Quantum computer implementations

“Modeling low- and high-frequency noise in transmon qubits with resource-efficient measurement”, PRX Quantum 5, 010320 (2024), by V. Tripathi, H. Chen, E. M. Levenson-Falk and D. A. Lidar [link]

“Optimizing for periodicity: a model-independent approach to flux crosstalk calibration for superconducting circuits”, Quantum Science and Technology 9 025007 (2024), by X. Dai, R. Trappen, R. Yang, S. M. Disseler, J. I. Basham, J. Gibson, A. J. Melville, B. M. Niedzielski, R. Das, D. K. Kim, J. L. Yoder, S. J. Weber, C. F. Hirjibehedin, D. A. Lidar, A. Lupascu. [link]

“Quantum adiabatic theorem for unbounded Hamiltonians with a cutoff and its application to superconducting circuits”, Phil. Trans. R. Soc. 381: 20210407 (2023), by E. Mozgunov and D. A. Lidar [link]

“Suppression of crosstalk in superconducting qubits using dynamical decoupling”, Phys. Rev. Applied 18, 024068 (2022), by V. Tripathi, H. Chen, M. Khezri, Ka-Wa Yip, E. M. Levenson-Falk, D. A. Lidar [link]

“Demonstration of long-range correlations via susceptibility measurements in a one-dimensional superconducting Josephson spin chain”, npj Quantum Information 8, 85 (2021), by D. M. Tennant, X. Dai, A. J. Martinez, R. Trappen, D. Melanson, M. A. Yurtalan, Y. Tang, S. Bedkihal, R. Yang, S. Novikov, J. A. Grover, S. M. Disseler, J. I. Basham, R. Das, D. K. Kim, A. J. Melville, B. M. Niedzielski, S. J. Weber, J. L. Yoder, A. J. Kerman, E. Mozgunov, D. A. Lidar & A. Lupascu [link]

“Customized quantum annealing schedules”, Phys. Rev. Applied 17, 044005 (2022), by M. Khezri, X. Dai, R. Yang, T. Albash, A. Lupascu, D. A. Lidar [link]

“Calibration of flux crosstalk in large-scale flux-tunable superconducting quantum circuits”, PRX Quantum 2, 040313 (2021), by X. Dai, D. M. Tennant, R. Trappen, A. J. Martinez, D. Melanson, M. A. Yurtalan, Y. Tang, S. Novikov, J. A. Grover, S. M. Disseler, J. I. Basham, R. Das, D. K. Kim, A. J. Melville, B. M. Niedzielski, S. J. Weber, J. L. Yoder, D. A. Lidar, and A. Lupascu [link]

“Low overhead universality and quantum supremacy using only Z-control”, Phys. Rev. Research 3, 033207 (2021), by B. Barch, R. Mohseninia and D. A. Lidar [link]

“Anneal-path correction in flux qubits”, npj Quantum Information 7, 36 (2021), by M. Khezri, J. Grover, J. Basham, S. Disseler, H. Chen, S. Novikov, K. Zick, D. A. Lidar [link]

“Fast, Lifetime-Preserving Readout for High-Coherence Quantum Annealers”, PRX Quantum 1, 020314, by J. A. Grover, J. I. Basham, A. Marakov, S. M. Disseler, R. T. Hinkey, M. Khalil, Z. A. Stegen, T. Chamberlin, W. DeGottardi, D. J. Clarke, J. R. Medford, J. D. Strand, M. Stoutimore, S. Novikov, D. G. Ferguson, D. A. Lidar, K. M. Zick, A. J. Przybysz [link]

“Exploring More-Coherent Quantum Annealing”, 2018 IEEE International Conference on Rebooting Computing (ICRC), 1-7 (2018), by S. Novikov, R. Hinkey, S. Disseler, J. I. Basham, T. Albash, A. Risinger, D. Ferguson, D. A. Lidar and K. M. Zick [link]

“Test-driving 1000 qubits”, Quantum Science & Technology 3, 030501 (2018). Special issue on “What would you do with 1000 qubits” , by J. Job and D. A. Lidar [link]

“Quantum trajectories for time-dependent adiabatic master equations”, Phys. Rev. A 97, 022116 (2018), by K. W. Yip, T. Albash, D. A. Lidar [link]

“Non-stoquastic Hamiltonians in quantum annealing via geometric phases”, Nature Quant. Info. 3, 38 (2017), by W. Vinci and D. A. Lidar [link]

“Simulated Quantum Annealing with Two All-to-All Connectivity Schemes”, Phys. Rev. A 94, 022327 (2016), by T. Albash, W. Vinci, and D. A. Lidar [link]

“Reexamination of the evidence for entanglement in the D-Wave processor”, Phys. Rev. A 92, 062328 (2015) , by T. Albash, I. Hen, F. M. Spedalieri, D. A. Lidar [link]

“Consistency tests of classical and quantum models for a quantum annealer”, Phys. Rev. A 91, 042314 (2015), by T. Albash, W. Vinci, A. Mishra, P.A. Warburton, and D.A. Lidar [link]

“Reexamining classical and quantum models for the D-Wave One processor”, The European Physics Journal, Special Topics 224, 111 (special issue on quantum annealing) (2015), by T. Albash, T. Ronnow, M. Troyer, D.A. Lidar [link]

“Defining and Detecting Quantum Speedup”, Science 345, 420 (2014), by T.F. Ronnow, Z. Wang, J. Job, S.V. Isakov, D. Wecker, J.M. Martinis, D.A. Lidar, and M. Troyer.[link]

“MAX 2-SAT with up to 108 Qubits”, New J. Phys. 16, 045006 (2014), by S. Santra, G. Quiroz, G. Ver Steeg, and D.A. Lidar. [link]

“Error Corrected Quantum Annealing with Hundreds of Qubits”, Nature Communications 5, 3243 (2014), by K.P. Pudenz, T. Albash, and D.A. Lidar. [link][sup-mat]

“Evidence for Quantum Annealing with More Than One Hundred Qubits”, Nature Physics 10, 218 (2014), by S. Boixo, T. Ronnow, S. Isakov, Z. Wang, D. Wecker, D.A. Lidar, J. Martinis, and M. Troyer. [link][sup-mat]

“Adiabatic Quantum Optimization with the Wrong Hamiltonian”, Phys. Rev. A 88, 062314 (2013), by K.C. Young, R. Blume-Kohout, D.A. Lidar. [link]

“The Manipulation of Massive Ro-vibronic Superpositions Using Time-Frequency-Resolved Coherent Anti-Stokes Raman Scattering (TFRCARS): from Quantum Control to Quantum Computing”, Chemical Physics 266, 323 (2001), R. Zadoyan, D. Kohen, D.A. Lidar, and V.A. Apkarian [pdf]

“An Implementation of the Deutsch-Jozsa Algorithm on Molecular Vibronic Coherences Through Four-Wave Mixing: a Theoretical Study”, Chem. Phys. Lett. 360, 459 (2002), by Z. Bihary, D.R. Glenn, D.A. Lidar, and V.A. Apkarian [pdf]

“Comment on “Quantum Waveguide Array Generator for Performing Fourier Transforms: Alternate Route to Quantum Computing’’ [Appl. Phys. Lett. 79, 2823 (2001)]”, Appl. Phys. Lett. 80, 2419 (2002), by D.A. Lidar [pdf]

“Decoherence-Protected Quantum Gates for a Hybrid Solid-State Spin Register”, Nature 484, 82 (2012), by T. van der Sar, Z.H. Wang, M.S. Blok, H. Bernien, T.H. Taminiau, D.M. Toyli, D.A. Lidar, D.D. Awschalom, R. Hanson, and V.V. Dobrovitski [link]

“Dressed Qubits”, Phys. Rev. Lett. 91, 097904 (2003), by L.-A. Wu and D.A. Lidar [pdf]

“Efficient Multiqubit Entanglement via a Spin-Bus”, Phys. Rev. Lett. 98, 230503 (2007), by M. Friesen, A. Biswas, X. Hu, D.A. Lidar [link]

“Encoded Recoupling and Decoupling: An Alternative to Quantum Error-Correcting Codes Applied to Trapped-Ion Quantum Computation”, Phys. Rev. A 67, 032313 (2003), by D.A. Lidar and L.-A. Wu [pdf]

“Encoding a Qubit into Multilevel Subspaces”, New J. Phys. 8, 35 (2006), by M. Grace, C. Brif, H. Rabitz, I. Walmsley, R. Kosut, and D.A. Lidar [link]

“Exchange Interaction Between Three and Four Coupled Quantum Dots: Theory and Applications to Quantum Computing”, Phys. Rev. B 70, 115310 (2004), by A. Mizel and D. Lidar [pdf]

“Experimental Signature of Programmable Quantum Annealing”, Nature Communications 4, 2067 (2013), by S. Boixo, T. Albash, F. Spedalieri, N. Chancellor, D.A. Lidar. [link]

“Exponentially Localized Magnetic Fields for Single-Spin Quantum Logic Gates”, J. Appl. Phys. 96, 754 (2004), by D.A. Lidar and J.H. Thywissen [pdf]

“Fault-Tolerant Quantum Computation via Exchange Interactions”, Phys. Rev. Lett. 94, 040507 (2005), by M. Mohseni and D.A. Lidar [pdf]

“Few-Body Spin Couplings and Their Implications for Universal Quantum Computation”, J. Phys. Cond. Mat. 18, S721 (2006), special issue on quantum computing in solid state, by R. Woodworth, A. Mizel, and D.A. Lidar [link]

“No-Go Theorem for Passive Single-rail Linear Optical Quantum Computing”, Scientific Reports 3, 1394 (2013), by L. Wu, P. Walther, and D.A. Lidar. [link]

“One-Spin Quantum Logic Gates from Exchange Interactions and a Global Magnetic Field”, Phys. Rev. Lett. 93, 030501 (2004), by L.-A. Wu, D. Lidar, and M. Friesen [pdf]

“Power of Anisotropic Exchange Interactions: Universality and Efficient Codes for Quantum Computing”, Phys. Rev. A 65, 042318 (2002), by L.-A. Wu and D.A. Lidar [pdf]

“Quantum Codes for Simplifying Design and Suppressing Decoherence in Superconducting Phase-Qubits”, Quant. Info. Proc. 1, 155 (2002), by D.A. Lidar, L.-A. Wu, and A. Blais [pdf]

“Quantum Computing with Quantum Dots on Quantum Linear Supports”, Phys. Rev. A 65, 012307 (2002), by K.R. Brown, D.A. Lidar, and K.B. Whaley [pdf]

“Quantum Logic Gates in Iodine Vapor Using Time-Frequency Resolved Coherent Anti-Stokes Raman Scattering: A Theoretical Study”, Mol. Phys. 104, 1249 (2006), special issue in honor of Robert Harris, by D.R. Glenn, D.A. Lidar, and V.A. Apkarian [link]

“Reducing Constraints on Quantum Computer Design by Encoded Selective Recoupling”, Phys. Rev. Lett. 88, 017905 (2002), by D.A. Lidar and L.-A. Wu [pdf]

“The Spin Density Matrix of a two-electron system. I : General Theory and Exact Master Equations”, Phys. Rev. B 77, 045319 (2008), by S.D. Kunikeev and D.A. Lidar [link]

“The Spin Density Matrix of a two-electron system. II : Application to a System of Two Quantum Dots”, Phys. Rev. B 77, 045320 (2008), by S.D. Kunikeev and D.A. Lidar [link]

“Three and Four-Body Interactions in Spin-Based Quantum Computers”, Phys. Rev. Lett. 92, 077903 (2004), by A. Mizel and D.A. Lidar [pdf]

“Universal Quantum Computation Using Exchange Interactions and Measurements of Single- and Two-Spin Observables”, Phys. Rev. A Rapid Comm. 67, 050303 (2003), by L.-A. Wu and D.A. Lidar [pdf]

“Universal Quantum Logic from Zeeman and Anisotropic Exchange Interactions”, Phys. Rev. A 66, 062314 (2002), by L.-A. Wu and D.A. Lidar [pdf]