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Rigorous bounds for optimal dynamical decoupling
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We present rigorous performance bounds for the optimal dynamical decoupling pulse sequence protecting a
quantum bit (qubit) against pure dephasing. Our bounds apply under the assumption of instantaneous pulses
and of bounded perturbing environment and qubit-environment Hamiltonians such as those realized by baths
of nuclear spins in quantum dots. We show that if the total sequence time is fixed the optimal sequence can be
used to make the distance between the protected and unperturbed qubit states arbitrarily small in the number of
applied pulses. If, on the other hand, the minimum pulse interval is fixed and the total sequence time is allowed
to scale with the number of pulses, then longer sequences need not always be advantageous. The rigorous bound
may serve as a testbed for approximate treatments of optimal decoupling in bounded models of decoherence.
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I. INTRODUCTION

Quantum systems tend to rapidly decohere due to the
coupling to their environments, a process which is especially
detrimental to quantum information processing and high-
resolution spectroscopy [1]. Of the many methods which have
been proposed in recent years to overcome the damage caused
by decoherence, we focus here on dynamical decoupling (DD),
a method for suppressing decoherence whose origins can be
traced to the Hahn spin echo [2]. In DD, one applies a series of
strong and frequent pulses to a system, designed to decouple
it from its environment [3–6]. Recently, it was discovered
how to optimally suppress decoherence of a single qubit using
DD under the idealization of instantaneous pulses [7–9]. One
of us found an optimal pulse sequence (later dubbed UDD)
for suppressing pure dephasing (single-axis decoherence) of a
qubit coupled to a boson bath with a hard frequency cutoff [7].
In UDD one applies a series of N instantaneous π pulses
at instants tj (j ∈ {1,2, . . . ,N}), with the instants given by
tj = T δj where T is the total time of the sequence and

δj = sin2[jπ/(2N + 2)]. (1)

By optimal it is meant that with each additional pulse the
sequence suppresses dephasing in one additional order in an
expansion in T [i.e., N pulses reduce dephasing to O(T N+1)].
The existence and convergence of an expansion in powers
of T , at least as an asymptotic expansion, is a necessary
assumption [9,10].

The UDD sequence was first conjectured [11,12] and then
proven [10] to be universal in the sense that it applies to
any bath causing pure dephasing of a qubit, not just bosonic
baths. The performance of the UDD sequence was tested, and
its advantages over other pulse sequences confirmed under
appropriate circumstances, in a series of recent experiments
[13–15]. Its limitations as a function of sharpness of the bath
spectral-density high-frequency cutoff [16] and as a function
of timing constraints [17] have also been discussed.
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To suppress general (three-axis) decoherence on a qubit to
all orders concatenated sequences can be used [18,19] whose
efficiency can be improved by using UDD building blocks [20].
A near optimum suppression is achieved by quadratic dynamic
decoupling (dubbed QDD). This scheme was proposed and
numerically tested in Ref. [8] and analytically corroborated in
Ref. [9]. In QDD, a sequence of (N + 1)2 pulses comprising
two nested UDD sequences suppresses general qubit decoher-
ence to O(T N+1), which is known from brute-force symbolic
algebra solutions for small N to be near optimal [8].

While rigorous performance bounds have been derived
previously for periodic and concatenated DD pulse sequences
[21–23], no such performance bounds have yet been derived
for optimal decoupling pulse sequences, in particular UDD
and QDD. In this work we focus on UDD and obtain rigorous
performance bounds. We postpone the problem of finding
rigorous QDD performance bounds to a future publication. Our
main result here is an analytical upper bound for the distance
between UDD-protected states subject to pure dephasing and
unperturbed states as a function of the natural dimensionless
parameters of the problem, namely the total evolution time
T measured in units of the maximal intrabath energy J0, and
in units of the system-bath coupling strength Jz. The bound
shows that this distance (technically, the trace-norm distance)
can be made arbitrarily small as a function of the number
of pulses N , as (1/N !)(J0T + JzT )N . This presumes that the
bounds Jα (α ∈ {0,z}) are finite. Such a situation is realized in
spin baths (i.e., in experimental setups where the decoherence
is caused by coupling to a large number of spins). For instance,
the electronic spin in a quantum dot couples via the hyperfine
interaction with the nuclear spins, which is an experimentally
relevant system [24]. The fact that the spin operators �S are
bounded implies that Jα (α ∈ {0,z}) are finite for a finite
number of spins.

The bounds Jα (α ∈ {0,z}) can be infinite for unbounded
baths, such as oscillator baths. In such cases, which includes
the ubiquituous spin-boson model, our analysis does not apply.
Alternative approaches, such as those based on correlation
function bounds [23], are then required.

We begin by introducing the model of pure dephasing in
the presence of instantaneous DD pulses in Sec. II. We then
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derive a general time-evolution bound in Sec. III, without
reference to any particular pulse sequence. In Sec. IV we
specialize this bound to the UDD sequence. Then, in Sec. V,
we obtain our main result: an upper bound on the trace-norm
distance between the UDD-protected and unperturbed states.
In Sec. VI we analyze the implications of this bound in the
more realistic setting when only a certain minimal interval
between consecutive pulses can be attained. Certain technical
details are presented in the Appendix, including the first
complete universality proof of the UDD sequence, which does
not rely on the interaction picture.

II. MODEL

We start from the general, uncontrolled, time-independent
system-bath Hamiltonian for pure dephasing

Hunc = IS ⊗ B0 + σz ⊗ Bz, (2)

where B0 and Bz are bounded but otherwise arbitrary operators
acting on the bath Hilbert space HB, IS is the identity operator
on the system Hilbert space HS, and σz is the diagonal Pauli
matrix. The bath operator Bz need not be traceless (i.e.,
we allow for the possibility of a pure-system term σz ⊗ IB

in the system-bath interaction term HSB := σz ⊗ Bz). Such
internal system dynamics will be removed by the DD pulse
sequence we shall add next, along with the coupling to the
bath. However, the assumption of pure dephasing means that
we assume that the level splitting of the system, that is, any
term proportional to σ⊥ [with σ⊥ being cos(ϕ)σx + sin(ϕ)σy

for arbitrary ϕ] acting on the system is fully controllable.
Otherwise the model is one of general decoherence, and our
methods require a modification along the lines of Refs. [8]
and [9]. If the system described by Eq. (2) is subject to
N instantaneous π pulses at the instants {tj := T δj }Nj=1
about a spin axis perpendicular to the z axis, that is, if the
Hamiltonian HDD(t) = π

2

∑N
j=1 δ(t − tj )σ⊥ ⊗ IB is added to

Hunc, the interaction picture (“toggling-frame”) Hamiltonian
Htog(t) = U

†
DD(t)HuncUDD(t) reads

Htog(t) = IS ⊗ B0 + f (t)σz ⊗ Bz, (3)

where the unitary UDD(t) alternates between IS ⊗ IB and σ⊥ ⊗
IB at the instants {tj }Nj=1, and consequently the “switching
function” f (t) = ±1 changes sign at the same instants.

We shall also need the magnitudes of the two parts of the
Hamiltonian

J0 := ‖B0‖ < ∞, Jz := ‖Bz‖ < ∞, (4)

where ‖ · ‖ is the supoperator norm (see Appendix A). There
are certainly situations where either J0 or Jz can be divergent
(e.g., J0 in the case of oscillator baths).

III. TIME-EVOLUTION BOUNDS

We aim to bound certain parts of the time-evolution operator
induced by Htog(t)

U (T ) = T exp

[
−i

∫ T

0
Htog(t) dt

]
, (5)

where T is the time-ordering operator.

Standard time-dependent perturbation theory provides the
following Dyson series for U (T )

U (T ) =
∞∑

n=0

(−iT )n
∑

{�α;dim(�α)=n}
F�α Q̂�α, (6a)

F�α :=
∫ 1

0
dsnfαn

(sn)
∫ sn

0
dsn−1fαn

(sn) . . .∫ s3

0
ds2fα2 (s2)

∫ s2

0
ds1fα1 (s1), (6b)

Q̂�α := σαn
Bαn

. . . σα2Bα2σα1Bα1 , (6c)

where dim(�α) = n is the dimension of the vector �α. The
identity IS in the Hilbert space of the qubit/spin is denoted
by σ0. In all sums over the vectors �α their components αj

take the values 0 or z. In this way, the summation includes
all possible sequences of B0 and Bz. The function f0(s) is
constant and equal to 1 while fz(s) := f (sT ) takes the values
±1. We use the dimensionless relative time s := t/T so that
all dependence on T appears as a power in the prefactor. Note
that the coefficients F�α do not depend on T .

To find an upper bound on each term F�α Q̂�α separately we
proceed in two steps. First, we use |fα| = 1 to obtain

|F�α| �
∫ 1

0
dsn

∫ sn

0
dsn−1 . . .

∫ s3

0
ds2

∫ s2

0
ds1

= 1

n!
. (7)

Second, we use Eq. (4) and ‖σα‖ = 1 to arrive at

‖Q̂�α‖ �
n∏

j=1

Jαj
= J

n−k(�α)
0 J k(�α)

z , (8)

where we used the submultiplicativity of the supoperator norm
(see Appendix A). The number k(�α) stands for the number
of times that the factor Jz occurs. Standard combinatorics
of binomial coefficients tells us that the term J n−k

0 J k
z occurs

n!/[k!(n − k)!] times in the sum over all the vectors �α of
given dimensionality n in (6a). Hence each term of the time
expansion of U (T ) is bounded by∥∥∥∥∥

∑
{�α;dim(�α)=n}

F�α Q̂�α

∥∥∥∥∥ �
n∑

k=0

1

k!(n − k)!
J n−k

0 J k
z . (9)

We therefore define the bounding series

S(J0,Jz) :=
∞∑

n=0

T n

n∑
k=0

1

k!(n − k)!
J n−k

0 J k
z (10a)

= exp[(J0 + Jz)T ]. (10b)

It then follows from Eq. (9) that each multinomial in J0 and
Jz of the expansion of S(J0,Jz) is an upper bound on the norm
of the sum of the corresponding multinomial in the operators
B0 and Bz of the expansion of U (T ) in Eq. (6a). This is the
property which we will use in the sequel.
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IV. BOUNDS FOR DEPHASING

From σ 2
z = IS it is obvious that only the odd powers in Bz

contribute to dephasing while the even ones do not. Hence we
split U (T ) as

U (T ) = IS ⊗ B+(T ) + σz ⊗ B−(T ), (11)

where the operators B± act only on the bath while IS and
σz act only on the qubit. The operator B+ comprises all the
terms with an even number k of σz ⊗ Bz [i.e., with an even
number of Jz in the bounding series S(J0,Jz)]. The operator B−
comprises all the terms with odd number k of σz ⊗ Bz [i.e.,
with an odd number of Jz in the bounding series S(J0,Jz)].
Hence to bound the time series of B−(T ) term by term we
need the time series of the odd part of S(J0,Jz) in Jz. This,
from (10b) is

S−(J0,Jz) = exp(J0T ) sinh(JzT ). (12)

The time series of S−(J0,Jz) provides a bounding series of
B−(T ) term by term. Hence we define

dk := 1

k!

∂k

∂T k
S−(J0,Jz)

∣∣∣∣
T =0

, (13)

such that S−(J0,Jz) = ∑∞
k=0 dkT

k .
We know from the proof of Yang and Liu [10] that in the

B0-interaction picture a UDD sequence with N pulses [which
we denote by UDD(N )] should make the first N powers in
T of B−(T ) vanish [i.e., B−(T ) = O(T N+1)]. However, since
the Yang-Liu proof does not directly apply to our discussion,
we provide a complete version of this proof which avoids the
B0-interaction picture in Appendix B. The remaining powers
are bounded by the corresponding coefficients dk of S−. Thus
the expression

�N :=
∞∑

k=N+1

dkT
k, (14)

provides an upper bound for B−(T ) if UDD(N ) is
applied

‖B−(T )‖ � �N. (15)

Due to the obvious analyticity in the variable T of S−(J0,Jz)
as defined in (12) we know that the residual term vanishes for
N → ∞, that is,

lim
N→∞

�N = 0. (16)

This statement holds true irrespective of the values of J0 and
Jz as long as they are finite.

We can obtain a more explicit expression for �N . Besides
the dimensionless number of pulses N the bound �N depends
on J0T and on JzT . It is convenient to introduce the
dimensionless parameters

ε := J0T , η := Jz/J0, (17)

instead. In terms of these parameters we have

S−(η,ε) = exp(ε) sinh(εη). (18)

From the series

exp(ε) sinh(εη) = 1

2
[eε(1+η) − eε(1−η)] (19a)

=
∞∑
l=0

εl

2l!
[(1 + η)l − (1 − η)l] (19b)

=
∞∑
l=0

pl(η)εl, (19c)

with

pl(η) := 1

2l!
[(1 + η)l − (1 − η)l], (20)

we obtain

�N (η,ε) =
∞∑

n=N+1

pn(η)εn (21a)

= pN+1(η)εN+1 + O(εN+2). (21b)

This, together with the bound (15), is our key result: It
captures how the “error” ‖B−(T )‖ is suppressed as a function
of the relevant dimensionless parameters of the problem, η, ε,
and N . Note that convergence for N → ∞ is always ensured
by the factorial in the denominator, irrespective of the values
of ε and η as long as these are finite.

For practical purposes it is advantageous not to compute
�N by the infinite series in (21a), but by

�N (η,ε) = S−(η,ε) −
N∑

n=0

pn(η)εn, (22)

which can easily be computed by computer algebra programs.
Figures 1 and 2 depict the results of this computation. Consider
first Fig. 1. Each curve shows �N (η,ε) as a function of ε,
at fixed η and N . The error ‖B−(T )‖ always lies under the
corresponding curve. Clearly, the bound becomes tighter as ε

decreases. Moreover, the more pulses are applied (the different
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FIG. 1. (Color online) The bounding function �N as a function
of ε = J0T , as given in Eq. (14) for various numbers of pulses N and
various values of the parameter η = Jz/J0 ∈ {0.01,0.1,1,10,100},
with η increasing from the rightmost curve to the leftmost curve in
each panel.
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FIG. 2. (Color online) The bounding function �N as a function
of ε = J0T , as given in Eq. (21a) for various numbers of pulses
N ∈ {2,5,10,20}, at fixed values of η. In each panel the curves become
steeper as N increases.

panels) the higher the power in ε and thus the steeper the curve.
Additionally, the curves are shifted to the right as N increases.
Clearly then, a larger number of pulses improves the error
bound significantly at fixed ε and η. This effect is even more
conspicuous in Fig. 2 where η is fixed in each of the two
panels, and the different curves correspond to different values
of N . The vertical line intersects the bounding function at
progressively lower points as N is increased, showing how the
bound becomes tighter.

V. DISTANCE BOUND

Intuitively, we expect the bound on ‖B−(T )‖ derived in
the previous section to be sufficient to bound the effect of
dephasing. However, to make this rigorous we need a bound on
the trace-norm distance D[ρS(T ),ρ0

S(T )] between the “actual
qubit” state

ρS(T ) := trB[ρSB(T )], (23)

and the “ideal qubit” state

ρ0
S(T ) := trB

[
ρ0

SB(T )
]
, (24)

where ρ0
SB(T ) is the time-evolved state without coupling

between qubit and bath. The partial trace over the bath degrees
of freedom is a map from the joint system-bath Hilbert space
to the system-only Hilbert space (see Appendix A), and is
denoted by trB. As we shall see, the term IS ⊗ B+(T ) in
Eq. (11) indeed has a small, and in fact, essentially negligible
effect.

To obtain the desired distance bound we consider a
factorized initial state ρ0

SB(0) = |ψ〉〈ψ | ⊗ ρB, which evolves
to ρSB(T ) = U (T )ρ0

SB(0)U †(T ) when the system-bath in-
teraction is on (the “actual” state), or to ρ0

SB(T ) = IS ⊗
UB(T )ρ0

SB(0)IS ⊗ U
†
B(T ) when the interaction is off (the

“ideal” state). The unitary bath time-evolution operator with-
out coupling reads

UB(T ) := exp(−iT B0), (25)

where B0 is the pure-bath term in Eq. (2). The initial bath state
ρB is arbitrary (e.g., a mixed thermal equilibrium state), while
the initial system state is pure. Let us define the correlation
functions

bαβ(T ) := tr[Bα(T )ρBB
†
β(T )], (26)

where α,β ∈ {+,−}, and where all operators under the trace
act only on the bath Hilbert space. Explicit computation (see
Appendix C) then yields

D
[
ρS(T ),ρ0

S(T )
]

� 1
2 [|b++(T ) − 1| + |b+−(T )|
+ |b−+(T )| + |b−−(T )|]. (27)

We will show that b++ is very close to 1 while the other bαβ

quantities are small in the sense that they are bounded by
Eq. (15).

First note from the unitarity of Eq. (11) that

I = U †U

= IS ⊗ (B†
+B+ + B

†
−B−) + σz ⊗ (B†

−B+ + B
†
+B−), (28)

where we omitted the time dependence T to lighten the
notation. Hence we have

I = B
†
+B+ + B

†
−B−, (29a)

0 = B
†
+B− + B

†
−B+. (29b)

It follows that 〈i|B†
+B+|i〉 = ‖B+|i〉‖2 � 1 for all normalized

states |i〉 because 〈i|B−B
†
−|i〉 = ‖B−|i〉‖2 is nonnegative.

Thus in particular max‖|i〉‖=1 ‖B+|i〉‖ � 1, and we can con-
clude that

‖B+‖ � 1. (30)

Cyclic invariance of the trace in bαβ together with Eq. (29a)
and the normalization tr[ρB] = 1 immediately yields b++ +
b−− = 1, while the combination with Eq. (29b) implies b+− +
b−+ = 0. Hence Eq. (27) can be simplified to

D
[
ρS(T ),ρ0

S(T )
]

� |b+−(T )| + |b−−(T )|. (31)

To obtain a bound on the correlation functions bαβ we use
the following general correlation function inequality (for a
proof see Appendix D):

|tr[QρBQ′]| � ‖Q′‖‖Q‖, (32)

which holds for arbitrary bounded bath operators Q,Q′.
Applying Eq. (32) to Eq. (26) yields

|b−−(T )| � ‖B−(T )‖2, (33a)
|b+−(T )| � ‖B+(T )‖‖B−(T )‖ (33b)

� ‖B−(T )‖, (33c)

where in the last inequality we used Eq. (30).
Summarizing, together with Eqs. (15) and (31) we have

obtained the following rigorous upper bound for the trace-
norm distance

D
[
ρS(T ),ρ0

S(T )
]

� min
[
1,�N (η,ε) + �2

N (η,ε)
]
. (34)

This upper bound completes our main result. Since as we
saw in Eq. (21b) �N (η,ε) = pN+1(η)εN+1 + O(εN+2), the
appearance of the squared term in Eq. (34) [whose origin is
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|b−−(T )|] is not relevant in the sense that even in the presence
of this term the bound

D
[
ρS(T ),ρ0

S(T )
]

� pN+1(η)εN+1 + O(εN+2), (35)

holds. Hence the result of Eq. (21a) depicted in Figs. 1 and 2
provides the desired result. Ignoring the �2

N term in Eq. (34),
we note that Figs. 1 and 2 also reveal the limitations of our
bound when ε or η are too large for a given value of N : For any
pair of states it is always the case that D � 1, so that as soon as
�N = 1 the bound no longer provides any useful information.

Note further that the results shown in Fig. 1 are qualitatively
similar to the results obtained for the analytically solvable
spin-boson model for pure dephasing [7]. Heuristically, the
necessary identification is J0 = ωD where ωD is the hard cutoff
of the spectral function and η ∝ α where α is the dimensionless
coupling constant for Ohmic noise. We stress that the advan-
tage of Eq. (34) compared to the analytically exact results in
Ref. [7] is that it holds rigorously for a large class of pure
dephasing models, namely those of bounded Hamiltonians
which comprise the experimentally relevant class of spin baths.

VI. ANALYSIS FOR FINITE MINIMUM PULSE INTERVAL

So far we have essentially treated the total time T and
the number of pulses N as independent parameters. This is
possible when there is no lower limit on the pulse intervals.
However, in reality this is never the case and in this section we
analyze what happens when there is such a lower limit. Note
that it follows from Eq. (1) that the smallest pulse interval
is the first: t1 = T sin2[π/(2N + 2)]. Let us assume that t1 is
fixed, so that, given t1 and N , the total time is

T (N ) = t1q(N ), (36a)

q(N ) := csc2

(
π

2N + 2

)
. (36b)

For large N we can expand the csc2 function to first order
in its small argument, yielding

q(N ) =
(

2N + 2

π

)2

+ 1

3
+ O(N−2), (37)

which shows how the total time grows as a function of N at
fixed minimum pulse interval t1. Along with η, the relevant
dimensionless parameter is now

ε1 := J0t1, (38)

instead of ε = q(N )ε1. We can then rewrite the bounding
function (21a) in terms of these quantities as

�N (η,ε1) =
∞∑

n=N+1

pn(η)qn(n)εn
1 . (39)

Considering now the large N limit of the first term in this sum,
we have

pN+1(η)qN+1(N + 1)εN+1
1 ≈ 1

2N !

(
2

π
N

)2N

[(1 + η)ε1]N

≈ (cN )N, (40)

where we kept only the leading order terms and neglected
all additive constants relative to N , and in Eq. (40) used
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FIG. 3. (Color online) The bounding function �N as a function
of ε1 = t1J0 (where t1 is the smallest pulse interval), at fixed values
of η. The number of pulses N ∈ {2,5,10,20} is varied from curve to
curve. In each panel the curves become steeper as N increases.

Stirling’s approximation n! ≈ (n/e)n. The constant c is
1
2 ( 2

π
)2e(1 + η)ε1. We thus see clearly that for fixed t1 it

becomes counterproductive to make N too large since no
matter how small c is, for large enough N the factor NN will
eventually dominate. This reflects the competition between
the gains due to higher-order pulse sequences and the losses
due to the increased coupling time to the qubit allotted to the
environment. Similar conclusions, delineating regimes where
increasingly long DD sequences become disadvantageous,
have been reported for periodic [19,21] and concatenated
[19,23,25] DD pulse sequences, as well as for the QDD
sequence [8].

These conclusions are further illustrated in Fig. 3, where
we plot the bound �N (η,ε1) by replacing ε with ε1q(N )
in Eq. (21a). This figure should be contrasted with Fig. 2.
The most notable change is that increasing N now no longer
uniformly improves performance. Whereas in Fig. 2 the curves
for different values of N all tend to converge at high values of
ε, in Fig. 3 a high N value results in a steeper slope, but also
moves the curve to the left. Thus, for a fixed value of ε1 it can
be advantageous to use a small value of N (e.g., for η = 0.01
and ε1 = 0.1 the N = 2 curve provides the tightest bound).

VII. CONCLUSION

We have derived rigorous performance bounds for the
UDD sequence protecting a qubit against pure dephasing.
The derivation is based on the existence of finite bounds
for the relevant parts of the Hamiltonian, captured in the
dimensionless parameters ε and η. Under this assumption
the bounds show rigorously that dephasing is suppressed to
leading order as (1/N !)[ε(1 + η)]N . We consider it a vital
step to know that irrespective of any details of the bath,
except for the existence of finite bounds, a large number N of
pulses is always advantageous at fixed T —at least under the
idealized assumption of perfect and instantaneous pulses. The
requirement of finite bounds is fulfilled for the experimentally
relevant class of spin baths such as the nuclear spins in quantum
dots [24].
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An immediate corollary of our results is that identical
bounds apply for the case of the UDD sequence protecting
a qubit against longitudinal relaxation. This is the case
when the uncontrolled Hamiltonian (2) is replaced by Hunc =
IS ⊗ HB + σ⊥ ⊗ B, and the UDD pulse sequence consists of
rotations about the spin-z axis. A practical implication is that
the bounds found here can be used to check numerical and
approximate calculations. Such calculations must obey our
mathematically rigorous bounds so that a testbed is provided.

Furthermore, a number of interesting generalizations and
extensions of our results readily suggest themselves. One
is to consider rigorous bounds for finite pulse-width UDD
sequences. It is already known how to construct such se-
quences with pulse-width errors which appear only to third
order in the value of the pulse width [26], but no rigorous
bounds have been found. Another important generalization,
as mentioned previously, is to the QDD sequence for general
decoherence [8,9]. We expect that techniques similar to the
ones we introduced here will apply to both of these open
problems. Yet another direction, which will require different
techniques, is to find rigorous UDD performance bounds for
unbounded baths, such as oscillator baths. It is likely that
a correlation function analysis similar to that performed in
Ref. [23] for periodic and concatenated DD sequences will
prove useful in this case.
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APPENDIX A: NORMS AND DISTANCES

A. Trace and partial trace

We deal only with linear trace-class bounded operators that
map between separable Hilbert spaces in this work. A Hilbert
space H is separable if and only if it admits a countable
orthonormal basis. A bounded linear operator A : H → H,
where H is separable, is said to be in the trace class if for
some (and hence all) orthonormal bases {|k〉}k of H the sum of
positive terms

∑
k〈k|

√
A†A|k〉 is finite. In this case, the sum∑

k〈k|A|k〉 is absolutely convergent and is independent of the
choice of the orthonormal basis. This value is called the trace
of A, denoted by tr(A). Whenever we use the symbol tr in this
work we mean the trace over the full Hilbert space the operator
the trace is taken over is acting on.

Now consider two separable Hilbert spaces H1 and H2 and
let A : H → H denote a linear trace-class bounded operator
acting on the tensor product Hilbert space H := H1 ⊗ H2. Let
{|ki〉}k denote an orthonormal basis for Hi , where i ∈ 1,2. The
partial trace operation over the first (second) Hilbert space
is a map from H to the second (first) Hilbert space, and
has the operational definition tri(A) := ∑

ki
〈ki |A|ki〉. When

A is decomposed in terms of the two orthonormal bases
as A = ∑

k1,k
′
1,l2,l

′
2
〈k1l2|A|k′

1l
′
2〉|k1l2〉〈k′

1l
′
2|, where |k1l2〉 :=

|k1〉 ⊗ |l2〉, and so on, the partial trace over H2 can be written
as tr2(A) = ∑

k1,k
′
1,l2

〈k1l2|A|k′
1l2〉|k1〉〈k′

1|. This makes it clear
that tr2(A) is an operator that acts on H1.

B. Supoperator norm and trace norm

We make frequent use of two matrix norms [27] in this
work. The first is the supoperator norm

‖A‖∞ := sup
‖|v〉‖=1

‖A|v〉‖ = sup
|v〉

√
〈v|A†A|v〉/

√
〈v|v〉. (A1)

The supoperator norm of A is the largest eigenvalue of |A| :=√
A†A (i.e., the largest singular value of A). Since we use

it often we denote ‖A‖∞ for simplicity by ‖A‖, and context
should make it clear whether we are taking the norm of an
operator or simply the Euclidean norm ‖|v〉‖ := √〈v|v〉 of a
vector |v〉. Note that if A is normal (A†A = AA†, it can be
unitarily diagonalized, so that A†A = V D†DV † where V is
unitary and D is the diagonal matrix of eigenvalues of A), the
largest singular value coincides with the largest absolute value
of the eigenvalues of A (i.e., ‖A‖ = sup‖|v〉‖=1 |〈v|A|v〉|).

The trace norm

‖A‖1 := tr
√

A†A, (A2)

is the sum of the eigenvalues of |A| (i.e., the sum of the singular
values of A). Therefore ‖A‖ � ‖A‖1. Both norms are unitarily
invariant (‖V AW‖ui = ‖A‖ui for any pair of unitaries V and
W ) and therefore submultiplicative (‖AB‖ui � ‖A‖ui‖B‖ui)
[27]. In this work we make frequent use of both properties.
In addition unitarily invariant norms are invariant under
Hermitian conjugation (i.e., ‖A‖ui = ‖A†‖ui). This follows
from the singular value decomposition: A = V �W †, where
V and W are unitaries and � is the diagonal matrix of singular
values of A. Since the singular values are all positive we have
A† = W�V † and hence ‖A†‖ui = ‖�‖ui = ‖A‖ui.

C. Trace-norm distance and fidelity

The trace-norm distance between two mixed states
described by the density operators ρ1 and ρ2 is defined as

D[ρ1,ρ2] := 1
2‖ρ1 − ρ2‖1. (A3)

It is bounded between 0 and 1, vanishes if and only if
ρ1 = ρ2, and is 1 if and only if ρ1 are ρ2 are orthogonal [i.e.,
tr(ρ1ρ2) = 0].

The trace-norm distance is a standard and useful measure of
distinguishability between states. The reason is this: Assume
that we perform a generalized measurement (POVM—positive
operator valued measurement) E with corresponding mea-
surement operators {Ei} satisfying the normalization condi-
tion

∑
i Ei = I . The measurement outcomes are described

by the the measurement probabilities pi = tr[ρ1Ei] and
qi = tr[ρ2Ei]. The Kolmogorov distance between the two
probability distributions produced by these measurements
is KE(p,q) = 1

2

∑
i |pi − qi |, and it can be shown that

D[ρ1,ρ2] = maxE KE (i.e., the trace-norm distance equals the
maximum over all possible generalized measurements of the
Kolmogorov distance between the probability distributions
resulting from measuring ρ1 and ρ2 [28]). The trace-norm
distance is related to the Uhlman fidelity

F [ρ1,ρ2] := ‖√ρ1
√

ρ2‖1 = tr
√√

ρ1ρ2
√

ρ1, (A4)

via
1 − D � F �

√
1 − D2, (A5)

so that one bounds the other [29].
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APPENDIX B: PROOF OF THE VANISHING
ORDERS IN UDD

The paper by Yang and Liu [10] sketched a proof of the
universality of UDD in the interaction picture. In this appendix
we provide the first comprehensive proof of the Yang-Liu
universality result. Our proof is done in the toggling frame
rather than the interaction picture.

We shall prove that all powers n � N vanish in the
expansion of the time-evolution operator in (III), which have
an odd number of σzBz in Q̂�α , thus also an odd number of fz in
F�α . This is equivalent to showing that the first N powers in T of
B−(T ) vanish (i.e., that dephasing occurs only in order T N+1

or higher). Henceforth we use the shorthand N̄ := N + 1.
The substitution s = sin2(θ/2) suggests itself based on the

UDD choice for the {δj } in (1) because it renders

f̃α(θ ) := fα(sin2(θ/2)), (B1)

particularly simple if the {δj } are chosen according to Eq. (1):

f̃z(θ ) = (−1)j , (B2)

holds for θ ∈ (jπ/N̄,(j + 1)π/N̄) with j ∈ {0, . . . ,N}. For
simplicity, we will omit the tilde on the functions fα from now
on because only the argument θ will appear henceforth.

Since f (θ ) enters the nested integrals only with an argument
in [0,π ] it does not matter what we assume about f (θ ) outside
the limits of these integral, and we release the constraint on
j , allowing j ∈ Z. The function fz(θ ) then becomes an odd
function with antiperiod π/N̄ . Thus its Fourier series

fz(θ ) =
∞∑

k=0

c2k+1 sin[(2k + 1)N̄θ ], (B3)

contains only harmonics sin(rN̄θ ) with r an odd integer. The
precise coefficients c2k+1 do not matter, a fact which can be
exploited for other purposes (e.g., to deal with pulses of finite
duration [26]).

Under the substitution s = sin2(θ/2) the infinitesimal ele-
ment ds becomes ds → 1

2 sin(θ ) dθ , converting (6b) into

F�α =
∫ π

0
sin(θn) dθnfαn

(θn)
∫ θn

0
sin(θn−1) dθn−1fαn−1 (θn−1)

. . .

∫ θ3

0
sin(θ2) dθ2fα2 (θ2)

∫ θ2

0
sin(θ1) dθ1fα1 (θ1),

(B4)

where we absorbed the 1/2 factors coming from the infinites-
imal elements into the coefficients c2k+1.

What happens if we perform the successive integrations in
Eq. (B4)? Replacing fz(θ ) by its Fourier series (B3) we deal
with integrands which are products of trigonometric functions.
The substitution gave rise to the factor sin θ . The Fourier series
gives rise to additional factors sin(roN̄θ ), where ro is an odd
integer. Recall the elementary trigonometric identities

sin a sin b = 1
2 [cos(a − b) − cos(a + b)], (B5a)

cos a sin b = 1
2 [sin(a + b) − sin(a − b)], (B5b)

cos a cos b = 1
2 [cos(a + b) + cos(a − b)]. (B5c)

Using these, the most general trigonometric factor to occur in
the course of the integrations in Eq. (B4) can be written as
either sin[(q + rN̄ )θ ] or cos[(q + rN̄)θ ] where r and q are
integers. Since we are only concerned with values of n such
that n < N̄ , the absolute value of q always remains below N̄ ,
so that the representation of the integer factor (q + rN̄) in the
arguments of the trigonometric functions is unique.

We now consider a complete set of four different cases
which can occur in the course of the evaluation of each F�α .
The first two cases are associated with the occurrence of
f0 = 1 in one or more of the nested integrals. Suppose for
concreteness that this happens in nested integral number j .
Then the factor sin(roN̄θj ) does not occur in this integral
since this factor arises exclusively due to the presence of
fz(θj ). The two cases are now distinguished by whether a
summand in the integrand of this j th integral, after a complete
expansion of trigonometric products excluding the sin(θj )
term, into sums using Eqs. (B5a) through (B5c), involves
the factor cos[(q + rN̄ )θ ] (whence we call the integrand
“cosine-type”) or the factor sin[(q + rN̄)θ ] (whence we call
the integrand “sine-type”). The third and fourth cases are
associated with the occurrence of fz in integrand number
j . Then the factor sin(roN̄θj ) does occur in this integrand,
and again we distinguish two cases according to the presence
of cos[(q + rN̄)θ ] (“cosine-type”) or sin[(q + rN̄ )θ ] (“sine-
type”) arising from a complete expansion of trigonometric
products excluding the sin(θj ) term and also the sin(roN̄θj )
term. Here then are the four cases in detail.

(i) Assume that one of the nested integrals contains f0 = 1
and the factor cos[(q + rN̄)θ ]. As we shall see in item (4)
below this case occurs when r is even. Then this integral
reads

2
∫

cos[(q + rN̄)θ ] sin(θ ) dθ

= cos[(−1 + q + rN̄)θ ]

−1 + q + rN̄
− cos[(1 + q + rN̄)θ ]

1 + q + rN̄
. (B6)

In writing Eq. (B6) we have assumed that the denominators
do not vanish. The denominators may in fact vanish because
r may be zero. When r = 0 the case |q| = 1 is special and
yields

2
∫

cos(±θ ) sin(θ ) dθ = −1

2
cos(2θ ). (B7)

The important point is that both Eqs. (B6) and (B7) have only
cosine terms on the right-hand side.

(ii) Assume that one of the nested integrals contains f0 = 1
and the factor sin[(q + rN̄)θ ]. As we shall see in item (4) this
case occurs when r is odd. Then this integral reads

2
∫

sin[(q + rN̄ )θ ] sin(θ ) dθ

= sin[(−1 + q + rN̄ )θ ]

−1 + q + rN̄
− sin[(1 + q + rN̄)θ ]

1 + q + rN̄
. (B8)

No denominator can vanish because, as we shall see in item
(2), |q| < N . The important point here is that Eq. (B8) has
only sine terms on the right-hand side.

(iii) Assume that one of the nested integrals contains fz and
the factor cos[(q + rN̄ )θ ]. As we shall see in item (4) this case
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occurs when r is even. Then this integral reads

4
∫

cos[(q + rN̄)θ ] sin(roN̄θ ) sin(θ ) dθ

= sin{[−1 + q + (r + ro)N̄]θ}
−1 + q + (r + ro)N̄

− sin{[1 + q + (r + ro)N̄]θ}
1 + q + (r + ro)N̄

− sin{[−1 + q + (r − ro)N̄ ]θ}
−1 + q + (r − ro)N̄

+ sin{[1 + q + (r − ro)N̄]θ}
1 + q + (r − ro)N̄

. (B9)

Since r ± ro is odd none of the denominators can vanish as long
as |q| < N . Again, the important point here is that Eq. (B9)
has only sine terms on the right-hand side.

(iv) Finally, assume that one of the nested integrals contains
fz and the factor sin[(q + rN̄)θ ]. As we shall see in item
(4) this case occurs when r is odd. Then this integral
reads

4
∫

sin[(q + rN̄)θ ] sin(roN̄θ ) sin(θ ) dθ

= cos{[−1 + q + (r − ro)N̄ ]θ}
−1 + q + (r − ro)N̄

− cos{[1 + q + (r − ro)N̄ ]θ}
1 + q + (r − ro)N̄

− cos{[−1 + q + (r + ro)N̄]θ}
−1 + q + (r + ro)N̄

+ cos{[1 + q + (r + ro)N̄ ]θ}
1 + q + (r + ro)N̄

. (B10)

In writing Eq. (B10) we have assumed that the denominators
do not vanish. A denominator can vanish only when |q| = 1,
which leads to the two special cases r = ±ro. In analyzing
these two cases we can assume without loss of generality that
q = 1 and r = ro. Otherwise we multiply the argument of the
first and/or the second sine-function in the integrand by −1.
This yields

4
∫

sin[(1 + rN̄)θ ] sin(rN̄θ ) sin(θ ) dθ

= −cos(2θ )

2
− cos(2rN̄θ )

2rN̄
+ cos[(2 + 2rN̄ )θ ]

2 + 2rN̄
. (B11)

The important point here is that in Eq. (B10) only cosine terms
appear on the right-hand side.

The number of possible terms proliferates in the course of
the successive integrations. Therefore, in the sequel we discuss
only the common features of the resulting summands. It is
always understood that sums with varying sets of q and r are
considered. We present a series of observations which leads
to the desired proof of the cancellation of the first N powers
in T of B−(T ). The key to doing so will be to show that after
integrating with an odd number of fz factors we always end
up with a sine-type integrand.

(1) Recall that we call an integrand summand “cosine-type”
or “sine-type” if after complete expansion of all trigonometric
products, excluding the sin(θ ) term arising from the change of

variables and of the fz term if it is there, the trigonometric
factor is cos[(q + rN̄)θ ] or sin[(q + rN̄)θ ], respectively.
Cases (i) and (iii) above are cosine-type, while cases (ii) and
(iv) are sine-type. It is clear that the first integrand in (B4) is
cosine-type with r = 0 and q = 0.

(2) We track which values of q may occur in each
integration. The first integrand in (B4) is either sin(θ1) or
sin(θ1) sin(rN̄θ1) (i.e., it has q = 0) so that this is our starting
point. It follows from Eqs. (B6) through (B11) that each
integration increments the possible maximum of |q| by unity.
The highest power in T studied is T N so that there are n � N

integrations. This implies that the final value qfinal before the
very last integration obeys |qfinal| < N .

(3) We track whether even or odd values of r occur at
each integration. As mentioned in item (1), r = 0 holds in
the first integration, so that our starting point is an even
value. Each integration involving f0 leaves r unchanged. Each
integration involving fz adds or subtracts ro, so that r changes
from even to odd or vice versa. If we combine this with
the results of cases (i) through (iv) [Eqs. (B6)–(B11) this
reveals the input-output table in Eq. (B12)]. The integrands
(i.e., the inputs) are indicated by the case number in the table
entries, while the values of the integrals (i.e., the outputs)
are the types indicated in corresponding table entries. Also
indicated is the transformation undergone by r from input to
output.

× cosine-type sine-type

f0 case (i): case (ii):
cosine-type, r → r sine-type, r → r

fz case (iii): case (iv):
sine-type, r → r ± ro cosine-type, r → r ± ro.

(B12)

(4) Consider the output of the table as the input into the next
integration and focus on the fz row. Note that cases (iii) and (iv)
alternate along with a change in parity of r (i.e., cosine-type
changes into sine-type and vice versa) while odd r changes to
even r and vice versa. Therefore if we start with a cosine-type
integrand and perform an odd number of fz integrations, we
will end up with a sine-type output and a change in parity
of r . For the same reason since the first integrand in (B4)
is cosine-type with even r , and case (i) can only be arrived
at after an even number of fz integrations (the number of
f0 integrations is arbitrary), case (i) always involves even r .
Repeating this reasoning explains why case (iii) also has even
r , while cases (ii) and (iv) have odd r .

(5) Dephasing results only from the terms which comprise
an odd number of fz integrations. Considering that as noted in
item (1) we start from a cosine-type integral and with r = 0,
it follows from item (4) that the last integration provides a
sine-type result. This integral can therefore be written as a
sum over terms all of which are of the form

sin[(qfinal + 1 + rfinalN̄ )θ ]
∣∣π
0 = 0. (B13)

Recall that the operator B− in Eq. (11) comprises all the
terms with odd number of σz ⊗ Bz. Hence we have proven
that the first N powers in T of B−(T ) vanish [i.e., B−(T ) =
O(T N+1)]. This is what we set out to show and concludes the
derivation.
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A remark concerning the result of Yang and Liu obtained
in the interaction picture [10] is in order. They showed that
exp(iT B0)U (T ) comprises only odd powers in σz which are
of order T N+1 or higher. Since exp(±iT B0) does not contain
any term proportional to σz the Yang-Liu result implies our
result and vice versa.

For time-dependent Hamiltonian, the proof in the interac-
tion picture [9] is more convenient because powers in time
occur anyway. Therefore we stress that the statement that only
odd powers in σz of order T N+1 or higher occur is independent
of the choice of reference frame (i.e., the description in the
interaction picture or in the toggling frame).

APPENDIX C: DISTANCE BOUND CALCULATION

We prove the trace-norm distance bound Eq. (27)

2D
[
ρS(T ),ρ0

S(T )
]

= ∥∥trB
[
ρSB(T ) − ρ0

SB(T )
]∥∥

1

= ∥∥trB
[
U (T )ρ0

SB(0)U †(T )
] − trB

[
ρ0

SB(0)
]∥∥

1

= ‖trB{[I ⊗ B+(T ) + σz ⊗ B−(T )](|ψ〉〈ψ |
⊗ ρB[I ⊗ B

†
+(T ) + σz ⊗ B

†
−(T )]} − |ψ〉〈ψ | ‖1

= ‖[b++(T ) − 1]|ψ〉〈ψ | + b+−(T )|ψ〉〈ψ |σz

+ b−+(T )σz|ψ〉〈ψ | + b−−(T )σz|ψ〉〈ψ |σz‖1. (C1)

We used the definition of bαβ(T ) [Eq. (26)] in the last
equality. Next, we use the triangle inequality, and finally
the unitary invariance of the trace norm along with the

normalization of |ψ〉
2D

[
ρS(T ),ρ0

S(T )
]

� |b++(T ) − 1| ‖|ψ〉〈ψ | ‖1 + |b+−(T )| ‖|ψ〉〈ψ |σz‖1

+ |b−+(T )| ‖σz|ψ〉〈ψ | ‖1 + |b−−(T )| ‖σz|ψ〉〈ψ |σz‖1

= |b++(T ) − 1| + |b+−(T )| + |b−+(T )| + |b−−(T )|.
(C2)

APPENDIX D: CORRELATION FUNCTION INEQUALITY

We prove the correlation function inequality (32). Consider
the spectral decomposition of the bath density operator: ρB =∑

i λi |i〉〈i|, where {|i〉} are normalized eigenstates, λi � 0
are the eigenvalues, and

∑
i λi = 1. Defining |vi〉 := Q|i〉 and

|v′
i〉 := (Q′)†|i〉, we have in this eigenbasis of ρB

|tr[QρBQ′]| = |tr[Q′QρB]| =
∣∣∣∣∑

i

〈i|Q′Q|i〉λi

∣∣∣∣
=

∣∣∣∣∑
i

〈v′
i |vi〉λi

∣∣∣∣ �
∑

i

|〈v′
i |vi〉|λi

�
∑

i

‖|v′
i〉‖‖|vi〉‖λi �

∑
i

‖Q′‖‖Q‖λi

= ‖Q′‖‖Q‖, (D1)

where we used the triangle inequality, followed by the Cauchy-
Schwartz inequality, and then the bounds ‖|vi〉‖ = ‖Q|i〉‖ �
‖Q‖ and ‖|v′

i〉‖ = ‖(Q′)†|i〉‖ � ‖(Q′)†‖ = ‖Q′‖, which fol-
low from the definition and properties of the supoperator norm
(see Appendix A).
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