Quantum error correction

“Better-than-classical Grover search via quantum error detection and suppression”, npj Quantum Information volume 10, 23 (2024), by B. Pokharel and D. A. Lidar. [link]

“Error budget of parametric resonance entangling gate with a tunable coupler”, [2402.04238] by E. A. Sete, V. Tripathi, J. A. Valery, D. A. Lidar, J. Y. Mutus.

“Demonstration of Algorithmic Quantum Speedup for an Abelian Hidden Subgroup Problem”, [2401.07934] by P. Singkanipa, V. Kasatkin, Z. Zhou, G. Quiroz, D.A. Lidar.

“Dynamical decoupling for superconducting qubits: A performance survey”, Phys. Rev. Applied 20, 064027, (2023) by N. Ezzell, B. Pokharel, L. Tewala, G. Quiroz and D. A. Lidar [link]

“No ((n,K,d<127)) Code Can Violate the Quantum Hamming Bound”, IEEE BITS the Information Theory Magazine, 1-6 (2023), by E. Dallas, F. Andreadakis and D. A. Lidar [link]

“Limitations of error corrected quantum annealing in improving the performance of Boltzmann machines”, Quantum Science and Technology 5, 045010 (2020), by R. Li, T. Albash and D. A. Lidar [link]

“Arbitrary-Time Error Suppression for Markovian Adiabatic Quantum Computing Using Stabilizer Subspace Codes”, Phys. Rev. A 100, 022326 (2019), by D. A. Lidar [link]

“Analog Errors in Quantum Annealing: Doom and Hope” npj Quantum Information 5, 107 (2019), by A. Pearson, A. Mishra, I. Hen and D. A. Lidar [link]

“Nested Quantum Annealing Correction at Finite Temperature: p-spin models”, Phys. Rev. A 99, 062307 (2019), by S. Matsuura, H. Nishimori, W. Vinci, D. A. Lidar [link]

“Demonstration of fidelity improvement using dynamical decoupling with superconducting qubits”, Phys. Rev. Lett. 121, 220502 (2018), by B. Pokharel, N. Anand, B Fortman and D. A. Lidar [link]

“Error Reduction in Quantum Annealing using Boundary Cancellation: Only the End Matters”, Phys. Rev. A 98, 022315 (2018) , by L. Campos Venuti and D. A. Lidar [link]

“Reverse annealing for the fully connected p-spin model”, Phys. Rev. A 98, 022314 (2018), by M. Ohkuwa, H. Nishimori and D. A. Lidar [link]

“Test-driving 1000 qubits”, Quantum Science & Technology 3, 030501 (2018). Special issue on “What would you do with 1000 qubits” , by J. Job and D. A. Lidar [link]

“Scalable effective temperature reduction for quantum annealers via nested quantum annealing correction”, Phys. Rev. A 97, 022308 (2018), by W. Vinci and D. A. Lidar [link]

“Suppression of effective noise in Hamiltonian simulations”, Phys. Rev. A 96, 052328 (2017) , by M. Marvian, T. Brun and D. A. Lidar [link]

“Error Suppression for Hamiltonian Quantum Computing in Markovian Environments”, Phys. Rev. A 95, 032302 (2017), by M. Marvian and D. A. Lidar [link]

“Quantum annealing correction at finite temperature: ferromagnetic p-spin models”, Phys. Rev. A 95, 022308 (2017), by S. Matsuura, H. Nishimori, W. Vinci, T. Albash, and D. A. Lidar [link]

“Error suppression for Hamiltonian-based quantum computation using subsystem codes”, Phys. Rev. Lett. 118, 030504 (2017), by M. Marvian and D. A. Lidar [link]

“Eigenstate Tracking in Open Quantum Systems”, Phys. Rev. A 94, 042131 (2016), by J. Jing, M. S. Sarandy, D. A. Lidar, D. W. Luo, and L. A. Wu [link]

“Nested Quantum Annealing Correction”, Nature Quant. Info. 2, 16017 (2016), by W. Vinci, T. Albash, and D. A. Lidar [link]

“Mean Field Analysis of Quantum Annealing Correction”, Phys. Rev. Lett. 116, 220501 (2016), by S. Matsuura, H. Nishimori, T. Albash, D.A. Lidar [link]

“Performance of two different quantum annealing correction codes”, Quant. Info. Proc. 15, 2, pp. 609 (2016), by A. Mishra, T. Albash and D.A. Lidar [link]

“Quantum Annealing Correction with Minor Embedding”,Phys. Rev. A 92, 042310 (2015), by W. Vinci, T. Albash, G. Paz-Silva, I. Hen, and D. A. Lidar [link]

“Quantum Annealing Correction for Random Ising Problems”, Phys. Rev. A 91, 042302 (2015), by K. Pudenz, T. Albash, and D. Lidar. [link]

“Quantum error suppression with commuting Hamiltonians: Two-local is too local”, Phys. Rev. Lett. 113, 260504 (2014), by I. Marvian and D.A. Lidar [link]

“Error Corrected Quantum Annealing with Hundreds of Qubits”, Nature Communications 5, 3243 (2014), by K.P. Pudenz, T. Albash, and D.A. Lidar. [link][sup-mat]

“Adiabatic Quantum Optimization with the Wrong Hamiltonian”, Phys. Rev. A 88, 062314 (2013), by K.C. Young, R. Blume-Kohout, D.A. Lidar. [link]

“Quantum Error Correction”, by D.A. Lidar and T.A. Brun (editors), Cambridge University Press (2013).

attachment

 

List of typos appears below. Please submit any corrections you spot to lidar[at]usc.edu

p.23, equation (1.86): \sqrt{1-F} should be \sqrt{1-F^2}.

“Optimally Combining Dynamical Decoupling and Quantum Error Correction”, Scientific Reports 3, 1530 (2013), by G.A. Paz Silva and D.A. Lidar. [link]

“Combining Dynamical Decoupling with Fault-Tolerant Quantum Computation”, Phys. Rev. A 84, 012305 (2011), by H.K. Ng, D.A. Lidar, and J. Preskill. [link]

“Optimized Entanglement-Assisted Quantum Error Correction”, Phys. Rev. A 82, 042321 (2010), by S. Taghavi, T.A. Brun, and D.A. Lidar. [link]

“Channel-Optimized Quantum Error Correction”, IEEE Trans. on Info. Theory 56, 1461 (2010), by S. Taghavi, R.L. Kosut, and D.A. Lidar. [link]

“Scheme for Fault-Tolerant Holonomic Computation on Stabilizer Codes”, Phys. Rev. A 80, 022325 (2009), by O. Oreshkov, T.A. Brun, and D.A. Lidar [link]

“Quantum Error Correction via Convex Optimization”, Quant. Info. Processing 8, 441 (2009), by R.L. Kosut and D.A. Lidar [link]

“Maps for General Open Quantum Systems and a Theory of Linear Quantum Error Correction”, Phys. Rev. A 80, 012309 (2009), by A. Shabani and D.A. Lidar [link]

“Fault-Tolerant Holonomic Quantum Computation”, Phys. Rev. Lett. 102, 070502 (2009), by O. Oreshkov, T.A. Brun, and D.A. Lidar [link]

“Operator Quantum Error Correction for Continuous Dynamics”,  Phys. Rev. A 78, 022333 (2008), by O. Oreshkov, D.A. Lidar, and T.A. Brun [link]

“Encoding One Logical Qubit Into Six Physical Qubits”, Phys. Rev. A 78, 012337 (2008), by B. Shaw, M.M. Wilde, O. Oreshkov, I. Kremsky, and D.A. Lidar [link]

“Towards Fault Tolerant Adiabatic Quantum Computation”, Phys. Rev. Lett. 100, 160506 (2008), by D.A. Lidar [link]

“Robust Quantum Error Correction via Convex Optimization”, Phys. Rev. Lett. 100, 020502 (2008), by R.L. Kosut, A. Shabani, and D.A. Lidar [link]

“Internal Consistency of Fault-Tolerant Quantum Error Correction in Light of Rigorous Derivations of the Quantum Markovian Limit”, Phys. Rev. A 73, 052311 (2006), by R. Alicki, D.A Lidar, and P. Zanardi [link]

“Fault-Tolerant Quantum Computation via Exchange Interactions”, Phys. Rev. Lett. 94, 040507 (2005), by M. Mohseni and D.A. Lidar [pdf]

“Dreams Versus Reality: Plenary Debate Session on Quantum Computing”, Fluctuation and Noise Letters, 08, No. 02, pp.C27-C31 (2003), by D. Abbott, C. Doering, C. Caves, D. Lidar, H. Brandt, A. Hamilton, D. Ferry, J. Gea-Banacloche, S. Bezrukov, and L. Kish. [pdf]

“Quantum Computing in the Presence of Spontaneous Emission by a Combined Dynamical Decoupling and Quantum-Error-Correction Strategy”, Phys. Rev. A 68, 022322 (2003), by K. Khodjasteh and D.A. Lidar. [pdf] ;  “Erratum: Quantum computing in the presence of spontaneous emission by a combined dynamical decoupling and quantum-error-correction strategy”, Phys. Rev. A 72, 029905 (2005) [link]

“Combined Error Correction Techniques for Quantum Computing Architectures”, J. Mod. Optics 50, 1285 (2003), by M.S. Byrd and D.A. Lidar [pdf]

“Universal Fault-Tolerant Quantum Computation in the Presence of Spontaneous Emission and Collective Dephasing”, Phys. Rev. Lett. 89, 197904 (2002), by K. Khodjasteh and D.A. Lidar [pdf] ;  “Erratum: Universal Fault-Tolerant Quantum Computation in the Presence of Spontaneous Emission and Collective Dephasing“, Phys. Rev. Lett. 95, 099902 (2005) [link]

“Quantum Codes for Simplifying Design and Suppressing Decoherence in Superconducting Phase-Qubits”, Quant. Info. Proc. 1, 155 (2002), by D.A. Lidar, L.-A. Wu, and A. Blais [pdf]

“Decoherence-Free Subspaces for Multiple-Qubit Errors: (I) Characterization”, Phys. Rev. A 63, 022306 (2001), by D.A. Lidar, D. Bacon, J. Kempe, and K.B. Whaley [pdf]

“Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation”, Phys. Rev. A 63, 022307 (2001), D.A. Lidar, D. Bacon, J. Kempe, and K.B. Whaley [pdf]

“Protecting Quantum Information Encoded in Decoherence-Free States Against Exchange Errors”, Phys. Rev. A 61, 052307 (2000), by D.A. Lidar, D. Bacon, J. Kempe, and K.B. Whaley [pdf]

“Universal Fault-Tolerant Quantum Computation on Decoherence-Free Subspaces”, Phys. Rev. Lett. 85, 1758 (2000), by D. Bacon , J. Kempe, D.A. Lidar, and K.B. Whaley [pdf]

“Concatenating Decoherence-Free Subspaces with Quantum Error Correcting Codes”, Phys. Rev. Lett. 82, 4556 (1999), by D.A. Lidar, D. Bacon, and K.B. Whaley [pdf]

“Robustness of Decoherence-Free Subspaces for Quantum Computation”, Phys. Rev. A 60, 1944 (1999), by D. Bacon, D.A. Lidar, and K.B. Whaley [pdf]

“Decoherence-Free Subspaces for Quantum Computation”, Phys. Rev. Lett. 81, 2594 (1998), by D.A. Lidar, I.L. Chuang, and K.B. Whaley [pdf]