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It is well known that the quantum Zeno effect can protect specific quantum states from decoherence by

using projective measurements. Here we combine the theory of weak measurements with stabilizer

quantum error correction and detection codes. We derive rigorous performance bounds which demonstrate

that the Zeno effect can be used to protect appropriately encoded arbitrary states to arbitrary accuracy

while at the same time allowing for universal quantum computation or quantum control.
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Protection of quantum states or subspaces of open sys-
tems from decoherence is essential for robust quantum
information processing and quantum control. The fact
that measurements can slow down decoherence is well
known as the quantum Zeno effect (QZE) [1,2] (for a
recent review, see Ref. [3]). The standard approach to the
QZE uses repeated strong, projective measurements of
some observable V. In this setting, it can be shown that
such repeated measurements decouple the system from the
environment or bath and project it into an eigenstate or
eigensubspace of V [4,5]. Projective measurements are,
however, an idealization, and here we are interested in
the more realistic setting of weak, nonselective measure-
ments, implementing a weak-measurement quantum Zeno
effect (WMQZE). The measurements are called weak since
all outcomes result in small changes to the state [6,7]
and nonselective since the outcomes are not recorded.
Such measurements can include many phenomena not
captured by projective measurements, e.g., detectors with
nonunit efficiency, measurement outcomes that include
additional randomness, and measurements that give in-
complete information [see Eq. (1)]. The WMQZE has al-
ready been considered in a wide range of applications, e.g.,
Refs. [8–11]. However, a general systematic study of de-
coherence suppression via the WMQZE, allowing for uni-
versal quantum control, appears to be lacking. This work
aims at bridging this gap. More specifically, we ask
whether the WMQZE can be used to protect arbitrary
quantum states while they are being controlled, e.g., for
the purpose of quantum computation. Borrowing quantum
coding ideas, we devise a measurement protocol which
allows us to provide an affirmative answer to this question:
Namely, assume that the system-bath interaction is local
and bounded and that we can encode arbitrary system
states into a sufficiently large stabilizer quantum error
correcting code. Then a weak system-measurement proto-
col usingM stabilizer measurements of strength � lasting a

total time � suppresses the system-bath interaction arbi-
trarily well in the limit of large M and commutes with
quantum control or computation being performed on the
system. We dedicate the rest of this work to explaining,
sharpening, and proving this claim.
Weak measurements.—A generalized, positive operator-

valued measure comprises a set of ‘‘measurement opera-

tors’’ fMjg satisfying the sum rule
P

jM
y
j Mj ¼ 1, which

map a state % to %j ¼ Mj%M
y
j =pj with probability pj ¼

Tr½Mj%M
y
j � for measurement outcome j [12]. In general,

one can write the weak-measurement superoperator corre-
sponding to a two-outcome measurement of an observable
(Hermitian operator) V with strength � on a state %
as [13] P �ð%Þ ¼

P
r¼�PVðr�Þ%PVðr�Þ, where PVð�Þ ¼P

s¼��sð�ÞPsV , with P�V � 1
2 ð1� VÞ standard projection

operators when V2 ¼ 1, and ��ð�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1� tanhð�Þ�=2p

.
Since P2

Vð�ÞþP2
Vð��Þ¼1, the operators fPVð�Þ; PVð��Þg

satisfy the sum rule and, hence, are measurement operators
for a given �. They are parametrized by the strength � so
that they can be considered weak-measurement operators.
Since lim�!�1PVð�Þ ¼ P�V , the ideal or strong measure-
ment limit is recovered when the measurement strength
j�j ! 1, i.e., P1ð%Þ ¼ P

s¼�PsV%PsV . The no-
measurement scenario is the case � ! 0, i.e., P 0ð%Þ ¼ %.
The weak measurement of an operator V with strength �
can be rewritten as

P �ð%Þ ¼ ð1� �ÞP1ð%Þ þ �%; � � sechð�Þ; (1)

and thus a weak measurement can be interpreted as a noisy
measurement in which, with probability � , the measure-
ment is not executed [14]. A strong measurement is the
idealized case, when � ¼ 0. Weak measurements are uni-
versal in the sense that they can be used to build up
arbitrary measurements without the use of ancillas [13].
Open system evolution with measurements.—Consider a

system and bath with respective Hilbert spaces H S and
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H B. The joint evolution is governed by the Hamiltonian
H ¼ H0 þHSB, where H0 � HS � 1B þ 1S �HB, acting
on the joint Hilbert spaceH SB � H S �H B. We assume
that kH�k � J�=2<1 (� 2 f0; S; B; SBg) [15]. We de-

note J1 � JSB. Thus kHk � ðJ0 þ J1Þ=2 � J=2<1.
We wish to protect an arbitrary and unknown system

state %S against decoherence for some time � by using only
weak measurements. We model all such measurements as
instantaneous and perform M equally spaced measure-
ments in the total time �. We define superoperator gener-
ators L�ð�Þ � �i½H�; �� and Lð�Þ � �i½H; ��. The free

evolution superoperator Uð�Þ � eL� describes the evolu-
tion after each measurement. Hence, the joint state and
system-only state, after time �, are given by

%SBð�Þ¼
�
P �U

�
�

M

��
M
%SBð0Þ; %Sð�Þ¼TrB%SBð�Þ: (2)

From now on we shall assume for simplicity that the initial
system state is pure: %Sð0Þ ¼ jc Sð0Þihc Sð0Þj and that the
joint initial state is factorized, i.e., %SB ¼ %S � %B. For
notational simplicity we denoted %�ð0Þ � %�. Note that

in Eq. (2) P � acts nontrivially only on system operators.
Figure of merit.—To determine the success of our pro-

tection protocol, we compare the ‘‘real’’ system state with
protection and in the presence of HSB [Eq. (2)] to the
uncoupled (HSB ¼ 0), unprotected ‘‘ideal’’ system state,
namely, to %0

Sð�Þ ¼ TrB%
0
SBð�Þ, with %0

SBð�Þ ¼ U0ð�Þ%SB,

where U0ð�Þ � eL0� and L0 ¼ LS þLB (½LS;LB� ¼ 0)
are the ideal unitary superoperator and its generator,
respectively.

A suitable figure of merit is then the trace-norm distance
[12,15] D½%1; %2� � 1

2 k%1 � %2k1 between the real and

ideal states. We shall show that we can make
D½%Sð�Þ; %0

Sð�Þ� arbitrarily small for a given H by a suit-

able choice of weak measurements.
Weak measurements over a stabilizer code.—Previous

WMQZE work applied only to particular states [8–11]. To
achieve our goal of protecting an arbitrary, unknown
k-qubit state, we encode the state into an ½½n; k; d�� stabil-
izer quantum error correcting code (QECC) [12,16], with

stabilizer group S ¼ fSigQi¼0, where S0 � 1. We assume

that the code distance d � 2; i.e., the code is at least error-

detecting, with generators �S ¼ f �Sig �Qi¼1 	 S, where �Q ¼
n� k. Note that every stabilizer element can be written

as Si ¼
Q �Q

�¼1
�Sri�� , where ri� 2 f0; 1g; i.e., the stabilizer

elements are given by all possible products of the gener-

ators, whence Qþ 1 ¼ 2
�Q. The encoded initial state

jc Sð0Þi is a simultaneousþ1 eigenstate of all the elements
of S. We can associate a pair of projectors (measurement
operators) P�Si � 1

2 ð1� SiÞ to each stabilizer-group ele-

ment and, accordingly, a pair of weak-measurement
operators fPSið�Þ; PSið��Þg to each Si, i.e., PSið�Þ ¼P

s¼��sð�ÞPsSi . In quantum error correction (QEC) one

performs a strong measurement of the generators in order

to extract an error syndrome [16]. It has been recognized
that these strong syndrome measurements implement a
QZE [17,18]. When we measure �S, we need to form
products of the weak-measurement operators of all the
generators, accounting for all possible sign combinations.

Let PðbÞ
�S
ð�Þ � Q �Q

i¼1 P �Si
½ð�1Þbi�� denote such a product for

a given choice of signs uniquely determined by the integer

b ¼ P �Q
i¼0 bi2

i, with bi 2 f0; 1g. Letting

�P �ð%Þ ¼
X2 �Q�1

b¼0

PðbÞ
�S
ð�Þ%PðbÞ

�S
ð�Þ; (3)

we can now define a weak stabilizer generator measure-

ment protocol as ½ �P �Uð �MÞ�M.
We stress the two important differences between this

protocol and the analogous stabilizer measurement step in
QEC: First, we do not need to observe or use the syndrome;
second, we allow for weak measurements. In this sense our
assumptions are weaker than those of QEC, and hence the
ability to perform QEC implies the ability to perform our
protocol.
Moreover, for the same reason that the many-body char-

acter of stabilizer measurements is not a significant draw-
back in QEC theory, it is not a problem for our protocol
either. The reason is that such measurements can be imple-
mented (even fault-tolerantly) by using at most two-local
operations. See Ref. [14] for an explicit two-local construc-
tion for the weak-measurement case. An alternative is to
consider a protocol based onmeasuring the gauge operators
of the Bacon-Shor code [19], which are all two-local and
can be shown to implement a WMQZE as well [20].
We shall also consider a weak stabilizer-group

measurement protocol: ½P �Uð �MÞ�M, where P �ð%Þ ¼P
2Q�1
b¼0 PðbÞ

S ð�Þ%PðbÞ
S ð�Þ, with PðbÞ

S ð�Þ � QQ
i¼0 PSi½ð�1Þbi��

and b ¼ PQ
i¼0 bi2

i. As we shall see, the generators and

group protocols exhibit substantial trade-offs, so we shall
consider both in our general development below.
Note that if %S is stabilized by �S (or S), then the weak-

measurement protocol perfectly preserves an arbitrary en-
coded state in the absence of system-bath coupling.
Another important fact we shall need later is that, given
some ½½n; k; d�� stabilizer QECC, if a Pauli group operator
P anticommutes with at least one of the stabilizer gener-
ators, then it anticommutes with half of all the elements of
the corresponding stabilizer group S [14].
Distance bound.—Following standard conventions, we

call a Pauli operator k-local if it contains a tensor product
of k nonidentity Pauli operators. We call a system
Hamiltonian k-local if it is a sum of k-local Pauli operators,
and a system-bath Hamiltonian k-local if it is a sum of
k-local Pauli operators acting on the system, tensored with
arbitrary bath operators.
Let ~rs¼frigsi¼1, where ri2f0;1g8 i and s 2 f1; . . . �Qg.

Let f�ig �Qi¼1, where �2
i ¼ 1 8 i, denote a commuting set
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of operators acting on the system only. Consider the re-
cursive definition H~rs ¼ 1

2½H~rs�1
þð�1Þrs�sH~rs�1

�s�,
where H~r0 � H. This construction allows for the decom-

position of any Hamiltonian as H ¼ P
~r �Q
H~r �Q

, with the

property fH~r �Q
;�ig ¼ 0 if ri ¼ 1 or ½H~r �Q

;�i� ¼ 0 if

ri ¼ 0. Note that H0 ¼ H~0 �Q
and HSB ¼ P

~r �Q
H~r �Q

�H0. It

follows from the triangle inequality, norm submultiplica-
tivity, and the recursive definition of H~ri that kH~r �Q

k �
J1=2. These bounds can be further specialized or tightened
for specific forms of the Hamiltonian.

We are now ready to state our main result.
Theorem 1.—Assume an arbitrary pure state %S ¼

jc Sihc Sj is encoded into an ½½n; k; d�� stabilizer QECC.
Assume that HSB ¼ P

d�1
K¼1 H

ðKÞ
SB and that HS commutes

with the code’s stabilizer, so that HS ¼
P

l�1H
ðldÞ
S , where

HðKÞ
SB (HðKÞ

S ) denotes a K-local system-bath (system-only)

Hamiltonian, and all Hamiltonians, including HB, are

bounded in the sup-operator norm. Finally, let
Q ¼ 2n�k � 1 and q ¼ ðQþ 1Þ=2, and assume J0 > J1
(the case J0 < J1 will be discussed in Ref. [20]).
Then the stabilizer-group measurement protocol
½P �Uð�=MÞ�M protects %S up to a deviation that con-
verges to 0 in the large M limit:

D½%Sð�Þ;%0
Sð�Þ��

�
1��gðMÞ

�1ðMÞ
�
½1þ�1ðMÞ�M�e�J0

þ�gðMÞX
s¼�

AsðMÞ�M�1
s ðMÞ�B (4a)

¼e�J0
�
Q�2J21

4
þQ�J1

2
ð1þ�J0Þ �q

1��q

�


 1

M
þO

�
1

M2

�
; (4b)

where

�1ðMÞ :¼ 1

Qþ 1
e�J0=Mðe�QJ1=M þQe��J1=MÞ � 1; �gðMÞ :¼ 1

Qþ 1
e�J0=Mðe�QJ1=M � e��J1=MÞ; (5a)

��ðMÞ :¼ 1
2½1þ �1 þ ð1þQ�1Þ�q� � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ �1 � ð1þQ�1Þ�q�2 þ 4Q�2

1�
q

q
; (5b)

A�ðMÞ :¼ Q�1�
qð�� þ �1Þ þ ð1þ �1Þ½ð1þ �1Þ � ���

�1ð�� � ��Þ : (5c)

For a generator measurement protocol ½ �P �Uð�=MÞ�M,
replace q by 1 in Eqs. (4b), (5b), and (5c). In the strong
measurement limit (� ! 1), both protocols yield the dis-
tance bound

D½%Sð�Þ; %0
Sð�Þ� � eJ0�

��
Qe�J1�=M þ eJ1�Q=M

Qþ 1

�
M � 1

�
:

(6)

To motivate the locality aspects of Theorem 1, recall that
by construction of a stabilizer code any Pauli operator with
locality � d� 1 anticommutes with at least one stabilizer

generator, a condition satisfied by all HðKÞ
SB in Theorem 1.

Moreover, logical operators of the code (elements of the
normalizer, which commute with the stabilizer) must have
locality that is an integer multiple of the code distance d, a

condition satisfied by everyHðldÞ
S , which by assumption can

be used to implement logical operations on the code while
stabilizer measurements are taking place. To keep the
locality of HS low thus requires a low distance code. We
present an example of a d ¼ 2 code below.

Proof sketch of Theorem 1.—We first consider the case
of weak measurements of the entire stabilizer group, P �. A
typical K-local term we need to calculate is then of the

form P �ðHðKÞ
SB %SBÞ ¼

P
2Q�1
b¼0 PðbÞ

S ð�ÞHðKÞ
SB %SBP

ðbÞ
S ð�Þ. Now

we use the previously established fact that if E (modulo
logical operators and stabilizer operations) is a correctable

error, then fSi; Eg ¼ 0 for exactly half of the stabilizer
elements. Hence the same number of stabilizer elements,

q ¼ ðQþ 1Þ=2, anticommute with HðKÞ
SB . From here a

straightforward calculation reveals that ðP �ÞjLSBð%SBÞ ¼
�jqLSBð%SBÞ, a key result since it shows how the measure-
ments suppress the ‘‘erred’’ component of the state,
LSBð%SBÞ. On the other hand, since we assume that
½HS; Si� ¼ 0 for all stabilizer elements, we have
P �½L0ð%SBÞ� ¼ L0ð%SBÞ and hence ðP �Þj½L0ð%SBÞ� ¼
L0ð%SBÞ, meaning that measurements do not interfere
with the ideal evolution.
Taylor expanding Uð�=MÞ ¼ exp½ð�=MÞL� in Eq. (2)

and the ideal unitary superoperator U0ð�Þ and expanding
L as a sum of K-local terms yields an expression for
%SBð�Þ � %0

SBð�Þ as a sum of products of projectors P �

and Hamiltonian commutators L~r �Q
ð�Þ � �i½H~r �Q

; :� acting
on %SB. By the above arguments, the projectors in each of
these terms may be replaced by �jq, where j ¼ 0 if all
commutators in the term are L0 � L~0 �Q

. Invoking the

triangle inequality, submultiplicativity, and the fact that
k%SBk1 ¼ 1 allows the trace norm of this sum to be
bounded by a linear combination of the norms of the L~r �Q

operators, which may all then be replaced by the upper

bounds J0 � kL0k and J1 � kL~r �Q
k or all ~r �Q � ~0 �Q. The

resulting hypergeometric sum may be shown to equal the
expression B given in Eq. (4a).
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When we perform generator measurements �P �, each
error anticommutes with at least one generator. To derive
a simple but general result, we consider only the worst-case
scenario of each error anticommuting with just one gen-
erator. An almost identical calculation to the one for the
full stabilizer-group protocol reveals an upper bound for
D½%Sð�Þ; %0

Sð�Þ� given by replacing q by 1 in Eqs. (4) and

(5), since q counts the number of anticommuting stabilizer
or generator elements. This completes the proof sketch.
Complete proof details will be provided in Ref. [20].

We note that the generators-only bound is not as tight as
the one for the full-group protocol, due to the worst-case
assumption of q ¼ 1 used to upper-bound terms with
larger exponents which appear in the Taylor expansion
discussed above. In other words, the bound on the
generators-only protocol contains a sum over terms of
the form P �L ~r �Q

ð%Þ ¼ �qL~r �Q
ð%Þ, where q 2 f1; . . . ; �Qg,

all of which we have replaced for simplicity by q ¼ 1.
Our upper bounds are illustrated in Fig. 1. Clearly, the
generators-only bound is not as close to the strong mea-
surement limit as the full-group protocol bound. However,
the former protocol requires an exponentially smaller num-
ber of measurements. If the measurement is performed,
e.g., by attaching an ancilla for each measured Pauli ob-
servable (as in a typical fault-tolerant QEC implementation
[12]), then this translates into an exponential savings in the
number of such ancillas. Thus the two protocols exhibit a
performance-resource trade-off. Next, we discuss an
example.

Suppression of one-local errors.—To illustrate our gen-
eral construction, we consider suppression of decoherence
due to a Hamiltonian containing one-local errors on n
qubits: HSB ¼ P

n
i¼1

P
�2fx;y;zg��

i � B�
i � Hx þHy þHz,

where Ja � kHak<1. This model captures the dominant
errors in any implementation of quantum control or quan-
tum computing using qubits, since any terms with higher

locality must result from three-body interactions and
above. Theorem 1 guarantees first-order suppression of
this HSB provided we perform weak measurements over a
stabilizer group of distance d � 2. We can, e.g., choose an
error detection code C ¼ ½½n; n� 2; 2��, where n is even,
defined by the stabilizer generators �S ¼ f �S1 ¼ X�n; �S2 ¼
Z�ng, i.e., �Q ¼ 2. The codewords are fjc xi ¼ ðjxi þ
j �xiÞ= ffiffiffi

2
p g, where x is an even-weight binary string of length

n and xþ �x ¼ 0 (mod 2). This distance d ¼ 2 code is
attractive since the normalizer elements are all two-local,
which means that HS is also two-local if it is constructed
over these normalizer elements. Encoded single-qubit op-
erations for C are ~Xj ¼ �x

1�
x
jþ1 and

~Zj ¼ �z
jþ1�

z
n, where

j ¼ 1; . . . ; n� 2. Encoded two-qubit interactions are
~Xi
~Xj ¼ �x

iþ1�
x
jþ1 and

~Zi
~Zj ¼ �z

iþ1�
z
jþ1. This is sufficient

for universal quantum computation in both the circuit [12]
and adiabatic models [21]. Thus our encoded WMQZE
strategy applies in both settings (we note that our results
hold even when the Hamiltonian H is time-dependent
[20]). If we weakly measure the entire stabilizer group S ¼
f1; X�n; Y�n; Z�ng, Theorem 1 implies that a state encoded
into C, supporting n� 2 logical qubits, is protected by the
encoded WMQZE according to Eq. (4b) with Q ¼ 3 and
q ¼ 2. If we measure only the generators, Theorem 1 gives
the same bound with �2 replaced by � .
Conclusions.—The ‘‘traditional’’ QZE uses strong, pro-

jective measurements and is able only to protect an eigen-
state of the operator being measured. In this work we have
presented a general study of decoherence suppression via
the WMQZE for arbitrary quantum states, allowing for
universal quantum computation and control. By using the
WMQZE to protect codewords of a stabilizer QECC, we
have explicitly demonstrated that one can achieve deco-
herence suppression to arbitrary accuracy by increasing
both the measurement strength and frequency while
at the same time applying logical operators (normalizer

FIG. 1 (color online). Left: The upper bound B [Eq. (4a)] as a function of the number of measurements M and 	 � J1=J0, with
J0� ¼ 1, �Q ¼ 4, and � ¼ 0:8. Right: The same bound as a function of M and � , with J0� ¼ 1, �Q ¼ 4, and 	 ¼ 0:1. In both plots the
upper, middle, and lower surfaces are, respectively, the bounds for the generators-only, full stabilizer-group, and strong measurements
protocols, the latter being the � ! 0 limit of B, given in Eq. (6). The full stabilizer-group bound is tighter than the generators-only
bound for all values of the parameters and is closer to the bound for the strong measurement limit.
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elements) as Hamiltonians, which suffices for universality.
This establishes the WMQZE as a general alternative to
other open-loop quantum control methods, appropriate
where measurement, rather than unitary control, is advan-
tageous. A natural example is measurement-based quan-
tum computation [22]. We defined two protocols, one
based on measurement of the full stabilizer group and
another on measurement of the generators only, and
studied the trade-off between the two. The former requires
exponentially more commuting measurements. However,
our upper bound on its suppression of the effect of the
finiteness of the measurement strength is exponentially
tighter.

It would be interesting to consider whether—similarly to
recent developments in dynamical decoupling theory using
concatenated sequences [23] or pulse interval optimization
[24–26]—WMQZE decoherence suppression can be opti-
mized by exploiting, e.g., recursive design or nonuniform
measurement intervals. Another interesting possibility is to
analyze the joint effect of feedback-based quantum error
correction [16] and the encoded WMQZE. Finally, an im-
portant extension would be to improve the WMQZE proto-
col by using techniques from fault tolerance theory [27].
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