Quantum error correction

“Limitations of error corrected quantum annealing in improving the performance of Boltzmann machines”, Quantum Science and Technology 5, 045010 (2020), by R. Li, T. Albash and D. A. Lidar [link]

“Arbitrary-Time Error Suppression for Markovian Adiabatic Quantum Computing Using Stabilizer Subspace Codes”, Phys. Rev. A 100, 022326 (2019), by D. A. Lidar [link]

“Analog Errors in Quantum Annealing: Doom and Hope” npj Quantum Information 5, 107 (2019), by A. Pearson, A. Mishra, I. Hen and D. A. Lidar [link]

“Nested Quantum Annealing Correction at Finite Temperature: p-spin models”, Phys. Rev. A 99, 062307 (2019), by S. Matsuura, H. Nishimori, W. Vinci, D. A. Lidar [link]

“Demonstration of fidelity improvement using dynamical decoupling with superconducting qubits”, Phys. Rev. Lett. 121, 220502 (2018), by B. Pokharel, N. Anand, B Fortman and D. A. Lidar [link]

“Error Reduction in Quantum Annealing using Boundary Cancellation: Only the End Matters”, Phys. Rev. A 98, 022315 (2018) , by L. Campos Venuti and D. A. Lidar [link]

“Reverse annealing for the fully connected p-spin model”, Phys. Rev. A 98, 022314 (2018), by M. Ohkuwa, H. Nishimori and D. A. Lidar [link]

“Test-driving 1000 qubits”, Quantum Science & Technology 3, 030501 (2018). Special issue on “What would you do with 1000 qubits” , by J. Job and D. A. Lidar [link]

“Scalable effective temperature reduction for quantum annealers via nested quantum annealing correction”, Phys. Rev. A 97, 022308 (2018), by W. Vinci and D. A. Lidar [link]

“Suppression of effective noise in Hamiltonian simulations”, Phys. Rev. A 96, 052328 (2017) , by M. Marvian, T. Brun and D. A. Lidar [link]

“Error Suppression for Hamiltonian Quantum Computing in Markovian Environments”, Phys. Rev. A 95, 032302 (2017), by M. Marvian and D. A. Lidar [link]

“Quantum annealing correction at finite temperature: ferromagnetic p-spin models”, Phys. Rev. A 95, 022308 (2017), by S. Matsuura, H. Nishimori, W. Vinci, T. Albash, and D. A. Lidar [link]

“Error suppression for Hamiltonian-based quantum computation using subsystem codes”, Phys. Rev. Lett. 118, 030504 (2017), by M. Marvian and D. A. Lidar [link]

“Eigenstate Tracking in Open Quantum Systems”, Phys. Rev. A 94, 042131 (2016), by J. Jing, M. S. Sarandy, D. A. Lidar, D. W. Luo, and L. A. Wu [link]

“Nested Quantum Annealing Correction”, Nature Quant. Info. 2, 16017 (2016), by W. Vinci, T. Albash, and D. A. Lidar [link]

“Mean Field Analysis of Quantum Annealing Correction”, Phys. Rev. Lett. 116, 220501 (2016), by S. Matsuura, H. Nishimori, T. Albash, D.A. Lidar [link]

“Performance of two different quantum annealing correction codes”, Quant. Info. Proc. 15, 2, pp. 609 (2016), by A. Mishra, T. Albash and D.A. Lidar [link]

“Quantum Annealing Correction with Minor Embedding”,Phys. Rev. A 92, 042310 (2015), by W. Vinci, T. Albash, G. Paz-Silva, I. Hen, and D. A. Lidar [link]

“Quantum Annealing Correction for Random Ising Problems”, Phys. Rev. A 91, 042302 (2015), by K. Pudenz, T. Albash, and D. Lidar. [link]

“Quantum error suppression with commuting Hamiltonians: Two-local is too local”, Phys. Rev. Lett. 113, 260504 (2014), by I. Marvian and D.A. Lidar [link]

“Error Corrected Quantum Annealing with Hundreds of Qubits”, Nature Communications 5, 3243 (2014), by K.P. Pudenz, T. Albash, and D.A. Lidar. [link][sup-mat]

“Adiabatic Quantum Optimization with the Wrong Hamiltonian”, Phys. Rev. A 88, 062314 (2013), by K.C. Young, R. Blume-Kohout, D.A. Lidar. [link]

“Quantum Error Correction”, by D.A. Lidar and T.A. Brun (editors), Cambridge University Press (2013).

attachment

 

List of typos appears below. Please submit any corrections you spot to lidar[at]usc.edu

p.23, equation (1.86): \sqrt{1-F} should be \sqrt{1-F^2}.

“Decoherence-Free Subspaces for Multiple-Qubit Errors: (I) Characterization”, Phys. Rev. A 63, 022306 (2001), by D.A. Lidar, D. Bacon, J. Kempe, and K.B. Whaley [pdf]

“Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation”, Phys. Rev. A 63, 022307 (2001), D.A. Lidar, D. Bacon, J. Kempe, and K.B. Whaley [pdf]

“Protecting Quantum Information Encoded in Decoherence-Free States Against Exchange Errors”, Phys. Rev. A 61, 052307 (2000), by D.A. Lidar, D. Bacon, J. Kempe, and K.B. Whaley [pdf]

“Universal Fault-Tolerant Quantum Computation on Decoherence-Free Subspaces”, Phys. Rev. Lett. 85, 1758 (2000), by D. Bacon , J. Kempe, D.A. Lidar, and K.B. Whaley [pdf]

“Concatenating Decoherence-Free Subspaces with Quantum Error Correcting Codes”, Phys. Rev. Lett. 82, 4556 (1999), by D.A. Lidar, D. Bacon, and K.B. Whaley [pdf]

“Robustness of Decoherence-Free Subspaces for Quantum Computation”, Phys. Rev. A 60, 1944 (1999), by D. Bacon, D.A. Lidar, and K.B. Whaley [pdf]

“Decoherence-Free Subspaces for Quantum Computation”, Phys. Rev. Lett. 81, 2594 (1998), by D.A. Lidar, I.L. Chuang, and K.B. Whaley [pdf]

“Channel-Optimized Quantum Error Correction”, IEEE Trans. on Info. Theory 56, 1461 (2010), by S. Taghavi, R.L. Kosut, and D.A. Lidar. [link]

“Combined Error Correction Techniques for Quantum Computing Architectures”, J. Mod. Optics 50, 1285 (2003), by M.S. Byrd and D.A. Lidar [pdf]

“Combining Dynamical Decoupling with Fault-Tolerant Quantum Computation”, Phys. Rev. A 84, 012305 (2011), by H.K. Ng, D.A. Lidar, and J. Preskill. [link]

“Dreams Versus Reality: Plenary Debate Session on Quantum Computing”, Fluctuation and Noise Letters, 08, No. 02, pp.C27-C31 (2003), by D. Abbott, C. Doering, C. Caves, D. Lidar, H. Brandt, A. Hamilton, D. Ferry, J. Gea-Banacloche, S. Bezrukov, and L. Kish. [pdf]

“Encoding One Logical Qubit Into Six Physical Qubits”, Phys. Rev. A 78, 012337 (2008), by B. Shaw, M.M. Wilde, O. Oreshkov, I. Kremsky, and D.A. Lidar [link]

“Fault-Tolerant Holonomic Quantum Computation”, Phys. Rev. Lett. 102, 070502 (2009), by O. Oreshkov, T.A. Brun, and D.A. Lidar [link]

“Fault-Tolerant Quantum Computation via Exchange Interactions”, Phys. Rev. Lett. 94, 040507 (2005), by M. Mohseni and D.A. Lidar [pdf]

“Internal Consistency of Fault-Tolerant Quantum Error Correction in Light of Rigorous Derivations of the Quantum Markovian Limit”, Phys. Rev. A 73, 052311 (2006), by R. Alicki, D.A Lidar, and P. Zanardi [link]

“Maps for General Open Quantum Systems and a Theory of Linear Quantum Error Correction”, Phys. Rev. A 80, 012309 (2009), by A. Shabani and D.A. Lidar [link]

“Operator Quantum Error Correction for Continuous Dynamics”,  Phys. Rev. A 78, 022333 (2008), by O. Oreshkov, D.A. Lidar, and T.A. Brun [link]

“Optimally Combining Dynamical Decoupling and Quantum Error Correction”, Scientific Reports 3, 1530 (2013), by G.A. Paz Silva and D.A. Lidar. [link]

“Optimized Entanglement-Assisted Quantum Error Correction”, Phys. Rev. A 82, 042321 (2010), by S. Taghavi, T.A. Brun, and D.A. Lidar. [link]

“Quantum Codes for Simplifying Design and Suppressing Decoherence in Superconducting Phase-Qubits”, Quant. Info. Proc. 1, 155 (2002), by D.A. Lidar, L.-A. Wu, and A. Blais [pdf]

“Quantum Computing in the Presence of Spontaneous Emission by a Combined Dynamical Decoupling and Quantum-Error-Correction Strategy”, Phys. Rev. A 68, 022322 (2003), by K. Khodjasteh and D.A. Lidar. [pdf] ;  “Erratum: Quantum computing in the presence of spontaneous emission by a combined dynamical decoupling and quantum-error-correction strategy”, Phys. Rev. A 72, 029905 (2005) [link]

“Quantum Error Correction via Convex Optimization”, Quant. Info. Processing 8, 441 (2009), by R.L. Kosut and D.A. Lidar [link]

“Robust Quantum Error Correction via Convex Optimization”, Phys. Rev. Lett. 100, 020502 (2008), by R.L. Kosut, A. Shabani, and D.A. Lidar [link]

“Scheme for Fault-Tolerant Holonomic Computation on Stabilizer Codes”, Phys. Rev. A 80, 022325 (2009), by O. Oreshkov, T.A. Brun, and D.A. Lidar [link]

“Towards Fault Tolerant Adiabatic Quantum Computation”, Phys. Rev. Lett. 100, 160506 (2008), by D.A. Lidar [link]

“Universal Fault-Tolerant Quantum Computation in the Presence of Spontaneous Emission and Collective Dephasing”, Phys. Rev. Lett. 89, 197904 (2002), by K. Khodjasteh and D.A. Lidar [pdf] ;  “Erratum: Universal Fault-Tolerant Quantum Computation in the Presence of Spontaneous Emission and Collective Dephasing“, Phys. Rev. Lett. 95, 099902 (2005) [link]