
Limited range fractality of randomly adsorbed rods
Daniel A. Lidar (Hamburger)a)
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel and Fritz Haber Center
for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel

Ofer Bihamb)

Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

David Avnirc)
Fritz Harber Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel;
and Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel; and Minerva Center
for Computational Chemistry, The Hebrew University, Jerusalem 91904, Israel

~Received 7 February 1997; accepted 12 March 1997!

Multiple resolution analysis of two dimensional structures composed of randomly adsorbed
penetrable rods, for densities below the percolation threshold, has been carried out using
box-counting functions. It is found that at relevant resolutions, for box sizes,r , between cutoffs
given by the average rod length^ l & and the average inter-rod distancer 1, these systems exhibit
apparent fractal behavior. It is shown that unlike the case of randomly distributed isotropic objects,
the upper cutoffr 1 is not only a function of the coverage but also depends on the excluded volume,
averaged over the orientational distribution. Moreover, the apparent fractal dimension also depends
on the orientational distributions of the rods and decreases as it becomes more anisotropic. For box
sizes smaller than̂l & the box counting function is determined by the internal structure of the rods,
whether simple or itself fractal. Two examples are considered—one of regular rods of one
dimensional structure and rods which are trimmed into a Cantor set structure which are fractals
themselves. The models examined are relevant to adsorption of linear molecules and fibers, liquid
crystals, stress induced fractures, and edge imperfections in metal catalysts. We thus obtain a
distinction between two ranges of length scales:r,^ l &, where the internal structure of the adsorbed
objects is probed and̂l &,r,r 1, where their distribution is probed, both of which may exhibit
fractal behavior. This distinction is relevant to the large class of systems which exhibit aggregation
of a finite density of fractal-like clusters, which includes surface growth in molecular beam epitaxy
and diffusion-limited-cluster-cluster-aggregation models. ©1997 American Institute of Physics.
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I. INTRODUCTION

The structure, packing and phase transitions in me
composed of rod-like particles are of great importance i
large variety of physical systems.1–5 Such systems include
liquid crystals,6 slip lines in stressed metals and rocks, lin
fractures in catalysts,7–9 fibers in paper sheets,10,11 and rod-
like metal particles.12,13 Unlike systems composed of near
isotropic particles, for rod-like particles the orientational d
tribution plays an important role in addition to the position
distribution.14 Systems of adsorbed particles can be classi
to ones of penetrable15–17 versus impenetrable
particles.4,5,18,19In this article we will focus on the case o
penetrable rods.

Many of the systems of interest in this context are ess
tially two dimensional and can be studied by a model
whichM penetrable rods are randomly distributed on a t
dimensional surface of sizeL3L. Each rod is of lengthl and
widthw. The effective two dimensional coverage is given
h25r• lw, wherer5M /L2 is the rod density. It provides a

a!Electronic address: URL:http://www.fh.huji.ac.il/;dani
b!Electronic address: URL:http://www.fiz.juji.ac.il/staff/acc/faculty/biham
c!Electronic address: URL:http//chem.ch.juji.ac.il/employee/avnir/iavnir.h
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measure of the fraction of the area which is covered by
rods, where the reduction due to overlaps is ignored. Clus
of overlapping rods start to form at low rod density a
increase in size as the density increases. Systems of this
exhibit a percolation transition at rod densityrc , above
which there is a cluster which spans across the entire sys
The percolation transition for systems of rod-like particl
has been studied extensively in recent years.14,16,17,20–24A
criterion for the percolation densityrc was obtained and ex
amined for a variety of systems with different distributio
of rod sizes and orientations. According to this criterio
percolation for isotropically oriented and randomly distri
uted rods occurs at rod densityrc>1/Aexc.

17 HereAexc is the
excluded area for placement of the center of a rod given
it may not intersect a rod already on the surface. This a
averaged over the isotropic orientational distribution is:17

Aexc52S 11
4

p2Dwl1 2

p
~ l 21w2!. ~1.1!

Note that since the excluded areaAexc is not simply related
to the rod areal •w, the percolation threshold cannot be e
pressed as a function of the coverageh2 alone. This distin-
103590359/9/$10.00 © 1997 American Institute of Physics
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10360 Lidar, Biham, and Avnir: Fractality of randomly adsorbed rods
guishes the rods from isotropic objects such as disks
which the excluded area is related to the disk area by a c
stant factor.17 This difference is especially important in th
case of large aspect ratio of the rods. In particular,
w50, the coverage vanishes but the excluded area does

The properties of the infinite percolation cluster at t
transition have been studied extensively for lattice syste
as well as for continuous systems such the the ones con
ered here.25,26In particular, its fractal nature was establishe
The fractal dimension, which can be expressed in terms
other critical exponents, was found to be universal.26,27Prop-
erties such as correlation functions and cluster size distr
tions were also examined.28–30In addition to percolation sys
tems, spatial fractal structures have been observed in a g
variety of systems in physics31–36and chemistry.37

In this article we perform multiple resolution analysis
systems composed of randomly adsorbed rods below the
colation thresholdrc . In many empirical systems of thi
type, where adsorption and aggregation processes take p
fractal structures appear over a range of length scales
densities belowrc .

38 Moreover, a broad spectrum of fract
dimensions has been observed experimentally in such
tems. To gain a better understanding of empirical frac
structures composed of rod-like particles we study th
structures using multi-scale analysis, based on the b
counting~BC! function. In this analysis we examine the fra
tal properties of the entire system rather than a partic
cluster. This procedure is the one most commonly used
experimental studies of adsorption and aggregation phen
ena. In our analysis, we concentrate on a range of rod d
sities below the percolation threshold, where the area f
tion covered by the rods is small. We identify two ranges
length scales, in which the observed dimension of the sys
is different from the space dimension. For length sca
larger than the typical rod length, the results resemble th
obtained for randomly distributed spheres.39 An apparent
fractal behavior is observed within a range of length sca
between the rod length and the average distance betw
adjacent rods, which can span up to two decades. Howe
as was found before in percolation systems, highly an
tropic particles exhibit new and important features which
not appear in the study of isotropic particles such as sphe
In particular, we observe that, unlike the case of spheres
upper cutoff~and thus the range over which apparent frac
behavior appears! cannot be expressed in terms of the effe
tive coverage alone, but also depends on the excluded
Moreover, we find that the apparent fractal dimension~FD!
depends on the orientational distribution and decreases
becomes more anisotropic. For length scales below the
length, the BC function is dominated by the structure of
single rod whether simple or itself fractal. The class of s
tems which exhibits these two ranges includes the br
class of systems in which fractal-like clusters are adsor
on a surface. To examine the fractal properties of such
tems we study a simple one dimensional model in which
randomly distributed objects are Cantor sets. This articl
organized as follows. The model of randomly distribut
rods is introduced in Sec. II and the box-counting function
J. Chem. Phys., Vol. 106,
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examined. Rods of zero width are studied in Sec. III, ra
domly distributed Cantor sets in Sec. IV and a summary
presented in Sec. V.

II. THE GENERAL MODEL OF RANDOMLY
ADSORBED RODS

In this section we study a rather general model in wh
M rectangular rods are randomly adsorbed on a square
face of areaL2. They are adsorbed with no correlations a
are allowed to overlap with each other. The lengths of
rods 0, l i, lmax, i51, . . . ,M are independently picked from
the distribution Pl( l ) and the widths 0,wi,wmax,
i51, . . . ,M are picked from the distributionPw(w). The
orientations 0,u i,p are picked from the distribution
Pu(u).

In order to examine the apparent fractal nature of
resulting random structures we apply the BC procedure
this procedure one partitions the surface into a grid of m
size r •L (0,r,1) and counts the number of boxes,N(r ),
intersected by at least one rod, as a function ofr . An ana-
lytical solution for the BC functionN(r ) will now be ob-
tained, and its slope examined in the different domains.

Imagine the surface of areaL2 to be initially empty and
arbitrarily choose one of the grid-boxes of sizer •L. Denote
the excluded area for placement of the center of rodi , given
that the rod may not intersect the chosen box,
Sr( l i ,wi ,u i). This area is shown shaded in Fig. 1~a!. Simple
geometrical arguments yield:

Sr~ l i ,wi ,u i !5~r •L !21 l i•wi1r •L~cosu i1sin u i !( l i1wi).

~2.1!

The twofold rotation symmetry of the rods indicates that t
anglesu i are distributed in the range 0<u i<p. However,

FIG. 1. ~a! Excluded area for the placement of the center of a rod of len
l5d1 and widthw5d2 inclined at angleu relative to the horizontal axis. If
the center falls outside the shaded area, the rod will not intersect the bo
side r ; ~b! At the orientation shown, the projections of the sides,d1 and
d2, on the horizontal axis ared1cosu andd2sinu, respectively~the sum of
the two projections is shown by the thick line!. The projections on the
vertical axis ared1sinu, andd2cosu, respectively. Averaging over the two
possibilities andu yields Eq.~2.6!.
No. 24, 22 June 1997
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10361Lidar, Biham, and Avnir: Fractality of randomly adsorbed rods
the fourfold symmetry of the box makes the problem inva
ant under the transformationu→u1p/2. Therefore, we can
simplify the calculations by considering only the ran
0<u i<p/2 with no effect on the results. The angle and sid
lengths distributions are thus normalized so that:

E
0

p/2

du Pu~u!51

E
0

lmax
dl Pl~ l !5E

0

wmax
dw Pw~w!51. ~2.2!

We denote quantities averaged with respect to these dist
tions by angular brackets:^•••&.

Following Ref. 15 we consider the probabilityq1 for
random placement of the first rod without intersecting
box. This probability, which is proportional to the free are
is given by: q15@L22Sr( l 1 ,w1 ,u1)#/L

2. The next rod is
placed with new random angle and side lengths, so that
probability for two successful placements i
q25@12Sr( l 1 ,w1 ,u1)/L

2#@12Sr( l 2 ,w2 ,u2)/L
2#. Clearly,

qM5) i51
M @12Sr( l i ,wi ,u i)/L

2# is the probability of placing
M rods without intersection with the chosen box. Thus,
probability of at least one intersection afterM placements is
pM512qM . Since the total number of boxes is 1/r 2, for a
given realization of angles and side-lengths the expec
number of intersected boxes ispM /r

2, or:

N$u i ,l i ,wi %
~r !5

1

r 2F12)
i51

M S 12
Sr~ l i ,wi ,u i !

L2 D G . ~2.3!

This expression still has to be averaged over the side len
and angle ensembles:

N~r !5^N$u i ,l i ,wi %
~r !&

5
1

r 2 H 12F E
0

p/2

duP~u!E
0

lmax
dlE

0

lmax
dwPl~ l !

3Pw~w!S 12
Sr~ l ,w,u!

L2 D GMJ , ~2.4!

where the last equality follows since theu i are independent
identically distributed random variables, and so arel i and
wi . Finally, using Eq.~2.1! this can be expressed in terms
averages:

N~r !5
1

r 2F12S 12r 22
^ l &^w&
L2

2r ~^cosu1sin u&!
^ l &1^w&

L DM G . ~2.5!

This BC function contains the information required for t
multi-scale analysis of the system. In order to proceed w
the scaling analysis, we turn next to the identification of
cutoffs, which separate between length scales in wh
N(r ) is dominated by the distribution versus the intern
structure of the rods. These cutoffs are determined by
effective dimensions of the rods, when projected onto
grid of boxes. Now, for a given rodi , which is oriented at
J. Chem. Phys., Vol. 106,
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an angleu i , the average between the projections alo
the x and y axes ~parallel to the box sides! is
l i(cosui1sinui)/2 for the length andwi(cosui1sinui)/2 for
the width @Fig. 1~b!#. To obtain the effective cutoff, this
should be averaged over all angles and side lengths. We
expect to find cutoffs at:

r 0
l 5^cosu1sin u&

^ l &
2L

r 0
w5^cosu1sin u&

^w&
2L

. ~2.6!

Unlike the lower cutoffs which are determined by the r
dimensions, the upper cutoff (r 1) is given by the average
distance between adjacent rod sides:39

r 15
1

AM
2^cosu1sin u&

^ l1w&
2L

. ~2.7!

To gain insight into the behavior of Eq.~2.5! we display
it in Fig. 2 for the case of a random distribution of identic
rods of lengthl5d1 and widthw5d2 (d1@d2) with isotro-
pic orientations. We chose the case of narrow rods, si
virtually all of the experimentally relevant cases mention

FIG. 2. The BC function for rods@Eq. ~2.5!#. Four approximately linear
regimes indicate the presence of three cutoffs. As can be seen, the loca
of these match the prediction of Eq.~2.6! @ log10(r 0

l )524.2,
log10(r 0

w)527.2, and log10(r 1)521.5#. The inset shows the apparent fra
tal dimensionD, given by Eq.~2.12! ~for the range of length scales betwee
r 0
l andr 1) plotted as a function of the effective 1D coverageh1. D increases
monotonically withh1.
No. 24, 22 June 1997
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10362 Lidar, Biham, and Avnir: Fractality of randomly adsorbed rods
above belong to this category. In the next section we ret
to analyze the nonisotropic and polydispersed cases.
nontrivial apparent fractal region, is clearly seen in Fig.
between the predicted cutoffs of log10(r 0

l )524.2 and
log10(r 1)521.5. It is the range which is typical to all~frac-
tal! resolution analyses, and which we claim, reveals app
ent fractality. The apparent FD for this region~see derivation
below! isD50.06. In Fig. 2, all four different approximatel
straight line regions are clearly identified, corresponding
the presence of the three cutoffs. The ranger,r 0

w , is usually
uninteresting from the experimental point of view becaus
probes the structure of the building block itself. It has
2slope ~dimension! of 2, namely the dimension of the un
derlying plane. Whenr 0

w,r,r 0
l , the resolution of observa

tion is coarser, and the rods appear as one-dimensiona
jects, reflected in the slope~dimension! of approximately 1.
The width of this range depends on the aspect ratio of
rods and is approximately log10(^ l &/^w&) in decades.

Having the cutoffs at hand, we now perform a scali
analysis in the region between them. This will be done
applying the standard fractal procedure

log10 N~r !;2D• log10~r !, ~2.8!

whereD is the apparent fractal dimension~FD!. As stated
above, the range which has been the focus of attention is
one in between the cutoffsr 0

l ,r,r 1. The apparent FD
given by the slope in this range, is a nonuniversal dimens
the magnitude of which depends on the coverage. In orde
obtain expressions for the coverage dependence, it is co
nient to define effective one dimensional~1D! and two di-
mensional~2D! coverages. The effective 2D coverage is

h25M
^ l &^w&
L2

, ~2.9!

while the effective 1D coverage is

h15h1
l 1h1

w , ~2.10!

where h1
l 5AMr 0

l and h1
w5AMr 0

w ~note that as the rod
widths approach zeroh1→h1

l ). The significance of the ef
fective 1D coverage is that it provides a unified measure
coverage which is independent of the space dimension.

The width of the apparent fractal range can be estima
by De5 log10(r 1)2 log10(r 0

l ). In the case of large aspect rat
(^w&!^ l &):

De5 lim
^w&/^ l &→0

~ log r 12 log r 0
l !' log~1/h121!. ~2.11!

Since in the limit of large aspect ratioh1 } (r•Aexc)
1/2up

to a factor of order 1, it is found from the criterion of Ref. 1
(rc>1/Aexc) that the widthDe is nearly zero in the vicinity
of the percolation threshold, and increases as the density
creases below this threshold. This estimate forDe may seem
to suggest that one can increase the scaling range at wi
decreasing the coverage. However, in addition to the w
of the range between the cutoffs, the quality of the linear
within this range measured by the coefficient of determi
tion R2 should be considered. One can limit the range
linearity by imposing a lower bound onR2. Obviously, the
J. Chem. Phys., Vol. 106,
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range decreases asR2 increases. We thus conclude that th
two cutoffs limit the width of the linear range for high cov
erage while theR2 criterion limits it for low coverage@see
Ref. 39 and compare Figs. 3~a! and 3~b!#. The net result is
that the range of scaling is in fact restricted to 1–2 decad

The apparent dimension is found by calculating the log
rithmic derivative ofN(r ) at the estimated middle point o

the linear range. This point is situated at:rm5Ar 1•r 0l . As-
suming ^w&,^ l & this yields for the apparent FD, in the
M→` limit and at constant coverage, the general equatio

D5
d log@N~r !#

d log~r !
U
rm

52S 12
~12h1!h1

l 1h1A~12h1!h1
l

exp@h1
l ~12h1!12h1A~12h1!h1

l 1h2#21
D .

~2.12!

This general formula for the FD will be used in the analys
to follow. The effects of changing the coverage on the a

FIG. 3. BC functions for zero width rods:~a! h1
l 50.1,d150.01; ~upper

inset!: typical configuration of rods;~lower inset!: zoom between cutoffs
log(r0)522.2, log(r1)521.2. ~b! h1

l 50.01,d150.001; ~inset!: zoom with
agreement on slope between Eq.~3.2! and the linear regression to 2 signifi
cant digits.
No. 24, 22 June 1997
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10363Lidar, Biham, and Avnir: Fractality of randomly adsorbed rods
parent dimension, are shown in the inset of Fig. 2
d1 /d25103: the FD increases monotonically with coverag
but does not reach 2 for the relatively narrow rods cons
ered.

The dimension of the rods themselves can also be
tained from the box counting function. In order to do so o
needs to identify the appropriate length scale and mea
the slope of the box counting functionN(r ) on the log–log
plot. This slope should be obtained for a length which is
geometrical average of the effective cutoffs associated w
the average rod lengtĥl & and width ^w& according to

r5Ar 0l •r 0w. In the zero-width rod limitd2 /d1→0 this di-
mension approaches 1. As we are focusing especially on
experimentally relevant case of narrow rods, and as it is
dent from Eqs.~2.9! and ~2.10! that both the FD and the
rangeDe are only marginally dependent on the rod width, w
consider in the next cases, for simplicity, rods with ze
width.

III. APPLICATIONS TO RODS OF ZERO WIDTH

In the present section we consider for simplicity the ca
of rods with zero width. Some comparisons with simulatio
will be presented, as well as applications of the gene
theory to specific distributions of interest.

A. Isotropically oriented identical rods

As a first case for the zero-width rods, let us return to
previous example of identical rods with isotropic orientatio
and impose zero width (w50). For the isotropic
@Pu(u)52/p#, monodispersed@Pl( l )5d( l2d)# case, the
BC function and FD for rods of lengthd and zero width
follow directly from Eqs.~2.5! and ~2.12!, respectively:

N~r !5
1

r 2F12S 12r 22r
4

p

d

L DM G , ~3.1!

D52S 12
h1
l @11A~12h1

l !h1
l 2h1

l #

exp$h1
l @112A~12h1

l !h1
l 2h1

l #%21
D .

~3.2!

In Fig. 3 we present this analytical result for the rod-B
function along with numerical simulations, for two cove
ages. The agreement between theory and simulations is
cellent over the entire range of box sizes. The ranges
apparent fractality are brought in the insets; one would
pect the wavy nature of the line at the lower coverage to
smeared out by noise in typical experimental situatio
Comparing to the BC function for finite-width rods, whic
appear in Fig. 2, one observes that, as expected, there
now only two cutoffs and correspondingly three~approxi-
mately! linear regions of slope;1, D,1 and 2.

B. Anisotropically oriented identical rods

Anisotropically oriented elongated particles appear in
wide variety of systems, notably in liquid crystals. In ord
J. Chem. Phys., Vol. 106,
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to investigate the effect of anisotropy on the apparent fra
properties we consider here the following angular distrib
tion, normalized for 0<u<p/2:

P~u!5
2G~11n!

ApG~1/21n!
~cosu!2n. ~3.3!

In the limit n→0 this corresponds to a uniformly rando
distribution, whereas forn→`, to perfectly aligned rods
The rods are assumed to be of equal sized. The BC function
can be found by calculating the angular averages of
~2.5!. Using the identities (n.0):

E
0

p/2

du cos2n11 u5
ApG~11n!

2G~3/21n!
~3.4!

E
0

p/2

du cos2n u sin u5
1

112n
, ~3.5!

we find:

gn[~^cosu1sin u&!

5
G~11n!

G~1/21n!S G~11n!

G~3/21n!

1
2

Ap~112n!
D . ~3.6!

This yields for the BC function:

N~r !5
1

r 2F12S 12r 22r
d

L
gnDM G . ~3.7!

In then→0 limit one retrieves the result for uniformly ran
domly oriented rods, Eq.~3.1!, whereas forn→` one finds
N(r )5@12(12r 22rd/L)M#/r 2. For the cutoffs we have
from Eq. ~2.6!:

r 05gn

d

2L

r 15
1

AM
2gn

d

2L
, ~3.8!

and for the coverage:

h1
l 5AMgn

d

2L
. ~3.9!

The FD for the present case is found by substitutingh1
l from

Eq. ~3.9! in the general expression Eq.~2.12! and taking
h250. The effect onD of changingn at constant numbe
and size of rods is shown in Fig. 4: the apparent FD
creases as the rods become more parallel, i.e., as they ‘‘c
space’’ less effectively. For isotropic objects we have sho
that the apparent FD depends essentially only on
coverage.39 As seen here, for anisotropic objects, the F
depends on an additional parameter~the degree of anisotro
No. 24, 22 June 1997
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10364 Lidar, Biham, and Avnir: Fractality of randomly adsorbed rods
py!. This feature may be relevant to many experimental s
tems which exhibit anisotropic distributions of rod-like pa
ticles, such as liquid crystals and paper fibers.

C. Polydispersed rods

We will now explore the effects of polydispersivity i
the rods size. In particular we will consider a power-la
distribution of the rod lengths.

1. Model

In Ref. 39 a variety of narrow size distributions we
examined. It was observed that such polydispersivity d
not alter the basic observation of an apparent fractal reg
between cutoffs. The apparent FD of the correspond
monodispersed distribution was only slightly modified. A
important distribution function found in numerous expe
mental cases is the power-law distribution of sizes.40 To ob-
tain such a distribution we choose rod lengths from an ite
tively constructed Cantor set, containing 2n segments of
length 32nL in the nth iteration. Assuming rod lengths ar
chosen uniformly from among these segments, the pr
ability of choosing a segment of length 32nL is
P( l /L532n)52n/Z, whereZ5(k51

km 2k, km being the maxi-
mal iteration number in the construction of the Cantor s
The average rod lengthl is then given by:

FIG. 4. Apparent FD as a function of anisotropy parametern @Eqs. ~3.2!,
~3.9!#, at two different 1D coverages (dM1/2). The FD decreases as the rod
tend to be more parallel, and as the coverage becomes smaller.
J. Chem. Phys., Vol. 106,
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k51
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lP~ l /L532k!

5
1

Z(
k51

km

2k32kL5
12~2/3!km

2km21
L. ~3.10!

Expressed in terms of lengths one finds for the distributio

P~ l !5
1

Z
22 log~ l /L !/ log~3!5

1

Z
~ l /L !2Dc; Dc5

log~2!

log~3!
,

~3.11!

Dc being the FD of the Cantor set. Thus the length distrib
tion indeed satisfies a power law.41 Note thatP( l ) is a dis-
cretedistribution with allowed lengths ofl532nL, and that
^ l &, for example, would be different ifl could assume any
value between 32kmL andL/3.

2. Scaling analysis for power-law dispersed rods

We assume that the rods are uniformly randomly o
ented, so that̂cosu1sinu&54/p, 0<u,p/2. We thus have
from Eq. ~2.5!:

N~r !5
1

r 2F12S 12r 22r
4

p

^ l &
L DM G ~3.12!

with ^ l & given by Eq.~3.10!. As can be seen in Fig. 5, for a
few asM562 rods, Eq.~3.12! is in good agreement with the
simulation results for rods with a power-law distribution
lengths. Thus, we find that the BC function can be deriv
analytically for a power-law distribution of particle dimen
sions, and depends essentially only on the first momen
this distribution. The apparent FD can also be found as

FIG. 5. BC functions for isotropically oriented rods of zero width and
power law distribution of lengths. The coverage here ish150.1, the average
rod length is^ l &50.02, the number of rods isM562, and the number of
possible sizes generated by Cantor set iterations iskm56. The inset shows
the zoom between cutoffs log10(r 0)521.89 and log10(r 1)520.94.
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10365Lidar, Biham, and Avnir: Fractality of randomly adsorbed rods
fore, as the slope between cutoffs determined by the ave
rod length. From Eq.~2.6!, one gets in the zero-width ro
limit:

r 05
2

p

^ l &
L

r 15
1

AM
2
2

p

^ l &
L
. ~3.13!

The effective 1D coverage is now given by:

h1
l 5AM

2

p

^ l &
L
. ~3.14!

The FD is found from Eq.~3.2!, with the presenth1
l . The

prediction of this formula is compared in Fig. 5 with a line
regression in the range set exactly by the above cutoffs,
is in good agreement. Thus the FD is still determined ess
tially only by the 1D coverage. This is a nontrivial resu
since a power-law distribution is poorly described by
mean, yet this is essentially the only distribution-relat
quantity needed to express the BC function. It can be un
stood intuitively as follows: since the BC function counts t
total number of occupied boxes, it is approximately prop
tional to the total length of all rods. This quantity is we
described by the number of rods times the average
length, namely the 1D coverage. In Sec. IV we consider
effect of endowing the rods with an internal~fractal! struc-
ture.

IV. RANDOMLY ADSORBED CANTOR RODS

So far we have dealt with random distributions of o
jects which are not themselves fractals. This was reflecte
the BC function at resolutions below the lower cutoff, by
integer slope. In this section we consider a model of r
domly deposited rods which are all Cantor sets of
5 Dc . A new feature expected in this case, is that for perf
~i.e., not truncated! Cantor sets, anonintegerslope of2Dc

should appear below the lower cutoff, in contrast to the ca
considered so far. The main motivation for considering
model of Cantor rods, however, is that it mimics a large cl
of experimental systems where a set of fractal objects is
domly adsorbed on a surface. For example diffusion limi
aggregation ~DLA !-like clusters growing simultaneousl
from several nucleation centers42 and cluster–cluster aggre
gation experiments.43 In such systems we expect an interpl
between the FD of the fractal objects and the apparent
induced by randomness. In particular, it might be difficult
disentangle the respective slopes of the BC function if
objects are fractal over a small range.

For simplicity we will now consider the one dimension
case whereM Cantor sets~rods! of total lengthd each, are
deposited on a line of lengthL. As in Sec. III, letn denote
the number of iterations in the construction of the Can
sets. Thus there are 2n segments of length 32n in each rod.
As before, the rods are fully penetrable to each other.
J. Chem. Phys., Vol. 106,
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order to find the BC function for the resulting set, we foc
on a single, arbitrary box of lengthr •L and calculate the
excluded length for placement of the center of a rod,
condition being that the rod does not overlap with the bo

Let Vk
(n) denote the excluded length for placement o

singlenth iteration Cantor rod, when the box length satisfie
32k21d,r •L,32kd. To find this function, consider firs
the casen50, i.e., the case of gapless rods of lengthd. This
is nothing but the 1D version of equi-sized rods conside
in Sec. II, and the excluded length is clear
V0

(0)5r •L1d. Whenn51 there is a gap of lengthd/3 and
one must distinguish between the casesr •L.d/3 and
r •L,d/3. In the former, the resolution of the boxes is insu
ficient to notice the presence of the gap, namely, if the b
overlaps with the gap it necessarily touches at least on
the two rod segments as well. In this case, therefore,
excluded length is againV0

(1)5r •L1d. However, when
r •L,d/3 a new situation arises: the box can fully overl
with the gap. This is equivalent to having two rods of leng
d/3, each contributingr •L1d/3 to the excluded length
V1

(1)52(r •L1d/3). When n52 there are gaps of lengt
d/3 andd/9, so that three cases arise:

(1) r •L.d/3,
(2) d/9,r •L,d/3,
(3) r •L,d/9.

The first two do not differ fromn51 since the the boxes ar
not small enough to resolve thed/9 gaps:V0

(2)5r •L1d,
V1

(2)52(r •L1d/3). The third case is equivalent to havin
four rods of lengthd/9, each contributing an excluded leng
of r •L1d/9: V2

(2)54(r •L1d/9). The general case shoul
now be clear:

Vk
~n!5H r •L1d :r.d/L

2k~r •L132kd! :32k21d/L,r,32kd/L,0<k<n

2n~r •L132nd! r,32n21d/L.
(4.1)

It is convenient to express the indexk satisfying the con-
straint in Eq.~4.1! as:

k5S log@d/~r •L !#

log~3! D , ~4.2!

~where bxc is the largest integer smaller thanx). Now sup-
poser is given, choose an arbitrary box, and place a Can
rod at random on the line. The probabilityq1 that the rod
does not intersect the box is the relative available length,
q1512Vk

(n)/L. ForM independently placed Cantor rods th
probability that none intersects the chosen box isqM5q1

M ,
and the probability of at least one intersection
pM512qM . When multiplied by the total number of boxe
(1/r ), this yields the expected number of intersected box

N~r !5H $12@12~r1d/L !#M%/r : r.d/L

$12@2k~r132kd/L !#M%/r : r,d/L,0<k<n

$12@2n~r132nd/L !#M%/r : r,d/L,k.n

,

~4.3!
No. 24, 22 June 1997
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10366 Lidar, Biham, and Avnir: Fractality of randomly adsorbed rods
wherek is given by Eq.~4.2!. This expression for the BC
function is plotted in Fig. 6 for fifth generation Cantor rod
The remarkable feature in comparison with randomly po
tioned full rods is that the lower cutoff has shifted to the le
now reflecting the size of the smallest segment in the Ca
rods. At smaller resolutions the boxes again ‘‘see’’ 1D o
jects and the slope of the BC function is21. At a resolution
of r5d/L ~rod size!, there is a smooth transition into th
regime of apparent fractality associated with the random
tribution of Cantor rods. We believe that such behavior
typical of experimental situations where a random distrib
tion of limited-range fractal objects is observed. Howev
unlike the present ‘‘clean’’ case, it may be much more d
ficult to separate the two regions in actual experimental d

It should further be remarked that as can easily
checked, Eq.~4.3! yields a logarithmic derivative forN(r ) of
2Dc in the limitsn→` andr→0. This implies the interest
ing result that regardless of coverage, a random ensemb
Cantor sets has exactly the same FD as a single Canto
Figure 6 shows that in the range between the size of
smallest segment and the size of the set, the same conclu
holds for truncated Cantor sets. Clearly, our methods of
culation can be extended to other iteratively constructed f
tal sets, and the conclusions above regarding the FD sh

FIG. 6. BC function for a random distribution of Cantor rods on the inter
~thick dashed-dotted line!. Comparisons to the result for full rods of th
same total length~solid line! as well as for a single perfect Cantor set wi
FD 5 Dc ~dashed line! are shown. The four regions observed for the Can
rods are~from left to right! of slope21, slope2Dc ~which is the Cantor set
dimension determined by the internal structure of the rods!, apparent FD
~which is determined by the coverage and the distribution of rods!, and slope
21 again. In this example there areM51000 Cantor rods of size
d51025

•L each and the number of iterations in the construction of each
is n55.
J. Chem. Phys., Vol. 106,
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therefore remain valid in such cases. We conjecture that t
remain valid also for noniteratively constructed fractals.

V. SUMMARY

We have performed a multiple resolution analysis us
box counting functions to structures composed of random
adsorbed rods. Such structures appear in a large variet
adsorption phenomena and in many physical systems inc
ing liquid crystals, aggregates of linear molecules, and fib
and line fractures. The scaling properties of these systems
determined by the particle size~length and width! distribu-
tion, orientation distribution, as well as by correlations in t
positions and orientations. In processes such as paper
sedimentation particles tend to aggregate into dense reg
and create inhomogeneities.10,11 In other systems, rods can
not overlap giving rise to a maximal jamming density.3,4

We have studied the case where rods can overlap
there are no positional or orientational correlations betw
them. We examined various size distributions and orienta
distributions, found an analytical expression for the b
counting function, and compared the analytical results to
merical simulations.

For rod densities below the percolation threshold,
identified two interesting ranges of length scales in which
box counting analysis gives rise to nontrivial scaling prop
ties. In the range of length scales between the typical
length and the typical distance between adjacent rods,
box counting function is determined by the positional a
orientational distribution of the rods in the plane rather th
the structure of the single rod. This gives rise to an appa
fractal behavior over a finite range of up to 2 decades. Un
the case of randomly distributed isotropic objects~disks!, the
range of length scales over which apparent fractal behavio
observed depends not only on effective coverage but als
the excluded area~averaged over the orientational distrib
tion!. Moreover, the apparent fractal dimension depends
the orientational distribution and decreases as it beco
more anisotropic.

For length scales smaller than the typical rod length,
box counting function is determined by the internal structu
of the rod. In case of ordinary 1D rods this gives rise to
dimension of 1. However, this result is more general and
case that the rods are trimmed into Cantor sets the FD w
is observed in this range is equal to the FD of the sin
Cantor set. The distinction between these two ranges
length scales applies for a very broad class of systems w
exhibit nucleation of a finite density of fractal-like cluster
The majority of spatial fractals in the physics literature b
long to this class.38 A finite density of fractal-like clusters
appears in models such as diffusion-limited-clust
cluster-aggregation43 and in experimental systems such
molecular beam epitaxy where diffusion-limited
aggregation-like clusters nucleate at a finite density.42 In
these systems the fractal-like structure of the clusters res
from complex stochastic dynamics. The cluster density
determined by parameters such as the temperature and d
sition rate. The typical distribution is not exactly Poissoni

l

r

d
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10367Lidar, Biham, and Avnir: Fractality of randomly adsorbed rods
due to effective repulsion between clusters. However,
distinction, emphasized here, between smaller length sc
where the fractal properties are dominated by the single c
ter and larger length scales where the distribution is do
nant still applies. We thus predict that experiments involv
random distributions of fractal-like objects, will reveal
crossover from object-dominated to distribution-domina
fractal behavior.
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