| ® pg, WhereA is in a pure state  tive measurement. Note that no direct coupling exists between sys-
|#) and pg is arbitrary. SubsysterA is subject to projective temsB; andB,.
measurementB,=|$){ ¢| applied with periodr. In between
measurements the system evolves under the Hamiltonian plings between subsysten). We assume that thB sub-

H=H,+HatH 1) systems_are :_;1II qubits and the intgraction betwAgmd all
AT TTB T TIAB the B, is identical. We can then define total quasispin opera-
(respectively, the sum of free Hamiltonians and an interactors aﬁEEﬂla'ﬁ and write the interaction asHpg
tion). It can be showr{6] that afterM such measurements =X,y 1A, ® o, (h, real) or, more simply,
the state of subsysteBy given that all outcomes wete), is

V(DM paVi(DM Hag=A- G, 6
pa(M7) = 8(7) " psVa(7) ’ @) AB o (6)
Pu

wherePy, is the survival probability, i.e., the probability of Where the parametefs, are included in the vectok. We do
finding subsyster in its initial state, not restrict subsystera.

Py = Trg[ V(DM pgVE(DM], 3

w = TrelVa(n) peVe(7)"] @ lll. GENERAL THEORY
whereU=exp(-i7H) (we use units wheré=1), and where :
A. A good basis
Va(7) = (¢|U| ) (4)

We construct a basis that block diagonalizes the effective
is an operator on subsysteBnthat is in general not Hermit- post-measurement evolution operaty(7). Let a basis for
ian. However, one may still find left- and right-eigenvectorsthe A subsystem be the measurement stajeand any set of
with complex eigenvalues, whose modulus can be shown tetates orthonormal to it, denotéd;"), I=1,... d-1. LetN

be bounded between 0 and 1. The central result of NTY ide even and let a basis for tlBesubsystem be constructed
that in the limit of largeM and small but finiter, pg(M7) out of the usual spin bas|§,Mg), whereSis the total qua-
tends to a pure state independentB¥ initial state. This sispin of theN particles andMg its projection along the
result assumes that the largest eigenvalyg, of Vg(7) is  axis. We denote thgorthonormaj singlet states bys;), j
nondegenerate. The final pure staigM7) is then the cor- =1,... Dy=N!/[(N/2+1)!(N/2)!], and the remainingor-
responding right eigenvectolu,,y and this outcome is thonorma) states withS>0 by |t), k=1,... Ky, Ky=2V

found with probability —-Dy.
) Proposition 1. Consider the ordered basis
P = Panad (UnalUmad madpalvmands — 5) ), |b), ... b} ol - Jsp It . Jt ) In this

where|vmay is the corresponding left eigenvector. Note thatbasis we have the block-diagonal representation
because off's finiteness the dynamics here is distinct from
the Zeno effect and “quantum Zeno dynami¢20]. Io. O

We now extend NTY’s model by allowing itself to be Vg(7) =< N ) (7)
composed of multiple noninteracting subsystemB, 0 Vg
={B;,B,,-*-,By}, and pose the following question: is the
NTY measurement procedure capable of generating enA/hereIDN is a Dy X Dy-dimensional identity matrix. The
tanglement amongd’s subsystems, assuming that they all maximal eigenvalue o¥g(7) is 1, and is at leasby-fold
interact with the “station’A? The situation is illustrated in degenerate.
Fig. 1. To answer this questions we consider the following Proof. The singlets state$S,Mg=|0,0), are annihilated
model: We set all internal HamiltoniarH;A:HBi:O, so that by the o whenN is even(since they are states with zero
H=Hg (equivalently, we can always transform to an inter-total quasispin Therefore HAB|sJ->:O, independent of the
action picture rotating with the internal Hamiltonians; this state of subsyster. In the ordered basid sz is thus repre-
will make Hpg time dependent, but it will not introduce cou- sented as
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0 0 C. Degenerate maximal eigenvalue
Has= ,

8 . :
0 Hpg ® What happens when there are other states, either singlets
or coming fromV}, that also have an eigenvalue with modu-
lus 1? In this case NTY’s result does not apply and entangle-

ment may or may not be spoiléthough it is always reduced

where the dimension of the upper-left blockDg X Dy and
that of the lower-right block iy X Ky. Then

_ Ip, O from maximally entangled Two examples will illustrate
Upg= e ™he= E (9 this. (i) N=2, suppose there is a triplet staf@0) that
0 Uns also has|\pn{=1. Then the resulting state is the mixture

whereU};=W'e""W'! is unitary andW’ is the unitary ma- |s)(s|+|00){0Q. This state is entangled as its partial transpose

trix that diagonalizes  Hjpg: W TH W' =A  [21] has a negative eigenvalue of —0.207. We will encounter
=diag\y, ... k). Taking the expectation value with re- this case in the Heisenberg model belowi) N=4,
sepect td¢) we then find suppose_ the two singlet = statess;)=|s);;|s)s4 and
Dy |5 = (V3 [[te) 12t Daa*[t)12lti)3a= 2lto)1dto)sal (where |t,)
_ e are triplets with projection quantum numbey appear with

Va() = J% |SJ><SJ| Ve, (10 eigenvalue one, but no other states do. With respect to the

12:34 cutls;) is a product state bus,) is clearly entangled.
which is  the claimed result, with V3  This state, just like in the previous example, has negative
EZEE/:ﬂtk)(UABMk,(ﬁk'(tk'| a KyXKy-dimensional matrix. partial transpose, and we have entanglement across the 12:34
That the maximal eigenvalue is 1 follows from unitarity of cut. These examples illustrate that degeneracy still allows for
U,g [6], and that it is at leadD-fold degenerate is immedi- mixed state entanglement to be generated by our method.
ate from the representatid). Q.E.D. This is useful entanglement in the sense that it can be used

Proposition 2[6]. Nondegeneracy dfg(7) is a necessary for teleportation and all other QIP primitivg22].
condition for obtaining a pure state in the limit of larlye

Proof. In the degenerate case it follows from Eg) that IV. EXAMPLES
the method yields an equally weighted sum of degenerate
pure states corresponding to the maximum eigenvalue of We now discuss examples, limiting ourselves N& 2.
Vg(7). Q.E.D.  Our task then reduces to calculating the eigenvalues of the

Note thatD,=1. Hence in the totally symmetric case we 3X 3 matrix V§=(#|U,g|¢). However, this requires diago-
have been considering so far, fd=2 the method will gen-  nalization ofU,g, a 6X 6 matrix, so it cannot be done ana-
erate a purémaximally entanglepsinglet state, providedg  lytically in complete generality. Our basis féris {|#), |4 )}
has maximal eigenvalue with modulus smaller than 1. Weand forB is
give examples of corresponding Hamiltonians below. On the
other handD,=2 and hence due to degeneracy the method - 1
will not produce a pure entangled state foe 4. However, B= {|5> = TE(|01> -[10),[t-y=[00)
we can still generate pure-state entanglement inNket v
case by breaking the total permutation symmetry and only

: : 1

preserving the symmetry between 1,2 and[&.4)., having a tyy = —=(01) +|10)),]t,) = |11>}’
coupling to subsysterm\ such thatoB:al(ollﬁ /3)+a2(“?% V2
+a;‘3), a#a,#0]. We can then project out a one- _ _ _ _ _
dimensional subspac¢s>12|s>34,|s>ij=(|Oi1j>—|1i0j>)/v’2 is  without loss of generalityrecall the invariance discussion
the singlet state, which is entangled for 1,2 and 3,4 but sep&P°Ve-
rable across the 12:34 partition. Similarly, fd=2n=6 and

(11)

o=l 3 (05 +0%), a#a#0 the projected state is A. Axial symmetry model
[91249)34° |- -1 SupposeA,=0 andA,, A, satisfy[Ax,A\f] =[A,,A5]=0 (or
B. Invariance A, or A;=0), whence the Hamiltonian readd=[A(X;

+X5)+A(Y1+Y;)]/2. We first consider as a special case the

Y model: A,=JX and A =JY, relevant for quantum infor-
mation processing in solid staf@3-25 and atomic[26]
systems. It follows after some algebra thet=|A|?H, where
IAI?=A%+A]. Therefore, the evolution is

The results of the above discussion are invariant as lon
as the Hamiltonians belong to the fam{l;JBHABUE}, where
Ug is an arbitrary unitary transformation of the Hamiltonian
of subsystemB. This enables the method to generate en
tangled states equivalent under local transformations. Th
invariance  of Hpgls))=0 is Hugls))=0, where Hjg H\? Al H
=UgHagU{ and|s)=Ugls). Thus, e.g., in the case df=2, Upg=e'™=1- 2(—) sif — —i— sin7A|, (12
we can generate the other three Bell states by appliigg Al 2 Al
=X,,Y,,Z, (where X, is the Pauli matrixo, acting on
subsystem B, etc), which results, respectively, which means thav is a function only of(¢[H|¢) and
in |s")=(1/v2)(J]11)+|00)), (1/72)(]00y—|11)), (1/v2)(]01) (¢>|H2|_¢>. In particular, for theXY model we find, using
+|10)) as the outcome of the method. |Al=v23,
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Lt N a - - A all its eigenvalues have modulus 1, and no entanglement is
i generated. However, if we chookg) to be ao, eigenstate,
08| we find
06 o Vg = Ccog ¢ — sir? ¢(cog 6X X, + Sirf6Z,Z,)
f ! Sin 2¢ cosO(Xy + X,) (14)
04f 2 1oneh
- . . . . . where¢=7yA%+J? and tang=J/A. It is again easy to check
02 that Vg|s)=|s). One of the other three eigenvalues is 1
[ -2 sir? ¢ sir? 6. The other two are complex conjugates and

M for short timesr such that tah¢ <4 cog 6/sirt* # have the
same amplitudeg(1-2 sirf ¢ sir? )2, For instance, when
FIG. 2. Concurrencé/\) and success probabilityl) Py, for ~ 6=m/4, the amplitudes of the three eigenvalues are
|py=(1/12)(|0)+|1)) and 7J=/2, for the XY model. cog ¢,cos¢,cos¢, which vanish rapidly when raised to the
power of the number of measurements.
Finally, note that the results presented so far are not re-

2 3 4 5 6 7

Va(7) = cod T—i _ XXt V1Yo~ (D21 + Z) Sir? T_ﬂ stricted toA being a qubit: the unitary operat(t?) is valid
V2 2 V2 even ;/vherA isza multilevel system, as long as the condition
) <X>(Xl + X2) + <Y>(Y1 + Y2) [AX,Ay]:[Ay,AX]ZO IS SatISerd
—i

siny27J, (13

22

H | heck th B. Heisenberg model
where (X)=(¢|X|¢®), etc. It is simple to check that, as re- . . . .o
(X)=(lX| ) P We now consider the Heisenberg interactidrJo- (o

quired from our general result/g|s)=|s), i.e., the singlet R . - L

state has eigenvalue 1. Whether this eigenvalue is degenerTJTéTZ); éfte_r showing that m“”{fﬁi}?ﬁi and
is now seen to depend on the measurement ofAtsib- H,Jo1-0,]=0, it is simple to compute o2, from
system: If we choosp) to be ac,-eigenstate then the ad- Which we directly obtain

ditional  eigenvalues of Vg are found to be — oritH = 75,5, i i - = =
{1,cos\f§TJ,cos\s’§rJ}, while if we choosd¢) to be ao, or Une=e€ € {cos3r)) ~i s3I - (71 + 72)

oy eigenstate then we find that the additional eigenvalues are + 71+ 02)/3} (15
{cos'q, 1+3 cos % \cos 4 +sirf q-1}, where q=rJ/\2. Vg then is identical toU,g provided one replaces with
Thus, if we measure glong then there is never pure state (4|3]¢) the operatorg in Ung. The four eigenvalues are
entanglement, but at timesother thann=/\2J we have a Coind i 1 .

. . : - {1,627 (cos 3rJ+iisin 3r))}, the last two having the
mixed entangled state, since the eigenstate corresponding to . 8 .3 . .
the additional eigenvalue 1 is found to lid) (and recall the same amplitude 1§S'n2 3?‘]<1' The corresponding eigen-
discussion aboveIn the case of measurement alongry  Vvectors are, respectivelyj [Eq. (11)]. Since the first two
the eigenvalues periodically have modulus 1, and with thetigenvalues both have magnitude 1, we have the case dis-
exception of those times degeneracy is avoided and we deussed above: a pure entangled state cannot be projected out
obtain a pure entangled stafi_particular, it is simple to by our method, but we can prepare a mixed entangled state
show that this is true for att<y2 arcco$l/3)/J]. that is useful for all QIP protocols. Note further that these

Next we consider the performance of the scheme after Ja-|eisenberg+model results holfj for the entire class of Hamil-
finite number of stepgFig. 2). To do so we calculate the toniansH=A,:(c1+0d,), whenA,, is generated from an arbi-

concurrencg27] afterM steps of evolution/measurement for trary two-dimensional unitary transformation,, A,
Jr=m/2<2arcco$l/3), in the case of¢) a oy eigenstate. =y, 35U (this is different from the invariance under a rota-
In this case, as shown above, the singlet state is generated fn of the B system considered above

the scheme. We also plot the survival probabily as given

by Eg. (3). After as few as three measurements the concur-

rence is essentially unity, indicating that the system is al- C. Bosonic media

ready in the desired singlet state. The scheme does, however, \we now consider a photon or phon#) interacting sym-
not work with unit probability: The probability?y, of having metrically with two identical qubits(B). The Jaynes-
projected system on the desiredr, eigenstate converges to Cummings Hamiltonian is

~0.2 for the values above, a value reachedNb« 3.

As another special case we consider a simplified form of
the d-wave grain boundary qubif28]: H=A(X;+X,)
+JZ(Z,+Z,) (A is a tunneling parameter adds the Joseph-
son coupling. ThusA=2(A,0,J2), and we may use the gen-

eral result(12), replacingA, by A,. If we now choosé¢) to  whereb is a bosonic annihilation operator, and wherfe
be ao, eigenstate theNg turns out to be unitary and hence =(J(b+b"),iJ(b-b"),g). Such a model can easily be realized

H=eb™b +g(o? + o%) + %[b(a{ +ay) +b'(o] + 03)],

(16)
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using microwave cavity QED29] (two atoms in one or two henceH is block diagonal in its eigenvalues. For simplicity
cavitieg or trapped iong30]. We can exactly diagonalizd ~ we consider the case witlj= e and measure the single pho-
by writing it as a direct sum over three-dimensional matricegon state|¢)=b'|0)=|1) (this projects onto a single block of
in the basis|n-1,t,), |n,ty), and|n+1,t_), where|n) are  the infinite matrixU,g). In this case we readily find the al-
number states anfl,) are triplet states of the two qubits. ready diagonal

Note thatN=[b'b+(05+0%)] is a conserved quantity and

3+ 2 cos(V107J)

- €77 cog\/67J), cog \ETJ)} (17)

Vg(7) = diag{ 1,e72e"

in the ordered basig|1)[s),[1,t,),]1,tp),|1,t)}. Thus, as of another eigenvalue with amplitude 1. Let us therefore con-
long as we make sure that<2w/\10J the method will  sider a short-time expansion ¥§(7). To first order
project out a pure singlet state. It follows from our discussion Mesco
of invariance abgve that a.nother Bell s.ta(tae/\52)(|01> Va(DM = (I =i (p|Hag| o)V exp(— it(¢|Hagl#)),
+|10)) can be projected out if the two qubits couple to the (20)
photon or phonon with opposite signs. We note that a similar
problem was considered in R¢€], using a different formal- whereM 7=t (constany, i.e., the evolution is unitary. This is
ism. the quantum Zeno effect, which completely decouples the
interaction among all parties of subsyst&nso that no en-

D. Multilevel systems tanglement can be generated in this limit. Thus the dominant
Eontribution to entanglement generation originates from the
second-order term, which contains the self-correlation of
subsystenB. Consider for simplicity the cas@p|Hag|¢)=0
(as in our last examp)e Letting M 72/2=t? (constany, we
have

Let us now consider a rather general, though abstract mu
tilevel case. Assume that subsyst@&rconsists of two par-
ticles that haveM =2 levels each, and that the interaction
Hamiltonian with subsysterA (also anM-level systemis of

the form
M—0o0

. V(DM —— e ClHag), (D)

H= 2 Aj(O] +0j), (18) _ _ |
ij=1 All eigenstates of ¢|H3g/¢) with nonzero eigenvalues are

rapidly suppressed dgin practiceM) increases, while those

with eigenvalue zero survive. Since it is much simpler to

there is an SCM) symmetry for oddM or an SEM) sym- analytically cglculate{¢\H{iB|¢> thanVB(r), this perFurbgtive
metry for evenM. In this caseH has a single nondegenerate meth.oq. provides a relatively S|mplg tool_for estimating the
eigenvector with zero eigenvalue. This state is entangled. F(ﬂoss'p'“ty of entanglement gengraﬂon_wa our methqd, for
instance, whetN=3, we have two qutrits, which can be rep- compllca_ted systems. We consider spin-orbital coupling as
resented in the spherical badis-1),|0),|+1)}. The state another illustrative exampleti=hLy(X;+X,)+hLy(Y1+Y5),
with zero eigenvalue is denoting two spin-qubits that couple with the same orbital
B angular momentum. If we measure the eigenstaje|l,0)
W) = (|1)4]~ 1), = [0)4]0)p + |- 1)4|1),)/\3,  (19)  of the orbital component, we find(¢|H|¢)=0 and

H2p)=hl(1+1)(2+X,X,+Y,Y,). The eigenvalues are
and is maximally entangled. In general, the one-dimensioneﬁd)| |)=hi+1)( X+ Y1Y2) 9 -

subspace containing the state with zero eigenvalue is the iPl(l +1){0,2,4,2 with respective eigenvectors, meaning
reducible representatiof0,0,...,0 of SOM) or SgM).  that the singlet statfs) is projected out in the second-order
This state is the generalization of the singlet state that arosalysis. Note that this example is qualitatively different

in the general theory and examples treated above when tHEPM the previous one since subsystérhere does not refer
subsystems were qubits. to a physically separate particle.

whereOQ;; =E;; - E;; andE;;=|i)(j| is a matrix whose elements
are zero everywhere exceptfa 1 atposition(i,j). Namely,

V. PERTURBATIVE TREATMENT VI. PREPARATION OF LONG-DISTANCE

. ENTANGLEMENT
It is apparent from the above examples that the success of

our method depends on keeping the periodetween two Finally we come to our main result: the generation of
measurements short. For instance, in the bosonic examplang-distance bipartite entanglement. Since in our discussion
we requirer<<27/y10J in order to prevent the appearance above there was no restriction on the size of thesub-
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system, in a sense long-distance entanglement generation #tis method for long-range entanglement generation is inde-
ready follows from the results above. However, it is impor-pendent of the distands.

tant to specify how the measurements Arcan be carried
out. Assume that thé subsystem is composed Nf-2 qu-
bits 2,3,...N-1 and we wish to entangle the two
B-subsystem qubits N. We consider again as an illustrative
example a simplified form of the-wave grain boundary
qubit [28]:

UAB = eXF{_ iJ T(Xl + XN) - |A7'(lez + 2223 + h3
+ Zy-2Zn-1+ Zn-120)], (22)

where hy=3N"377..,. We choose|¢) to be the state
|+)2R)+)n-1, where [R)=[+)s[+) [ +)n-2, and where
[+)Y=(|0)+|1))/V2. It follows after some calculations that

Vg = 3{a cog ¢ - sir? ¢(cog OX,Xy + SirP6Z,Zy)
—i% sin 2¢ cosO(X, + Xy) +b[cog ¢ - sir? ¢
X (c0& X, Xy — Sir? 6Z,Zy) - i3sin 2¢
XcosO(Xy + Xy) |, (23)
where
a=(Rle"AZ 29| R) = (Rjg A7 Zs Zn-29)| R)
(24)

b= (Rle™47%a?n-2"Me)|R) = (Rle™ 47" n-2M9|R) (25)

(and are real numbers for odd), ¢=7/J?+A?, tand=A/J.
Two of the eigenvalues and eigenstates are

1

E,=S{a+b(L-2iF g siPe); ,—1§<|110N> - 10,1),
vV

(26)

£,= 3{b+a(1- 2 iF gsir? 0} (0,00 - [1,10).
v

(27)

The amplitudes of the other two eigenvalues @EgE, in
the case of odiN=5. Since ma{E,|,|E,|) > VE;E, for suf-
ficiently short time, andE;-E,=2(sin ¢)%(sin #)*(a-b) as
long asa#b, the procedure prepares eitI‘(ér/v’E)(|110N>
-10,1,)) or (1/32)(|0;00)~|1,1\)). We find, e.g, forN=5,
a=cos Az, b=1 and (1/v2)(|00)-|11)) is projected out,
while for N=7, a=;(3+cos47), b=cosAr7, and
(1/1/2)(|01)-|10y) is projected out. The case of evéhis
more complicated since the amplitudes of two other eigen-
values depend on the valuesafndb. For example, in the
N=4 case\V; has the same form as above e 2" and
b=€"; all roots have the same amplitude and no pure state
will be projected out.

VII. CONCLUSIONS

We have studied a general framework for measurement-
based method for entangling two systems that only interact
indirectly, via a third system. Applications range from solid
state to atomic quantum information processing. One of the
advantages of this measurement-based method of entangle-
ment generation is that it does not depend on precisely timed
interactions, as are interaction-based schemes. The method
can be used to prepare arbitrarily long-distance entanglement
via a chain of intermediate particle in repeated parallel mea-
surement steps. This may have useful applications in reduc-
ing the latency overhead in quantum communication in
guantum computing architectures. An interesting open ques-
tion which we leave for future research is whether the same
method can be used to apply quantum logic gates between
noninteracting particles.
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