Limited range fractality of randomly adsorbed rods
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Multiple resolution analysis of two dimensional structures composed of randomly adsorbed
penetrable rods, for densities below the percolation threshold, has been carried out using
box-counting functions. It is found that at relevant resolutions, for box sizelsetween cutoffs

given by the average rod length) and the average inter-rod distancg these systems exhibit
apparent fractal behavior. It is shown that unlike the case of randomly distributed isotropic objects,
the upper cutoff ; is not only a function of the coverage but also depends on the excluded volume,
averaged over the orientational distribution. Moreover, the apparent fractal dimension also depends
on the orientational distributions of the rods and decreases as it becomes more anisotropic. For box
sizes smaller thafl) the box counting function is determined by the internal structure of the rods,
whether simple or itself fractal. Two examples are considered—one of regular rods of one
dimensional structure and rods which are trimmed into a Cantor set structure which are fractals
themselves. The models examined are relevant to adsorption of linear molecules and fibers, liquid
crystals, stress induced fractures, and edge imperfections in metal catalysts. We thus obtain a
distinction between two ranges of length scates{l), where the internal structure of the adsorbed
objects is probed and)<r<r,, where their distribution is probed, both of which may exhibit
fractal behavior. This distinction is relevant to the large class of systems which exhibit aggregation
of a finite density of fractal-like clusters, which includes surface growth in molecular beam epitaxy
and diffusion-limited-cluster-cluster-aggregation models. 1897 American Institute of Physics.
[S0021-960627)50823-3

I. INTRODUCTION measure of the fraction of the area which is covered by the
rods, where the reduction due to overlaps is ignored. Clusters
The structure, packing and phase transitions in mediaf overlapping rods start to form at low rod density and
composed of rod-like particles are of great importance in dncrease in size as the density increases. Systems of this type
large variety of physical systems> Such systems include exhibit a percolation transition at rod density, above
liquid crystals® slip lines in stressed metals and rocks, line-which there is a cluster which spans across the entire system.
fractures in catalyst§;® fibers in paper sheet§! and rod- The percolation transition for systems of rod-like particles
like metal particles?!® Unlike systems composed of nearly has been studied extensively in recent yé&r§:1"20-24a
isotropic particles, for rod-like particles the orientational dis-criterion for the percolation densify, was obtained and ex-
tribution plays an important role in addition to the positional amined for a variety of systems with different distributions
distribution}* Systems of adsorbed particles can be classifie@f rod sizes and orientations. According to this criterion,
to ones of penetrabl®!’ versus impenetrable percolation for isotropically oriented and randomly distrib-
particles*>81%1n this article we will focus on the case of uted rods occurs at rod densjiy=1/A.,..'” HereAq,.is the
penetrable rods. excluded area for placement of the center of a rod given that
Many of the systems of interest in this context are essenit may not intersect a rod already on the surface. This area,
tially two dimensional and can be studied by a model inaveraged over the isotropic orientational distribution’is:
which M penetrable rods are randomly distributed on a two
dimensional surface of sizex L. Each rod is of length and
width w. The effective two dimensional coverage is given by  Age=2
n,=p-lw, wherep=M/L? is the rod density. It provides a

4 2
1+ — |wl+ —(124+w?). (1.1
T o

3Electronic address: URL:http:/mww.fh.huji.ac-iltfani Note that since the excluded arg, is not simply related
bElectronic address: URL:http:/www.fiz.juji.ac.il/staff/acc/faculty/biham  tO the rod ared-w, .the percolation threshold Can.nOt_ b? ex-
®Electronic address: URL:http//chem.ch.juji.ac.illemployee/avnir/iavnir.htm pressed as a function of the coveraggalone. This distin-
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10360 Lidar, Biham, and Avnir: Fractality of randomly adsorbed rods

guishes the rods from isotropic objects such as disks for

which the excluded area is related to the disk area by a con- i

stant factort’ This difference is especially important in the y

case of large aspect ratio of the rods. In particular, for

w=_0, the coverage vanishes but the excluded area does not. (a) o
The properties of the infinite percolation cluster at the

transition have been studied extensively for lattice systems

as well as for continuous systems such the the ones consid- H R

ered heré>?8|n particular, its fractal nature was established.

The fractal dimension, which can be expressed in terms of d; d

other critical exponents, was found to be univef8af.Prop-

erties such as correlation functions and cluster size distribu-

tions were also examin€d->°In addition to percolation sys- N\
tems, spatial fractal structures have been observed in a great (b) o
variety of systems in physits3®and chemistry’ dz%

In this article we perform multiple resolution analysis of
systems Composed of randomly adsorbed rods below the pe'fLG. 1. (a) Excluded area for the placement of the center of a rod of length

- - . I=d; and widthw=d, inclined at angled relative to the horizontal axis. If
colation threShOIde' In many emp|r|cal systems of this the center falls outside the shaded area, the rod will not intersect the box of

type, where adsorption and aggregation processes take plagger: (b) At the orientation shown, the projections of the sidés,and
fractal structures appear over a range of length scales fat, on the horizontal axis aré;cosd andd,sin 6, respectivelyithe sum of

densities belovp, .38 Moreover, a broad spectrum of fractal the two projections is shown by the thick linéThe projections on the
dimensions has been observed experimentally in such sy¥Sical axis aralsin 6, andd,cosg, respectively. Averaging over the two
. . . ossibilities andb yields Eq.(2.6).

tems. To gain a better understanding of empirical fractal’

structures composed of rod-like particles we study these

structures using multi-scale analysis, based on the boxexamined. Rods of zero width are studied in Sec. Ill, ran-

counting(BC) function. In this analysis we examine the frac- domly distributed Cantor sets in Sec. IV and a summary is

tal properties of the entire system rather than a particulapresented in Sec. V.

cluster. This procedure is the one most commonly used in

experimental studies of adsorption and aggregation phenoni THE GENERAL MODEL OF RANDOMLY

ena. In our analysis, we concentrate on a range of rod delAkDSORBED RODS

sities below the percolation threshold, where the area frac- . . . .
In this section we study a rather general model in which

tion covered by the rods is small. We identify two ranges OfM rectangular rods are randomly adsorbed on a square sur-

!eng_th scales, in which the obse_.\rved (_j|men3|on of the SySte%ce of ared_2. They are adsorbed with no correlations and
is different from the space dimension. For length scales

. are allowed to overlap with each other. The lengths of the
larger than the typical rod length, the results resemble those o ; .
i o rods 0<l;<la i=1,... M are independently picked from
obtained for randomly distributed sphef@sAn apparent o .
L L the distribution P\(I) and the widths 6Jw;<Wyay,
fractal behavior is observed within a range of length scale?_ M are picked from the distributio®,(w). The
between the rod length and the average distance between. ™’ "’ P WAL

adjacent rods, which can span up to two decades. Howeve(E,m(ag)tatlons G<6i<m are picked from the distribution
6 .

as was found before in percolation systems, highly aniso- In order to examine the apparent fractal nature of the

tropic particles exhibit new and important features which doresulting random structures we apply the BC procedure. In

not appear in the study of isotropic particles such as Sphereﬁﬁis procedure one partitions the surface into a grid of mesh
In particular, we observe that, unlike the case of spheres, the

: izer-L (0<r<1) and counts the number of boxés(r),
upper cutoff(and thus the range over which apparent fractal .
. ) intersected by at least one rod, as a functiom.oAn ana-
behavior appeajcannot be expressed in terms of the effec-, . . . .
. lytical solution for the BC functiorN(r) will now be ob-
tive coverage alone, but also depends on the excluded a'%ined, and its slope examined in the different domains
Moreover, we find that the apparent fractal dimensiBb) ' P '

depends on the orientational distribution and decreases as it _Imggme the surface of arela_? 1o be |n|t|all_y empty and
rbitrarily choose one of the grid-boxes of size.. Denote

becomes more anisotropic. For length scales below the ro?lije excluded area for placement of the center oficagiven

Ie_:ngth, the BC functl_on is domlnated by the structure of thethat the rod may not intersect the chosen box, by
single rod whether simple or itself fractal. The class of sys-,

tems which exhibits these two ranges includes the broady i Wi 01). This area IS.ShO,W” shaded in Figall Simple
. . ) eometrical arguments vyield:

class of systems in which fractal-like clusters are adsorbed

on a surface. To examine the fractal properties of such syss,(l;,w;,6;)=(r- L)?+1;-w;+r-L(cos6,+sin 6;)(I;,+w;).
tems we study a simple one dimensional model in which the (2.2)
randomly distributed objects are Cantor sets. This article is

organized as follows. The model of randomly distributedThe twofold rotation symmetry of the rods indicates that the
rods is introduced in Sec. Il and the box-counting function isangles; are distributed in the range<06;, <. However,
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the fourfold symmetry of the box makes the problem invari- d,=10",d,=107, n,=10"°, M=985
ant under the transformatiof— 6+ /2. Therefore, we can ‘
simplify the calculations by considering only the range 50 | 1.2 ,
0= 0,=< =/2 with no effect on the results. The angle and side-
lengths distributions are thus normalized so that: 101

w2

f do Py(6)=1 v

° | O 0.6 |

I max Wmax \

Jo dl P,(I)=J’0 dw P,(w)=1. (2.2 10.0 | o4l
We denote quantities averaged with respect to these dIStI’IbU’“ slope=2 %\ 4, |
tions by angular brackets: - -). = !

Following Ref. 15 we consider the probability, for & X —_— .
random placement of the first rod without intersecting the \ ' log,,(n) ' '
box. This probability, which is proportional to the free area,
is given by:q;=[L2—S,(I1,w;,6,)]/L% The next rod is 50 | ) .
placed with new random angle and side lengths, so that the slope \
probability for two successful placements is: \,_ slope=D

A2=[1-S(I1,W1,61)/L?][1=S(I,W;,6,)/L?]. Clearly,

qu=1M,[1-S,(I;,w;,6)/L?] is the probability of placing e oy funeten " slope=2

M rods without intersection with the chosen box. Thus, the \

probability of at least one intersection aftdr placements is

pu=1—quy. Since the total number of boxes ig4/for a 0.0 : . : : . '
-11.0 -90 -70 -50 -30 -1.0 1.0

given realization of angles and side-lengths the expectec

. . 2 |0910(r)
number of intersected boxespsg, /r<, or

M FIG. 2. The BC function for rod$Eq. (2.5]. Four approximately linear
H 1— S'r(li Wi, 6;) 23 regimes indicate the presence of three cutoffs. As can be seen, the locations
L? ' 2.3 of these match the prediction of Eq(2.6) [log(rb)=—4.2,
logyo(rg) =—7.2, and logy(r,) = — 1.5]. The inset shows the apparent frac-

This expression still has to be averaged over the side lengtfig dimensior, given by Eq.2.12) (for the range of length scales between
and ang|e ensembles: r0 andr ) plotted as a function of the effective 1D coveragge D increases

monotonically withz;.
N(r)=(Ngg 1, w(r))

N{(’i A ’Wi}(r): r? 1-

=1

:iz‘1_[fﬁlzdgp(g)flmaxd|f|maxdwpl(|) an angled;, the average between the projections along
r 0 0 0 the x and y axes (parallel to the box sidegs is
S(w,0)| M li(cosé+sing)/2 for the length andv;(cosé+sin 6)/2 for
xpw(w)(1_+) ] (2.4)  the width [Fig. 1(b)]. To obtain the effective cutoff, this
L should be averaged over all angles and side lengths. We thus
where the last equality follows since tife are independent, €XPect to find cutoffs at:
identically distributed random variables, and so hrend (I >
w; . Finally, using Eq(2.1) this can be expressed in terms of ro=(cos 6-+sin 0>
averages:
1 (1Y{w) rg=(cos6+sin 0>@ (2.6
N(r>=ﬁ[1_(1_r2‘—z ’ 2L |

Unlike the lower cutoffs which are determined by the rod
2.5 dimensions, the upper cutoff {) is given by the average
distance between adjacent rod sides:

(H+ <W>

—r({cos 6+sin 6)) ———

This BC function contains the information required for the (I +W>

multi-scale analysis of the system. In order to proceed with 1 \/— —(cos 6+sin 6) : (2.7)

the scaling analysis, we turn next to the identification of the

cutoffs, which separate between length scales in which To gain insight into the behavior of EQR.5) we display
N(r) is dominated by the distribution versus the internalit in Fig. 2 for the case of a random distribution of identical
structure of the rods. These cutoffs are determined by theods of length =d; and widthw=d, (d,>d,) with isotro-
effective dimensions of the rods, when projected onto thepic orientations. We chose the case of narrow rods, since
grid of boxes. Now, for a given rod, which is oriented at virtually all of the experimentally relevant cases mentioned
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above belong to this category. In the next section we retur 50
to analyze the nonisotropic and polydispersed cases. TF
nontrivial apparent fractal region, is clearly seen in Fig. 2,
between the predicted cutoffs of I@gr'o)z —-4.2 and 40|
log;o(r1)=—1.5. It is the range which is typical to gfirac-

tal) resolution analyses, and which we claim, reveals appat
ent fractality. The apparent FD for this regi(see derivation
below) is D=0.06. In Fig. 2, all four different approximately
straight line regions are clearly identified, corresponding tc
the presence of the three cutoffs. The range (', is usually
uninteresting from the experimental point of view because i

probes the structure of the building block itself. It has a o oo AN -
—slope (dimension of 2, namely the dimension of the un- e

@simulation: n,=0.1, d=0.01
—— theory

3.0

log,o[N(n)]

20

derlying plane. Whem?<r<ry,, the resolution of observa- %% 0 20 S0 0.0
tion is coarser, and the rods appear as one-dimensional o 109+o(7)

jects, reflected in the slop@limension of approximately 1.
The width of this range depends on the aspect ratio of thi

rods and is approximately lgg{(I)/{w)) in decades. _Otsri]r:::;tion:nﬁo.m,d=0.001

Having the cutoffs at hand, we now perform a scaling 4°|
analysis in the region between them. This will be done by
applying the standard fractal procedure

10910 N(r)~—D-logy(r), 289 Eso0} ®)

whereD is the apparent fractal dimensidRD). As stated
above, the range which has been the focus of attention is tt

log,o[N()

one in between the cutoffs'o<r<r1. The apparent FD, a0l [P
given by the slope in this range, is a nonuniversal dimensior TS
the magnitude of which depends on the coverage. In order t — theary: 018 e
obtain expressions for the coverage dependence, it is conv R
nient to define effective one dimensiondD) and two di- ol e P4 2 e e e M .
mensional(2D) coverages. The effective 2D coverage is o2 e e e o8
_ o Iw) . . | 04d. =001
7,=M (2.9 FIG. 3. BC functions for zero width rodga) »;=0.1,d,=0.01; (upper

L2 ' insed: typical configuration of rods(lower insej: zoom between cutoffs
log(rg)=—2.2, log¢;)=—1.2. (b) %,=0.01d,=0.001; (insed: zoom with
agreement on slope between Eg8.2) and the linear regression to 2 signifi-
cant digits.

while the effective 1D coverage is

m=n+ny, (2.10

where 7,=\Mr}, and 7}=\Mr} (note that as the rod
widths approach zeray;— 77'1). The significance of the ef-

fective 1D coverage is that it provides a unified measure o ) o L
g P erage while theR? criterion limits it for low coveragdsee

coverage yvhich is independent of the space dimensiqn. Ref. 39 and compare Figs( and 3b)]. The net result is
Th_e width of the applarent fractal range can be esnma_ueﬂjat the range of scaling is in fact restricted to 1-2 decades.

by Ae=10g;o(r1) ~10g1o(ro). In the case of large aspect ratio = | apparent dimension is found by calculating the loga-

((w)=(1)): rithmic derivative ofN(r) at the estimated middle point of
Ae=lim (logr;—log ro)=log(1/7;—1). (211  the linear range. This point is situated a=\r,-rh. As-

(wy(h)—0 suming (w)<(l) this yields for the apparent FD, in the

Since in the limit of large aspect ratip « (p- A d*?up M —o limit and at constant coverage, the general equation:

to a factor of order 1, it is found from the criterion of Ref. 17 d log[N(r)]

(pc=1/Acy that the widthA, is nearly zero in the vicinity p=—— - ’-

of the percolation threshold, and increases as the density de- 9 109(r)

creases below this threshold. This estimateXgmay seem

to suggest that one can increase the scaling range at will by (1= ) i+ V(1= 71) 9y

decreasing the coverage. However, in addition to the width ~ “| * ex 7L(1— )+ 27 (1— 70) 70+ 7] — 1)

of the range between the cutoffs, the quality of the linear fit

within this range measured by the coefficient of determina- (212

tion R? should be considered. One can limit the range ofThis general formula for the FD will be used in the analysis

linearity by imposing a lower bound oR?. Obviously, the to follow. The effects of changing the coverage on the ap-

range decreases & increases. We thus conclude that the
}Wo cutoffs limit the width of the linear range for high cov-
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parent dimension, are shown in the inset of Fig. 2 forto investigate the effect of anisotropy on the apparent fractal
d,/d,=10%: the FD increases monotonically with coverage, properties we consider here the following angular distribu-
but does not reach 2 for the relatively narrow rods considtion, normalized for 6= < 7/2:
ered. 2I'(1+n)

The dimension of the rods themselves can also be ob- p(g)= (cos 0)2".
tained from the box counting function. In order to do so one Val (1/2+n)

needs to identify the appropriate length scale and measui the |imit n—0 this corresponds to a uniformly random
the slope of the box counting functid4(r) on the log—1og  gistribution, whereas fon—, to perfectly aligned rods.
plot. This slope should be obtained for a length which is therq rods are assumed to be of equal siz&he BC function
geometrical average of the effective cutoffs associated with o pe found by calculating the angular averages of Eq.
the average rod lengtkll) and width (w) according to (2.5). Using the identitiesr{>0):

r=+ry-rY. In the zero-width rod limitd,/d;—0 this di-

mension approaches 1. As we are focusing especially on the a2 Jal(1+n)

experimentally relevant case of narrow rods, and as it is evi- j do cog"*! 9= 2T (312 n) (3.9
dent from Eqgs.(2.9) and (2.10 that both the FD and the 0

rangeA, are only marginally dependent on the rod width, we

3.3

consider in the next cases, for simplicity, rods with zero ml2 n Lo
width, fo dé# cos" 6 sin 6 Ton (3.5
we find:
11l. APPLICATIONS TO RODS OF ZERO WIDTH
_ _ o ¥a=((cos 6+ sin ))
In the present section we consider for simplicity the case
of rods with zero width. Some comparisons with simulations ~ I'(A+n) [ T(1+n)
will be presented, as well as applications of the general " T(1/2+n)| T(3/2+n)
theory to specific distributions of interest. )
A. Isotropically oriented identical rods + \/;(1+2n) . (3.6
As a first case for the zero-width rods, let us returnto the =~ )
previous example of identical rods with isotropic orientations' NS Yiélds for the BC function:
and impose zero width w=0). For the isotropic "
[Py(6)=2/m], monodispersedP,(I)=4&(1—d)] case, the N(r)=£2 1_(1_r2_r97 3.7)
BC function and FD for rods of lengtd and zero width r L-"

follow directly from Eqgs.(2.5 and(2.12), respectively: In the n— 0 limit one retrieves the result for uniformly ran-

domly oriented rods, E(3.1), whereas fon—o one finds
, 3.1 N()=[1-(1-r?=rd/L)M])/r? For the cutoffs we have

1 4 d\M
N(r)=—|1—{1-r2—r——
r L from Eqg.(2.6):

D_z( ) A ] ) )
- - . n2L
exp{ PA[1+2V(1— 7)) m— ml}—1
(3.2
In Fig. 3 we present this analytical result for the rod-BC r1=i—7ni, (3.9
function along with numerical simulations, for two cover- M 2L

ages. The agreement between theory and simulations is eéhd for the coverage:

cellent over the entire range of box sizes. The ranges o

apparent fractality are brought in the insets; one would ex- d

pect the wavy nature of the line at the lower coverage to be 7]'1: an—- (3.9

smeared out by noise in typical experimental situations. 2L

Comparing to the BC function for finite-width rOdS, which The FD for the present case is found by Substituﬁﬂhgrom

appear in Fig. 2, one observes that, as expected, there ). (3.9 in the general expression EQ.12 and taking

now only two cutoffs and correspondingly threéapproxi-  ;,,=0. The effect onD of changingn at constant number

mately linear regions of slope-1, D<1 and 2. and size of rods is shown in Fig. 4: the apparent FD de-

creases as the rods become more parallel, i.e., as they “cover

space” less effectively. For isotropic objects we have shown

that the apparent FD depends essentially only on the
Anisotropically oriented elongated particles appear in acoverage”® As seen here, for anisotropic objects, the FD

wide variety of systems, notably in liquid crystals. In order depends on an additional parametire degree of anisotro-

B. Anisotropically oriented identical rods

J. Chem. Phys., Vol. 106, No. 24, 22 June 1997
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Knnar=6, M=62
3.0 ‘
0.4100 ——e d*M™=0.1 @ simulation: 1,=0.1, <I>=0.02
26 —— theory
0.4000
° !
0.3900 |\ 1 22
z =
\ =
\\\s Eé
03800 [ “Se~oo_ g
______________________________ 18 |
0.3700
1.4
e theory: D=0.52
@ e regression: slope=-0.57, R*=.999
0.0155 — d*"M"=0.0001 i -1.9 o7 Ts = =
10 ‘ ‘ ‘ ‘ ‘
-2.8 24 -2.0 -16 1.2 -0.8
log, (1)
a 00150
FIG. 5. BC functions for isotropically oriented rods of zero width and a
power law distribution of lengths. The coverage hergjs-0.1, the average
0.0145 | 1 rod length is(1)=0.02, the number of rods i81=62, and the number of
possible sizes generated by Cantor set iteratioks,is6. The inset shows
the zoom between cutoffs lagr,) = —1.89 and logy(r,)=—0.94.

0.0140 - . . .
0 200 400 600 800 1000

n

FIG. 4. Apparent FD as a function of anisotropy paramet¢Egs. (3.2), k

m
(3.9, at two different 1D coveragesiMY/?). The FD decreases as the rods (= Z IP(1/L=37%)
tend to be more parallel, and as the coverage becomes smaller. k=1

Km k,
1 1—(2/3)km
== 2k3’kL:—k(—)L. (3.10
Z& 2Fkm—1

py). This feature may be relevant to many experimental sys- _ . o
tems which exhibit anisotropic distributions of rod-like par- Expressed in terms of lengths one finds for the distribution:
ticles, such as liquid crystals and paper fibers.

_log(2)
~log(3)’

C. Polydi d rod (310
. Polydispersed rods
yeisp D. being the FD of the Cantor set. Thus the length distribu-

We will now explore the effects of polydispersivity in tion indeed satisfies a power ldNote thatP(l) is a dis-
the rods size. In particular we will consider a power-law cretedistribution with allowed lengths df=37"L, and that
distribution of the rod lengths. (1), for example, would be different if could assume any

value between 3*mL andL/3.

1 1
p(l):Zz—log(l/L)/Iog(S):Z(”L)—Dc; Dc

1. Model

In Ref. 39 a variety of narrow size distributions were 2. Scaling analysis for power-law dispersed rods
examined. It was observed_ that such polydispersivity d(_)es We assume that the rods are uniformly randomly ori-
not alter the basic observation of an apparent fractal regime o
between cutoffs. The apparent FD of the correspondin ented, so thatcos 6+sin 6)=4/m, 0= 6< /2. We thus have
. L } ” gfrom Eq.(2.5:
monodispersed distribution was only slightly modified. An
important distribution function found in numerous experi- 1
mental cases is the power-law distribution of si#&%o ob- N(r)=— 1— ( 1—r2—r—>~ (3.12
tain such a distribution we choose rod lengths from an itera- r 7 L
tively constructed Cantor set, containing egments of \ith (I given by Eq.(3.10. As can be seen in Fig. 5, for as
length 37"L in the nth iteration. Assuming rod lengths are few asM =62 rods, Eq(3.12 is in good agreement with the
chosen uniformly from among these segments, the probsimulation results for rods with a power-law distribution of
ability of choosing a segment of length "3 is |engths. Thus, we find that the BC function can be derived
P(l/L=3""=2"Z, wherez=2::f212", km being the maxi-  analytically for a power-law distribution of particle dimen-
mal iteration number in the construction of the Cantor setsions, and depends essentially only on the first moment of
The average rod lengthis then given by: this distribution. The apparent FD can also be found as be-

M

4

J. Chem. Phys., Vol. 106, No. 24, 22 June 1997

Downloaded-19-Sep-2003-t0-142.150.226.143.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/jcpo/jcpcr.jsp



Lidar, Biham, and Avnir: Fractality of randomly adsorbed rods 10365

fore, as the slope between cutoffs determined by the averageder to find the BC function for the resulting set, we focus
rod length. From Eq(2.6), one gets in the zero-width rod on a single, arbitrary box of length-L and calculate the
limit: excluded length for placement of the center of a rod, the
condition being that the rod does not overlap with the box.
(1) Let Q{" denote the excluded length for placement of a
T singlenth iteration Cantor rod, when the box length satisfies:
3 %"1d<r.L<37*d. To find this function, consider first
1 2 (I the casen=0, i.e., the case of gapless rods of lendtirhis
ri=———-—. (3.13  is nothing but the 1D version of equi-sized rods considered
N in Sec. Il, and the excluded length is clearly
The effective 1D coverage is now given by: Qf)=r-L+d. Whenn=1 there is a gap of lengtt¥3 and
one must distinguish between the cased >d/3 and
| 2 (1) r-L<d/3. In the former, the resolution of the boxes is insuf-
m= M; T (3.14 ficient to notice the presence of the gap, namely, if the box
overlaps with the gap it necessarily touches at least one of
The FD is found from Eq(3.2), with the presenty;. The  the two rod segments as well. In this case, therefore, the
prediction of this formula is compared in Fig. 5 with a linear excluded length is agaimgl)=r~L+d. However, when
regression in the range set exactly by the above cutoffs, and L<d/3 a new situation arises: the box can fully overlap
is in good agreement. Thus the FD is still determined essenwith the gap. This is equivalent to having two rods of length
tially only by the 1D coverage. This is a nontrivial result, d/3, each contributing-L+d/3 to the excluded length:

since a power-law distribution is poorly described by itSQ(ll):Z(r-L+d/3). Whenn=2 there are gaps of length
mean, yet this is essentially the only distribution-relatedq/3 andd/9, so that three cases arise:

guantity needed to express the BC function. It can be under-

stood intuitively as follows: since the BC function counts the E;; ;/|9‘<>rd/3< 43
total number of occupied boxes, it is approximately propor- (3) r-L<d/9 '

tional to the total length of all rods. This quantity is well
described by the number of rods times the average rod he first two do not differ froom=1 since the the boxes are
length, namely the 1D coverage. In Sec. IV we consider th@ot small enough to resolve th#/9 gaps:Q{?=r-L+d,
effect of endowing the rods with an interndtactal) struc- Q@ =2(r-L+d/3). The third case is equivalent to having
ture. four rods of lengthd/9, each contributing an excluded length
of r-L+d/9: QP=4(r-L+d/9). The general case should

now be clear:
IV. RANDOMLY ADSORBED CANTOR RODS

. o r-L+d :r>d/L
So far we have dealt with random distributions of ob-

jects which are not themselves fractals. This was reflected iR{" = { 2<(r-L+37d) :37"*d/L<r<37¥d/L O<k=n
the BC function at resolutions below the lower cutoff, by an 2"r-L+37"d) r<3 " ld/L.

integer slope. In this section we consider a model of ran- (4.1)
domly deposited rods which are all Cantor sets of FD ) . o

= D.. A new feature expected in this case, is that for perfecit IS convenient to express the indéxsatisfying the con-
(i.e., not truncatedCantor sets, monintegerslope of—D,  Straintin Eq.(4.1) as:
should appear below the lower cutoff, in contrast to the cases

considered so far. The main motivation for considering a , (log[d/(r-L)]
model of Cantor rods, however, is that it mimics a large class - log(3)

of experimental systems where a set of fractal objects is ran- ) )
domly adsorbed on a surface. For example diffusion limitedWhere[x| is the largest integer smaller thai). Now sup-

aggregation (DLA)-like clusters growing simultaneously POSer is given, choose an arbitrary box, and place a Cantor
from several nucleation centéfsand cluster—cluster aggre- '0d at random on the line. The probabiligy that the rod
gation experiment& In such systems we expect an interplay does not intersect the_box is the relative available length, i.e.,
between the FD of the fractal objects and the apparent F|§1=1—.Q£”)/L- ForM independently placed Cantor rods the
induced by randomness. In particular, it might be difficult toProbability that none intersects the chosen boRgys=a;’,
disentangle the respective slopes of the BC function if thédnd the probability of at least one intersection is:

, 4.2

objects are fractal over a small range. pM=1—_qM_. When multiplied by the total _number of boxes
For simplicity we will now consider the one dimensional (1/r), this yields the expected number of intersected boxes:

case v_vhereM Ca_ntor setgrods of _total lengthd each, are (1—[1—(r+d/L)™Vr: r>diL

deposited on a line of length. As in Sec. lll, letn denote

the number of iterations in the construction of the CantomN(r)=1 {1—=[2(r+37 d/L)]"}/r: r<d/L,0<k=n,

sets. Thus there are"Zegments of length 3" in each rod. {1-[2"(r+3~"d/L)]M}/r: r<d/L,k>n

As before, the rods are fully penetrable to each other. In 4.3
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therefore remain valid in such cases. We conjecture that they
remain valid also for noniteratively constructed fractals.

80 | i
esees Cantor rods

full rods V. SUMMARY

——~- Cantor set

We have performed a multiple resolution analysis using
box counting functions to structures composed of randomly
adsorbed rods. Such structures appear in a large variety of
adsorption phenomena and in many physical systems includ-
ing liquid crystals, aggregates of linear molecules, and fibers
and line fractures. The scaling properties of these systems are
determined by the particle sizéength and width distribu-
tion, orientation distribution, as well as by correlations in the
positions and orientations. In processes such as paper fiber
sedimentation particles tend to aggregate into dense regions
and create inhomogeneiti€s!! In other systems, rods can-
not overlap giving rise to a maximal jamming densify.

We have studied the case where rods can overlap and
there are no positional or orientational correlations between
them. We examined various size distributions and orientation
0.0 ‘ ‘ ‘ ‘ . distributions, found an analytical expression for the box
-0 =80 70 o (‘5’-0 -0 1o counting function, and compared the analytical results to nu-

% merical simulations.

FIG. 6. BC function for a random distribution of Cantor rods on the interval For rod densities below the percolation threshold, we
(thick dashed-dotted line Comparisons to the result for full rods of the identified two interesting ranges of length scales in which the
same total Iengtt(\sglid line) as well as for a single perfect Cantor set with ) counting analysis gives rise to nontrivial scaling proper-
FD = D, (dashed lingare shown. The four regions observed for the Cantor . .
rods arg(from left to right) of slope— 1, slope— D, (which is the Cantor set ties. In the range ‘?f 'e”ch scales between_the typical rod
dimension determined by the internal structure of the yodpparent FD  length and the typical distance between adjacent rods, the
(which is determined by the coverage and the distribution ofyr@ded slope  box counting function is determined by the positional and
—1 again. In this example there arel=1000 Cantor rods of size grigntational distribution of the rods in the plane rather than
_d=10 -L each and the number of iterations in the construction of each rod[he structure of the single rod. This gives rise to an apparent
isn=5.

fractal behavior over a finite range of up to 2 decades. Unlike

the case of randomly distributed isotropic objectisks, the

range of length scales over which apparent fractal behavior is
wherek is given by Eq.(4.2). This expression for the BC observed depends not only on effective coverage but also on
function is plotted in Fig. 6 for fifth generation Cantor rods. the excluded areéaveraged over the orientational distribu-
The remarkable feature in comparison with randomly position). Moreover, the apparent fractal dimension depends on
tioned full rods is that the lower cutoff has shifted to the left,the orientational distribution and decreases as it becomes
now reflecting the size of the smallest segment in the Cantamore anisotropic.
rods. At smaller resolutions the boxes again “see” 1D ob-  For length scales smaller than the typical rod length, the
jects and the slope of the BC function-isl. At a resolution  box counting function is determined by the internal structure
of r=d/L (rod size, there is a smooth transition into the of the rod. In case of ordinary 1D rods this gives rise to a
regime of apparent fractality associated with the random disdimension of 1. However, this result is more general and in
tribution of Cantor rods. We believe that such behavior iscase that the rods are trimmed into Cantor sets the FD which
typical of experimental situations where a random distribu-is observed in this range is equal to the FD of the single
tion of limited-range fractal objects is observed. However,Cantor set. The distinction between these two ranges of
unlike the present “clean” case, it may be much more dif-length scales applies for a very broad class of systems which
ficult to separate the two regions in actual experimental dataexhibit nucleation of a finite density of fractal-like clusters.

It should further be remarked that as can easily beThe majority of spatial fractals in the physics literature be-
checked, Eq(4.3) yields a logarithmic derivative fa(r) of  long to this clas$® A finite density of fractal-like clusters
— D¢ in the limitsn—o andr—0. This implies the interest- appears in models such as diffusion-limited-cluster-
ing result that regardless of coverage, a random ensemble ofuster-aggregatidfi and in experimental systems such as
Cantor sets has exactly the same FD as a single Cantor setolecular beam epitaxy where diffusion-limited-
Figure 6 shows that in the range between the size of thaggregation-like clusters nucleate at a finite derf€itjn
smallest segment and the size of the set, the same conclusititese systems the fractal-like structure of the clusters results
holds for truncated Cantor sets. Clearly, our methods of calfrom complex stochastic dynamics. The cluster density is
culation can be extended to other iteratively constructed fracdetermined by parameters such as the temperature and depo-
tal sets, and the conclusions above regarding the FD shoukition rate. The typical distribution is not exactly Poissonian

6.0 -

log,o[N(r)]

20 |
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